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A few comments to get things started...

(1) I’ve made these notes freely available, but if you find them useful, please consider making a donation
to support student activities in Mechanical Engineering at Purdue. Three student organizations to
consider are:
• The American Society of Mechanical Engineers (ASME)
• Pi Tau Sigma (The mechanical engineering honor society), and
• The Official Mechanical Engineering Graduate Association (OMEGA).

You may send your donation to the following address:

ASME/Pi Tau Sigma/OMEGA

School of Mechanical Engineering

585 Purdue Mall

Purdue University

West Lafayette, IN 47907-2088 USA

I’m sure your donations will be greatly appreciated.
(2) Your corrections, comments, and compliments on the notes are also appreciated.
(3) I strongly encourage you to use these notes as supplemental material as opposed to serving as

your primary resource. Coupling these notes with a textbook or two will provide you with a
better learning experience. Seeing a topic from different points of view definitely helps to improve
understanding of that topic.

(4) I give a large number of example problems in these notes. I recommend covering up the solutions
and trying to work the problems on a blank piece of paper. Refer to the solutions only when you
get stuck and have put in a reasonable amount of effort. Reviewing the solutions and saying to
yourself, “This makes sense.” is a very different experience than having to work out a problem on
a blank page. Most engineering positions and university tests involve solving a problem without a
solution available, so it makes sense to practice in the same way.
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CHAPTER 1

The Basics

1.1. Symbolic vs. Numeric Analysis

Consider the following example. You need to determine the trajectory of a projectile fired from a cannon.
The projectile has a mass of 10 kg and the cannon is tilted at an angle of 30◦ from the horizontal. The initial
velocity of the projectile from the cannon is 100 m s−1. Determine:

(1) the distance the projectile will travel and
(2) how long the projectile is in flight.

We can approach this problem a couple of different ways. The first is to start with the given numbers and
immediately begin the calculations. The second approach is to solve the problem symbolically and then
substitute the numbers at the end.

1.1.1. Numerical Approach

Figure 1.1. The free body diagram for the projectile example using numerical values.

Draw a free body diagram (FBD) of the projectile, as shown in Figure 1.1. Use Newton’s Second Law to
determine the acceleration of the projectile,∑

Fx = mẍ =⇒ 0 N = (10 kg)ẍ =⇒ ẍ = 0, (1.1)∑
Fy = mÿ =⇒ (10 kg)(−9.81 m/s2) = (10 kg)ÿ =⇒ ÿ = −9.81 m/s2. (1.2)

Integrate with respect to time to determine the projectile’s velocity and position given the projectile’s initial
x and y velocities and positions,

ẋ = ẋ0 = (100 m s−1)(cos 30◦) = 86.6 m s−1, (1.3)

ẏ = (−9.81 m/s2)t+ ẏ0 = (−9.81 m/s2)t+ (100 m s−1)(sin 30◦) = (−9.81 m/s2)t+ 50 m s−1, (1.4)

x = (86.6 m s−1)t , (1.5)

y = (−4.91 m/s2)t2 + (50 m s−1)t . (1.6)

C. Wassgren 1 2024-02-01



Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

The projectile will hit the ground when y = 0 so that by rearranging Eq. (1.6) we find that the time aloft is,

t =
50.0 m s−1

4.91 m/s2 = 10.2 s. (1.7)

Substituting into Eq. (1.5) gives the distance traveled as,

x = (86.6 m s−1)(10.2 s) = 883 m . (1.8)

As you can see, we’ve made a number of calculations along the way to finding the answers. Now let’s address
some additional questions based on these answers. How does the maximum time aloft depend on the mass of
the projectile? If the initial speed from the cannon doubles, how is the range affected? What angle maximizes
the distance the projectile travels? The answers to these questions are not obvious from Eqs. (1.5) – (1.8).
We would need to perform additional calculations. Also, consider how many calculations would need to be
made if we had to determine the range and time aloft for a variety of cannon angles, initial velocities, and
cannon ball masses.

1.1.2. Symbolic Approach

Figure 1.2. The free body diagram for the projectile example using symbols.

Now let’s try working the same problem using symbols rather than numbers. We’ll plug in the numbers at
the very end of the problem. Draw the FBD as before (Figure 1.2). Follow the same approach as before,∑

Fx = mẍ =⇒ 0 = mẍ =⇒ ẍ = 0, (1.9)∑
Fy = mÿ =⇒ −mg = mÿ =⇒ ÿ = −g, (1.10)

ẋ = ẋ0 = V cos θ, (1.11)

ẏ = −gt+ ẏ0 = −gt+ V sin θ, (1.12)

x = (V cos θ)t (x0 = 0), (1.13)

y = −1

2
gt2 + (V sin θ)t (y0 = 0). (1.14)

The time aloft is found by setting y = 0,

t =
2V sin θ

g
, (1.15)

and the distance traveled is,

x =
2V 2 cos θ sin θ

g
=
V 2 sin(2θ)

g
. (1.16)

C. Wassgren 2 2024-02-01



Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

We can now plug in the given numbers to get our numerical answers,

t =
2(100 m s−1) sin(30◦)

9.81 m/s2 = 10.2 s, (1.17)

x =
(100 m s−1)2 sin(60◦)

9.81 m/s2 = 883 m, (1.18)

(1.19)

which are the same answers found previously.

Using these results for t and x we can easily calculate the time aloft and distance traveled for a variety of
values of θ, V , and m. Note that nowhere in Eqs. (1.13) - (1.16) does the mass appear so we conclude that
the mass of the cannon ball is unimportant to our calculations. We also observe that if we double the initial
velocity, the time aloft will double and the distance traveled will quadruple. This information is easily lost
in our calculations where numbers were used right away (refer to Eqs. (1.7) and (1.8).

Lastly, if we wanted to determine the angle that will maximum the distance traveled for a given velocity, we
observe from Eq. (1.16) that we want sin(2θ) to be as large as possible. Thus, we should tilt our cannon at
an angle of θ = 45◦. Substituting this result back into Eqs. (1.15) and (1.16) gives,

tmax =

√
2V

g
, (1.20)

xmax =
V 2

g
. (1.21)

We can also easily double-check the dimensions of the equations and verify that they are dimensionally
homogeneous,

[t] =
L/T

L/T 2
= T Ok! (1.22)

[x] =
(L/T )2

L/T 2
= L Ok!, (1.23)

where L and T represent length and time, respectively. We can conclude from this exercise the following:

(1) More information is contained in our solutions when using the symbolic approach than when using
the numeric approach.

(2) If several calculations must be made using different values of the parameters, solving the problem
first symbolically rather than starting the problem immediately with the numbers can save consid-
erably on the number of computations required. Furthermore, it’s much easier to correct numerical
mistakes at the end of the problem rather than at the beginning or in the middle of the problem.

You’re almost always better off working out a problem using symbols rather than numbers!

Be Sure To:

(1) Work out problems symbolically and wait to substitute numerical values until the final relation has
been derived.

(2) Try to physically interpret your equations.
(3) Make sure any relations you derive and the numbers you calculate are physically reasonable.
(4) Double check that the dimensions (or units) of your answers are correct.

1.1.3. A Note on the Use of the Ballistic Equation

From your introductory physics course, you likely recall the ballistic equation for describing the position of
an object, x, as a function of time, t, subject to an acceleration a, initial velocity, ẋ0 , and initial position,
x0,

x =
1

2
at2 + ẋ0t+ x0. (1.24)
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This equation was derived in the following manner. Assume an object is subject to a constant acceleration
a so we can write,

ẍ =
dẋ

dt
= a, (1.25)

where the overdots represent differentiation with respect to time. Integrate this equation twice with respect
to time making use of the initial conditions x(t = 0) = x0 and ẋ(t = 0) = ẋ0 to get,

dẋ

dt
= a =⇒

ˆ ẋ=ẋ

ẋ=ẋ0

dẋ =

ˆ t=t

t=0

adt =⇒ ẋ− ẋ0 = a

ˆ t=t

t=0

dt = at =⇒ ẋ = at+ ẋ0, (1.26)

ẋ =
dx

dt
= at+ ẋ0 =⇒

ˆ x=x

x=x0

dx =

ˆ t=t

t=0

(at+ ẋ0)dt =⇒ x− x0 =
1

2
at2 + ẋ0t =⇒ x =

1

2
at2 + ẋ0t+ x0. (1.27)

A key step in the derivation to this equation is the assumption that a = constant. When a is a constant, it
may be pulled out of the integrals in Eqs. (1.26) and (1.27). Thus, the ballistic equation is only valid when
a = constant. It is not valid when a varies with time. If a is a function of time, then it must be evaluated
within the integral. For example, if we have,

a = ct, (1.28)

where c is a constant, then, using the same initial conditions as before, we have,

dẋ

dt
= a =⇒

ˆ ẋ=ẋ
ẋ=ẋ0

dẋ =

ˆ t=t
t=0

adt =⇒ ẋ− ẋ0 =

ˆ t=t
t=0

(ct)dt =
1

2
ct2 =⇒ ẋ =

1

2
ct2 + ẋ0, (1.29)

ẋ =
dx

dt
=

1

2
ct2 + ẋ0 =⇒

ˆ x=x
x=x0

dx =

ˆ t=t
t=0

(
1

2
ct2 + ẋ0)dt =⇒ x− x0 =

1

6
ct3 + ẋ0t =⇒ x =

1

6
ct3 + ẋ0t+ x0. (1.30)

Thus, we see that the position in Eq. (1.30) is different than the result given by the ballistic equation.

1.2. Dimensions and Units

A dimension is a qualitative description of the physical nature of some quantity.

Notes:

(1) A basic or primary dimension is one that is not formed from a combination of other dimensions. It
is an independent quantity.

(2) A secondary dimension is one that is formed by combining primary dimensions.
(3) Common dimensions include:

M = mass

L = length

T = time

θ = temperature

F = force

(4) If M ,L, and T are primary dimensions, then F = ML/T 2 is a secondary dimension. If F , L, and
T are primary dimensions, then M = FT 2/L is a secondary dimension.

A unit is a quantitative description of a dimension. A unit gives “size” to a dimension. Common systems of
units in engineering are given in Table 1.1.

Notes:

(1) The mole is the amount of substance that contains the same number of elementary entities as there
are atoms in 12 g of carbon 12 (= 6.022× 1023, known as Avogadro’s constant). The elementary
entities must be specified, e.g., atoms, molecules, particles, etc. The unit kmol (aka kgmol) is also
frequently used, with 1 kmol = 1000 mol = 6.022× 1026 entities. The unit lbmol is used in the
English system of units. Since 1 lbm = 0.453 kg, 1 lbmol = 453.592 mol. The number of kmols
of a substance, n, is found by dividing the mass of the substance, m (kg) by the molecular weight
of the substance, M (in kg/kmol): n = m/M . For example, the atomic weight of carbon 12 is 12
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Table 1.1. Common units used in engineering.

primary dimension

SI (Systéme
International

d’ Unités)
BG (British

Gravitational

EE (English

Engineering)
L, length meter (m) foot (ft) foot (ft)
T , time second (s) second (s) second (s)

θ, temperature Kelvin (K) degree Rankine (◦R) degree Rankine (◦R)
M , mass kilogram (kg) -not primary- pound mass (lbm or lb)

N , amount of a substance mole (mol) mole (mol) pound mole (lbmol)
F , force -not primary- pound force (lbf) pound force (lbf)

kmol/kg, hence, 1 kg of carbon 12 contains: (12 kg)/(12 kg/kmol) = 1 kmol = 1000 mol (or 12 g
of C12 contains 1 mol).

(2) In the SI system, force is a secondary dimension and is given by: F = ML/T 2 where 1 N = 1 kgm/s2.
(3) In the EE system, both force and mass are primary dimensions. The two are related via Newton’s

second law, gcF = ma where gc = 32.2 lbmft/(lbfs
2). It’s easiest just to remember that: 1 lbf =

32.2 lbmft/s2.
(4) The slug is the unit of mass in the British Engineering system of units. To convert between a slug

and lbf is: 1 lbf = 1 slugft/s2.
(5) The kilogram-force (kgf) is (unfortunately) a not uncommon quantity. The conversion between kgf

and Newtons is: 1 kgf = 9.81 N.
(6) It’s a good policy to carry units through your calculations. Remember that, unless it’s dimensionless,

every number has a unit attached to it. For example, if m = 1 lbm and g = 32.2 ft/s2,

Poor Practice: mg = (1)(32.2) = 1 lbf ,

Good Practice: mg = (1 lbm)(32.2 ft/s2) =
(
32.2 lbmft/s2

)( 1 lbf

32.2 lbmft/s2

)
= 1 lbf

Carrying through your units makes it less likely that you’ll make unit conversion errors, plus it
makes it easier for you and others to follow your work.

Example: What is 70 mph in furlongs per fortnight?
Solution:(

70
miles

hour

)(
5280 feet

miles

)(
rod

16.5 feet

)(
furlong

40 rods

)(
24 hours

day

)(
7 days

week

)(
2 weeks

fortnight

)
= 1.88× 105 furlongs

fortnight
(1.31)

Example: What is weight of 1 lbm of water in lbf?
Solution: Weight is mass multiplied by gravitational acceleration,

W = mg = (1 lbm)
(
32.2 ft/s2

)( 1 lbf

32.2 lbmft/s2

)
= 1 lbf . (1.32)

Dimensional homogeneity is the concept whereby only quantities with similar dimensions can be added (or
subtracted). It is essentially the concept of “You can’t add apples and oranges.” For example, consider the
following equation,

10 kg + 16 K = 26 m s−1. (1.33)

This equation doesn’t make sense since it is not dimensionally homogeneous. How can one add mass to
temperature and get velocity?!?

Note that dimensional homogeneity is a necessary, but not sufficient, condition for an equation to be cor-
rect. In other words, an equation must be dimensionally homogeneous to be correct, but a dimensionally
homogeneous equation isn’t always correct. For example,

10 kg + 10 kg = 25 kg. (1.34)
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The equation has the right dimensions, but the wrong magnitudes!

Be sure to:

(1) Verify that equations are dimensionally homogeneous.
(2) Carefully evaluate unit conversions. A unit conversion error caused the loss of the $125M Mars

Climate Observer spacecraft in 1999!
(3) Always include units with numerical values. An Air Canada Flight in 1983 (now referred to as the

“Gimli Glider”) ran out of fuel and had to make an emergency landing due, in part, because the
fuel load was assumed to be in pounds when in fact it was reported in kilograms.

C. Wassgren 6 2024-02-01
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The Ideal Gas Law is used to find the volume as given in the following formula, 
𝑉 = !"#

$
, 

where m = 2 kg, R = 0.189 kJ/(kg.K), T = 300 K, and p = 1 bar (abs).  Calculate the volume in m3.  Show all of your 
calculations and unit conversions. 
 
 
SOLUTION: 

𝑉 = (&	())(+.-./	(0/(().2))(3++	2)
(-	456)

= #&	()
-
$ #+.-./	(0

().2
$ #3++	2

-
$ # -

-	456
$ #-+++	0

-	(0
$ # -	456

-+!	75
$ # -	75

-	8/9"$ #
-	8.9
-	0

$ (1) 

𝑉 = 1.13	m3 . 

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics
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A piston, with a mass of m = 100 kg and cross-sectional area of A = 10 cm2, is located within a cylinder as shown in 
the figure.  The pressure on the top surface of the piston is a uniform pt = 200 kPa (abs).  The pressure on the 
bottom of the piston is a uniform pb = 1 bar (abs).  If a force is applied to the piston to move it slowly upwards, i.e., 
in a quasi-equilibrium process, a distance of L = 1 cm, determine the work done on the piston by the force, in kJ.  
Show all of your unit conversions. 
 
 
 
 
 
 
 
SOLUTION: 
 
 
 
 
 
 
First, determine the force by performing a vertical force balance on the piston, keeping in mind that the process is 
in quasi-equilibrium so that there is no acceleration of the piston, 

∑𝐹 = 0 = 𝐹 + 𝑝!𝐴 −𝑚𝑔 − 𝑝"𝐴  =>  𝐹 = 𝑚𝑔 + (𝑝" − 𝑝!)𝐴. (1) 
 
The work due to the force is, 

𝑊 = ∫ 𝑭 ⋅ 𝑑𝒔#$%
#$& = ∫ [𝑚𝑔 + (𝑝" − 𝑝!)𝐴]𝑑𝑠

%
& = [𝑚𝑔 + (𝑝" − 𝑝!)𝐴]𝐿, (2) 

𝑊 = 𝑚𝑔𝐿 + (𝑝" − 𝑝!)𝐴𝐿. (3) 
Note that the first term on the right-hand side is the change in potential energy while the second term is the 
pressure difference multiplied by the volume traced out by the piston (= AL). 
 
Using the given values, evaluate the terms in Eq. (3).  Start with the mgL term, 

𝑚𝑔𝐿 = (100	kg);<<=<<>
$'	

?9.81	 )
*!
C;<<=<<>

$+

(1	cm	);<=<>
$%

F ,	-

,	"#.%
&!
G ? ,	)	

,&&	.)
C ? ,	/

,	-.)
C ? ,	1/

,&&&	/
C = 9.81 ∗ 1023	kJ. (4) 

 
Now evaluate the (pt – pb)AL term, 

(𝑝! − 𝑝")𝐴𝐿 = ((200	kPa)/001002
#$!

3%&&&	()
%	*()

4 − (1	bar)/0102
#$"

3%&
#	()

%	+),
48 (10	cm-)/001002

#.

(1	cm)/12
#/

3%	0/2
$

%	()
4 3 %	2

%&&	32
4
4
3 %	5
%	0.2

4 3 %	*5
%&&&	5

4 = 1 ∗ 1074	kJ. (5) 

 
Combining the numerical values in Eqs. (4) and (5), 

𝑊 = 1.08 ∗ 1024	kJ.  
 

 
 

pt 

pb 
F 

L 

ptA 

pbA F 
mg 

L 

g = 9.81 m/s2 
m = 100 kg 
A = 10 cm2 
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For the flow of gas in a nozzle, 
ℎ! = ℎ" +

"
!
(𝑉"! − 𝑉!!), 

where h1 and h2 are the gas’s specific enthalpies at the inlet and outlet of the nozzle, respectively, and V1 and V2 
are the gas speeds at the inlet and outlet, respectively.  For the current case, h1 = 300 kJ/kg, V1 = 100 m/s, and V2 = 
200 m/s. 
 
Using the given formula, calculate the value for h2 in kJ/kg. 
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SOLUTION: 
Substitute the given parameter into the equation to solve for h2, including appropriate unit conversions, 

ℎ! = (300 #$
#%
+ + "

!
,(100&

'
+
!
− (200&

'
+
!
/ ( "	#$

")))	*.&
+ ( "	*.&

"	#%.&!/'!
+, (1) 

ℎ! = (300 #$
#%
+ + "

!
(−30000	m!/s!) ( "	#$/#%

")))	&!/'!
+, (2) 

ℎ! = (300 #$
#%
+ − (15	 #$

#%
+, (3) 

ℎ! = 285 #$
#%

. (4) 
 
 

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

C. Wassgren 10 2024-02-01



Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

1.3. Taylor Series Expansion Approximation

Figure 1.3. A plot used to motivate the use of Taylor Series approximations. If we know
the value of y(x), how can we estimate the value of y(x+ dx)?

If we know the value of some quantity, y, at some location, x, then how can we determine the value of y at
a nearby location x+ dx (Figure 1.3)? We can use a Taylor series expansion for y about location x,

y(x+ δx) = y(x) +
dy

dx

∣∣∣∣
x

(δx) +
d2y

dx2

∣∣∣∣
x

(δx)2

2!
+ . . . (1.35)

As δx becomes very small, δx→ dx, and the higher order terms become negligibly small: δx� (δx)2 � (δx)3,

y(x+ dx) ≈ y(x) +
dy

dx

∣∣∣∣
x

(dx). (1.36)

Note that Eq. (1.36) is simply the equation of a line. We can see what’s happening more clearly in Figure 1.4.
We’ll use this approximation often, especially when examining how quantities vary over small distances.

Figure 1.4. A sketch used to illustrate how a truncated Taylor Series can be used to
estimate values. The black line is the original function and the red line is the truncated
Taylor Series approximation.

Be sure to:

(1) Make sure you understand how this procedure works. It will be used frequently in the remainder
of these notes.

C. Wassgren 11 2024-02-01



Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

1.4. Significant Digits

Significant digits (aka significant figures) are the number of digits in a value that contribute to the accuracy of
the value. A large number of significant digits implies that the value is known to high accuracy. For example,
let’s say we report the length of a mobile phone as 14.681230924 cm. Having such a large number of digits
(in this case, 11 significant digits) implies that we know the phone length very accurately, in this case down
to the nanometer scale. Obviously this isn’t typically the case. A more reasonable length to report would be
14.7 cm (three significant digits), implying we know the length down to the millimeter. Thus, one should use
an appropriate number significant digits when reporting values. Clearly the reporting of significant digits is
closely related to the uncertainty in a reported value.

Following are the rules for identifying the number of significant digits in a value.

(1) Leading zeros are not counted as significant digits. For example, 0.0023 has only two significant
digits, the 2 and the 3. The three leading zeros do not count as significant digits and only serve as
placeholders (the ones, tenths, and hundredths spots).

(2) Trailing zeros that serve merely as placeholders are not counted as significant digits. For example,
23000 has only two significant digits, the 2 and the 3. The three zeros are not significant and only
serve to fill in the ones, tens, and thousands spots.

(3) Zeros between non-zero values are considered significant. For example, 23001 has five significant
digits: 2, 3, 0, 0, and 1.

(4) Trailing zeros immediately before and immediately after a decimal point are considered significant
digits because they indicate that a value is known with some accuracy. For example, 23000. has
five significant digits. Similarly, 2.3000 has five significant digits.

(5) A line over a zero can indicate that that the numbers to the left of that value are significant. For
example, 2300̄0 has four significant digits: the 2, the 3, the 0 in the thousands spot, and the zero
in the tens spot.

(6) A handy way of determining the number of significant digits is to write the value in scientific
notation then count the digits in the mantissa, i.e., the number being multiplied by 10 raised to
some power. For example, 0.0023 can be written as 2.3 ∗ 10−3. The mantissa is 2.3, which has two
significant digits. The number 23000 can be written as 2.3 ∗ 104, which as two significant digits.
The numbers 23000. and 2.3000 can be written as 2.3000 ∗ 104 and 2.3000 ∗ 101, respectively, and
have five significant digits each.

(7) An exact number has an infinite number of significant digits. For example, if the number of apples
you have is five, then the number 5 has an infinite number of significant digits since it could be
written as 5.0000... with an infinite number of zeros.

There are rules for performing calculations with significant figures so that calculated values are not reported
more precisely than the numbers used in the calculations.

(1) For addition and subtraction, the rightmost significant digit in the calculated value is determined
by the least accurate added/subtracted value. For example, the sum 1.2 + 0.444 should be reported
as 1.6 since the accuracy of the sum is set by the tenths position of the first number. Similarly,
1.234 − 4.5 should be reported as −3.3, where the significant digit in the tenths position has been
rounded.

(2) For multiplication and division, the number of significant digits in the product/quotient should
have the same number of significant digits as the lesser of the two multiplied/divided values. For
example, 1.23 ∗ 0.4 should be written as 0.5. The product has one significant digit and has been
rounded. The operation 1.2/0.456 should be written as 2.6.

(3) There are also rules for logarithms, exponential, and trig functions, but these are not covered in
these notes and are instead available in introductory physics textbooks or online.

(4) To prevent a loss of accuracy, when performing intermediate calculations retain all of the digits as
is practical rather than rounding the intermediate values. Only round the final result. For example,
(1.23 ∗ 0.4) + 5.67 is calculated as 0.4̄92 + 5.67 which should then be reported as 6.2.
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Despite all of these rules, many engineering analyses (including most of the examples I present in these notes)
only follow these rules loosely. A best practice would be to follow the rules exactly. The author’s only excuse
for not following the rules is that it would be a considerable effort to correct all of the examples in these
notes, which isn’t a great excuse. An engineering rule of thumb is to present final values to within three
significant digits, i.e., 1.23 ∗ 10n (where n is some number) since most engineering calculations don’t involve
highly accurate values. That being said, if one handles numbers and calculations requiring high accuracy,
then following the significant digit rules carefully would be wise.

1.5. Experimental Uncertainty

In any experimental (or even computational) study, attention must be paid to the uncertainties involved
in making measurements. Including the uncertainty allows one to judge the validity or accuracy of the
measurements. Uncertainty analysis can also be useful when designing an experiment so that the propagation
of uncertainties can be minimized. Consider a measurement of a flow rate through a pipe. Let’s say that
one measures a flow rate of 1.6 kg/s. Now consider a theoretical calculation that predicts a flow rate of
1.82 kg/s. Are the theory and measurement inconsistent? The answer depends upon the uncertainty in the
measurement. If the experimental uncertainty is ±0.3 kg/s, then the true measured value could very well be
equal to the theoretical value. However, if the experimental uncertainty is ±0.1 kg/s, then the two results
are likely to be inconsistent.

There are two parts to uncertainty analysis. These include:

(1) estimating the uncertainty associated with a measurement and
(2) analyzing the propagation of uncertainty in subsequent analyses.

Both of these parts will be reviewed in the following sections. There are many texts (such as Holman,
J.P., Experimental Methods for Engineers, McGraw-Hill) that can be referred to for additional information
concerning experimental uncertainty.

1.5.1. Estimation of Uncertainty

There are three common types of error. These include “blunders,” systematic (or fixed) errors, and random
errors.

(1) “Blunders” are errors caused by mistakes occurring due to inattention or an incorrectly configured
experimental apparatus. Examples include:
• Blatant blunder: An experimenter looks at the wrong gauge or misreads a scale and, as a

result, records the wrong quantity.
• Less blatant blunder: A measurement device has the wrong resolution (spatial or temporal)

to measure the parameter of interest. For example, an experimenter who uses a manometer to
measure the pressure fluctuations occurring in an automobile piston cylinder will not be able
to capture the rapid changes in pressure due to the manometer’s slow response time.

• Subtle blunder: A measurement might affect the phenomenon that is being measured. For
example, an experimenter using an ordinary thermometer to make a very precise measurement
of a hot cavity’s temperature might inadvertently affect the measurement by conducting heat
out of the cavity through the thermometer’s stem.

(2) Systematic (or fixed) errors occur when repeated measurements are in error by the same amount.
These errors can be removed via calibration or correction. For example, the error in length caused
by a blunt ruler. This error can be corrected by calibrating the ruler against a known length.

(3) Random errors occur due to unknown factors. These errors are not correctable, in general. Blunders
and systematic errors can be avoided or corrected. It is the random errors that we must account for
in uncertainty analyses. How we quantify random errors depends on whether we conduct a single
experiment or multiple experiments. Each case is examined in the following sub-sections.
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1.5.2. Single Sample Experiments (aka Type B Uncertainty)

A single sample experiment is one in which a measurement is made only once. This approach is common
when the cost or duration of an experiment makes it prohibitive to perform multiple experiments.

The measure of uncertainty in a single sample experiment is ± 1
2 the smallest scale division (or least count)

of the measurement device. For example, given a thermometer where the smallest discernible scale division
is 1 °C, the uncertainty in a temperature measurement will be ±0.5 °C. If your eyesight is poor and you can
only see 5 °C divisions, then the uncertainty will be ±2.5 °C. One should use an uncertainty within which
they are 95% certain that the result lies.

Example: What is the least count for the ruler in the following figure?

Solution: The least count for the ruler is 1 mm. Hence, the uncertainty in the length measurement will be
±0.5 mm.

Example: You use a manual electronic stop watch to measure the speed of a person running the 100 m dash.
The stop watch gives the elapsed time to 1/1000th of a second. What is the least count for the measurement?

Solution: Although the stop watch has a precision of 1/1000th of a second, you cannot respond quickly
enough to make this the limiting uncertainty. Most people have a reaction time of 1/10th of a second. (Test
yourself by having a friend drop a ruler between your fingers. You can determine your reaction time by where
you catch the ruler.) Hence, to be 95% certain of your time measurement, you should use an uncertainty of
± 1

2 (0.1 s) = ±0.05 s.

Be sure to:

(1) Always indicate the uncertainty of any experimental measurement.
(2) Carefully design your experiments to minimize sources of error.
(3) Carefully evaluate your least count. The least count is not always ± 1

2 the smallest scale division.

1.5.3. Multiple Sample Experiments (aka Type A Uncertainty)

A multiple sample experiment is one in which many different trials are conducted in which the same mea-
surement is made. For example, imagine taking temperature measurements in many “identical” hot cavities
(Figure 1.5) or making temperature measurements in the same cavity many different times.

We can use statistics to estimate the random error associated with a multiple sample experiment. For truly
random errors, the distribution of errors will approximately follow a Gaussian (aka normal) distribution

C. Wassgren 14 2024-02-01



Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

Figure 1.5. A multiple sample experiment in which temperatures are measured in many
identical systems.

(Figure 1.6), which has the following probability distribution,

p(x) =
1√

2πσ2
exp

[
− (x− µ)2

2σ2

]
, (1.37)

ˆ +∞

−∞
p(x)dx = 1, (1.38)

where p(x) is the probability of obtaining the value x, µ is the true mean of the distribution, and σ2 is the
true variance of the distribution. The mean is the center of the distribution and the variance is a measure of
the distribution’s spread about the mean.

Figure 1.6. A Gaussian (aka normal) probability distribution. The parameter µ is the true
mean of the distribution and σ is the true standard deviation. For a normal distribution,
68.2% of the values lie within ±1σ of the mean, 95.4% lie within ±2σ of the mean, and
99.7% lie within 99.7% of the mean. The area under any probability distribution curve is
equal to one.

Notes:

(1) It is not possible to comprehensively discuss statistical analyses of data within the scope of these
notes. The reader is encouraged to look through an introductory text on statistics for additional
information (see, for example, Vardeman, S.B., Statistics for Engineering Problem Solving, PWS
Publishing, Boston).
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(2) The coefficient of variation, CoV or CV (also rsd = relative standard deviation), is defined as the
ratio of the standard deviation to the mean, i.e., CoV := σ/µ. A small CoV means that the scatter
in the measurements is small compared to the mean.

(3) For random data (a Gaussian/normal distribution) and a very large number of measurements,

68.2%
95.4%
99.7%

 of the measurements fall between

 µ± 1σ
µ± 2σ
µ± 3σ

(1.39)

The true mean and true variance of the experimental data aren’t typically known in practice since determin-
ing those quantities would require an infinite number of measurements. Instead, we have a finite number of
measurements (call this number N) and we calculate the sample mean and sample variance of the measure-
ments,

x̄ :=
1

N

N∑
n=1

xn sample mean, (1.40)

s2 :=
1

N − 1

N∑
n=1

(xn − x̄)2 sample variance (s is the sample standard deviation). (1.41)

Example: The following seven measurements are randomly chosen from a normal distribution with a true
mean of µ = 100 and a true variance of σ2 = 400 (σ = 20). Calculate the sample mean and sample variance
(and standard deviation) of the measurements.

# xi
1 99.36
2 121.02
3 131.73
4 119.56
5 94.31
6 114.74
7 78.33

Solution: Using Eqs. (1.40) and (1.41), the sample mean and sample variance are x̄ = 108.4 and s2 = 342.05
(s = 18.49). Notice that the sample mean and sample variance are different from the true mean (µ = 100)
and true variance (σ2 = 400). The reason for the difference is that we’re making a mean and variance
calculation using a small number of samples (N = 7) from the real distribution. The larger our number of
samples, the closer the sample mean and sample variance will be to the true mean and true variance.

Now imagine we collect seven new measurements and calculate the sample mean and sample variance for
that set of data. Call this Trial 2. Do this multiple times to obtain a table of sample means and variances for
many trials (Table 1.2). Notice the sample means and sample variances are different for each trial. Plotting
the sample means from a large number of trials produces the frequency distribution shown in Figure 1.7.
The vertical axis is the fraction of the total number of trials with sample means in the given range on the
horizontal axis, divided by the size of the range. Defined in this manner, the total area under the columns
is equal to one. There are a large number of trials with sample means close to the true mean, and a handful
with sample means far from the true mean.

The standard deviation of the distribution of sample means is known as the standard error, sx̄. The standard
error can be approximated (proof not given here) from a single trial’s measurements using,

sx̄ ≈
s√
N
. (1.42)

For the current example using Trial 1 data, sx̄ ≈ 6.99. A normal distribution using the mean of the sample
means and standard deviation equal to the standard error is superimposed on the previous plot as an orange
curve. Clearly the data from the trials is approximated well by this normal distribution. The true mean of
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Table 1.2. A table of values sampled from a normal distribution with a true mean and true
variance of (µ, σ2) = (100, 400). In each trial, seven samples are collected and the sample
mean x̄ and sample variance s2 are calculated for that trial.

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6
# xi xi xi xi xi xi
1 99.36 120.20 80.92 72.20 130.41 86.54
2 121.02 76.56 88.64 95.92 116.38 100.09
3 131.73 93.18 93.32 100.04 113.11 112.06
4 119.56 65.21 98.33 82.72 103.82 128.79
5 94.31 105.08 143.42 72.67 102.18 88.30
6 114.74 102.21 116.85 147.12 101.71 99.12
7 78.33 76.47 98.88 104.78 96.41 79.68
x̄ = 108.44 91.27 102.91 96.49 109.15 99.22
s2 = 342.05 377.60 442.04 665.40 135.73 283.68

Figure 1.7. A frequency distribution of the sample means calculated from the trials in
Table 1.2. Note that this plot includes many more trials than the six shown in Table 1.2.
The orange curve is a normal distribution centered on the mean of the sample means with
a standard deviation equal to the standard error.

the distribution lies somewhere within this distribution. Since we don’t know exactly what the true mean
value is without an exceedingly large number of measurements, at best we can estimate its value from the
sample mean measurement and the standard error. Using the properties of a normal distribution discussed
in a previous note, we can state, for example, that for a large number of measurements N that the true mean
will lie within the range,

x̄− 2sx̄ < µ < x̄+ 2sx̄ or µ = x̄± 2sx̄, (1.43)

95.4% of the time.

Notes:
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Table 1.3. A table of t values from the Student t-distribution.

N 2 3 4 5 6 7 8 9 10 15 20 30 ∞
t95% 12.71 4.30 3.18 2.78 2.57 2.45 2.36 2.31 2.26 2.14 2.09 2.04 1.96

(1) When we use two standard errors to bound the true mean, i.e., ±2sx̄, we call this a 95.4% confidence
interval (CI). In engineering, the preferred confidence interval is 95%, which corresponds to ±1.96sx̄,
at least for a large number of measurements.

(2) If the number of measurements is not very large (N < 30, for example), it is more accurate to use
the Student t-distribution for estimating the uncertainty rather than a normal distribution (refer
to an introductory text on statistics such as Vardeman, S.B., Statistics for Engineering Problem
Solving, PWS Publishing, Boston),

µ = x̄± tsx̄, (1.44)

where t is a factor related to the degree of confidence desired (again, a 95% uncertainty is typically
desired in engineering applications), sx̄ is the standard error, and N is the number of measurements
made. Table 1.3 gives the value of t for various values of N and a 95% confidence level. Note that
as N →∞ the t factor approaches the large sample size value of 1.96. For the previous example,

N = 7, x̄ = 108.44, s = 18.49 =⇒ sx̄ =
s√
N

= 6.99, t95% = 2.45, (1.45)

=⇒ µ = 108.44± 17.12 (95%CI) or 91.32 < µ < 125.56 (95%CI). (1.46)

This range is shown in Figure 1.8. Recall that the true mean is µ = 100.

Figure 1.8. The same frequency distribution shown in Figure 1.7, but this one also shows
the range within which the true mean lies using a 95% confidence interval.

(3) It’s possible that the true mean could lie outside of our stated range. For a confidence interval of
95%, it’s unlikely, but possible.
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(4) To improve the precision of the true mean estimate, one should increase the number of measurements
N , which decreases the standard error and the t factor. Decreasing the sample standard deviation
would also improve the precision (by decreasing the standard error), but this may not be possible
depending on what is generating the variability. If it’s environmental noise, then it may not be
possible to decrease the standard deviation of the measurements. If it’s equipment noise, then
improvements in equipment design would help.

Be sure to:

(1) Report the uncertainty in an individual measurement as well as the sample mean and 95% confidence
interval for multiple sample experiments.
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An engineer makes five “identical” pressure measurements in an experiment.  The computer display on 
which the pressure measurement is displayed has a least count of 0.01 psi; however, the pressure values 
fluctuate over a wider range of values as indicated in the following table containing the pressure 
measurement readings. 
 

Measurement 1 2 3 4 5 
Reading [psi] 16.77 16.29 16.66 16.33 16.76 

 
What is the true pressure that the engineer should report? 
 
 
SOLUTION: 
 
Even though the transducer’s least count is 0.01 psi, the uncertainty per measurement is much larger than 
this based on the range over which the pressures fluctuate.  
 
The sample mean for the N = 5 measurements is �̅� =16.56 psi and the sample standard deviation is s = 0.23 
psi.  Since the number of measurements is small, a Student’s t-distribution should be used to give the 95% 
confidence level in the measurement.  With N = 5, t0.95 = 2.78 (found from a t distribution table).  The 
standard error of the sample means is, 

𝑠!̅ =
#
√%
= ('.)*	,-.)

√0
= 0.10	psi. 

Hence, the measurement with uncertainty is, 
�̅� ± 𝑡𝑠!̅ = 16.56 ± (2.78)(0.10)	psi, 
�̅� ± 𝑡𝑠!̅ = 16.56 ± 0.29	psi. 
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The following table lists repeated measurements of the density of glass particles. 
a. Plot a frequency distribution of the density values in a plot with the x-axis ranging from [1800, 3200] kg/m3 

with seven total bins (each bin size is 200 kg/m3). 
b. Determine the sample mean of the distribution. 
c. Determine the true mean of the particle density within a confidence interval of 95%. 
d. What fraction of the density measurements lie within the range [2200, 2800] kg/m3? 

  

 
 
 
  

Measurement # Density [kg/m3]
1 2694
2 2516
3 2628
4 2831
5 2342
6 2505
7 2612
8 2531
9 2452
10 2380
11 2657
12 2335
13 2668
14 2516
15 2701
16 2222
17 2003
18 2565
19 2222
20 2316

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

Video solution: https://www.youtube.com/watch?v=QAFyM1V8_kw
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SOLUTION: 
 
Following is a frequency distribution plot of the data.  Refer to the python code at the end of this document for how 
it was generated. 

 
Note that the area under the frequency distribution curve is equal to one. 
 
The sample mean of the measurements, m, is, 

�̅� = !
"
∑ 𝑥##$"
#$! , (1) 

where N = 20 and xi is measurement number i.  Using the given data, 
�̅� = 2484.8	kg/m% . 

 
The sample standard deviation of the measurements, s, is, 

𝑠 = / !
"&!

∑ (𝑥# − �̅�)'#$"
#$! . (2) 

Using the given data, 
𝑠 = 201.9	kg/m% . 
 

The standard error of the sample means, SEM, is, 
𝑆𝐸𝑀 = (

√"
. (3) 

Using the given data, 
𝑆𝐸𝑀 = 45.2	kg/m% . 
 

The true mean, µ, will lie within the range, 
𝜇 = �̅� ± 𝑡*+%𝑆𝐸𝑀, (3) 

where the value for t95% is found from a Student’s t distribution at a 95% confidence interval to be 2.093 for N = 20 
(N – 1 = 19 degrees of freedom).  Thus, 

𝜇 = 2484.8 ± 94.5	kg/m%	(95% CI). (4) 
 

The fraction of density measurements in the range [2200, 2800] is, 
fraction)𝑥! , 𝑥", = ∑ 𝑓(𝑥𝑖, 𝑥𝑖 +Δ𝑥𝑖)Δ𝑥𝑖

𝑥𝑓−Δ𝑥𝑓−1
𝑥𝑖  (5) 

fraction(2200, 2800) = 𝑓(𝑥##$$, 𝑥#%$$)(200	kg/m&) + 𝑓(𝑥#%$$, 𝑥#'$$)(200	kg/m&) + 𝑓(𝑥#'$$, 𝑥#($$)(200	kg/m&) (6) 
fraction(2200, 2800) = [𝑓(𝑥##$$, 𝑥#%$$) + 𝑓(𝑥#%$$, 𝑥#'$$) + 𝑓(𝑥#'$$, 𝑥#($$)](200	kg/m&) (7) 
fraction(2200, 2800) = =0.001500)

!

*+
+ 0.001500	)

!

*+
+ 0.001500	)

!

*+A (200	kg/m
&) (8) 

fraction(2200, 2800) = 0.9.    (9) 
Thus, 90% of the measurements lie in the range [2200, 2800] kg/m3. 
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Video solution: https://www.youtube.com/watch?v=QAFyM1V8_kw
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# uncertainty_10.py 
 
import scipy.stats as stats 
import numpy as np 
import pylab as plt 
 
# Put the data into an array.  Normally we would read this data from 
# an input file. 
my_data = np.array([2694, 2516, 2628, 2831, 2342, 2505, 2612, 2531, 2452, 2380, 2657, 2335, 2668, 2516, 2701, 
2222, 2003, 2565, 2222, 2316]) 
 
# Report some statistics about the data. 
N = len(my_data)  # number of samples 
sample_mean = np.mean(my_data)  # sample mean 
sample_stdev = np.std(my_data, ddof=1)  # sample standard deviation; 
                                         # divisor is N-1 since we 
                                        # don't know the entire 
                                         # population 
sem = stats.sem(my_data) # std error of the sample mean 
CI = 0.05 # 95% confidence interval (alpha = 0.05) 
t = stats.t.ppf(1-CI/2, N-1)  # compute t-factor for the specified confidence interval 
 
# Print the data 
print("# of data entries =", N) 
print("sample mean (kg/m^3) = %.1f" % sample_mean) 
print("sample standard deviation (kg/m^3) = %.1f" % sample_stdev) 
print("standard error of the sample means (kg/m^3) = %.1f" % sem) 
print("t_95 for %d" % N, "samples = %.3f" % t) 
print("true mean (kg/m^3) = %.1f" % sample_mean, " +/- %.1f" % (t*sem)) 
 
# Generate the frequency distribution data.  Set the bin edges. 
bin_list = np.linspace(1800, 3200, num=8) 
#Nbins = 6  # number of bins to use in the frequency plot 
counts, bin_edges = np.histogram(my_data, bins=bin_list, density=True) 
 
# Determine the bin centers. 
bin_centers = np.empty([len(bin_edges)-1]) 
for i in range(len(bin_edges)-1): 
    bin_centers[i] = (bin_edges[i]+bin_edges[i+1])/2 
 
# Print the bin edges, the bin centers, and the counts. 
print("[lower_bin_value, upper_bin_value)\tbin_center\tfrequency [1/(kg/m^3)]") 
for i in range(len(bin_edges)-1): 
    print("[%.1f," % bin_edges[i], "%.1f)" % bin_edges[i+1], "\t%.1f" % bin_centers[i], "\t%3f" % counts[i]) 
 
# Plot the frequency distribution.  Plotting it two ways: once showing 
# the bin sizes with a bar chart and once showing the center of the 
# bins with a scatter plot. 
plt.figure(1) 
plt.hist(my_data, bins=bin_list, density=True, color="blue", edgecolor="black") 
plt.plot(bin_centers, counts, color='black', marker='o', linestyle='solid') 
plt.ylabel('Frequency [1/(kg/m^3)]') 
plt.xlabel('Density (kg/m^3)') 
plt.show() 
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Running the program gives the following output: 
 
# of data entries = 20 
sample mean (kg/m^3) = 2484.8 
sample standard deviation (kg/m^3) = 201.9 
standard error of the sample means (kg/m^3) = 45.2 
t_95 for 20 samples = 2.093 
true mean (kg/m^3) = 2484.8  +/- 94.5 
[lower_bin_value, upper_bin_value) bin_center frequency [1/(kg/m^3)] 
[1800.0, 2000.0)  1900.0  0.000000 
[2000.0, 2200.0)  2100.0  0.000250 
[2200.0, 2400.0)  2300.0  0.001500 
[2400.0, 2600.0)  2500.0  0.001500 
[2600.0, 2800.0)  2700.0  0.001500 
[2800.0, 3000.0)  2900.0  0.000250 
[3000.0, 3200.0)  3100.0  0.000000 
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1.5.4. Propagation of Uncertainty

Let R be a result that depends on several measurements (x1, . . . , xN ) or, in mathematical terms,

R = R(x1, . . . , xN ). (1.47)

For example, the volume of a cylinder is,

V = πr2h =⇒ V = V (r, h). (1.48)

How do we determine the uncertainty in the resultR due to the uncertainties in the measurements (x1, . . . , xN )?
In the example above, what is the uncertainty in the volume V given the uncertainties in the radius, r, and
height, h?

To address this issue, consider how a small variation in parameter, xn, call it δxn, causes a variation in R,
call this variation δRxn ,

δRxn = R(x1, . . . , xn + δxn, . . . , xN )−R(x1, . . . , xn, . . . , xN ), (1.49)

δRxn =
R(x1, . . . , xn + δxn, . . . , xN )−R(x1, . . . , xn, . . . , xN )

δxn
δxn, (1.50)

δRxn︸ ︷︷ ︸
uncertainty
in R due to

uncertainty in xn

≈ ∂R

∂xn︸︷︷︸
partial derivative

of R wrt xn

δxn︸︷︷︸
uncertainty in

measurement xn

(1.51)

Note that an “=” is only strictly true as δxn → dxn.

The total uncertainty in R, δR, due to uncertainties in all measurements x1, . . . , xN , assuming that the xn
are independent so that the variations in one parameter do not affect the variations in the others, is estimated
as,

δR =

[
N∑
n=1

(δRxn)
2

]1/2

=

[
N∑
n=1

(
∂R

∂xn
δxn

)2
]1/2

. (1.52)

The relative uncertainty in R (uR) is given by,

uR =
δR

R
. (1.53)

For example, the uncertainty in the cylinder volume, V = πr2h, due to uncertainties in the radius, r, and
height, h, is,

δV =

[(
∂V

∂r
δr

)2

+

(
∂V

∂h
δh

)2
]1/2

, (1.54)

=
[
(2πrhδr)2 + (πr2δh)2

]1/2
, (1.55)

and the relative uncertainty is,

uV =
δV

V
=

1

πr2h

[
(2πrhδr)2 + (πr2δh)2

]1/2
, (1.56)

=

[(
2
δr

r

)2

+

(
δh

h

)2
]1/2

, (1.57)

=
[
(2ur)

2 + (uh)2
]1/2

, (1.58)

where ur = δr/r and uh = δh/h are the relative uncertainties in r and h, respectively.

Notes:
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(1) Use absolute quantities when calculating the uncertainty. For example, use or °R or K as opposed
to °F or °C for temperature, and use absolute pressures rather than gage pressures.

(2) In an uncertainty analysis the uncertainty of some quantities may be so small compared to the
uncertainties in the remaining quantities that they can be considered “exactly” known. This is
generally the case for well-characterized constants and material parameters, e.g., the acceleration
due to gravity.

1.5.5. Significant Figures

A topic closely related to uncertainty is “significant figures”.

Notes:

(1) The zeros between the decimal point and the first non-zero number are not counted as significant
digits. For example, 0.001 23 kg has three significant digits, i.e., the “123”. The leading zeros
aren’t necessary to report the value. For example, we could have also reported the number as
1.23× 10−2 kg, which doesn’t include the leading zeros.

(2) Trailing zeros are also not counted as significant digits if they’re only used as placeholders. For
example, 12 300 kg has three significant digits, i.e., the “123”. For example, we could have written
1.23× 104 kg, which doesn’t include the trailing zeros.

(3) In typical engineering calculations, if uncertainty is included in the parameter values, then reporting
results to three significant figures is typical.

Be sure to:

(1) Use absolute quantities when evaluating uncertainties, e.g., absolute temperature and pressure.
(2) Review your uncertainty analyses to determine which measurements result in the greatest error in

a derived quantity. Design your experiments to reduce these uncertainties.
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Using the ruler in the photograph shown below, determine the diameter of the tennis ball including 
uncertainty.  Note that the finest divisions on the ruler are in 1 mm increments. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
Even though the ruler’s divisions are in 1 mm increments, the photograph’s resolution is too poor to clearly 
make out the divisions.  A much more reasonable measurement least count is 5 mm since these increments 
are more easily seen.  Using this least count, the left side of the tennis ball, lL, is located at 50.2±0.25 cm 
and the right side, lR, is located at 56.7±0.25 cm.  The diameter, D, is: 

 (1) 
The absolute uncertainty in the diameter is: 

 (2) 

where 

  and   (3) 

Thus, 

 (4) 
Thus, the tennis ball diameter, with uncertainty, is: 

 (5) 
 

Note that the International Tennis Federation (the United States Tennis Association is a member of this 
organization) indicates that a tennis ball should have a diameter between 6.541 and 6.858 cm for Type 1 
(fast speed) and Type 2 (medium speed) balls (Type 3 (slow speed) balls are bigger).  The measurement 
given above is within the upper limit, but could potentially be smaller than the allowable size.  
 
Reference 
International Tennis Federation, The Rules of Tennis, available at: 

http://dps.altdc3.va.twimm.net/usta_master/usta/doc/content/doc_13_4198.pdf 
(2005 Dec 15). 
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Video solution: https://www.youtube.com/watch?v=gdUf9OUe4SY
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The estimated dimensions of a soda can are D » 66.0 mm and H » 110 mm.  Determine the accuracy with 
which the diameter and height must be measured to estimate the volume of the can within an uncertainty of 
±0.5%. 
 
 
SOLUTION: 
 
The volume of a cylinder (e.g. the soda can) is: 

 (1) 
 

The relative uncertainty in V is: 

 (2) 

where 

 (3) 

 (4) 

Substitute into Eqn. (2). 

 (5) 

Express the right-hand side of the previous equation in terms of absolute uncertainties and re-arrange to 
solve for the absolute uncertainty in the diameter and height measurements. 

 (6) 

 (7) 

 (8) 

 
Since we wish to measure the volume to within a relative uncertainty of uV = 0.005, and D = 66.0 mm and 
H = 110 mm, we must have a length measurement precision of  dx = 0.158 mm. 
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The hoop stress, s, in a thin-walled cylindrical pressure vessel may be estimated using: 
 

 

 
where p is the cylinder’s interior gage pressure, d is the cylinder diameter, and t is the vessel wall thickness.  
The pressure in the vessel is measured to be 30 ± 2 psig, the tank diameter is 2.45 ± 0.03 in., and the wall 
thickness is 0.0050 ± 0.0002 in. 
a. Determine the hoop stress including its uncertainty. 
b. Which measurement should be improved first in order to reduce the uncertainty in the hoop stress? 
 
 
SOLUTION: 
 
The relative uncertainty in s is: 

 (1) 

where 

 (2) 

 (3) 

 (4) 

Substitute into Eqn. (1). 

 (5) 

The relative uncertainties in the pressure, diameter, and thickness are: 

   (6) 

 (7) 

 (8) 

Þ  us = 7.9% (9) 
 

 
Since the relative uncertainty in the pressure measurement is the greatest, an attempt should be made to 
improve the accuracy of this measurement first.  
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A resistor has a nominal stated value of 10±0.1 W.  A voltage difference occurs across the resister and the 
power dissipation is to be calculated in two different ways: 

a. from P=E2/R  
b. from P=EI 

 
In (a) only a voltage measurement will be made while both current and voltage will be measured in (b).  
Calculate the uncertainty in the power for each case when the measured values of E and I are: 

E = 100±1 V (for both cases) 
I = 10±0.1 A 
 
 
 
 
 
 
 
 
 
 
 
 
 

SOLUTION: 
 
Perform an uncertainty analysis using the first formula for power. 

 (1) 

The relative uncertainty in P is: 

 (2) 

where 

 (3) 

 (4) 

Substitute into Eqn. (2). 

 (5) 

The relative uncertainties in the voltage and resistance are: 

 (6) 

 (7) 

Þ  uP = 2.24% 
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Now perform an uncertainty analysis using the second relation for power. 
 (8) 

The relative uncertainty in P is: 

 

where 

 (9) 

 (10) 

Substitute into Eqn. (2). 

 (11) 

The relative uncertainties in the voltage and resistance are: 

 (12) 

 (13) 

Þ  uP = 1.41% 
 

We observe that using the second relation (P = EI) gives a smaller uncertainty for the given values. 
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A certain obstruction-type flowmeter is used to measure the flow of air at low velocities.  The relation 
describing the flow rate is: 

 

where C is an empirical discharge coefficient, A is the flow area, p1 and p2 are the upstream and 
downstream pressures, T1 is the upstream temperature, and R is the gas constant for air.   
 
Calculate the relative uncertainty in the mass flow rate for the following conditions: 

C = 0.92±0.005 (from calibration data) 
p1 = 25±0.5 psia 
T1 = 530±2 °R 
Dp=p1-p2 = 1.4±0.005 psia 
A = 1.0±0.001 in2 

What factors contribute the most to the uncertainty in the mass flow rate? 
 
 
SOLUTION: 
 
The relative uncertainty in the mass flow rate is given by: 

 (1) 

where 

 (2) 

 (3) 

 (4) 

 (5) 

 (6) 

Note that the there is negligible uncertainty in the gas constant R since it is presumed to be known to a high 
degree of accuracy. 
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Substitute into Eqn. (1). 

 (7) 

where the relative uncertainties are: 

 (8) 

 (9) 

 (10) 

 (11) 

 (12) 

Þ   
 
 
Examine the contributions of each term on the right hand side of Eqn. (7) to determine which uncertainty 
has the greatest influence on the uncertainty in . 

  

  

  

  

 

 
The uncertainty in the p1 measurement contributes the most to the uncertainty in . 
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In pneumatic conveying, solid particles such as flour or coal are carried through a duct by a moving air 
stream.  Solids density at any duct location can be measured by passing a laser beam of known intensity, I0, 
through the duct and measuring the light intensity transmitted to the other side, I.  A transmission factor is 
found using: 

    where 0 £ T £ 1 

Here W is the width of the duct, K is the solids density, and E is a factor taken as 2.0±0.4 kg/m2 for 
spheroidal particles.  Determine how the relative uncertainty in K is related to the relative uncertainties of 
the other variables.  If the transmission factor and duct width can be measured to within ±1%, can the solids 
density be measured to within 5%?  10%?  Discuss your answer remembering that T varies from 0 to 1. 
 
SOLUTION: 
 
Solve for the solids density using the definition of the transmission factor. 

  

 (1) 

The relative uncertainty in the solids density is given by: 

 (2) 

where 

 (3) 

 (4) 

 (5) 

 
Substitute into Eqn. (2). 

 (6) 

where the relative uncertainties are: 

 (7) 

 (8) 
 (9) 

Recall that 0 £ T £ 1 so that: 

T = 0:  Þ  Þ  (10)

  

T = 1:  Þ  Þ  (11) 

Þ   (12) 
 
Hence, it is not possible to measure K to within either 5% or 10%.  In fact, it is not possible to measure K to 
better than 20% relative uncertainty. 
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Two ME309 students wish to measure the height of the Mechanical Engineering building.  The first student 
suggests dropping a ball bearing from the top of the building and measuring the time it takes for the ball to 
hit the ground using a digital stopwatch. (Air drag may be neglected.  Legal Disclaimer:  I do not 
recommend dropping anything off the building!)  The second student recommends using a tape measure to 
measure a horizontal distance from the building, a protractor to measure the angle to the top of the building, 
and then using trigonometry to determine the height.  The time for the ball to fall to the ground is measured 
at 2.2 s while the angle to the roofline measured from a distance of 20.0 m is 44.4 deg.  The uncertainty in 
the ball-dropping method is ±0.2 sec and the uncertainty in the length and angle measurements, 
respectively, are ±0.5 m and ±1 deg. 
a. What is the height of the ME building? 
b. Which measurement method is most accurate?   
c.  Is there a particular angle for which the uncertainty in the angle method is minimized? 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
First consider the ball-dropping method.  The distance the ball travels in time T is: 

  Þ  H = 23.7 m (1) 
Determine the relative uncertainty in H given a relative uncertainty in T.  Note that the acceleration due to 
gravity, g, is an accurately known constant and thus the uncertainty in this quantity is considered negligible. 

 (2) 
where 

 (3) 

Thus, 
 (4) 

For the given values of dT = 0.2 s and T = 2.2 s, uT = 0.091 Þ uH = 0.182.  Thus,  
H = 23.7 ± 4.3 m   using the ball dropping method. (5) 
 

Now consider the relative uncertainty using method 2 (angle method). 
  Þ  H = 19.6 m (6) 

 (7) 
where 

 (8) 

 (9) 

21
2H gT=

2
,H H Tu u=

( ), 21
2

1 1 2 2H T T
H Tu T gT T u

H T TgT
dd d¶

= = = =
¶

2H Tu u=

tanH L q=
2 2
, ,H H H Lu u uq= +

( )2
,

1 1 sec
tan sin cos sin cosH

Hu L u
H Lq q

q dq qdq q dq
q q q q q q q
¶

= = = =
¶

( ),
1 1 tan

tanH L L
H Lu L L u

H L L L
dd q d

q
¶

= = = =
¶

 

H 

L 

q 
H 

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

Video solution: https://www.youtube.com/watch?v=Ogu7jNIwx8E

C. Wassgren 35 2024-02-01

https://www.youtube.com/watch?v=Ogu7jNIwx8E


  uncertainty_07 

Page 2 of 2 

Substituting, 

 (10) 

For the given values of dq = 1 deg (= 0.0175 rad), q = 44.4 deg, dL = 0.5 m, and L = 20.0 m, uq = 0.022, uL 
= 0.025, and uH = 0.043.  Note that the angle q should be evaluated in terms of radians, not degrees. 
Thus, 

H = 19.6 ± 0.8 m   using the angle method.   
The angle method is more accurate than the ball dropping method. 
 
To determine the angle that minimizes the height uncertainty measurement, minimize Eq. (10) with respect 
to q, 

!"!
!#

= 0 = !
!#
#$ #

$%&# '($#
%
)
𝑢#) + 𝑢*). (11) 

For simplicity, take the derivative of uH2 instead of uH.  We’ll get the same result, but the derivative will be 
easier to evaluate, 

!("!)"

!#
= 0 = !

!#
($ #
$%&# '($#

%
)
𝑢#) + 𝑢*)). (12) 

Expand the relative uncertainty in q, uq, since uq is a function of q, 
!
!#
($ #
$%&# '($#

%
)
$-#
#
%
)
+ 𝑢*)) = 0, (13) 

!
!#
($ .
$%&# '($#

%
)
(𝛿𝜃)) + 𝑢*)) = 0, (14) 

(𝛿𝜃)) !
!#
($ .
$%&# '($#

%
)
) = 0,      (dq is a constant and uL isn’t a function of q) (15) 

!
!#
./ .

#
" $%&()#)

0
)

1 = 0,    (using a trigonometric identity) (16) 

!
!#
[sin/)(2𝜃)] = 0,   (17) 

−2sin/0(2𝜃) cos(2𝜃) ∙ 2 = 0,    (using the chain rule) (18) 
'($()#)
[$%&()#)]$

= 0. (19) 

For the previous expression to hold true, q = 45°.  Thus, an angle of q = 45° minimizes the uncertainty.   
The given value of q = 44.4° is close to this optimal angle. 

2
2 2

sin cosH Lu u uq
q
q q

æ ö= +ç ÷
è ø
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An engineer wishes to determine the efficiency with which paint is applied to a sample surface using a 
particular spray nozzle.  The mass deposition efficiency, MDE, is defined as: 

 

where mf is the mass of the surface after painting and drying, mi is the initial mass of the surface (no paint 
applied), and ma is the mass of paint that came out of the spray nozzle in a specified period of time.  The 
mass of paint from the spray nozzle, ma, may be calculated using: 

 
where  is the mass flow rate through the nozzle, T is the duration that the spray is applied to the surface, 
and s is the percentage of (paint) solids present in the spray.   The paint is applied by traversing the nozzle 
over the surface, with a traverse distance, L, at a constant speed, V, as shown in the figure below.  Hence, 
the duration T may be found from: 

 

 
 
 
 
 
 
 
 
 
 
Given the following uncertainties: 

 = ±0.025 kg/min 
ds = ±2% 
dL = ±1.5 mm 
dV = ±0.5 mm/sec 
dmf = ±0.0001 kg 
dmi = ±0.0001 kg 
dmf = ±0.0001 kg 

determine the mass deposition efficiencies, MDEs, with uncertainties for the following cases. 
 [kg/min] V [m/s] L [m] mf [kg] mi [kg] s [%] 
0.92 0.127 0.304 0.0498 0.0341 51.2 
1.79 0.254 0.306 0.0502 0.0339 51.0 
1.66 0.254 0.302 0.0523 0.0368 50.9 

 
 
SOLUTION: 
 
First determine the relative uncertainty in the duration, T. 

 (1) 

where 

 (2) 

 (3) 

 (4) 

f i

a

m m
MDE

m
-

º

  ma = !mTs

  !m

LT
V

=

  δ !m

  !m

2 2
, ,T T L T V

Tu u u
T
d

= = +

( ),
1 1

T L L
T V Lu L L u

T L L V L
dd d¶ æ öæ ö= = = =ç ÷ç ÷¶ è øè ø

( ), 2

1
T V V

T V L Vu V V u
T V L VV

dd d¶ æ öæ ö= = - = - = -ç ÷ç ÷¶ è øè ø
2 2

T L Vu u u\ = +
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V 
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Now determine the relative uncertainty in the applied mass, ma: 

 (5) 

where 

 (6) 

 (7) 

 (8) 

 (9) 

 
Lastly, determine the relative uncertainty in the mass deposition efficiency, MDE: 

 (10) 

where 

 (11) 

 (12) 

 (13) 

 (14) 

 
 

Create a spreadsheet to perform the calculations. 
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Another approach to determining the uncertainties is to substitute the supporting formulas directly into the 
expression for the mass deposition efficiency. 

 (15) 

 (16) 

where 

 (17) 

 (18) 

 (19) 

 

 

 

 
 

 (20) 

 
The uncertainties calculated using Eqn. (20) are exactly the same as those found using Eqn. (14) (this can 
be proven by simply substituting in for the relative uncertainty expressions in Eqn. (14)). 
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Two colleagues are tasked with measuring the mass of five nearly identical pennies using a 
mass balance.  One colleague recommends measuring the mass of each of the five pennies and 
obtain an average value from the five measurements.  The other colleague recommends 
measuring the mass of the five pennies simultaneously then dividing by five.  Which 
measurement will have the least uncertainty?  Support your answer. 
 
 
SOLUTION: 
First consider the case where each penny mass is measured separately.  Each of these measurements will have the 
same uncertainty, dm, since the same mass balance is used.  Thus, we will have the following five measurements: 

m1 ± dm, m2 ± dm, m3 ± dm, m4 ± dm, m5 ± dm 
 

The average penny mass is, 
𝑚" = !

"
(𝑚! +𝑚# +𝑚$ +𝑚% +𝑚"), (1) 

and the uncertainty is, 

𝛿𝑚" = ()𝛿𝑚"&!*
# + )𝛿𝑚"&"*

# + )𝛿𝑚"&#*
# + )𝛿𝑚"&$*

# + )𝛿𝑚"&%*
#
, (2) 

where, 
𝛿𝑚"&& =

'&(
'&&

𝛿𝑚) =
!
"
𝛿𝑚 (3) 

where dm is the uncertainty in an individual penny mass measurement.  Thus, Eq. (2) becomes, 

𝛿𝑚" = (5,!
"
𝛿𝑚-

#
= !

√"
𝛿𝑚. (4) 

 
Now consider the case where all five pennies are measured simultaneously.  For this case we have a single 
measurement, 

𝑚" = !
"
𝑀, (6) 

where, 
𝑀 = 𝑚! +𝑚# +𝑚$ +𝑚% +𝑚". (7) 

The uncertainty for this case is, 
𝛿𝑚" = /(𝛿𝑚"+)# = 𝛿𝑚"+ = '&(

'+
𝛿𝑀 = !

"
𝛿𝑀. (8) 

The uncertainty in this single measurement is dm, i.e., dM = dm, since the same mass balance is used.  Thus, 
𝛿𝑚" = !

"
𝛿𝑚. (9) 

 
Thus, we observe that the uncertainty is smaller using the latter method (measuring the mass of the five pennies 
simultaneously).  This technique is known as “stacking” and can be used to reduce measurement uncertainty. 
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1.6. Statistical vs. Continuum Approach

Most substances consist of a collection of molecules or atoms. In studying how substances behave, we can
either explicitly account for the molecular behavior, referred to as the statistical approach, or instead treat
the substance as being continuous, referred to as the continuum approach.

1.6.1. Statistical Approach

In the statistical approach we treat the substance of interest as a collection of individual objects (e.g.,
molecules). The interactions between molecules are modeled (e.g., using Newton’s laws) and the macroscopic
behavior of the substance is determined by utilizing probability and statistics. This approach is useful
in understanding the behavior of material properties (e.g., fluid viscosity), but it is not very practical for
modeling typical engineering applications. Statistical Mechanics and Kinetic Theory utilize the statistical
approach.

1.6.2. Continuum Approach

The continuum approach ignores individual molecules and instead treats the substance of interest as being
continuously distributed in space. The macroscopic behavior of the substance is modeled using basic conser-
vation laws (e.g., mass, momentum, energy). The continuum method requires that the smallest length scale
of interest, referred to as the macroscopic length scale (e.g., the length scale over which significant changes
in properties occur), be much larger than the microscopic length scale, typically the mean free path of a
molecule (for gases). The mean free path, λ, of a molecule is the average distance a molecule travels before
colliding with another molecule. By requiring that the (macroscopic length scale) � (microscopic length
scale), there will be enough molecules at a “point” (the smallest macroscopic length scale of interest) so that
meaningful averages of the molecular behavior can be made at that point.

Consider the following experiment. Let’s measure the density, ρ, of a fluid in a small cube of length, L
(Figure 1.9). The local density of the fluid is defined as the total mass of molecules in the cube,

∑
mi,

divided by the cube’s volume, L3, as the volume approaches the smallest macroscopic length scale of interest,
ε,

ρ := lim
L→ε

∑
mi

L3
. (1.59)

At large length scales, L, the density will not have very good spatial resolution and, hence, may not be a very

Figure 1.9. An illustration showing how the density varies with the size of the averaging cube.

useful quantity. At very small length scales the number of molecules within the box will vary significantly
with time since molecules continuously enter and exit the box. Since the small box can contain only a few
molecules to begin with, the density fluctuations will be very large. There is an intermediate region between
the extremes that will have few fluctuations but good spatial resolution.

Notes:
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Figure 1.10. An illustration used in deriving the mean free path.

(1) In most engineering applications the length scale condition for a substance to be considered a
continuum is easily satisfied. The mean free path of a gas can be estimated using the following
simple analysis. Consider gas molecules with an effective cross-sectional area of A and a mean
(molecular) speed of c̄. The volume swept out by a molecule per unit time is (Figure 1.10),

V̇ = c̄A. (1.60)

The expected number of collisions with other molecules per unit time is,

ṅ = νV̇ , (1.61)

where ν is the number of molecules per unit volume. The average time between collisions, t′, is the
inverse of the collision rate,

t′ =
1

ṅ
=

1

νV̇
=

1

νc̄A
. (1.62)

Thus, the typical distance between collisions, aka the mean free path λ, is,

λ = c̄t′ =
1

νA
. (1.63)

For air at standard conditions,

ν ≈ 2.7× 1019 cm−3 and A ≈ 1× 10−15 cm2 =⇒ λ ≈ 3.7× 10−5 cm. (1.64)

This mean free path is certainly much smaller than any length scale in which we are typically
interested for most engineering applications. Examples of where the continuum assumption may
not be valid include,
• flow in the upper atmosphere where the mean free path is large (e.g., at an altitude of 100

miles, the mean free path is approximately 80 m!),
• flow within a shock wave where the macroscopic length scale is very small (the width of a shock

wave is on the order of 1 µm, and
• granular flows (e.g., flowing sand) where the microscopic length scale ≈ the macroscopic length

scale.
(2) The Knudsen number, Kn, is a dimensionless parameter that indicates when the continuum as-

sumption is valid,

Kn :=
microscopic length scale

macroscopic length scale
� 1 =⇒ the continuum assumption is valid. (1.65)

Four flow regimes are typically defined based on the Knudsen number. These are (according to
Zucrow, M.J. and Hoffman, J.D., Gas Dynamics Vol. 1, Wiley):
• Kn < 0.01. Continuum flow. This is the flow regime that occurs in most engineering applica-

tions.
• 0.01 < Kn < 0.1. Slip flow. In this regime, the fluid may still be treated as a continuous

substance, but the no-slip condition at boundaries does not hold. Instead, fluid may slip at
boundaries.

• 0.1 < Kn < 3.0. Transitional flow. The flow in this regime is very difficult to analyze since the
fluid cannot be considered a continuum and molecules still interact to a considerable degree.

• 3.0 < Kn. Free molecular flow. In this regime molecules are spaced so far apart that they
rarely interact. The flow may be modeled as a collection of non-interacting molecular impacts.
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(3) The continuum assumption is valid in the vast majority of engineering applications. For example,
the Knudsen number for a typical engineering flow in which the mean free path is ∼ 1× 10−5 cm
(refer to the calculation in an earlier note) and the macroscopic length of interest is 1 mm, is
Kn ∼ 0.0001.

(4) The Knudsen number can be related to the Reynolds and Mach numbers using some results from
kinetic theory. From kinetic theory, the kinematic viscosity of a gas, ν, is related to the mean free
path, λ, and mean molecular speed, c̄, by,

ν =
1

2
λc̄. (1.66)

The mean molecular speed is related (via kinetic theory) to the speed of sound, c, by,

c = c̄

√
πγ

8
, (1.67)

where γ is the specific heat ratio (= cp/cv). Substituting Eq. (1.66) into Eq. (1.67) and simplifying
gives,

c =
2ν

λ

√
πγ

8
, (1.68)

λ =

√
πγ

2

ν

c
. (1.69)

From the definitions of the Knudsen, Reynolds, and Mach numbers,

KnL =
λ

L
=

√
πγ

2

ν

cL
=

√
πγ

2

ν

V L︸︷︷︸
= 1

ReL

V

c︸︷︷︸
=Ma

, (1.70)

where L is the macroscopic length scale of interest. Thus,

KnL =

√
πγ

2

Ma

ReL
. (1.71)

Hence, flows occurring at large Mach numbers and small Reynolds numbers tend toward non-
continuum flows.
Note that for large Reynolds numbers over an object, the significant length scale that is often used
in the defining the Reynolds number is the boundary layer thickness, δ. Chapter 9 shows that for
laminar boundary layers, the boundary layer thickness is related to the macroscopic length scale,
L, by,

δ

L
∝ 1√

ReL
=⇒ Reδ ∝

√
ReL (where ReL = V L/ν and Reδ = V δ/ν). (1.72)

Hence, Eq. (1.71) for boundary flows (occurring at large Reynolds numbers) is,

Knδ =

√
πγ

2

Ma

Reδ
∝ Ma√

ReL
. (1.73)

(5) To learn more about non-continuum flows, refer to the following texts:
• Schaaf, S.A. and Chambré, P.L., Flow of Rarefied Gases, Princeton University Press.
• Nguyen, N-T. and Wereley, S.T., Fundamentals and Applications of Microfluidics, Artech

House.
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Below what characteristic time interval would you expect the continuum assumption to be invalid? 
 
 
SOLUTION: 
 
In order to treat a substance as a continuum, a perturbation applied to a few molecules must be “smeared” 
out to the neighboring molecules.  This will occur after a sufficient number of collisions between 
molecules.  The typical collision time between molecules (in a gas) is the mean free path divided by the 
average molecular speed: 

 (1) 

where l is the mean free path and  is the mean velocity of a molecule.  Hence, in order to be treated as a 
continuum, one should have: 

 (2) 

where tmacro is the macroscopic time scale of interest. 
 
For air at standard conditions: 

l » 4*10-7 m 
 » 400 m/s 

Þ tbetween collisions » 1*10-9 sec 

between
collisions
t

c
l

=

c

macro between
collisions

t t
c
l

=!

c
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1.7. Fluid Properties

Some good fluid property references include:

• Avallone, E.A. and Baumeister III, T., Marks’ Standard Handbook for Mechanical Engineers, McGraw-
Hill.

• Kestin, J., and Wakeham, W.A., Transport Properties of Fluids, CINDAS Data Series on Material
Properties, C.Y. Ho, ed., Hemisphere Publishing.

1.7.1. Density, ρ

• The density of a substance is a measure of how much mass there is of the substance per unit volume.
• The dimensions of density are M/L3. Typical units are kg/m3, slug/ft3, and lbm/ft

3.
• The density of water at 4 °C is ρH2O,4 °C = 1000 kg/m3 = 1.94 slug/ft3 = 62.4 lbm/ft

3.
• The density of air at Standard Temperature (= 15 °C) and Pressure (= 101.3 kPa (abs)) (STP) is
ρair, STP = 1.23 kg/m3 = 2.38× 10−3 slug/ft3 = 7.68× 10−2 lbm/ft

3.
• Density does not vary greatly with temperature for liquids, in general.
• Density does change considerably with temperature and pressure for gases.
• A substance where the density remains constant for all conditions is considered incompressible.

– A good engineering rule of thumb is that if there are no significant temperature changes and
for fluid velocities less than approximately 1/3 the speed of sound in the fluid, the fluid can be
approximated as incompressible (the proof of this is examined in Chapter 13).

– In air, the speed of sound at standard conditions (p = 1 atm (abs), T = 59 °F = 15 °C), is
approximately 1100 ft s−1 (340 m s−1).

– The speed of sound in water is approximately 4800 ft s−1 (1500 m s−1).
– The speed of sound in steel is approximately 16 400 ft s−1 (5000 m s−1).
– In most instances, liquids and gases flowing at low speeds can be approximated as incompress-

ible.
• specific gravity, SG

– Specific gravity is dimensionless. It has no units.
– The specific gravity of a liquid is the ratio of the liquid’s density to the density of water at

some specified condition, typically at 4 °C,

SGliquid :=
ρliquid

ρH2O,4 °C
. (1.74)

For example, the density of mercury (Hg) at 20 °C is 13.6× 103 kg/m3. Hence, SGHg = 13.6.
• Specific weight, γ

– The specific weight of a substance is the weight of the substance per unit volume,
– The dimensions of specific weight are F/L3 and common units are N/m3 and lbf/ft

3.

γ :=
W

V
=
mg

V
=
ρV g

V
= ρg. (1.75)

For example, the specific weight of water at 4 °C is 9.81× 103 N/m3 = 62.4 lbf/ft
3.

• Specific volume, v
– The specific volume of a substance is how much volume the substance occupies per unit mass.
– The dimensions of specific volume are L3/M . Common units are m3/kg, ft3/slug, and ft3/lbm.
– The specific volume is simply the inverse of the density,

v =
1

ρ
. (1.76)

– In thermodynamics, the specific volume is commonly used in place of density.

Example:
What is the specific weight of water if its density is 62.4 lbm/ft

3?
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Solution:

γ = ρg =
(
62.4 lbm/ft

3
) (

32.2 ft/s2
)( 1 lbf

32.2 lbmft/s2

)
= 62.4 lbf/ft

2 (1.77)

Be sure to:

(1) Be careful when using the incompressible flow assumption. Make sure that the assumption is
reasonable for your flow situation. For liquids, the assumption is usually reasonable. For gases, you
need to check the flow velocities and temperatures.

1.7.2. Pressure, p

• The dimensions of pressure are F/L2. Common units are Pa = N/m2, psf = lbf/ft
2, psi = lbf/in

2,
torr, atm, bar, and mmHg and inHg.

• Pressure is a scalar quantity. It has a magnitude, but no direction.
• The differentially small pressure force, dFp, on a differentially small area dA is,

dFp = p(−dA), (1.78)

where p is the pressure acting on the surface. Notice that the area is a vector. Areas have both a
magnitude and a direction. The area’s direction is specified by the unit normal vector n̂, as shown
in Figure 1.11. The pressure force acts inward on the area because the pressure force is the result
of the momentum impulse of molecular impacts with the surface.

Figure 1.11. Illustration of the differentially small pressure force dFp acting inward on the
differentially small area dA.

• Absolute pressure is referenced to zero pressure. For example, a perfect vacuum has pvacuum =
0 (abs). To indicate an absolute pressure, one should use either the text“(abs)” after the reported
pressure or, if using EE or BG units, specify the absolute pressure with the units “psia” or “psfa”.

– There are no molecules in a perfect vacuum and, thus, there is no pressure.
– Atmospheric pressure at standard conditions is patm = 101.33 kPa (abs) = 1 atm (abs) =

1.0133 bar (abs) = 14.696 psia = 760 torr (abs).
• Gage pressure is referenced to atmospheric pressure,

pgage = pabs − patm,abs. (1.79)

– To indicate a gage pressure, one should use either the text“(gage)” after the reported pressure
or, if using EE or BG units, specify the absolute pressure with the units “psig” or “psfg”.

– Atmospheric pressure at standard conditions is patm = 0 (gage).
– A perfect vacuum has pvacuum = −101.33 kPa (gage) = −14.7 psig (referencing to standard

atmospheric conditions).
• An important equation of state for an ideal gas is the Ideal Gas Law,

p = ρRT, (1.80)

where p and T are absolute quantities, e.g., [p] = psia or Pa (abs) and [T ] = °R or K.
• The vapor pressure, pv, of a liquid is the pressure at which the liquid is in equilibrium with its own

vapor (Figure 1.12).

C. Wassgren 46 2024-02-01



Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

Figure 1.12. Illustration of liquid and vapor in equilibrium in a closed container. The
pressure in the vapor is pv.

• The vapor pressure for a liquid increases with increasing temperature.
• If the pressure in the liquid falls below the vapor pressure, then the liquid will turn to vapor. This

change can occur via boiling or cavitation.
– Boiling occurs when the temperature of the liquid increases so that the vapor pressure equals

the surrounding atmospheric pressure. For example, the vapor pressure of water at 20 °C is
0.023 atm (abs) while the vapor pressure at 100 °C is 1 atm (abs). Hence, one method of turning
liquid water to vapor is to bring the water temperature to 100 °C while holding the surrounding
pressure at 1 atm (abs). This path is known as boiling and is shown schematically in the phase
plot shown on the left-hand side of Figure 1.13.

– Cavitation occurs when the surrounding pressure drops below the vapor pressure. Using the
previous example, we can also turn liquid water to water vapor by dropping the surrounding
pressure to 0.023 atm (abs) at 20 °C. This path is shown schematically in the phase plot shown
on the right-hand side of Figure 1.13.

Figure 1.13. Phase diagrams (pressure vs. temperature) showing the processes of boiling
(left) and cavitation (right).

– Cavitation can cause considerable damage to surfaces. When cavitation occurs in a liquid,
pockets of vapor form (either as bubbles or large “voids”). When the vapor pockets travel
into a region where the surrounding pressure is greater than the vapor pressure, the vapor
region rapidly collapses. This collapse can be so rapid that shock waves and high speed water
jets propagate from the collapsing region and impact on nearby surfaces causing small bits of
the surface to erode away. Hence, cavitation is typically avoided when designing pumps, pipe
bends, and underwater propellers.
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Example:
A tire pressure gage measures the pressure inside a tire as 40 psig for a car at Standard Temperature and
Pressure. What is the corresponding absolute pressure in the tire?

Solution:
The corresponding absolute pressure is,

ptire,abs = ptire,gage + patm,abs = 40 psi + 14.7 psi = 54.7 psia. (1.81)

Be sure to:

• Always indicate whether a pressure is an absolute or gage pressure in order to avoid ambiguity.
• Use an absolute pressure, and not a gage pressure, in the Ideal Gas Law.
• Be careful not to mix gage and absolute pressures when evaluating pressure forces.
• Use the correct area when calculating a pressure force.
• Integrate to find a pressure force when the pressure is not uniform over the area over which the

pressure acts. This topic is covered in detail in Chapter 2.
• Check for cavitation in low pressure flows of liquids.

1.7.3. Temperature

• The dimensions of temperature are simply temperature θ. Typical units are K, °R, °C, and °F.
• An object’s temperature is a quantitative way of describing how “hot” the object is (temperature

is a measure of the agitation or random kinetic energy of the molecules). We typically measure an
object’s temperature using a device called a “thermometer.”

• Experience tells us that when two objects are placed in contact with each other and have different
temperatures, the hotter object (i.e., the one with a larger temperature) will become cooler while
the cooler object becomes hotter. When the two objects have the same temperature, they no longer
change temperature. The objects are then said to be in thermal equilibrium.

• A simple but fundamental concept concerning thermal equilibrium is the Zeroth Law of Thermo-
dynamics: If two bodies are in thermal equilibrium with a third body, then the two bodies will also
be in thermal equilibrium. This concept is key when comparing the temperatures of two objects
not in contact using a thermometer since the thermometer acts as the third body.

• To use the concept of temperature, we must first define some scale on which we’ll measure tem-
peratures. Perhaps the easiest scale to define is one where we reference all temperatures to some
reproducible and unique physical phenomena such as the freezing or boiling points of water. Two
point scales use two phenomena to define the temperature scale. For example, let’s define the ice
point of water (when ice and water are in equilibrium at a pressure of 1 atm (abs)) as our 0° temper-
ature and the steam point of water (when water and water vapor are in equilibrium at a pressure of
1 atm (abs)) as our 100° temperature. We can now measure all temperatures relative to this scale.
Examples of two-point scales include the Celsius and Fahrenheit scales:

ice point of H2O steam point of H2O
Celsius scale 0 °C 100 °C

Fahrenheit scale 32 °F 212 °F
Long ago, researchers noticed something curious when measuring the temperature of various gases
at different pressures (and constant volume). They found that the temperature of a gas at a constant
volume and at low pressures is proportional to its pressure, (Figure 1.14),

T = a+ bp, (1.82)

where a and b are constants. By extrapolating the temperature of the gases at zero pressure, we
find that the lowest possible temperature, or the absolute zero temperature, is −273.15 °C on the
Celsius scale and −459.67 °F on the Fahrenheit scale (i.e., a = −273.15 °C = −459.67 °F). This
temperature scale, based on the behavior of ideal gases, is referred to as the ideal gas temperature
scale.
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Figure 1.14. Gas pressure plotted as a function of temperature for different gases using a
two-point temperature scale.

To make things a bit easier, let’s redefine our scale so that absolute zero is the zero point of our
temperature scale (Figure 1.15), i.e.,

T = bp (a = 0). (1.83)

This new scale is called an absolute temperature scale since the lowest temperature is zero.

Figure 1.15. Gas pressure plotted as a function of temperature for different gases using an
absolute temperature scale.

Note that so far our temperature scales have been based on the behavior of a particular substance
(e.g., water) or a particular class of substances (e.g., gases). A better way to define a temperature
scale is to make the scale independent of substances. Such a scale is called a thermodynamic
temperature scale. In order to define such a temperature scale, we would need to first learn about
the Second Law of Thermodynamics, a topic covered in Chapter 3. Suffice it to say here that the
scale using this method gives the same result as the one using the ideal gas temperature scale.
To summarize, the lowest possible temperature is 0 K = 0 °R and ∆(1 K) = ∆(1 °C) and ∆(1 °R) =
∆(1 °F). Some additional helpful conversions are (in the equations below, θ refers to temperature):

θ(K) = 1.8θ(°R) (1.8 = 9/5), (1.84)

θ(°C) = [θ(°F)− 32]/1.8, (1.85)

θ(°C) = θ(K)− 273.15, (1.86)

θ(°F) = θ(°R)− 459.67. (1.87)

Another convenient conversion formula is,

10 °C = 50 °F and for every 5 °C increase, add 9 °F. (1.88)
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Another very approximate conversion, and one that should only be used for everyday convenience
and not in engineering calculations is,

θ(°F) ≈ 2θ(°C) + 30 (a few degrees error over the range of typical weather temps), (1.89)

θ(°C) ≈ [θ(°F)− 30]/2. (1.90)

Example:
A pressure gage measures the pressure inside a car tire as 240 kPa (gage) at the National Institute of Standards
and Technology (NIST) Standard Temperature and Pressure. To get the tire to a volume of 10 L, what mass
of air needs to be added to the tire?

Solution:
The corresponding absolute pressure inside the tire is, ptire,abs = 240 kPa + 101.325 kPa = 341.325 kPa (abs).
The absolute temperature inside the tire is Ttire,abs = 293.15 K. From the Ideal Gas Law,

M =
pabsV

RairTabs
=

(341.325× 103 Pa)(10 L)
(

1 m3

1000 L

)
(287.058 J kg−1 K−1)(293.15 K)

= 4.06× 10−2 kg, (1.91)

where Rair is the gas constant for air.

Be sure to:

(1) Use an absolute temperature when using the Ideal Gas Law.

1.7.4. (Dynamic) Viscosity, µ

• Viscosity is the “internal friction” within a fluid. It’s a measure of how easily a fluid flows.
• The dimensions of dynamic viscosity are FT/L2. Typical units are Pa s and lbfs/ft

2. Another com-
mon unit is the Poise (P) (pronounced “’pwäz”): 10 P = 1 Pa s and 1 cP = 0.01 P = 1× 10−3 Pa s.

• The viscous stresses in a fluid will be related to the deformation rate of a small element of fluid.
Recall that for solids, the force is related to the deformation, e.g., Hooke’s Law for springs. For
fluids, however, the forces are related to deformation rates.

Figure 1.16. A small element of fluid subject to a small degree of shear deformation.

Consider the deformation of a small piece of fluid with area (dxdy) as shown in Figure 1.16. The
top of the fluid element is subject to a shear stress, τ , over a short time, dt. During this time, the
top of the fluid element moves with a small velocity, du, with respect to the bottom of the element.
The total distance the top moves relative to the bottom will be dudt. The angular deformation of
the fluid element can be measured by the angle the vertical sides of the element have deformed.
The small angle dθ is found from simple trigonometry,

tan(dθ) =
dudt

dy
. (1.92)
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Since the angle is very small, tan(dθ) ≈ dθ. The rate at which the element deforms is found by
dividing both sides by dt,

dθ

dt
=
du

dy
. (1.93)

This quantity is known as the shear or angular deformation rate. The rate of angular deformation
on the element, dθ/dt is equal to the velocity gradient, du/dy, in the fluid. Furthermore, since the
shear stress acting on the fluid element, τ , is a function of the deformation rate, we have,

τ = f

(
dθ

dt

)
= f

(
du

dy

)
, (1.94)

where the function is unknown at this point.
– A Newtonian fluid is one in which the shear stress varies proportionally with the deformation

rate. The constant of proportionality is call the dynamic viscosity, µ,

τ = µ
du

dy
. (1.95)

– Air and water are two examples of Newtonian fluids.
– A slightly more precise definition of the shear stress is,

τyx = µ
dux
dy

. (1.96)

where the subscript on the stress indicates that the shear stress acts on a y-surface in the
x-direction. The x-subscript on the velocity indicates that it is the x-component. We will
review this sign convention in greater detail in Chapter 5.

• In a non-Newtonian fluid the shear stress is not proportional to the deformation rate, but instead
varies in some other way.

– Non-Newtonian fluids are further classified by how the shear stress varies with deformation rate.
The apparent viscosity, µapp, is the viscosity at the local conditions as shown in Figure 1.17.
For a Newtonian fluid the apparent viscosity remains constant.

Figure 1.17. A plot of shear stress as a function of the shear strain rate for different types
of fluids. The apparent viscosity is the local slope of the shear stress-deformation rate curve.

– In shear thinning (aka psuedoplastic) fluids, the apparent viscosity decreases as the shear stress
increases. Examples of shear thinning fluids include blood, latex paint, and cookie dough.
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– In shear thickening (aka dilatant) fluids, the apparent viscosity increases as the shear stress
increases. An example of a shear thickening fluid is quicksand or a thick cornstarch-water
mixture (aka oobleck).

• Viscosity is weakly dependent on pressure, but is sensitive to temperature. For liquids, the viscosity
generally decreases as the temperature increases and increases as pressure increases. Changes in
temperature and pressure can be very significant in lubrication problems. For gases, the viscosity
increases as the temperature increases (in fact, from kinetic theory one can show that µ ∝

√
T ).

Figure 1.18 shows the variation in dynamic viscosity with temperature for several fluids. Two
commonly-used dynamic viscosities are,

µH2O,20 °C = 1.00× 10−3 Pa s = 1.00 cP,

µair,20 °C = 1.81× 10−5 Pa s = 1.8× 10−2 cP.

• The kinematic viscosity, ν, is a quantity that often appears in fluid mechanics. It is defined as,

ν :=
µ

ρ
. (1.97)

The dimensions of kinematic viscosity are L2/T and common units are m2/s, ft2/s, and 1 Stoke
= St = 1 cm2/s. Kinematic viscosity has the dimensions of a diffusion coefficient. The kinematic
viscosity is a measure of how rapidly momentum diffuses into a flow. This point will be discussed
again in Chapter 8. The kinematic viscosities of water and air at 20 °C are:

νH2O,20 °C = 1.00× 10−6 m2/s = 1.00 cSt,

νair,20 °C = 1.50× 10−5 m2/s = 15 cSt.

• Viscometers are devices used to measure the viscosity of fluids. A good reference on experimental
viscometry is: Dinsdale, A. and Moore, F., Viscosity and its Measurement, Chapman and Hall.

• Let’s examine the common flow situation shown in Figure 1.19. A fluid is contained between two,
infinitely long parallel plates separated by a distance H. The bottom plate is fixed while the top
plate moves at a constant speed V . There are no pressure gradients in the fluid. This type of flow
situation is called a planar Couette flow. One of the first things we would notice when conducting
this experiment is that the fluid sticks to the solid boundaries, i.e., there is zero relative velocity
between the fluid and the boundary. This behavior is referred to as the no-slip condition. The
no-slip condition occurs for all real, viscous fluids under normal conditions. (The no-slip condition
may be violated in rarefied flows where the motion of individual molecules becomes significant, i.e.,
when the Knudsen number is Kn > 0.1.)
The second thing we would notice is that the fluid velocity profile is linear,

ux = V
( y
H

)
. (1.98)

Note that the velocity at the bottom plate is zero and at the top plate the velocity is V . Thus, the
no-slip condition is satisfied. We will derive this velocity profile in Chapter 8.
If the fluid is Newtonian, then the shear stress acting on the fluid is,

τyx = µ
dux
dy

= µ

(
V

H

)
. (1.99)

The shear stress is a constant everywhere in the fluid, i.e., there is no y dependence. Additionally,
the shear stress acts to resist the motion of the top plate and tries to carry the bottom plate along
with the fluid (Figure 1.20).

• An inviscid flow is one in which the viscous stresses are negligible (τ ≈ 0). There are two ways
to have negligible viscous stresses. First, the viscosity could be negligibly small, but there are no
common fluids that have µ ≈ 0 (although super-fluid helium does have µ = 0, but it’s not a common
fluid!). The second method is to have a small velocity gradient, e.g., dux/dy ≈ 0. This condition is
quite common. For example, a plug flow where the velocity profile is constant (ux = constant) is
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Figure 1.18. The dynamic viscosity for several liquids plotted as a function of temperature.
This plot is from Fox, R.W. and McDonald, A.T., Introduction to Fluid Mechanics, 5th ed.,
Wiley.

truly an inviscid flow since dux/dy = 0 =⇒ τ = 0. There are many cases where assuming that the
flow is inviscid is a reasonable approximation. In addition, many analyses of fluid flow rely on an
inviscid flow assumption in order to make the mathematics of the analyses tractable without the
use of computers. Note that the no-slip condition does not hold when the flow is inviscid.
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Figure 1.19. A schematic of the Couette flow geometry.

Figure 1.20. Positive shear stresses acting on fluid elements near the wall boundaries.

• An ideal flow is one that is both incompressible and inviscid. The ideal flow approximation is often
reasonable and is commonly used in fluid mechanics analyses. We’ll consider ideal fluid flow in
Chapter 6.

Be sure to:

(1) Get your shear stress directions correct. Equation (1.95) is the shear stress acting on the fluid
element.

(2) Use the correct area when evaluating shear forces.
(3) Integrate to determine a shear force on an area where the shear stress is not uniform over the area.
(4) Evaluate the velocity gradient in Eq. (1.95) at the location where you’re interested in determining

the shear stress.
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Determine the magnitude and direction of the shear stress that the water applies: 
a. to the base 
b. to the free surface 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
The shear stress, tyx, acting on a Newtonian fluid is given by: 

 (1) 

where 

 (2) 

Evaluating the shear stress at the base and free surface gives: 

base (y = 0):   (3) 

This is the stress the wall exerts on the fluid.  The fluid will exert an equal but 
opposite stress on the wall. 
 
 
 
 
 

 
 
 
 
free surface (y = h):  (4) 

The air at the free surface does not exert a stress on the water.  Although in 
reality the air will exert a small shear stress on the water, assuming that the shear 
stress is negligible is reasonable in most engineering applications. 
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Video solution: https://www.youtube.com/watch?v=SOyUS9o-7fk
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The viscosity of blood is to be determined from measurements of shear stress and shear rate obtained from 
a small blood sample tested in a suitable viscometer.  Based on the data given in the table below, determine 
if the blood is a Newtonian or a non-Newtonian fluid.  Explain how you arrived at your answer. 
 

data set 1 2 3 4 5 6 7 8 
shear rate [s-1] 2.25 4.50 11.25 22.5 45.0 90.0 225 450 
shear stress [N/m2] 0.04 0.06 0.12 0.18 0.30 0.52 1.12 2.10 

 
 
SOLUTION: 
 
Plot the ratio of the shear stress to the shear rate to give the apparent dynamic viscosity: 

 

data set 1 2 3 4 5 6 7 8 
apparent viscosity, µapp [kg/(m×s)] 0.0178 0.0133 0.0107 0.0080 0.0067 0.0058 0.0050 0.0047 
 
Since the apparent viscosity is decreasing with increasing shear rate (increasing data set number), blood is 
not Newtonian, but is instead shear thinning. 
 
Another way to look at the problem: 
  
Plot the data on a log-log scale as shown below.  Note that if y = xn (i.e. a power law function),  
then ln(y) = nln(x) (i.e. the function is a straight line with slope n on a log-log scale).  Hence, if blood is 
Newtonian, then the shear rate-shear stress data plotted on a log-log scale will have a slope of one since 

 for a Newtonian fluid. 

 
The slope of the blood data is not equal to one indicating that blood is non-Newtonian.  In fact, since the 
slope is less than one over most of the range of shear rate, blood is shear thinning. 
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During a coating process, a thin, flat tape of width w is pulled through a channel of length L containing a 
Newtonian fluid of density r and dynamic viscosity µ.  The fluid is in contact with both sides of the tape.  
Estimate the force required to pull the tape through the channel if the tape has velocity V and the channel 
has height H.  You may assume that the tape is much thinner than H. 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
Assume that the gap between the tape and the channel walls is sufficiently small so that a laminar Couette 
flow can be assumed in the gaps.  Hence, the velocity profile in each gap is: 
 
 
 
 
 
 
 
 

 (1) 

 
The shear stress acting on the tape is: 

 (2) 

 
The total shear force acting on the tape is then: 

 (3) 

 (4) 
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Video solution: https://www.youtube.com/watch?v=ijYtGhQxwkM
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When a vehicle such as an automobile slams on its brakes (locking the wheels) on a very wet road it can 
“hydro-plane.”  In these circumstances a film of water is created between the tires and the road.  
Theoretically, a vehicle could slide a very long way under these conditions though in practice the film is 
destroyed before such distances are achieved (indeed, tire treads are designed to prevent the persistence of 
such films). 
 
To analyze this situation, consider a vehicle of mass, M, sliding over a horizontal plane covered with a film 
of liquid of viscosity, µ.  Let the area of the film under all four tires be A (the area under each tire is ¼A) 
and the film thickness (assumed uniform) be h.   
a. If the velocity of the vehicle at some instant is V, find the force slowing the vehicle down in terms of 

A, V, h, and µ.   
b. Find the distance, L, that the vehicle would slide before coming to rest assuming that A and h remain 

constant (this is not, of course, very realistic). 
c. What is this distance, L, for a 1000 kg vehicle if A = 0.1 m2, h = 0.1 mm, V = 10 m/s, and the water 

viscosity is µ = 0.001 kg/(m×s)? 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
The shear stress, tyx, the tires exert on the fluid is, for a Newtonian fluid: 

 (1) 

Assuming a linear velocity profile in the fluid film, the shear stress the tires exert on the fluid is: 

 (2) 

The fluid will exert an equal but opposite shear stress on the tires.  The total shear force acting on the four 
tires (with a combined area of A) is: 

  

   (The negative sign implies that the force is acting to slow down the car.) (3) 

 
The distance the vehicle slides before coming to rest can be determined using Newton’s 2nd Law applied to 
the vehicle. 

 (4) 

Solve the differential equation for the velocity as a function of time. 

 

 

 (5) 
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Video solution: https://www.youtube.com/watch?v=2KgQtt8kRuY
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Note that as t → ∞, V → 0 (the car comes to rest).  Integrate Eqn. (5) with respect to time once more to 
determine the travel distance, x, as a function of time. 

 

 

 (6) 

The car comes to rest as t → ∞ so the total distance the car travels, L, will be: 

 (7) 

 
For the following parameters: 

M = 1000 kg 
h = 0.1*10-3 m 
V0 = 10 m/s 
µ = 0.001 kg/(m×s) 
A = 0.1 m2 
Þ L = 10,000 m ( » 6.2 miles) 

Obviously this isn’t very realistic.  Our assumptions of constant tire area and film thickness aren’t 
very good ones. 
 

Another approach to solving this problem is to set the small amount of work performed by the viscous 
force over a small displacement dx equal to the small change in the kinetic energy of the vehicle, 

, (8) 
where F is given by Eq. (3), 

 ,  (since the velocity is zero at x = L) (9) 

  which is the same answer as given in Eq. (7)! (10)   
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Magnet wire is to be coated with varnish for insulation by drawing it through a circular die of 0.9 mm 
diameter.  The wire diameter is 0.8 mm and it is centered in the die.  The varnish, with a dynamic viscosity 
of 20 centipoise, completely fills the space between the wire and the die for a length of 20 mm.  The wire is 
drawn through the die at a speed of 50 m/s.  Determine the force required to pull the wire. 
 
 
SOLUTION: 
 
Apply Newton’s 2nd Law in the x-direction to the wire shown in the diagram below. 
 
 
 
 
 
 
 
 
 
 

   (Note that the wire is not accelerating.) (1) 
where trx is the shear stress the fluid exerts on the wire and (2pRiL) is the area over which the shear stress 
acts.  The shear stress the wire exerts on the fluid (assumed to be Newtonian) is: 

 (2) 

where 

  (Note that u(r = Ro) = 0 and u(r = Ri) = V.) (3) 

Recall that the shear stress the fluid exerts on the wire will be equal to, but opposite, the value given by 
Eqn. (2).  Substitute Eqns. (2) and (3) into Eqn. (1) and simplify. 

 

 (4) 

 
Use the numerical values given in the problem statement. 

Ri = 4.0*10-4 m 
Ro = 4.5*10-4 m 
L = 2.0*10-2 m 
µ = 20 cP = 0.02 kg/(m×s)  (Note:  100 cP = 0.1 kg/(m×s).) 
V = 50 m/s 
Þ F = 1.0 N 
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Since the gap width is small, assume a 
linear velocity profile. 
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The no-slip condition states that fluid “sticks” to solid surfaces.  Two immiscible layers of Newtonian fluid 
are dragged along by the motion of an upper plate as shown in the figure.  The bottom plate is stationary 
and the velocity profiles for each fluid are linear.  The top fluid (fluid 1), with a specific gravity of 0.8 and 
kinematic viscosity of 1.0 cSt, puts a shear stress on the upper plate, and the lower fluid (fluid 2), with a 
specific gravity of 1.1 and kinematic viscosity of 1.3 cSt, puts a shear stress on the bottom plate.  
Determine the ratio of the shear stress on the top plate to the shear stress on the bottom plate. 
 
 
 
 
 
 
 
 
SOLUTION: 
 
The shear stress acting on either plate may be found using the expression relating the shear stress to the 
velocity gradient for a Newtonian fluid: 

 (1) 

For the bottom plate: 

 (2) 

where the derivative in Eqn. (1) may be replace with Du/Dy since the velocity profile is linear, µ2 is the 
dynamic viscosity of fluid 2, and Du2 and Dy2 are the change in the velocity over the change in y-position, 
respectively, in fluid 2.  Following a similar approach for the top plate gives: 

 (3) 

Taking the ratio of Eqn. (3) to Eqn. (2) gives: 

 (4) 

Note that the dynamic viscosity is related to the specific gravity, SG, and kinematic viscosity, n, by: 
 (5) 

where r is the fluid density and rH2O is the density of water.  Substituting Eqn. (5) into Eqn. (4) gives: 

 (6) 

Using the given values: 
SG1 = 0.8 SG2 = 1.1 
n1 = 1.0 cSt n2 = 1.3 cSt 
Du1 = (3 – 2) m/s = 1 m/s 
Du2 = (2 – 0) m/s = 2 m/s 
Dy1 = 0.010 m 
Dy2 = 0.036 m 

Þ     

Note that the stress across a fluid interface is continuous and since the shear stress is constant in the fluid, 
the shear stresses on the plates should be identical.   
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A rotating disk viscometer has a radius, R = 50 mm, and a clearance, h = 1 mm, as shown in the figure. 
 
 
 
 
 
 
 
 
 
 

a. If the torque required to rotate the disk at W = 900 rpm is 0.537 N·m, determine the dynamic viscosity 
of the fluid.  You may neglect the viscous forces acting on the rim of the disk and on the vertical shaft. 

b. If the uncertainty in each parameter is ±1%, determine the uncertainty in the viscosity.  
 
 
SOLUTION: 
 
The torque acting on the rotating section is due to the fluid shear stresses acting on the rotating surface.  
Consider only the stresses acting on the upper and lower surfaces since the edge stresses act over a 
negligibly small area.  Determine the force acting on a small area of the rotating disk. 

   (1) 

(Note that the force acts on both the upper and lower surfaces.) 
 

The shear stress acting on the upper and lower surfaces, assuming a Newtonian fluid and a linear velocity 
profile in the gap (a reasonable assumption if the gap width is narrow), is: 

   (Note u(y = 0) = 0 and u(y = h) = rW.) (2) 

Substitute into Eqn. (1). 

 (3) 

 
The torque due to this force contribution is: 

 (4) 

The total torque is found by integrating over the disk radius. 

 

 (5) 

Re-arrange to solve for the viscosity. 

 (6) 

 
Using the given values: 

T  = 0.537 N×m 
h = 1.0*10-3 m 
W = 900 rpm = 94.2 rad/s 
R = 50.0*10-3 m 
Þ µ = 0.29 kg/(m×s)   or 0.29 Pa×s or 290 cP 
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Perform an uncertainty analysis on Eqn. (6). 
   (7) 

where 

 

 

 

 

Substitute into Eqn. (7). 

 (8) 
Note that the relative uncertainty in R contributes the most to the uncertainty in the viscosity. 

 
From the problem statement, the relative uncertainty in each of the measurements is ±1% so that: 

 (9) 
 
Þ µ = 0.29±0.01 Pa×s 
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A rotating cylinder viscometer is shown in the figure below.  The inner cylinder has radius, R, and height, H.  An 
incompressible, viscous, Newtonian fluid of density, r, and viscosity, µ, is contained between the cylinders.  The 
narrow gap between the cylinders has width, t (<< R and H).  A torque, T, is required to rotate the inner cylinder at 
constant speed W.  Determine the fluid viscosity, µ, in terms of the other system parameters. 
 

 
 
 
SOLUTION: 
 
Assume that the velocity profiles in the narrow gaps are linear since the gap size is small and curvature may be 
neglected (t/R << 1) .  In the circumferential gap the fluid velocity gradient will be: 

 (1) 

 
In the gap at the bottom of the cylinder the fluid velocity gradient will be: 

 (2) 

 
The shear forces acting on the fluid at the inner cylinder wall and base will be: 

 

 

 
 
 
 
 
 
 

 
 
Note that the force acting on the cylinder will be equal in magnitude but in the opposite direction to the force acting 
on the fluid (Newton’s 3rd Law).   
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The total torque acting on the cylinder (neglected the contribution from the corner regions) is: 

 

 (3) 

 
Re-arrange to solve for the viscosity: 

 (4) 
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The cone and plate viscometer shown in the figure is an instrument used frequently to characterize non-
Newtonian fluids.  It consists of a flat plate and a rotating cone with a very obtuse angle (typically q is less 
than 0.5 degrees).  The apex of the cone just touches the plate surface and the liquid to be tested fills the 
narrow gap formed by the cone and plate.   
a. Derive an expression for the shear rate in the liquid that fills the gap in terms of the geometry of the 

system and the operating conditions.   
b. Evaluate the torque on the driven cone in terms of the shear stress and geometry of the 

system. 
c. Evaluate the torque on the driven cone in terms of the geometry, operating conditions, 

and fluid properties if the fluid is Newtonian. 
 
 
 
 
 
 
 

SOLUTION: 
 
The shear rate in the fluid is equal to the fluid’s velocity gradient.  Since the gap width is small, assume that 
the velocity profile in the gap is linear in the vertical (i.e., y-direction) direction. 

  (Note:  u(y = h) = rw and u(y = 0) = 0.) 

where 
 

 (1) 

 
 
 
 
The torque acting on the cone is due to the shear stresses exerted by the fluid, 
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Note that in Eq. (2) the horizontal projected area of the area is 
used since it’s the velocity gradient in the y direction that’s 
causing the shear stress on the cone (it’s the gap in the vertical 
direction that the cause for the shear stress). 

 
For a Newtonian fluid, 

. (2) 

Use the shear rate given in Eq. (1) and substitute into Eq. (5), 
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A viscous clutch is made from a pair of closely spaced parallel, circular disks enclosing a thin layer of 
viscous liquid.   
 
 
 
 
 
 
 
 

 
 
 
 
Develop an expression for the torque, T, transmitted by the disk pair, in terms of the liquid dynamic 
viscosity, µ, the disk radius, R, the disk spacing, a, and the angular speeds of the input disk, wi, and output 
disk, wo. 
  
 
SOLUTION: 
 
Since the disks are closely spaced, assume that the velocity profile in the liquid is linear, with the velocity 
gradient at a radius r being, 

. (1) 

 
 
 
 
 
 

 
The torque acting on the output disk due to the shear force exerted by the liquid is, 
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A viscous, Newtonian liquid film falls under the action of gravity down the surface of a rod as shown in the 
figure below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The velocity of the fluid is given by: 

 

where r is the liquid density, g is the acceleration due to gravity, µ is the liquid’s dynamic viscosity, a is 
the radius of the rod, b is the radius to the free surface of the film, and r is the radius measured from the 
centerline of the rod. 
 
Determine: 
a. What is the shear stress, trz, at the free surface of the liquid? 
b. What force acts on the rod per unit length of the rod due to the viscous liquid? 
c. Set up, but do not solve, the integral for determining the volumetric flow rate of liquid flowing down 

the rod. 
 
 
SOLUTION: 
 
The shear stress acting on a fluid element is given by: 

 (1) 

Using the given velocity profile gives: 

 (2) 

At the liquid’s free surface, r = b so: 

 (3) 

 (4) 
Note that typically the surrounding atmosphere exerts a negligible shear stress on the surface of a flowing 
liquid so we often assume that the shear stress there is zero. 
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The viscous force acting on the rod per unit length is: 

  (5) 

Use Eqn. (2) to determine the shear stress acting at the rod’s surface. 

 (6) 

   (7) 

Note that the viscous force acting on the rod points in the downstream direction. 
 

  
The volumetric flow rate of the liquid is given by: 

  where uz is given in the problem statement. (8) 
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Derive an expression estimating the torque required to rotate a windshield wiper blade over the surface of a wet 
windshield in terms of the parameters given in the figure below, 

 
 
Here, R is the radius of the inner most point swept by the wiper blade, L is the length of the wiper blade, q is the 
angle swept by the blade in a time T, w is the width of the part of the blade in contact with the windshield, t is the 
thickness of the water layer, and µ is the viscosity of water. 
 
For a 1996 Toyota Rav 4, R = 6”, L = 11”, q = 110°, T = 2 sec, w = ¼”, and t = 1/16”.  Evaluate your expression to 
estimate the torque. 
 
 
SOLUTION: 
 
Consider a differential element of the wiper along the radial direction.  The cross-section for this element at radius r 
can be imagined as shown in the figure below. 

 
 
If the wiper blade sweeps out an angle q in a time T, the average speed U of the element over the windshield is, 

. (1) 

Assuming Couette flow between the wiper blade and the windshield, the shear stress applied to the differential 
element is, 

, (2) 

where t is the thickness of the water layer between the wiper and the windshield.  The force on this differential 
element is the shear stress acting on this element multiplied by the area of the element, 

. (3) 

The small moment on the wiper blade pivot caused by this small force is, 
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Integrating over the length of the blade gives the total moment, 

, (5) 

. (6) 

 
The numerical solution for the given parameters is, 

 (7) 

This torque is quite small.  An important factor contributing to this small value is that the actual wiper geometry is 
not parallel to window as given in this simple example, but instead has an inclined surface.  This inclined surface 
will result in a pressure force acting on the blade surface in addition to a shear force.  This pressure force will be 
much larger than the shear force and, hence, a larger torque will result.  Wiper blade dynamics are actually quite 
complex and have been the study of a number of research projects. 
 
Note:  Thanks to Dr. Ben Freireich for helping to prepare this problem. 
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A 73 mm diameter aluminum (specific gravity of 2.64) piston of 100 mm 
length is centered in a stationary 75 mm inner diameter steel tube lined 
with SAE 10W-30 oil at 25 °C.  The piston is set into motion by cutting a 
support cord.  What is the terminal velocity of the piston?  You may 
assume a linear velocity profile within the oil. 
 
 
 
SOLUTION: 
Draw a free body diagram of the piston and, since we’re interested in the terminal speed of the piston, sum 
the forces in the z direction and set them equal to zero. 
 
 
 
 
 
 
 
 
 

, (1) 
where Fs is the shear force due to the viscous stress the fluid exerts on the piston.  The mass of the piston is, 

, (2) 
where R is the radius of the piston. 

 
The shear force acting on the surface of the piston is due to the viscous stress applied by the oil.  To find 
this viscous stress, first assume a linear profile in the oil, 

, (3) 

where V is the speed of the piston.  Hence, the gradient of the z velocity component in the r direction in the 
oil is, 

. (4) 

The shear stress acting on the surface of the piston due to the oil, assuming Newtonian fluid behavior, is, 

. (5) 

Note that this shear stress is constant.  The corresponding shear force due to this shear stress is determined 
by multiplying the shear stress by the area over which this stress acts, 

. (6) 

 
Substitute Eqs. (6) and (2) into Eq. (1) and solve for V, 

, (7) 

, (8) 

. (9) 

Note that the piston length isn’t a factor. 
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Substitute the given parameters, 

SGAl = 2.64 
rH20 = 1000 kg/m3, 
R = 0.5*73*10-3 m = 36.5*10-3 m, 
g = 9.81 m/s2, 
t = 0.5*(75 – 73)*10-3 m = 1.0*10-3 m 
µ = 0.13 Pa.s (from Fig. A.2 of Pritchard et al.), 
=>   V = 3.64 m/s. 
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1.7.5. Bulk Modulus, Eν

Figure 1.21. Illustration of how an applied differential pressure dp results in a differential
change in volume dV .

• The bulk modulus is a measure of a substance’s compressibility. The larger the bulk modulus, the
less compressible the substance. An incompressible substance has an infinite bulk modulus.

• The dimensions of bulk modulus are F/L2 and common units are Pa, bar, and psi.
• The bulk modulus is defined as the ratio of the differential pressure, dp, required to cause a relative

decrease in the differential volume, −dV/V (Figure 1.21),

Eν := − dp

dV/V
. (1.100)

• If dp > 0 (i.e., an increase in pressure) and dV < 0 (i.e., a decrease in volume), then Eν > 0.
• The bulk modulus can be written in terms of density rather than volume,

Eν =
dp

dρ/ρ
, (1.101)

since m = ρV and dm = 0 = V dρ+ ρdV =⇒ dρ/ρ = −dV/V .
• Water at 20 °C has Eν = 2.21 GPa. This large bulk modulus indicates that water is nearly incom-

pressible. Indeed, liquids are generally modeled as being incompressible.
• For an ideal gas under isothermal conditions,

p = ρRT =⇒ dp

dρ

∣∣∣∣
T

= RT =⇒ Eν |T = ρRT = p. (1.102)

• For an ideal gas under isentropic conditions,

p = cργ =⇒ dp

dρ

∣∣∣∣
s

= cγργ−1 =⇒ Eν |s = γp = γρRT. (1.103)

where c is a constant and γ = cp/cv is the specific heat ratio.
• The speed of sound in a substance is related to how compressible the substance is. It can be shown

(in Chapter 13) that the speed of sound, c, is given by,

c =

√
∂p

∂ρ

∣∣∣∣
s

The subscript “s” indicates the process occurs isentropically. (1.104)

Since the bulk modulus can be written as,

Eν =
dp

dρ/ρ
= ρ

(
dp

dρ

)
, (1.105)

we have,

c =

√
Eν |s
ρ

. (1.106)
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Hence, we observe that the speed of sound in a substance is related to the ratio of the substance’s
compressibility to its density.

– Recall that for an isentropic process involving an ideal gas: Eν = γp = γρRT , so that,

c =
√
γRT (speed of sound for an ideal gas). (1.107)

Example:
Does air become more or less compressible, or does the compressibility remain unchanged, as the air temper-
ature increases for isentropic conditions?

Solution:
From Eq. (1.103), Eν |s = γρRT . Thus, Eν |s ↑ and T ↑, which means that the air becomes less compressible
as the temperature increases.
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What is the fractional change in density of water in the ocean over a depth of 1000 m (3281 ft)?  The 
change in pressure over this depth, Dp, is 9.81*106 Pa. 
 
 
SOLUTION: 
 
Assume that the bulk modulus for water remains constant at En = 2.2*109 Pa (found from a fluid properties 
table).  Recall that the bulk modulus is defined as: 

 (1) 

 

 

 (2) 

Note that rf = r0 + Dr so that: 

 (3) 

Substitute Eqn. (3) into Eqn. (2): 

 

 (4) 

 
In the given problem: 

Dp = 9.81*106 Pa 
En = 2.2*109 Pa 

Þ     Water remains essentially incompressible over this depth! 

 
Note that in most engineering problems (where pressure variations are not enormous), it is reasonable to 
assume that water is incompressible. 
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1.7.6. Surface tension, σ

• Surface tension is caused by unbalanced molecular forces occurring at the interface between a liquid
and a solid surface, two dissimilar liquids, or between a liquid and a gas. For example, water “beads”
up on a waxed surface because the inter-molecular forces between the water molecules is greater
than the inter-molecular forces between the water and the wax.

• The dimensions of surface tension are F/L and common units are N m−1, lbf ft−1, and dyne/cm
where 1 dyne = 1× 10−5 N.

• Examples where we observe surface tension include:
– bubbles,
– bugs walking on the surface of water, and
– soda in a straw.

• Surface tension effects become more significant as length scales (L) decrease since,

Fsurface tension ∼ L (proportional to interface length), (1.108)

Finertia or weight ∼ L3 (proportional to volume). (1.109)

Taking the ratio of the two,

Fsurface tension

Finertia or weight
∼ L

L3
=

1

L2
. (1.110)

Thus, as L becomes smaller, surface tension forces begin to dominate over weight.
• The contact angle between a liquid and a surface is the angle the liquid surface makes at the contact

point with the surface as shown in Figure 1.22. The contact angle is measured through the liquid.

Figure 1.22. The geometry for evaluating the contact angle.

– If θ > 90°, then the surface is considered non-wetting. When water is the liquid, then a
non-wetting surface is considered hydrophobic (Figure 1.23).

– If θ < 90°, then the surface is considered wetting. When water is the liquid, then a wetting
surface is considered hydrophilic (Figure 1.24). Precise measurements of contact angle are
difficult to make due to the sensitivity of the contact angle to surface chemical variations.

Figure 1.23. A non-wetting or hydrophobic contact angle.

Figure 1.24. A wetting or hydrophilic contact angle.
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Be sure to:

(1) Consider the effects of surface tension at fluid interfaces, especially at small length scales.
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Determine the relationship between the surface tension in a soap bubble and the pressure difference between the 
inside and outside of the bubble.  
 
 
SOLUTION: 
Analyze the problem by cutting the spherical bubble with radius, R, in half. The free body diagram of the half-
bubble is shown in the figure below. The forces acting on the bubble include the surface tension force holding the 
two bubble halves together, and the pressure force acting to push the two bubble halves apart.  

  
∑𝐹 = 0 = 𝑝!(𝜋𝑅") + (2𝜋𝑅)𝜎 − 𝑝#(𝜋𝑅"), (1) 
𝑝# − 𝑝! =

"$
%

. (2) 
The larger the surface tension or the smaller the bubble the radius, the larger the pressure difference between the 
bubble interior and the exterior. 
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A capillary tube of internal diameter 1 mm is placed vertically in a bucket of water. How high will the 
level in the capillary rise above the level in the bucket if the contact angle at the inner walls of the tube is 
15º and the surface tension is 0.07 N/m?  Consider a smaller capillary with the same contact angle and 
surface tension.  If the water will vaporize below a pressure of 0.017 bar, what is the maximum capillary 
height which can, in principle, be achieved and what size of capillary is necessary to achieve this elevation? 
 
 
SOLUTION: 
 
Balance the vertical forces on the fluid in the tube shown below. 
 
 
 
 
 
 
 
 
 
 

 (1) 
where FS is the surface tension force and FW is the weight of the fluid in the tube.  The surface tension force 
is: 

 (2) 
while the weight of the fluid in the tube is: 

 (3) 
Substitute and simplify. 

 (4) 

 (5) 

 
Using the given data: 

s = 0.07 N/m 
q = 15° 
r = 1000 kg/m3 
g = 9.81 m/s2 
D = 10-3 m 
\h  = 2.76 cm 
 

The height giving the minimum pressure may be found via manometry. 
 (6) 

 (7) 

Using the given data: 
pmin = 0.017 bar = 0.017*105 Pa 
patm = 1.01*105 Pa 
r = 1000 kg/m3 
g = 9.81 m/s2 
\hmax  =  10.2 m 
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Re-arrange Eqn. (5) to find the capillary tube diameter. 

 (8) 

Using the given data: 
s = 0.07 N/m 
q = 15° 
r = 1000 kg/m3 
g = 9.81 m/s2 
h = 10.2 m 
\D  =  2.7 µm 
 

4 cosD
gh

s q
r

=
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Vapor bubbles that form in the bottom of a pan of boiling water remain attached until they are of sufficient 
size so that the upward buoyant force acting on the bubble just overcomes the surface tension force at the 
contact line of their attachment to the bottom. 
 
 
 
 
 
 
 
Find an expression for the radius, R, of a bubble rising through the liquid assuming that the attached bubble 
shape is a truncated sphere and that the line of attachment is a circle.  Express your result in terms of the 
surface tension, s, the contact angle, q, the density of the liquid, r, and the acceleration due to gravity, g. 
 
 
SOLUTION: 
 
Balance forces acting on the bubble in the vertical direction: 

 (1) 
where the FB and FS are the buoyant and surface tension forces, respectively.  The weight of the bubble is 
neglected since the density of the vapor is much smaller than the liquid density.   
 
The buoyant force, FB, is: 

 (2) 
where the (truncated sphere) bubble volume is: 

 (3) 

 
 

and the surface tension force, FS, is: 
 (4) 

 
Substitute Eqns. (2) – (4) into Eqn. (1) and solve for R.  

 (5) 

 (6) 
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Show that a tube containing liquid that is not submerged can support twice the fluid that a tube that is 
submerged can. 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Balance forces on the liquid in each tube (Let y be the vertical direction): 

, (1)  

. (2) 
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1.8. Flow Kinematics

A good reference on the experimental aspects of this topic is: Merzkirch, W., Flow Visualization, Academic
Press.

In 1986, the Chernobyl Nuclear Power Plant in the Soviet Union released radioactive fallout into the atmo-
sphere as a result of an explosion in one of the reactors (Figure 1.25). The radioactive plume covered regions
of the western Soviet Union, Europe, and even parts of eastern North America. If such an accident were to
happen again, how would you know which communities would be affected by the drifting radioactive cloud?
If one had predictions of wind velocity measurements as a function of location and time, i.e., u = u(x, t),
could you figure out what areas would be covered by the cloud? In this section, we’ll present three forms of
flow kinematics: streamlines, pathlines, and streaklines. Each of these lines provides different information on
the movement of fluid. For the toxic cloud release, one would be most interested in determining the streakline
passing through the location of the damaged reactor.

Figure 1.25. Photo of the damaged Chernobyl reactor. Photo from http://en.

wikipedia.org/wiki/Chernobyl_disaster.

1.8.1. Streamlines

Figure 1.26. Illustration of streamlines. Streamlines are everywhere tangent to the velocity
vectors.
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A streamline is a line that is everywhere tangent to the velocity field vectors (Figure 1.26). Experimentally,
one can visualize streamlines using the Particle Image Velocimetry (PIV) technique. In PIV, fluid particles
are “tagged”, usually by mixing in very small, neutrally buoyant bits of “paint,” and taking two photographs
in rapid succession. Velocity vectors can then be produced by “connecting the dots” (actually this method
is technically Particle Tracking Velocimetry (PTV), but PIV operates in a similar manner, but matching up
regions of particles rather than individual particles) (Figure 1.27).

Figure 1.27. An illustration of the Particle Tracking Velocimetry technique for obtaining
a velocity vector field. Particle Image Velocimetry works in a similar manner, but tracks
regions of particles rather than individual particles.

Note that the approximate velocity vectors can be found using,

ẋ(t) ≈ x(t+ δt)− x(t)

δt
. (1.111)

We can determine the equation of a streamline given a velocity field by simply using the definition of a
streamline. Since the streamline is tangent to the velocity vector, the slope of the streamline will be equal
to the slope of the velocity vector,

dy

dx︸︷︷︸
slope of

streamline

=
uy
ux︸︷︷︸

slope of
velocity vector

(1.112)

Similarly, in the x - z and y - z planes we have,

dz

dx
=
uz
ux

dz

dy
=
uz
uy
. (1.113)

We can combine these equations into a more compact form,

dx

ux
=
dy

uy
=
dz

uz
. (1.114)

Notes:

(1) There is no flow across a streamline since the velocity component normal to the streamline is zero.
(2) A stream tube is a tube made by all the streamlines passing through a closed curve (Figure 1.28).

There is no flow through a stream tube wall.
(3) A stream filament is a stream tube with infinitesimally small cross-sectional area.
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Figure 1.28. An illustration of a stream tube.

Figure 1.29. An illustration of a pathline.

1.8.2. Pathlines

A pathline is the line traced out by a particular particle as it moves from one point to another (Figure 1.29).
It is the actual path a particle takes. Experimentally, a pathline can be visualized by “tagging” a particular
fluid particle and taking a long-exposure photograph of the particle’s motion.

To determine the equation of a pathline at time, t, for a particle passing through the point (x0, y0, z0) at
some previous time t0, we solve the differential equation describing the particle’s position,

u =
dx

dt
, (1.115)

where u is the velocity field subject to the initial condition that the particle passes through the point
x0 = (x0, y0, z0) at time, t0,

x(t = t0) = x0. (1.116)

For a pathline t0 will be a particular value. The solution of Eq. (1.115) subject to the initial condition in
Eq. (1.116) will consist of a set of parametric equations in t (by varying t, we can trace out the location of
the particle at various times).

1.8.3. Streaklines

A streakline is a line that connects all fluid particles that have passed through the same point in space at a
previous (or later) time. Experimentally a streakline can be visualized by injecting dye into a fluid flow at a
particular point (Figure 1.30).

To determine the equation of a streakline at time, t, passing through the point (x0, y0, z0), we solve the
differential equation describing a particle’s position as a function of time,

u =
dx

dt
, (1.117)

where u is the velocity field subject to the initial condition that a particle pass through the point x0 =
(x0, y0, z0) at some previous (or later) time, t0,

x(t = t0) = x0. (1.118)
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Figure 1.30. An illustration of a streakline.

Note that t0 will be different for each particle, i.e., it varies, unlike a pathline where t0 is fixed. The solution
of Eq. (1.117) subject to the initial condition in Eq. (1.118) will consist of a set of parametric equations in
t0 (note that t is a known value since we want to know the streakline at a particular time, t).

Notes:

(1) The streamline, streakline, and pathline passing through a particular location can be different in
an unsteady flow, but will be identical in a steady flow.

(2) The quantity t0 is the time when a fluid particle passes through the point x0. Hence, for a pathline
t0 is fixed since there is only one fluid particle. However, for a streakline t0 varies since there are
many fluid particles passing through the point x0, each at a different t0.

(3) Why don’t we use a Lagrangian derivative (covered in Chapter 5) when solving Eq. (1.115) for a
particle’s pathline (since the pathline is a Lagrangian concept)? It turns out that the Lagrangian
derivative of a particle’s position is equal to its Eulerian derivative. Consider, for example, the
change in the x position of the particle as we follow it. Note that the position, x, is an Eulerian
quantity,

Dx

Dt
=
∂x

∂t
+ (u ·∇)x =

∂x

∂t︸︷︷︸
=0

+ux
∂x

∂x︸︷︷︸
=1

+uy
∂x

∂y︸︷︷︸
=0

+uz
∂x

∂z︸︷︷︸
=0

= ux. (1.119)

Be sure to:

(1) Understand the definitions for streamlines, streaklines, and pathlines.
(2) Understand what initial conditions to use when evaluating streaklines and pathlines.
(3) Draw the direction of flow on the streamlines, streaklines, and pathlines.
(4) It’s perfectly correct to represent the position of a fluid particle parametrically, i.e., x = x(t) and

y = y(t).
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One technique for visualizing fluid flow over a surface is to attach short, lightweight pieces of thread or 
“tufts” to the surface.  A photograph of the tufts on the surface of an automobile is shown in the figure 
below.  Do tufts trace out the streamlines, streaklines, pathlines, or some other type of flow line?  What if 
the flow is unsteady?  Explain your answers. 
 

 
 
 
SOLUTION: 
 
The tufts show the local direction of the fluid velocity and, hence, are indicators of the local streamline 
slope. 
 
If the flow is steady, then the streamlines, streaklines, and pathlines are all the same.  If the flow is 
unsteady, then the tufts will, in general, only indicate the local slope of the streamlines. 
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Tiny hydrogen bubbles are being used as tracers to visualize a flow.  All the bubbles are generated at the 
origin (x = 0, y = 0).  The velocity field is unsteady and obeys the equations: 

u = 1 m/s v = 1 m/s 0 ≤ t < 2 s 
u = 0 v = 1.5 m/s 2 ≤ t ≤ 4 s 

Plot the pathlines of bubbles that leave the origin at t = 0, 1, 2, 3, and 4 s.  Mark the locations of these five 
bubbles at t = 4 s.  Use a dashed line to indicate the position of the streakline passing through (0, 0) at t = 4 
s.  What does the streamline passing through (0, 0) look like at t = 4 s? 
 
 
SOLUTION: 
 
One could solve the differential equations describing the particle pathlines and streakline using the 
velocities given above, or, more easily, simply plot the positions of the fluid particles at different times.  
The plot below shows the particle positions, pathlines, and streakline. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The streamline passing through (0, 0) at t = 4 s (or any other point for that matter) will be a vertical line 
since the velocity at t = 4 s is purely vertical. 
 

x 

y 

1 2 3 

1 

2 

3 

4 

5 Position of the 
bubble released at 
t = 1 s at t = 4 s. 

Position of the 
bubble released at 
t = 0 s at t = 4 s. 

Position of the 
bubble released at 
t = 2 s at t = 4 s. 

Position of the 
bubble released at 
t = 3 s at t = 4 s. 

Position of the 
bubble released at 
t = 4 s at t = 4 s. 

Streakline at t = 4 s for 
the particles passing 
through (0, 0). 
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Video solution: https://www.youtube.com/watch?v=2PMolyW39vI
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The two-dimensional velocity field for an unsteady flow is given by, 

𝒖 = #
$̂ + '̂ 0 ≤ 𝑡 < 1	s
$̂ − '̂ 1	s ≤ 𝑡 < 2	s
$̂ 2	s ≤ 𝑡 < 3	s

 

 
a. Write an equation for the streamline passing through the point (x, y) = (1, 1) for 0 ≤ t ≤ 3 s. 
b. Sketch the pathline for a fluid particle released from the origin at t = 0 s for 0 ≤ t ≤ 3 s. 
c. Sketch the streakline through the point (x, y) = (1, 1) at t = 3 s. 
 
SOLUTION: 
The slope of a streamline at a point is tangent to the velocity vector at that same point, 

!"
!#
= $!

$"
= #

1 0 ≤ 𝑡 < 1	s
−1 1	s ≤ 𝑡 < 2	s
0 2	s ≤ 𝑡 < 3	s

, (1) 

 
∫ 𝑑𝑦"
"#

= ∫ 𝑑𝑥#
##

0 ≤ 𝑡 < 1	s

∫ 𝑑𝑦"
"#

= −∫ 𝑑𝑥#
##

1	s ≤ 𝑡 < 2	s

∫ 𝑑𝑦"
"#

= 0 2	s ≤ 𝑡 < 3	s

, (2) 

 
𝑦 − 𝑦% = 𝑥 − 𝑥% 0 ≤ 𝑡 < 1	s
𝑦 − 𝑦% = 𝑥% − 𝑥 1	s ≤ 𝑡 < 2	s
𝑦 − 𝑦% = 0 2	s ≤ 𝑡 < 3	s

, (3) 

 
Using (x0, y0) = (1, 1), 

𝑦 − 1 = 𝑥 − 1 0 ≤ 𝑡 < 1	s
𝑦 − 1 = 1 − 𝑥 1	s ≤ 𝑡 < 2	s
𝑦 − 1 = 0 2	s ≤ 𝑡 < 3	s

, (4) 

 
𝑦 = 𝑥 0 ≤ 𝑡 < 1	s

𝑦 = 2 − 𝑥 1	s ≤ 𝑡 < 2	s
𝑦 = 1 2	s ≤ 𝑡 < 3	s

, (5) 

 
 
Sketches are shown below for (a) the pathline of a fluid particle released from the origin (x0, y0) = (0, 0) at t = 0 s, 
and (b) the streakline through the point (x0, y0) = (1, 1) at t = 3 s. 
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Show that for a steady flow, streamlines, streaklines, and pathlines are identical. 
 
 
SOLUTION: 
 
Streamlines are defined as lines that are everywhere tangent to the instantaneous velocity vectors.  (The rest 
of the problem will be worked out in Cartesian coordinates for convenience.) 

 (1) 

Re-writing: 

 (2) 

where u is not a function of time since the flow is assumed steady but is, in general, a function of position, 
i.e. u = u(x). 

 
Streaklines are lines connecting all fluid particles that pass through the same point in space. 

  where  (3) 

where t0 is the time at which a fluid particle on the streamline passes through the point x0 on the streakline.  
Note that t0 will be different for each fluid particle on a given streakline. 

 
Pathlines trace the motion of individual fluid particles over time. 

  where  (4) 

where t0 is the time at which a fluid particle passes through the point x0 on the pathline.  Note that t0 is a 
fixed quantity for a given pathline. 

 
We can re-write the differential equations for the streakline and pathline as: 

 (5) 

Note that u is not a function of t (steady flow Þ u = u(x)) so that we needn’t worry about how the slope of 
the lines change with time.  Thus, we can write: 

 (6) 

Since Eqns. (6) and (2) are identical, we can conclude that streamlines, streaklines, and pathlines are 
identical for a steady flow. 
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A velocity field is given by: 

 

where V0 is a positive constant, i.e. V0 > 0.  Determine: 
a. where in the flow the speed is V0 

b. the equation and sketch of the streamlines 
c. the equations for the streaklines and pathlines 
 
 
SOLUTION: 
 
The speed is given by: 

 (1) 
where 

 (2) 

 (3) 

Substituting into Eqn. (1) gives: 

 

 (4) 
The flow speed is everywhere equal to V0. 
 
The slope of the streamline is tangent to the slope of the velocity vector: 

 (5) 

Substitute Eqns. (2) and (3) and solving the resulting differential equation. 

 

   (where (x0, y0) is a point located on the streamline) 

 

 (6) 
The streamlines are circles!  Note that when x > 0 and y > 0, Eqns. (2) and (3) indicate that ux < 0 and uy > 0 
(note that V0 > 0) so that the flow is moving in a counter-clockwise direction. 
 
 
 
 
 
 
 
Since the flow is steady, the streaklines and pathlines will be identical to the streamlines. 
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Consider a 2D flow with a velocity field given by: 
 

Determine the equations for the streamline, streakline, and pathline passing through the point (x,y)=(1,1) at 
time t=0. 
 
 
SOLUTION: 
 
The slope of a streamline is tangent to the velocity vector. 

 (1) 

where 
 (2) 

 (3) 
Substitute Eqns. (2) and (3) into Eqn. (1) and solve the resulting differential equation. 

 

  (where (x0, y0) is a point passing through the streamline) 

 

 (4) 

For the streamline passing through the point (x0, y0) = (1, 1) at time t = 0: 
 (5) 

 
A streakline is a line that connects all of the fluid particles that pass through the same point in space.  The 
equation for the streakline can be found parametrically using Eqns. (2) and (3). 

 (6) 

 (7) 

Solve the previous two differential equations. 

 Þ  (8) 

 Þ  (9) 

where t0 is the time at which a fluid particle passes through the point (x0, y0) on the streakline.  Hence, the 
streakline passing through the point (x0, y0) = (1, 1) at time t = 0 is given parametrically (in t0) as: 

 Þ  (10) 

 Þ  (11) 
Recall that t0 is the time when a fluid particle passes through the point (x0, y0).  
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A pathline is a line traced out by a particular fluid particle as it moves through space.  The equation for the 
pathline can be found parametrically using Eqns. (2) and (3). 

 (12) 

 (13) 

Solve the previous two differential equations. 

 Þ  (14) 

 Þ  (15) 

where t0 is the time at which a fluid particle passes through the point (x0, y0) on the pathline.  Hence, the 
pathline for a particle passing through the point (x0, y0) = (1, 1) at time t0 = 0 is given parametrically (in t) 
as: 

 Þ  (16) 

 Þ  (17) 
 

Note that the streamline, streakline, and pathline are all different.  A plot of these lines through (1, 1) at t = 
0 is shown below. 
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A tornado can be represented in polar coordinates by the velocity field, 

 

where  and  are unit vectors pointing in the radial (r) and tangential (q) directions, respectively, and a 
and b are constants.  Show that the streamlines for this flow form logarithmic spirals, i.e. 

 

where c is a constant. 
 
 
SOLUTION: 
 
The slope of a streamline is tangent to the velocity vector.  In polar coordinates, the streamline slope is 
given by: 

 (1) 

so that the relation describing the streamline slope is: 

 (2) 

where 

 (3) 

 (4) 

Substitute Eqns. (3) and (4) into Eqn. (2) and solve the resulting differential equation. 

 

 

 

 

 (5) 
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Consider the 2D flow field defined by the following velocity: 

 

For this flow field, find the equation of: 
a. the streamline through the point (1,1) at t = 0, 
b. the pathline for a particle released at the point (1,1) at t = 0, and 
c. the streakline at t = 0 which passes through the point (1,1). 
 
 
SOLUTION: 
 
The slope of a streamline is tangent to the velocity vector. 

 (1) 

where 

 (2) 

 (3) 
Substitute Eqns. (2) and (3) into Eqn. (1) and solve the resulting differential equation. 

 

  (where (x0, y0) is a point passing through the streamline) 

 (4) 
For the streamline passing through the point (x0, y0) = (1, 1) at time t = 0: 

 (5) 
 

A streakline is a line that connects all of the fluid particles that pass through the same point in space.  The 
equation for the streakline can be found parametrically using Eqns. (2) and (3). 

 (6) 

 (7) 

Solve the previous two differential equations. 

 Þ  (8) 

 Þ  (9) 

where t0 is the time at which a fluid particle passes through the point (x0, y0) on the streakline.  Hence, the 
streakline passing through the point (x0, y0) = (1, 1) at time t = 0 is given parametrically (in t0) as: 

 Þ  (10) 

 Þ  (11) 
Recall that t0 is the time when a fluid particle passes through the point (x0, y0).  
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A pathline is a line traced out by a particular fluid particle as it moves through space.  The equation for the 
pathline can be found parametrically using Eqns. (2) and (3). 

 (12) 

 (13) 

Solve the previous two differential equations. 

 Þ  (14) 

 Þ  (15) 

where t0 is the time at which a fluid particle passes through the point (x0, y0) on the pathline.  Hence, the 
pathline for a particle passing through the point (x0, y0) = (1, 1) at time t0 = 0 is given parametrically (in t) 
as: 

 Þ  (16) 

 Þ  (17) 
 

Note that the streamline, streakline, and pathline are all different.  A plot of these lines through (1, 1) at t = 
0 is shown below. 
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1.9. Some Basic Definitions and Concepts

Before we begin to study the behavior of fluids, we need to first define a few commonly used terms.

• A fluid is a substance that deforms continuously when subject to non-isotropic stresses.

Notes:
(1) An isotropic stress state is one in which the stresses are the same in all directions. A non-

isotropic stress state means that the stresses are unbalanced.
(2) Liquids and gases are considered fluids. Their properties are different (e.g., the density of air

at standard conditions is 1.23 kg/m3 while the density of water at standard conditions is 1000
kg/m3), but their bulk motion is similar.

(3) Solids will not deform continuously when subject to unbalanced forces. They will deform up
until a point and then resist further deformation (e.g., behavior similar to that of a spring).

(4) Some substances are difficult to classify, e.g., slurries and granular materials. The study of
material behavior (deformation and flow) is known as rheology. For additional information,
refer to Steffe, J.F., Rheological Methods in Food Process Engineering, Freeman Press and Bird,
R.B., Armstrong, R.C., and Hassager, O., Dynamics of Polymeric Liquids, Wiley.

• A system is a particular quantity of matter chosen for study. The surroundings include everything
that is not the system.

• A control volume (CV) is a particular volume or region in space. A control surface (CS) is the
surface enclosing the control volume. The orientation of the CS at a particular location is given by
the direction of its outward-pointing unit normal vector, n̂, at that location. The outward-pointing
unit normal vector has a magnitude of one, is perpendicular to the control surface, and always
points out of the CV (Figure 1.31).

Figure 1.31. An illustration showing the unit outward-pointing normal vectors on a control
surface at different locations.

• Properties are macroscopic characteristics of a system. An extensive property is one that depends
on the amount of mass in the system. An intensive property is one that is independent of the mass
in the system. A specific property is an extensive property per unit mass (a specific property is
also an intensive property). Some examples: mass, m, is an extensive property, pressure, p, is an
intensive property, and specific volume, v := V/m, is a specific property. An easy way to determine
whether a property is extensive or intensive is to divide the system into two parts and see how the
property is affected. If the property value changes, then it’s an extensive property. If the property
value remains the same, then it’s an intensive property.
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• The state of a system is the system’s condition or configuration as described by its properties in
sufficient detail so that it is distinguishable from other states. Often a state can be described by a
subset of the system’s properties since the properties themselves may be related.

• A field representation of a quantity gives the value of that quantity at all locations and times, i.e.,
the field representation of the density, ρ, is,

ρ = ρ(x, y, z, t) (1.120)

A scalar is a quantity that has only a magnitude, e.g., temperature, T . A vector is a quantity that
has both magnitude and direction, e.g., velocity, u.

• Steady-state conditions are conditions for which properties at each location do not change with
time, i.e.,

∂

∂t
(. . . ) = 0. (1.121)

Unsteady conditions are conditions for which properties do change with time. A steady flow is a
flow with properties that do not change with time.

• The dimension of a flow is equal to the number of spatial coordinates required to describe the flow.
For example:

– 0D flow: u = u(t) or u = constant
– 1D flow: u = u(t;x) or u = u(t;x)
– 2D flow: u = u(t; r, θ) or u = u(t; r, θ)
– 3D flow: u = u(t;x, y, z) or u = u(x, y, z)

A flow is uniform if it does not vary in a spatial direction. A flow is non-uniform if it does vary in
that spatial direction. For example, the velocity profile in the figure below at left is non-uniform in
the y-direction. The figure at the right is uniform in the y-direction.

Figure 1.32. An illustration showing a non-uniform velocity field (left) and a uniform
velocity field (right).

Example:

The velocity field for a flow is u = xyî − 1
2y

2ĵ + xtk̂. How many dimensions is this flow? Is this
flow steady or unsteady?
Solution:
The flow is 2D since two spatial dimensions (x and y) are required to describe the velocity field.
The flow is unsteady since it is a function of time.

• A fully-developed flow is a flow in which the velocity no longer varies in a particular direction. For
example, a fully-developed, laminar flow of a Newtonian fluid through a circular pipe (Figure 1.33)
has the velocity profile,

uz(r) =
R2

4µ

(
−dp
dz

)[
1−

( r
R

)2
]
. (1.122)
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This velocity profile is fully-developed in the z direction since the velocity profile doesn’t change as
we move in the z direction.

Figure 1.33. The velocity profile for laminar, fully-developed flow in a circular pipe. The
flow is fully-developed in the z direction since the velocity profile doesn’t vary in the z
direction.

• A laminar flow is one in which the fluid flows in layers (or lamina). There is little macroscopic mixing
between fluid layers. A turbulent flow is one in which the fluid velocity varies in time and space
in a chaotic manner. There is significant macroscopic mixing in a turbulent flow. A photograph
of laminar and turbulent flow is shown in Figure 1.34. A transitional flow has characteristics of
both laminar and turbulent flow. The flow may be laminar for a period of time, but then randomly
transition to turbulence for some time, then transition back to laminar flow.

Figure 1.34. A photograph of the plume from a candle. The flow leaving the candle is
initially laminar, but transitions to turbulence some distance above the candle. Image from
https://en.wikipedia.org/wiki/File:Laminar-turbulent_transition.jpg.

Be sure to:

(1) Understand the previous definitions since they are used frequently in the discussion of fluid me-
chanics.
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1.10. Review Questions

(1) What is the conversion between lbm and slug? What is the conversion between lbf and lbm?
Estimate, without a calculator, what 20 °C is in °F.

(2) What are the dimensions (in M , L, T ) of power?
(3) Do you understand the physical concept behind the Taylor series approximation given below?

y(x+ dx) = y(x) +
dy

dx

∣∣∣∣
x

(dx) (1.123)

Can you draw a sketch corresponding to your explanation?
(4) What is meant by “least count”? Give an example of a situation where the least count for a

measurement may be different for two experimenters using the same equipment.
(5) Set up and work out an example concerning propagation of experimental uncertainty.
(6) What is the difference between relative and absolute uncertainty?
(7) Why should uncertainty be included in experimental measurements?
(8) Under what conditions can a fluid be considered a continuum?
(9) Give an example of where the continuum approximation is not appropriate.

(10) What is the no-slip condition?
(11) Discuss the definition and meaning of the Knudsen number.
(12) What is meant (in words) by a “Newtonian fluid”? Write the shear stress-shear strain rate rela-

tionship for a Newtonian fluid. Is this the shear stress that acts on the fluid or the stress the fluid
exerts on its neighbors?

(13) Give an example of a shear thickening fluid.
(14) How does viscosity vary with temperature for liquids? with pressure?
(15) What is the difference between “dynamic” and “kinematic” viscosities?
(16) What is meant by an “inviscid” fluid?
(17) What is meant by an “incompressible” fluid? Under what conditions can a flow be considered

incompressible?
(18) What is meant by an “ideal” fluid?
(19) What are the pressure, temperature, and density at standard conditions?
(20) What is the density of air at standard conditions (in kg/m3)? What is the approximate density of

water under ordinary conditions (in kg/m3)? What is the specific gravity of mercury?
(21) What is the difference between absolute and gage pressures?
(22) An engineer wants to minimize the resistance on a block sliding over a thin film of liquid. Would it be

better to increase the thickness of the film, decrease the thickness, or does it matter? Explain your
reasoning in words and provide analytical support for your argument (i.e., supporting equations).

(23) Estimate the absolute and kinematic viscosities of water under ordinary conditions.
(24) What is meant by a Couette flow? Under what geometric conditions would it be reasonable to

apply the Couette flow assumption to flow between two rotating concentric cylinders?
(25) What is cavitation? Can cavitation be a problem in a pipeline containing steam? Give some

examples of where cavitation occurs. Will a submarine propeller be more likely to cavitate near the
ocean surface or deep in the ocean? Why?

(26) How do you expect the speed of sound in water containing small air bubbles to compare with the
speed of sound in water and the speed of sound in air? (Hint: Consider the mixture’s bulk modulus
and density to the pure substance values.)

(27) What is the approximate speed of sound in air at standard conditions?
(28) Which bubble has greater internal pressure: one with a smaller radius or one with a larger radius?
(29) What are the dimensions of surface tension?
(30) Draw a picture defining the contact angle measurement.
(31) Describe, in words and equations, what is meant by a streamline, streakline, and pathline.
(32) Under what conditions will a streamline, streakline, and pathline be identical, in general?
(33) Experimentally, how would one produce a streamline, streakline, and pathline?
(34) Describe analytically the difference between a streakline and pathline.
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(35) What is the definition of a fluid? What is the fundamental difference between fluids and solids?
Give an example of a substance that has similarities with both fluids and solids.

(36) What is meant by a “system”? What is meant by a “control volume”?
(37) What is meant by “uniform”? What is meant by “steady”? Give examples of velocity fields that

are uniform/non-uniform and steady/unsteady.
(38) What is meant by an “extensive” property? Give an example of an extensive property. What is

meant by an “intensive” property? Give an example of an intensive property.
(39) How is the “dimension” of a flow determined? Give an example of a 2D, unsteady velocity field. Is

it possible to have a 2D velocity field but a 3D temperature field?
(40) What is meant by a “uniform” flow? Give an example of a velocity profile that is uniform in the

x-direction but is unsteady.
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CHAPTER 2

Fluid Statics

2.1. Hydrostatic Pressure Variation

For a flow in which there are no velocity gradients, e.g., du/dy = 0, such as a static fluid, the shear stresses
are zero. Draw a free body diagram of a (differentially) small piece of fluid, with width, height, and depth of
dx, dy, and dz, respectively, under static conditions. Note that only pressure forces and weight will act on
the fluid element. If we assume that the pressure, density, and gravitational acceleration at the center of the
element are p, ρ, and g, respectively, then the free body diagram looks as shown in Figure 2.1 (making use
of the Taylor Series approximation discussed in Chapter 1).

Figure 2.1. A free body diagram of a differentially-small fluid element with no shear stresses.

Summing forces in each of the three directions and noting that the fluid element is static,∑
Fx = 0 =

[
p+

∂p

∂x

(
−1

2
dx

)]
(dydz)−

[
p+

∂p

∂x

(
1

2
dx

)]
(dydz) + ρdxdydz︸ ︷︷ ︸

=dm

gx, (2.1)

0 = −∂p
∂x
dxdydz + ρdxdydzgx, (2.2)

0 = −∂p
∂x

+ ρgx. (2.3)

A similar approach can be taken in the y and z directions,

0 = −∂p
∂y

+ ρgy, (2.4)

0 = −∂p
∂z

+ ρgz. (2.5)
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The last three equations may be written more compactly in vector form as,

∇p = ρg . Force balance for a static fluid particle. (2.6)

What this equation tells us is that for a static piece of fluid, a difference in pressure is required to balance
the weight of the fluid particle.

Now consider the case where the gravitational acceleration points in the positive y direction, g = gĵ, so that
the y-component of Eq. (2.6) is,

dp

dy
= ρg. (2.7)

Note that the x and z components indicate that there is no change in pressure in those directions since there
is no component of weight to balance, i.e., the pressure only changes in the y direction (hence the use of an
ordinary derivative in Eq. (2.7) as opposed to a partial derivative since p = p(y)).

2.1.1. Hydrostatic Pressure Variation in an Incompressible Fluid

To determine how the pressure varies in the y direction, we must solve the differential equation in Eq. (2.7),

dp = ρgdy =⇒
ˆ p=p

p=p0

dp =

ˆ y=y

y=0

ρgdy =⇒ p− p0 =

ˆ y

0

ρgdy. (2.8)

In order to solve the integral on the right-hand side of the previous equation, we must know how the
density and gravitational acceleration vary with y. It’s reasonable in most applications to assume that the
gravitational acceleration is constant, so it can be pulled outside the integral. If we further assume that we’re
dealing with an incompressible fluid, then the density can also be pulled outside the integral and we’re left
with,

p− p0 = ρg

ˆ y

0

dy = ρgy, (2.9)

p = p0 + ρgy or, alternately, ∆p = ρg∆y. (2.10)

The previous equation is the hydrostatic pressure variation in an incompressible fluid in which gravity points
in the positive y direction.

Notes:

(1) The pressure in Eq. (2.10) only changes when there are variations in elevation in the direction of
gravity (the y direction). Moving perpendicular to the direction of gravity does not change the
pressure.

(2) The pressure increases linearly in the direction of the gravitational acceleration. A plot of this
variation is shown in Figure 2.2.

Figure 2.2. The hydrostatic pressure plotted against depth for an incompressible fluid in
a constant gravity field.
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(3) As mentioned previously, the reason the pressure increases with depth is because the pressure must
balance the weight of all the fluid sitting above it.

(4) Since changes in pressure correspond to changes in elevation (refer to Eq. (2.10)), pressure differences
are often expressed in terms of lengths, or depths of fluid. For example, the standard atmospheric
pressure of 101 kPa (abs) corresponds to 760 mmHg,

101 kPa︸ ︷︷ ︸
∆p

= (13 600 kg/m3)︸ ︷︷ ︸
=ρHg

(9.81 m/s2)︸ ︷︷ ︸
=g

(760× 10−3 m)︸ ︷︷ ︸
=∆y

. (2.11)

(5) When measuring pressure differences in Eq. (2.10), either both pressures must be absolute pressures
or both must be gage. Don’t mix gage and absolute pressures.

2.1.2. Hydrostatic Pressure Variation in a Compressible Fluid

Now consider the pressure variation in a compressible fluid. This case would be of particular interest for
airplanes, rockets, and mountain climbers where large changes of elevation in the atmosphere are common.
Recall from Eq. (2.7),

dp

dy
= ρg (y and g point in the same direction). (2.12)

For convenience, since we typically deal with elevation or altitude instead of depth when considering the
hydrostatic pressure variation in compressible fluids like air, let’s change our coordinate system so that y
points in the direction opposite to gravity. Thus,

dp

dy
= −ρg (y and g point in opposite directions). (2.13)

If we’re dealing with an ideal gas (like air), then the pressure and density are related via the Ideal Gas Law,

p = ρRT =⇒ ρ =
p

RT
, (2.14)

where R is the gas constant. Substituting Eq. (2.14) into Eq. (2.13) and re-arranging gives,

dp

p
= − g

RT
dy. (2.15)

Numerous measurements have been made of the average atmospheric temperature as a function of altitude,
i.e., T = T (y), and can be substituted into Eq. (2.15). For example, the temperature variation with altitude
from the U.S. Standard Atmosphere (standardized in 1976) is shown in Figure 2.3. In each region of the
atmosphere, the temperature varies linearly and can be expressed as,

T = Ta − βy, (2.16)

where Ta and β (known as the temperature lapse rate) are constants and y is the altitude measured from sea
level. Table 2.1 lists these constants for the different parts of the atmosphere. For example, from sea level to
an altitude of 11000 m, the temperature decreases by 6.5 K/km.

Table 2.1. Pressure (pa), temperature (Ta), and temperature lapse rate (β), starting at
different altitudes from the (1976) U.S. Standard Atmosphere.

y (m) pa (Pa (abs)) Ta (K) β (K/m)
0 101325 288.15 0.0065

11000 22632.1 216.65 0.0
20000 5474.89 216.65 -0.001
32000 868.019 228.65 -0.0028
47000 110.906 270.65 0.0
51000 66.9389 270.65 0.0028
71000 3.95642 214.65 0.002
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Figure 2.3. The (1976) U.S. Standard Atmosphere.

If we substitute Eq. (2.16) into Eq. (2.15) and solve the differential equation, we get,

dp

p
= − g

R(Ta − βy)
dy =⇒

ˆ p

p0

dp

p
= − g

R

ˆ y

0

dy

Ta − βy
=⇒ ln

(
p

pa

)
=

g

βR
ln

(
Ta − βy
Ta

)
, (2.17)

p

pa
=

(
1− βy

Ta

) g
βR

. (2.18)

Notes:

(1) The temperature lapse rate in the troposphere is β = 6.5 K km−1 (≈ 3.57 °F/1000 ft). Thus, a handy
rule-of-thumb when hiking in the mountains (or deep canyons) is that the temperature will decrease
6.5 °C for every 1 km of elevation gain or approximately 3.5 °F for every 1000 ft of elevation gain.

(2) Large changes in elevation are required to make appreciable changes in pressure in a gas, such as
air. For example, estimate the altitude change required to drop the pressure by 1% using the U.S.
Standard Atmosphere in the troposphere,

p

pa
= 0.99 =

(
1− βy

Ta

) g
βR

=⇒ (0.99)
βR
g = 1− βy

g
=⇒ y =

Ta
β

[
1− (0.99)

βR
g

]
, (2.19)

C. Wassgren 106 2024-02-01



Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

which gives y = 85 m using the troposphere values for the constants. Thus, it’s reasonable to
assume that unless large elevation differences occur, the pressure does not vary with elevation in
the atmosphere, or any gas for that matter. However, even small elevation differences in liquids do
result in appreciable pressure changes since the density of liquids is much larger than the density of
gases.
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What is the pressure at the bottom of the Marianas Trench (11,000 m = 36,201 ft = 6.9 mi)? 
 

 
 
 
SOLUTION: 
 
The pressure at the bottom of the Marianas Trench, assuming salt water to be incompressible, is: 

 
where 

ptop = 101 kPa (abs) 
rsaltH20  = 1025 kg/m3 
g = 9.81 m/s2 
h = 11000 m 

Hence, the pressure at the bottom is: 
pbottom = 110 MPa = 1100 atm! 

 
  

bottom top saltH20p p ghr= +

g 
h 
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Video solution: https://www.youtube.com/watch?v=Nh_L9v-Q3BU
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Determine the pressure at points 1, 2, 3, and 4. 

 
 
 
SOLUTION: 
Recall that the shape of the container doesn’t matter when calculating hydrostatic pressure.  It’s only the depth of 
the fluid that matters.  

𝑝! = 𝑝"#$ + 𝜌𝑔𝐻!, (1) 
𝑝% = 𝑝"#$ + 𝜌𝑔𝐻%, (2) 
𝑝& = 𝑝"#$ − 𝜌𝑔𝐻&, (3) 
𝑝' = 𝑝"#$ + 𝜌𝑔𝐻%     (Point 4 is at the same depth as point 2.) (4) 
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Video solution: https://www.youtube.com/watch?v=k0wU0Uh4cog
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Determine the gage pressure at points B, C, D, and E in the system shown below.   
 
 
 
 

 
 

 
 
 

 
 
 
 
 

  
 
SOLUTION:  
 
First determine the pressure at point B, 

.  (1) 
Note that the pressure at A is pA = patm. 

 
Now determine the gage pressure at C using the known pressure at B, 

 (2) 
 

The pressure at point D will be the same as the pressure at point C since both contact the same air and 
we’re assuming the variations in air pressure over the small elevations in this problem are negligible, 

pD = pC. (3) 
 

The pressure at point E is, 
. (4) 

 
Using the given data, 

pA  = patm = 0 (gage) 
r = 1000 kg/m3 
g = 9.81 m/s2 
hA = 6 m 
hB = 2 m 
hC = 7 m 
hD = 5 m 
hE  = 10 m 
Þ pB = 39.2 kPa (gage) 
 pC = -9.8 kPa (gage) 
 pD = -9.8 kPa (gage) 
 pE = -58.9 kPa (gage) 
   

pB = pA + ρg hA − hB( )

pC = pB − ρg hC − hB( )

pE = pD − ρg hE − hD( )

B 

C 

D 

E 

hB 

hA 

hE 

hD 

hC 

water 

air air 

water 

air 

A 

hA = 6 m 
hB = 2 m 
hC = 7 m 
hD = 5 m 
hE = 10 m 
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Video solution: https://www.youtube.com/watch?v=7ukoRs4E2So
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Assuming that air is incompressible, determine the height of a column of air required to give a pressure 
difference of 0.1 psi.  Assume that the density of air is 2.38*10-3 slug/ft3. 
 
 
SOLUTION: 
 
Assuming air as being incompressible: 

 

 

 
For: 

pbottom – ptop = 0.1 psi = 14.4 lbf/ft2 
rair = 2.38*10-3 slug/ft3 
g =  32.2 ft/s2 

gives: 
h = 188 ft  

Hence, very large elevation differences must occur to give appreciable differences in pressure when dealing 
with atmospheric air (or gases in general). 
 
Another way to determine the height, h, is to perform a vertical force balance on the column. 

 

  (Same answer as above!) 

bottom top airp p ghr= +

bottom top

air

p p
h

gr
-

=

bottom top air0yF p dA p dA ghdAr= = - + +å
bottom top

air

p p
h

gr
-

=

h 

g 

cross-sectional area, dA 

pbottom 

ptop 

y 
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Video solution: https://www.youtube.com/watch?v=8_zLL2AtKok

C. Wassgren 111 2024-02-01

https://www.youtube.com/watch?v=8_zLL2AtKok


  manometry_06 
 

Page 1 of 2 

What is the air pressure at the top of the Burj Khalifa, which has a height of 828 m (2717 ft)?  If there was a pipe 
containing water that extended from the top of the Burj Khalifa to the ground, what would be the gage pressure in 
the water at the bottom of the pipe? 
 

 
 
 
 
SOLUTION: 
 
Assuming constant air density, 

 (1) 
where 

r = 1.225 kg/m3 
g = 9.81 m/s2 
H = 828 m 
py = 0 = 101.33 kPa (abs)   (= patm) 
 

Thus, py = H = 91.4 kPa (abs) or py = H/py = 0 = 0.902. 
 
If we treat air as a compressible, ideal gas and assume the air temperature varies according to the U.S. Standard 
Atmosphere, 

 (2) 

where the previous values for g, py = 0, and H are assumed, and, 
b = 0.00650 K/m 
Ty = 0 = 288 K (= 15 degC) 
R = 286.9 J/(kg.K) 
Þ p/py = 0 = 0.906, which is nearly identical to the previous calculation. 
 

  

0 airy H yp p gHr= == -

py = py=0 1−
βy
Ty=0

⎛

⎝⎜
⎞

⎠⎟

g
Rβ
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Video solution: https://www.youtube.com/watch?v=roYusHpCWPA
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The gage pressure in a water column with a depth of 828 m is given by, 

, (3) 
where  

r = 1000 kg/m3 
g = 9.81 m/s2 
h = 828 m 
Þ  pgage = 8.12*106 Pa = 80.2 atm! 
 
 
 

 
Image from Wikipedia (2012 Jan 10; http://en.wikipedia.org/wiki/File:BurjKhalifaHeight.svg) 
 
 
 

pgage = ρgh

h g 
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Video solution: https://www.youtube.com/watch?v=roYusHpCWPA
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It is often conjectured that the Earth was, at one time, 
comprised of molten material.  If the acceleration due to 
gravity within this fluid sphere (with a radius of 6440 km) 
varied linearly with distance, r, from the Earth’s center, the 
acceleration due to gravity at r = 6440 km was 9.81 m/s2, and 
the density of the fluid was uniformly 5600 kg/m3, determine 
the gage pressure at the center of this fluid Earth. 
 
 
 
SOLUTION:  
 
Since the acceleration due to gravity, g, varies linearly with r: 

 (1) 
where c is a constant.  Since g(r = R = 6440 km) = gR = 9.81 m/s2: 

 (2) 

 
From the hydrostatic pressure distribution (neglecting the curvature of the Earth): 

 (3) 

Substitute Eqn. (1) and solve the resulting differential equation. 

 (4) 

 (5) 
 

Using the given data: 
r = 5600 kg/m3 
c = 1.523*10-6 s-2 
R = 6.440*106 m 
p0  =  1.769*1011 Pa = 1.769*106 atm 

g cr=

2
6 2

3
9.81 m s 1.523*10  s

6440*10  m
Rgc
R

- -= = =

dp g
dr

r= -

0

0

0

p r R

p p r

dp cr dp c rdr
dr

r r
= =

= =

= - Þ = -ò ò
21

0 2p cRr\ =

r 
R 

g 
gR 
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Video solution: https://www.youtube.com/watch?v=FPl5KSDeero
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2.2. Pressure Measurements using Barometers and Manometers

As noted in the previous section, differences in elevation can be used to measure differences in pressure. This
is the principle by which barometers and manometers operate.

2.2.1. Barometers

Let’s first consider a barometer, which is most often used to measure atmospheric pressure. A sketch of a
barometer is shown in Figure 2.4. A barometer consists of a tube that is open on one end. The tube is
filled with a working liquid, often mercury or water, which is then immersed in a large bath of the liquid and
turned upside down and lifted out of the bath to the configuration shown in the figure. Using this method,
the weight of the liquid in the tube is balanced by the pressure difference between the external pressure
(normally atmospheric pressure, patm) and the pressure at the top of the column of liquid column, which is
the vapor pressure of the liquid (pv).

Figure 2.4. A sketch of a simple barometer.

Using Eq. (2.10),

pv = patm − ρgH =⇒ patm = pv + ρgH. (2.20)

Thus, atmospheric pressure can be measured by measuring the height of the column of liquid in the barometer
and knowing the liquid density and vapor pressure.

Notes:

(1) Vapor pressure varies with temperature. Thus, it’s important to also measure the temperature when
using a barometer for obtaining accurate results. Since the vapor pressure is often much smaller
than atmospheric pressure, it is sometimes neglected in Eq. (2.20), but doing so does introduce
some inaccuracy into the atmospheric pressure calculation.

(2) At a standard atmospheric pressure and temperature of 101.3 kPa (abs) and 15 °C, respectively,
the height of a column of mercury (ρ = 13 600 kg/m3, pv = 1.11× 10−4 kPa (abs)) is 760 mm,
which is a reasonable height to have in a laboratory setting. Using water, (ρ = 1000 kg/m3,
pv = 1.71 kPa (abs)), the height is 10.2 m, which is more challenging to accommodate. Hence, most
barometers still use mercury as a working liquid even though mercury is toxic.

2.2.2. Manometers

A manometer is similar to a barometer in that the height difference in a working liquid is used to measure
pressure differences. However, a manometer does not have one end of the working liquid at vapor pressure.
An example of a U-tube manometer is shown in Figure 2.5.
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Figure 2.5. A sketch of a U-tube manometer.

In this figure, there are two incompressible fluids, fluid 1 and fluid 2 with corresponding densities ρ1 and ρ2.
Let’s determine the pressure at A starting with the pressure at C using Eq. (2.10), which depends only on
elevation differences in a given fluid,

pC = patm, (2.21)

pB = pC + ρ1gHBC (moving through fluid 1), (2.22)

pA = pB − ρ2gHAB (moving through fluid 2), (2.23)

=⇒ pA = patm + ρ1gHBC − ρ2gHAB or pA − patm = ρ1gHBC − ρ2gHAB . (2.24)

Thus, by measuring differences in height, it’s possible to measure differences in pressure.

Another common type of manometer is known as an inclined tube manometer and is shown in Figure 2.6.
This type of manometer is used most often when small differences in pressure are to be measured since small
elevation differences correspond to large differences in length in the inclined arm, especially for small angles
θ. As before, determine the pressure at A starting with the pressure at C,

Figure 2.6. A sketch of an inclined-tube manometer.

pC = patm, (2.25)

pB = pC + ρ1gHBC (moving through fluid 1), (2.26)

pA = pB − ρ2gHAB (moving through fluid 2), (2.27)

=⇒ pA = patm + ρ1gHBC − ρ2gHAB or pA − patm = ρ1gL sin θ − ρ2gHAB , (2.28)

where,

HBC = L sin θ. (2.29)

Thus, for small θ, small variations in HBC will be magnified into large variations in L.

Notes:

(1) If a gas is used as one of the fluids in the manometer, then the pressure in that gas can be reasonably
assumed to remain constant with elevation.
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(2) One of the reasons we use gage pressures instead of absolute pressures is because if one of the ends
of the manometer is open to the atmosphere, then the pressure at the other end can be treated as
a gage pressure, such as in Eqs. (2.24) and (2.28).

(3) A good approach to working through manometer pressures is to start at one end of the manometer
and calculate the pressure at each fluid interface until reaching the other end of the manometer, as
done in the previous two examples. Moving down in the fluid adds pressure (to support the weight
of the fluid above it) while moving up in the manometer subtracts pressure (less weight to support).
Note that moving horizontally in the same fluid does not change the pressure.

(4) There are other styles of manometers, but they all operate on the same principle: pressure differences
are measured using differences in fluid elevations.

(5) Nowadays, the use of electronic pressure transducers is common for measuring pressures. Pressure
transducers have much faster response times than manometers and can more accurately measure
small pressure differences. Nevertheless, manometers are still useful since (a) they are simple and
cheap and (b) need not be calibrated.
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When a weight W is placed on a piston with an area A, fluid in an inclined manometer moves from point 1 to point 
2. What is W in terms of the fluid density ρ, gravitational acceleration g, the displacement L, the piston area A, and 
the tube arm angle q? 

 
 
SOLUTION: 
Analyzing the manometer after the weight is applied, 

𝑝!"# = 𝑝$%&"'( − 𝜌𝑔𝐿 sin 𝜃, (1) 
where the (absolute) pressure in the fluid just below the piston is, 

𝑝$%&"'( = 𝑝!"# +
)
*

. (2) 
Combine both equations and solve for W, 

𝑝!"# = 𝑝!"# +
)
*
− 𝜌𝑔𝐿 sin 𝜃, (3) 

𝑊 = 𝜌𝑔𝐿𝐴 sin 𝜃. (4) 
 

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

Video solution: https://www.youtube.com/watch?v=7MST9U4vnJU
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Determine the gage pressure at point A. 

 
 
SOLUTION: 

𝑝! = 𝑝"#$ + 𝜌%𝑔𝐻% + 𝜌&𝑔𝐻&, (1) 
𝑝!,("() = 𝑝! − 𝑝"#$ = 𝜌%𝑔𝐻% + 𝜌&𝑔𝐻& . (2) 
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Video solution: https://www.youtube.com/watch?v=8tg2QC5kY2k
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Water flows downward through a pipe inclined at a q = 45° to the horizon as shown in the figure.  The pressure 
difference pA – pB is due partly to gravity and partly to viscous dissipation.  Determine the pressure difference if L = 
5 m and h = 6 cm.  Mercury is the working fluid in the manometer. 
 

 
 
 

 
 
 
 
 

 
 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
The pressure at B may be written in terms of the pressure at A using, 

 (1) 

 (2) 

 (3) 

 (4) 

 
Using the given data, 

rH2O = 1000 kg/m3 
g = 9.81 m/s2 
SGHg = 13.6 
h = 0.06 m 
L = 5 m 
q = 45° 
Þ pA – pB = -27.3 kPa 

pB = pA + ρH2O
g L sinθ + l + h( )− ρHggh − ρH2O

gl

pB − pA = ρH2O
g L sinθ + h( )− ρH2O

SGHggh

pA − pB = ρH2O
g SGHgh − L sinθ + h( )⎡⎣ ⎤⎦

pA − pB = ρH2O
g SGHg −1( )h − L sinθ⎡⎣ ⎤⎦

L 

g q 

h 

A 

B 

L 
g 

l 

A 

B 
Lsinq 

h 
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Video solution: https://www.youtube.com/watch?v=bIaKzAhQMpA
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Determine the pressure difference between points X and Y in the system shown below. 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 

 
First indicate some reference points in the manometer system as shown in the figure below. 

 
 
 
 
 
 
 
 
 
 

Now determine the pressure at the various reference points. 
 (1) 
 (2) 

 (3) 

 (4) 
 (5) 

 
Now combine Eqns. (1) - (5). 

 (6) 

1 A 1Xp p ghr= +

2 1 B 2p p ghr= -

( )3 2 C 3 2p p g h hr= - -

( )4 3 D 3 4p p g h hr= + -

4 E 5Yp p ghr= -

( ) ( )A 1 B 2 C 3 2 D 3 4 E 5Y Xp p gh gh g h h g h h ghr r r r r\ = + - - - + - -

fluid E fluid A 

fluid B 

fluid C 

fluid D 

h1 
h2 

h3 h5 

h4 

Y X 

fluid E fluid A 

fluid B 

fluid C 

fluid D 

h1 
h2 

h3 h5 

h4 

Y X 

1 
2 

3 

4 
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Compartments A and B of the tank shown in the figure below are closed and filled with air and a liquid 
with a specific gravity equal to 0.6.   If atmospheric pressure is 101 kPa (abs) and the pressure gage reads 
3.5 kPa (gage), determine the manometer reading, h. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
First determine the pressure at 2 in terms of the pressure at 1. 

 (1) 
Now determine the pressure at 3 in terms of the pressure at 2. 

 (2) 
Now determine the pressure at 4 in terms of the pressure at 3. 

 (3) 
 

Combine Eqns. (1)-(3). 
 

 

 

 

 (4)

  

2 1 Hg 1p p gLr= -

( )3 2 liquid 2p p g h Lr= - +

4 3 H20p p ghr= +

( )4 1 Hg 1 liquid 2 H20p p gL g h L ghr r r= - - + +

( )4 1 H20 Hg 1 H20 liquid 2 H20p p SG gL SG g h L ghr r r= - - + +

4 1 H20 Hg 1 liquid liquid 2p p g SG L SG h SG L hr é ù- = - + + -ë û

( )1 4
Hg 1 liquid 2 liquid

H20
1p p SG L SG L h SG

gr
-

- - = -

( )
4 1

Hg 1 liquid 2
H20liquid

1
1

p ph SG L SG L
gSG r

é ù-
= + +ê ú

- ë û

liquid with a  
specific gravity of 0.6 

air 

h 

3.5 kPa (gage) 

3.0 cm 

mercury with a  
specific gravity of 13.6 

water 

open to the atmosphere A B 

liquid with a  
specific gravity of 0.6 

air 

h 

3.5 kPa (gage) 

L1 

mercury with a  
specific gravity of 13.6 

water 

open to the atmosphere A B 

1 

2 

3 

4 

2.0 cm 

L2 
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Using the given data: 
p1 = 101 kPa (abs) = 0 Pa (gage) 
p4 = 3.5 kPa (gage) = 3500 Pa (gage) 
SGHg = 13.6 
SGliquid = 0.6 
g = 9.81 m/s2 
rH20 = 1000 kg/m3 
L1 =  3.0 cm = 3.0*10-2 m 
L2 = 2.0 cm = 2.0*10-2 m 

 
Solving Eqn. (4) for h gives: 

h = 1.9 m 
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A reservoir manometer has vertical tubes of diameter D and d.  When the pressure at the liquid surfaces in 
both tubes is the same, the liquid levels in each tube are at the same elevation.  When an additional pressure 
Dp is applied to the left tube, the liquid layer in that tube drops a distance x while the liquid in the right tube 
rises a distance L.  Develop an algebraic expression for the liquid deflection L in the small tube when the 
additional pressure Dp is applied to the large tube. 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
SOLUTION:  
Relate the pressure at the liquid surface in the left tube to the pressure at the liquid surface in the right tube 
using manometry, 

, (1) 

. (2) 

 
The distances x and L may be related by noting that the liquid mass remains the same in the system.  
Assuming that the liquid is incompressible (a good assumption), the volume displaced in the left tube will 
equal the volume gained in the right tube, 

, (3) 

. (4) 

 
Now substitute Eq. (4) into Eq. (2) and solve for L, 

, (5) 

. (6) 

 

!!patm = patm +Δp( )− ρg x +L( )

!
x +L= Δp

ρg

!!
x πD

2

4 = Lπd
2

4

!!
x = L d

D
⎛
⎝⎜

⎞
⎠⎟

2

!!
L d
D

⎛
⎝⎜

⎞
⎠⎟

2

+L= Δp
ρg

!!
L= Δp

ρg
1

1+ d D( )2
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

D 

d 

L 

patm + Dp 
patm 

x equilibrium level 
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Determine the deflection, h, in the manometer shown below in terms of A1, A2, Dp, g, and rH2O.  Determine 
the sensitivity of this manometer.  The manometer sensitivity, s, is defined here as the change in the 
elevation difference, h, with respect to a change in the applied pressure, Dp: 

  

Manometers with larger sensitivity will give larger changes in h for the same Dp.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
First analyze the initial system. 
 
 
 
 
 
 
 
 
 
 
 
 

 

 (1) 

( )
dhs

d p
º

D

   

p2
= p
 = p1

= p
 + ρH20gL1 − ρH20gL2 − ρHggL3

1 2 Hg 3L L SG L- =

A1 A2 

p p 

h 

mercury 

water 

p p+Dp 

A1 A2 

p p 

L1 

L2 

L3 

1 
2 

g 
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Now analyze the displaced system. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 (2) 

Substitute Eqn. (1) into Eqn. (2). 

 

 (3) 

 
Note also that the displaced volume will also be conserved. 

 

 (4) 

Substitute Eqn. (4) into Eqn. (3). 

 

 (5) 

 
Note that the density of the secondary fluid (i.e., mercury) does not factor into the displaced height. 
 

   

p2
= p
 = p1

= p+Δp
 + ρH20g L1 − ΔL1( )− ρH20g L2 + h( )− ρHggL3

( )1 1 2 Hg 3
H20

p L L L h SG L
gr

D
- = -D - - -

( ) ( )1 1 2 1 2
H20

p L L L h L L
gr

D
- = -D - - - -

1
H20

p L h
gr

D
= D +

1 1 2L A hAD =

2
1

1

AL h
A

D =

2

H20 1

Ap h h
g Ar

D
= +

2 H20
1

1

1

ph
A g
A

r
æ öD

= ç ÷
è ø+

h 

p p+Dp 

DL1 1 

L1 

L3 

2 

L2 

h 
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The manometer sensitivity, s, is defined as the change in the elevation difference, h, with respect to a 
change in the applied pressure, Dp. 

 (6) 

Manometers with larger sensitivity will give larger changes in h for the same Dp.  Using Eqn. (5), the 
sensitivity of this manometer is: 

 (7) 

To increase the manometer’s sensitivity, one should decrease the area ratio, A2/A1, and use a lower density 
fluid than water. 
 
Why doesn’t Eqn. (5) involve the properties of mercury?  In fact, the properties of the secondary fluid (i.e. 
the mercury) do influence the system.  Consider the change in potential energy of the water during the 
displacement as shown in the plots below. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Substitute Eqn. (4). 

 

 (8) 

( )
dhs

d p
º

D

2 H20
1

1 1

1
s

A g
A

r
æ ö

= ç ÷
è ø+

   

ΔPEleft,H20 = ρH20 A1 L1 − ΔL1( )
=mafter

  
g 1

2 L1 − ΔL1( )
=LCM,after

  
− ρH20 A1L1

=mbefore

 
g 1

2 L1

=LCM,before



= 1
2 ρH20gA1 L1 − ΔL1( )2 − 1

2 ρH20gA1L1
2

= 1
2 ρH20gA1 −2L1ΔL1 + ΔL1

2( )

   

ΔPEright,H20 = ρH20 A2 L2 + h( )
=mafter

  
g 1

2 L2 + h( )
=LCM,after

  
− ρH20 A2L2

=mbefore

  
g 1

2 L2

=LCM,before



= 1
2 ρH20gA2 L2 + h( )2 − 1

2 ρH20gA2L2
2

= 1
2 ρH20gA2 2L2h+ h2( )

( ) ( )
( )

2 21 1
total,H2O H20 1 1 1 1 H20 2 22 2

2 21
H20 1 1 1 1 1 2 2 22

2 2

2 2

PE gA L L L gA L h h

g L L A L A L hA h A

r r

r

D = - D + D + +

= - D + D + +

2
2 22 21

total,H2O H20 1 1 1 2 2 22
1 1

2 2A APE g L h A h A L hA h A
A A

r
é ùæ ö
ê úD = - + + +ç ÷
ê úè øë û

( )1 2
total,H2O H20 2 2 12 1

1 2APE gA h h L LAr é ùæ öD = + + -ç ÷ê úè øë û

A1 A2 

L1 

L2 
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L1 

L2 
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The change in potential energy of the water will depend not only on h, but also on the initial state of the 
water, L2-L1.  From Eqn. (1) we see that L1-L2 is related to the specific gravity of the secondary fluid.   
 
Another way to solve the problem is to apply the 1st Law of Thermodynamics to the system (consisting of 
the fluids within the manometer): 

 (9) 
where Qinto system = 0 (assuming adiabatic conditions – a reasonable assumption) and the only work on the 
system is the pressure work causing the displacement: 

 (10) 

Note that using Eqn. (4), Eqn. (10) becomes: 
 (11) 

The total change in the system’s energy (which is the potential energy) is: 

 (12) 

 

 (13) 

Substitute Eqns. (11) and (13) into Eqn. (9) gives: 
 (14) 

 (15) 

Substitute Eqn. (1). 
 

 (16) 

Substitute Eqn. (4) and simplify: 

 (17) 

  (This is the same as Eqn. (5)!) 

system into system on systemE Q WD = +

( )pressure 1 1 2
on system

W p p A L pA h= + D D -

pressure 1 1
on system

W pA L= D D

   

ΔPEleft = ρH20 A1 L1 − ΔL1( )
=mafter

  
g 1

2 L1 − ΔL1( )
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− ρH20 A1L1
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g 1

2 L1

=LCM,before



= 1
2 ρH20 A1g L1

2 − 2L1ΔL1 + ΔL1
2 − L1

2( )
= − 1

2 ρH20 A1g 2L1ΔL1 − ΔL1
2( )

   

ΔPEright = ρH20 A2 L2 + h( )g 1
2 L2 + h( )− ρH20 A2L2g 1

2 L2

=ΔPEH20

  
+ ρHg A2L3gh

ΔPEHg

  

= 1
2 ρH20 A2g L2

2 + 2L2h+ h2 − L2
2( ) + ρHg A2L3gh

= 1
2 ρH20 A2g 2L2h+ h2( ) + ρHg A2L3gh

( ) ( )
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2 21 1
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A g L L L A g L h h A L ghr r r

D = D + D
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2.3. Pressure Forces on Submerged Surfaces and Center of Pressure

2.3.1. Flat Surfaces

Recall from Chapter 1 that the small pressure force dFp acting on a surface with a small area dA is,

dFp = p(−dA). (2.30)

This force relationship was written specifically for a differentially small area since it’s possible that over a
large area, the pressure and the direction of the area could vary over the area (Figure 2.7). Thus, to find
the total pressure force on the whole area, the (small) force on a small area, where the area direction and
pressure are well defined, is calculated first and then these are added, or integrated, over the whole area, i.e.,

FP =

ˆ
A

dFp =

ˆ
A

p(−dA). (2.31)

Figure 2.7. A sketch showing how the pressure magnitude and area orientation may change
over a large area. However, over a differentially-small area, both the pressure and surface
orientation are well defined.

Let’s consider the example of a fish tank completely filled with water, as shown in Figure 2.8. We wish to
determine the net pressure force acting on bottom and right tank walls. Start first with the pressure force

Figure 2.8. A completely-filled fish tank used in the example.

on the tank bottom, (Figure 2.9),

Fp,bottom =

ˆ z=W

z=0

ˆ x=L

x=0

p
[
−dxdzĵ

]
︸ ︷︷ ︸

=−dA

= −ĵ
ˆ z=W

z=0

ˆ x=L

x=0

ρgH︸︷︷︸
=pgage

dxdz = −ĵρgHWL, (2.32)

where, at the bottom of the tank, the gage pressure remains constant at,

pbottom,
gage

= ρgH. (2.33)
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Figure 2.9. The bottom surface of the fish tank.

Notes:

(1) The magnitude of the pressure force on the bottom is equal to the weight of the water in the tank.
This makes sense because if there are no shear stresses at the side walls, then the pressure force at
the bottom of the tank must support all of the weight of the liquid sitting above it.

(2) A gage pressure is used in Eq. (2.32) to simplify the pressure force calculation. Since there is
atmosphere on the other side of the tank bottom, then the gage pressure due to the atmosphere
is zero (patm,gage = 0) and the corresponding pressure force is zero. We get the same result as
Eq. (2.32) if absolute pressures are used everywhere instead,

Fp,bottom =

ˆ z=W

z=0

ˆ x=L

x=0

(patm + ρgH)(−dxdzĵ)︸ ︷︷ ︸
pressure force due to water
using an absolute pressure

+

ˆ z=W

z=0

ˆ x=L

x=0

(patm)(dxdzĵ)︸ ︷︷ ︸
pressure force due to

atmosphere using
an absolute pressure

= −ĵρgHWL. (2.34)

Note that the unit normal vector for the atmospheric side (bottom side, second integral) is in the
opposite direction of the unit normal vector for the water side (first integral) since we’re on opposite
sides of the wall.

(3) Since the pressure and the area orientation don’t vary over the bottom surface, we could have also
found the pressure force on the bottom of the tank using,

Fp,bottom = p(−A) = ρgH(−WLĵ). (2.35)

It’s important to emphasize that we can only avoid integration if both the pressure and area orien-
tation are constant on the macroscopic area.

Now let’s calculate the pressure force acting on the right side wall (Figure 2.10),

Fp,right =

ˆ z=W

z=0

ˆ y=H

y=0

p
[
dydzî

]
︸ ︷︷ ︸

=−dA

= î

ˆ z=W

z=0

ˆ y=H

y=0

ρg(H − y)︸ ︷︷ ︸
=pgage

dydz = î
1

2
ρgH2W. (2.36)

Figure 2.10. The right surface of the fish tank.
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Notes:

(1) Recall from the diagram that the coordinate system is located at the bottom of the tank. Thus,
the (gage) pressure varies as,

pgage = ρg(H − y). (2.37)

This pressure still varies linearly with depth, as shown in Figure 2.11.

Figure 2.11. The pressure variation with depth in the fish tank example.

(2) The small area element dA = −dydzî (Figure 2.10) is used since the pressure has a well-defined
value on this area. Since the pressure only varies in the y direction, we could have also used the

area element dA = −Wdyî (Figure 2.12). The pressure is well defined on this “strip” of area too,

Fp,right =

ˆ y=H

y=0

p(−Wdyî) = îW

ˆ y=H

y=0

ρg(H − y)dy = îρg
1

2
H2W. (2.38)

A vertical strip of area, i.e., dA = −Hdzî, can’t be used to determine the pressure force since the
pressure isn’t well defined on this surface. The pressure varies in the y direction so over this vertical
strip, the pressure doesn’t remain constant.

Figure 2.12. An alternate, and easier differential area for integrating the pressure force on
the right side wall.

(3) The pressure force is equal in magnitude to the area under the pressure curve shown in Note #1,

|dFp| =
1

2
(ρgH)︸ ︷︷ ︸

base

(H)︸︷︷︸
height

(W )︸︷︷︸
depth

=
1

2
ρgH2W. (2.39)

This same behavior is true for the pressure force on the base.

Now that we’ve determined the resultant pressure force on the right surface, let’s determine where this
resultant force acts (Figure 2.13). This location is known as the center of pressure (CP). The center of
pressure is found by ensuring that the moments generated by the resultant pressure force equal the moments
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Figure 2.13. A sketch showing the distributed pressure forces, the resultant pressure force,
and the location of the center of pressure.

generated by the actual, distributed pressure forces. Consider the right side of the tank and Figure 2.10.
Balancing moments about the origin,

xCP × Fp,right︸ ︷︷ ︸
moment due to
resultant force

acting at the CP

=

ˆ y=H

y=0

ˆ z=W

z=0

(xî+ yĵ + zk̂)︸ ︷︷ ︸
=moment arm

× p(−dA)︸ ︷︷ ︸
=dFp

(2.40)

(xCP î+ yCP ĵ + zCP k̂)×
(

1

2
ρgH2W î

)
=

ˆ H

0

ˆ W

0

(xî+ yĵ + zk̂)×
[
ρg(H − y)dzdy(î)

]
, (2.41)

yCP
1

2
ρgH2W (−k̂) + zCP

1

2
ρgH2W (ĵ) =

ˆ H

0

yρg(H − y)Wdy(−k̂) +

ˆ H

0

1

2
W 2ρg(H − y)dy(ĵ), (2.42)

yCP
1

2
ρgH2W (−k̂) + zCP

1

2
ρgH2W (ĵ) =

1

6
ρgH3W (−k̂) +

1

4
W 2ρgH2(ĵ), (2.43)

∴ yCP =
1

3
H and zCP =

1

2
W. (2.44)

The center of pressure in the x direction is undefined since the resultant and distributed pressure forces act
in the x direction and, thus, there is no moment generated by the forces about the x axis.

Notes:

(1) The center of pressure is also equal to the center of area under the pressure distribution curve.
(2) We can take moments about any location and get the same result.
(3) The center of pressure for the right wall in the z direction may also be determined from symmetry.
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For each of the following pressure profiles,  
a. Determine the magnitude of the total pressure force acting on the horizontal plate.   
b. Determine the location of the center of pressure. 
Assume the plate has unit depth in the z direction.  Show all of your work. 
 
 
1.  2. 
 
 
 
 
 
 
3.  
 
 
 
 
 
 
SOLUTION:  
 
The total pressure force may be found via integration of the differential pressure force. 

           (Note:  The differential area is dA = dx(1) since the plate has unit depth.) (1) 

 

1.   Þ  (2) 

2.   Þ   (3) 

3.   Þ   (4) 

 
The center of pressure may be found by equating the moment resulting from the pressure distribution to the 
moment caused by the total pressure force acting at the center of pressure. 

  Þ   (5) 

 

1.   Þ  (6) 

2.   Þ   (7) 

3.   Þ   (8) 
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=
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=

=
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SOLUTION: 
 
One approach to finding the net force on the wall is to integrate the pressure force along the wall, 

,  (1)  

where, 
, (2) 

 
and, 

. (3) 
 

Note that since we’ll be integrating in the y direction (since the pressure varies in that direction), we should 
express dx in terms of dy, 

 . (4)  

 
Substituting and integrating as y goes from zero to H, 

 , (5) 

, (6) 

. (7) 
 

We could have also solved the integral by splitting it into two parts, 

 , (8) 

  Same answer as before! (9) 

Note that in the 2nd integral in Eq. (8), the y dependence on x needed to be made explicit in order to 
integrate properly with respect to x.  An approach similar to what was used to derive Eq. (4) was utilized. 
  

Fp = − pdA
A
∫

p = ρgy

dA = −wdyêx −wdxêy

dy
dx

= H
L
⇒ dx = L

H
⎛
⎝⎜

⎞
⎠⎟ dy

Fp = − ρgy( ) −wdyêx −w
L
H

⎛
⎝⎜

⎞
⎠⎟ dyêy

⎡
⎣⎢

⎤
⎦⎥y=0

y=H

∫ = ρgw êx ydy
y=0

y=H

∫ + êy
L
H

⎛
⎝⎜

⎞
⎠⎟ ydy

y=0

y=H

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Fp = ρgw 1
2 H

2êx + 1
2

L
H

⎛
⎝⎜

⎞
⎠⎟ H

2êy
⎡
⎣⎢

⎤
⎦⎥

Fp = 1
2 ρgwH

2êx + 1
2 ρgwLHêy

Fp = − ρgy( ) −wdyêx( )
y=0

y=H

∫ + − ρgy( ) −wdxêy( )
x=0

x=L

∫ = 1
2 ρgwH

2êx + − ρg H
L

⎛
⎝⎜

⎞
⎠⎟ x

⎡
⎣⎢

⎤
⎦⎥
−wdxêy( )

x=0

x=L

∫

Fp = 1
2 ρgwH

2êx + 1
2 ρgw

H
L

⎛
⎝⎜

⎞
⎠⎟ L

2êy = 1
2 ρgwH

2êx + 1
2 ρgwHLêy

L 

H 

x 

y dy 
dx 

Calculate the net horizontal and vertical forces acting on the planar surface shown below.  The surface 
has a width w into the page. 
 
 
 
 
 
 
 
 
 
 

L 

H 

  n̂
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An alternate approach to solving this problem is to balance forces on the dashed volume of fluid shown 
below. 
 
 
 
 
 
 
 
 

  The same answer as before! (10) 

    The same answer as before! (11) 
Note that from Newton’s 3rd Law, the force the wall exerts on the fluid is equal and opposite to the force 
the fluid exerts on the wall. 

Fx∑ = 0 = ρgy( ) wdy( )
y=0

y=H

∫ − Fx ⇒ Fx = 1
2 ρgwH

2

Fy∑ = 0 =W − Fy = ρ 1
2 LHwg − Fy ⇒ Fy = 1

2 ρgLHw

L 

H 

x 

y 
Fx 

Fy 

W 
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Your professor purchased a watertight box to hold his camera while traveling to Ft. Myers Beach, FL 
during winter break.  The box’s dimensions are shown in the photograph.  During the flight, he opened the 
box and then re-sealed it.  Upon reaching his destination, he found that he had significant difficulty trying 
to open the box.  
a. Why was opening the box such a challenge? 
b.  Estimate the force required to open the box if the force is applied at the front of the box.  Note that the 

box is hinged at the back. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION:  
 
The box was difficult to open because the air in the interior of the box was at the cabin pressure of the 
aircraft (required to be pressurized to a maximum altitude of 8000 ft altitude1) and the air outside the box 
was at the local atmospheric pressure (Ft. Myers Beach, FL which is at sea level).  This pressure difference 
resulted in a net pressure force acting to hold the lid shut. 
 
Sum moments about the lid’s hinge, 

, (1) 

, (2) 

. (3) 

where 
pFMB = psea level = 14.7 psia  (using a U.S. Standard Atmosphere) 
pcabin = p8000 ft altitude = 10.9 psia  (using a U.S. Standard Atmosphere) 
Alid = wd = (6.46 in) (5.11 in) = 33.0 in2 
Þ  Flid = 62.5 lbf! 
 
 
 

1  https://en.wikipedia.org/wiki/Cabin_pressurization 

		 
Mhinge =0= Fd − x

moment
arm

! patm − pbox( )
pressure	difference
" #$ %$

wdx
=dA
!

x=0

x=d

∫∑

		
Fd = patm − pbox( )12wd

2

		
F = patm − pbox( )12wd

w = 6.46 in 
d = 5.11 in 
h = 3.25 in 

d 

w 

h applied 
force 

hinge 
lid 

hi
ng

e w 
x 

dx 

F 

d 

pbox 

patm 
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The gate shown below has a width of w = 8 ft and opens to let fresh water out when the ocean tide drops.  
The hinge is a height h = 2 ft above the freshwater level.  At what ocean level H will the gate first open?  
You may neglect the weight of the gate. 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Balance moments about the hinge, 

, (1) 

, (2) 

, (3) 

, (4) 

, (5) 

, (6) 

, (7) 

 

M hinge∑ = 0 = D + h − y( )
moment arm length
   ρfreshg D − y( )

pressure
   wdy( )

area


y=0

y=D

∫ − D + h − y( )
moment arm length
   ρseag H − y( )

pressure
   wdy( )

area


y=0

y=H

∫

D + h − y( )ρfreshg D − y( ) wdy( )
y=0

y=D

∫ = D + h − y( )ρseag H − y( ) wdy( )
y=0

y=H

∫

ρfresh D + h − y( ) D − y( )dy
y=0

y=D

∫ = ρsea D + h − y( ) H − y( )dy
y=0

y=H

∫

ρfresh D2 + Dh − 2Dy − hy + y2( )dy
y=0

y=D

∫ = ρsea DH + Hh − Hy − Dy − hy + y2( )dy
y=0

y=H

∫

ρfresh D2 + Dh( )y − 1
2 2D + h( )y2 + 1

3 y
3⎡⎣ ⎤⎦y=0

y=D
= ρsea DH + Hh( )y − 1

2 H + h + D( )y2 + 1
3 y

3⎡⎣ ⎤⎦y=0
y=H

ρfresh D2 + Dh( )D − 1
2 2D + h( )D2 + 1

3D
3⎡⎣ ⎤⎦ = ρsea DH + Hh( )H − 1

2 H + h + D( )H 2 + 1
3H

3⎡⎣ ⎤⎦

D3 + D2h − D3 − 1
2 D

2h + 1
3D

3 = ρsea
ρfresh

DH 2 + H 2h − 1
2 H

3 − 1
2 H

2h − 1
2 DH

2 + 1
3H

3( )

H 

hinge 

D 

h 

stop 

H 

hinge 

D 

h 

y 

sea water 
(SG = 1.025) 

water 

gate 
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, (8) 

, (9) 

. (10) 

 
Using the given data, 

SGsea = 1.025 
h = 2 ft 
D = 10 ft 
Eq. (10)  Þ   (11) 

Solving this equation numerically gives  H = 9.85 ft  
For sea levels less than this critical value, the gate will open. 

1
2 D

2h + 1
3D

3 = SGsea − 1
6 H

3 + 1
2 H

2h + 1
2 DH

2( )
1
6 SGseaH

3 − 1
2 SGsea D + h( )H 2 + 1

2 D
2h + 1

3D
3 = 0

H 3 − 3 D + h( )H 2 +
3h + 2D( )D2

SGsea

= 0

H 3 − 36 ft( )H 2 + 2536.6 ft3( ) = 0
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The w = 4 ft wide gate shown in the figure pivots about a hinge.  The gate is held in place by a 
counterweight with a weight of W = 2000 lbf, which is located a distance h = 5 ft below the base of the 
water and a distance l = 3 ft from the gate.  Determine the depth of the water, H, for which the gate remains 
in the equilibrium position shown.  You may assume the gate mass is small compared to the counterweight 
mass, and that the hinge friction is negligible. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Balance moments about the hinge, 

, (1) 

, (2) 

, (3) 

, (4) 

. (5) 

 
  

 

M hinge∑ = 0 = y
moment arm length

 ρg H − y( )
pressure

   wdy( )
area


y=0

y=H

∫ − lW
moment due to
counterweight



ρgw y H − y( )dy
y=0

y=H

∫ = lW

ρgw 1
2 Hy

2 − 1
3 y

3( )y=0
y=H

= lW

1
6 H

3 = lW
ρgw

H = 6lW
ρgw

⎛
⎝⎜

⎞
⎠⎟

1
3

H 

hinge 

l 

counterweight 

gate 

h 

H 

hinge 

l 

counterweight 

gate 

h 

y 
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Using the given data, 
rg = 62.4 lbf/ft3 
W = 2000 lbf 
l = 3 ft 
w = 4 ft 

Þ  H = 5.2 ft  
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The rigid, L-shaped gate shown in the figure can rotate about the hinge and rests against the rigid support at 
point A.  What is the minimum horizontal force, F required to hold the gate closed if its width is w = 3 m 
and the lengths are h = 4 m and l = 2 m?  The height of the free surface above the hinge is H = 3 m.  You 
may neglect the weight of the gate and the friction in the hinge.  Note that the back of the gate is exposed to 
the atmosphere. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION:  
 
 
 
 
 
 
 
 
 
 
 
 
 
Balance moments about the hinge, 

, (1) 

, (2) 

, (3) 

, (4) 

. (5) 

 
Using the given data, 

r = 1000 kg/m3 
� = 9.81 m/s2 
w = 3 m 
H = 3 m 
h = 4 m 
l = 2 m 

 

M hinge∑ = 0 = y − H( )
moment arm length
  ρgy

pressure
 wdy( )

area


y=H

y=H+h

∫ + x
moment arm length

 ρg H + h( )
pressure

   wdx( )
area


x=0

x=l

∫ − hF
moment due to
applied force



ρgw y − H( )ydy
y=H

y=H+h

∫ + ρg H + h( )w xdx
x=0

x=l

∫ − hF = 0

hF = ρgw 1
3 y

3 − 1
2 Hy

2( )y=H
y=H+h

+ 1
2 ρg H + h( )wl2

hF = ρgw 1
3 H + h( )3 − H 3⎡⎣ ⎤⎦ −

1
2 H H + h( )2 − H 2⎡⎣ ⎤⎦( ){ }+ 1

2 ρg H + h( )wl2

F = ρgw 1
2 Hh + 1

3 h
2 + 1

2
H
h +1( )l2⎡

⎣
⎤
⎦

water 

h 

l 
F 

H hinge 

gate 
A 

water 

h 

l 
F 

H hinge 

x 
y 
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Þ  F = 437 kN  
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A rectangular block of concrete (SG=2.5) is used as a retaining wall or dam for a reservoir of water: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The block has a height, a, a breadth, b, and unit depth into the page.  The depth of the water is 3a/4.  
 
a.   Determine the critical ratio, b/a, below which the block will be overturned by the water (figure a).  

Assume the block does not slide on the base but can rotate about the point A.  For figure (a), there is no 
fluid underneath the block. 

b. What is the critical ratio, b/a,  if  there is seepage and a thin film of water forms under the block (figure 
b)?  Assume that a seal at point A prevents water from flowing out from underneath the block. 

 
 
SOLUTION:  
 
Draw a free body diagram of the block.  Note that when the block is on the verge of tipping over, the 
vertical force the ground exerts on the block is zero. 
 
 
 
 
 
 
 
 
 
Sum moments about point A. 

  (1) 

where 
 (2) 

   (note that this is a gage pressure) (3) 
 
Substitute and simplify. 

 (4) 

   

M A = 0∑ = 1
2 b( )W − y p dy ⋅1( )

=dA


=dF
 

y=0

y= 3
4 a

∫

( )block 1W b a gr= × ×

( )3
20 4Hp g a yr= -

( )( ) ( )
3
4

31
block 202 4

0

0
y a

H
y

b bag y g a y dyr r
=

=

- - =ò

¾ a 
a 

b 

concrete 
block 

A 

Figure (a) 

water ¾ a 
a 

b 

concrete 
block 

A 

Figure (b) 

water 

thin film of water 

¾ a 
a 

b 

A 

water W 
x 

y 
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 (5) 

 (6) 

 (7) 

 (8) 

 (9) 

  when the block is just about to tip over (10) 

Thus, the block will tip over for SGblock = 2.5 if b/a < 0.237. 
 
 
Now draw the free body diagram for a block with a thin liquid layer underneath it. 
 
 
 
 
 
 
 
 
 
 
Sum moments about point A. 

  (11) 

where the weight and pressure on the side are given in Eqs. (2) and (3).  The last term in the previous 
equation is the (gage) pressure that the liquid layer on the bottom exerts on the block. 
 
Substitute and simplify. 

  (12) 
 (13) 

 (14) 

  when the block is just about to tip over (15) 

Thus, the block will tip over for SGblock = 2.5 if b/a < 0.283. 
 
 
 
 
 

( )
3
4

2 231
block 202 4

0

0
y a

H
y

b a ay y dyr r
=

=

- - =ò

( )
3
42 2 331 1

block 202 8 3 0
0

y a

H y
b a ay yr r

=

=
- - =

( )2 3 33 9 271 1
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2 391
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9 1
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æ ö =ç ÷
è ø
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3 1
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b
a SG

\ =

   

M A = 0∑ = 1
2 b( )W − yp dy ⋅1( )

y=0

y= 3
4 a

∫ − 1
2 b( )ρH 20g 3

4 a
= p
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=F
  

2 3 29 31
block2 128 8 0SG b a a ab- - =

2 3 29 3
block 64 4 0SG b a a ab- - =

2 2

block
3 9
4 64

b bSG
a a
æ ö æ ö- =ç ÷ ç ÷
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The 3 m wide (into the page) gate shown in the figure is hinged at point H.  Calculate the force required at 
point A to hold the gate closed 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
Draw a free body diagram of the gate, just as the gate is about to open.  
 
 
 
 
 
 
 
 
 
 
Sum moments about the hinge H and set them equal to zero since the gate isn’t accelerating, 

, (1) 

where T is the thickness of the gate into the page.  The first z in the integral is the moment arm out to the 
differential hydrostatic pressure force dFp acting on area dA = Tdz.  Note that the pressure is a function of 
the depth from the free surface, D + zsinq. 
 
Simplify Eq. (1) and solve for FA, 

, (2) 

, (3) 

. (4) 
 

Using the given data, 
r = 1000 kg/m3, 
g = 9.81 m/s2, 
T = 3 m, 
L = 4 m, 
D = 1.5 m, 
q = 30°, 
=>  �� = 167 kN 

!! 

MH∑ =0= zρg D+ zsinθ( )
=p

! "## $##
Tdz( )
=dA
%

=dFp

! "### $###
z=0

z=L

∫ −LFA

!!
LFA = ρgT Dzdz + sinθz2dz( )

z=0

z=L

∫

!!LFA = ρgT 1
2DL

2 + 1
3L

3sinθ( )
!!FA = ρgTL 1

2D+
1
3Lsinθ( )

water 

1.5 m 

4 m 

gate 

A 

H 
FA = ? 

30° 

D 
L H 

FA  

q 

z 

dz dFp 

zsinq 
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A plane gate of uniform thickness t and width into the page w holds back a depth of water as shown.  Find 
the minimum weight of the gate needed to keep the gate closed.  
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
Draw a free body diagram of the gate. 
 
 

 
 
 
 
 
 
 
 
 
Sum moments about the gate’s hinge, noting that the gate is in equilibrium and just about to open, 

, (1) 

, (2) 

, (3) 

. (4) 

!! 

Mhinge∑ =0= − L
2

⎛
⎝⎜

⎞
⎠⎟
W cosθ( )+ z ρgzsinθ( )

=p
! "# $#

wdz( )
=dA
%

=dFp

! "## $##
z=0

z=L

∫

!!
L
2

⎛
⎝⎜

⎞
⎠⎟
W cosθ( ) = ρgwsinθ z2dz

z=0

z=L

∫

!!
L
2

⎛
⎝⎜

⎞
⎠⎟
W cosθ( ) = 13ρgwL

3sinθ

!!W = 2
3ρgwL

2 tanθ

water 
L 

q 
hinge 

t 

dFp 

q 
hinge 

z 

dz 

zsinq 

W 

q Note that the floor exerts no force on the gate 
since the gate is just about to open. 

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

C. Wassgren 146 2024-02-01



 statics_74 

Page 1 of 1 

The tank shown below is partially filled with a liquid of density ρ and is open to the atmosphere.  A triangular gate 
is hinged at the bottom and held closed by a force applied at the top.  Determine the force F in terms of the liquid 
density ρ, the acceleration due to gravity g, the liquid depth D, the gate height H, and the gate width W. 

 
 

SOLUTION: 

 
Balance moments on the gate.  Since the pressure varies over the surface of the gate and because the gate width 
changes with depth, we’ll need to integrate the pressure force over the gate surface.  To do this, divide the gate 
into small areas over which the pressure remains constant.  

∑𝑴!"#$% = 𝟎 = %𝐻'̂ × −𝐹𝒌-. + ∫ 𝑦'̂⏟
&'&()*
+,&

× 𝑑𝑭-5
.,(//0,(
1',2(

3 , (1) 

where, 
𝑑𝑭- = −𝑝𝑑𝑨, (2) 
𝑑𝑨 = 294

56
: (𝐻 − 𝑦)𝑑𝑦%−𝒌-., (3) 

𝑝$7$% = 𝜌𝑔(𝐷 − 𝑦). (4) 
 
Substitute and solve for F, 

𝟎 = 𝐻𝐹@̂ + ∫ 𝑦𝜌𝑔(𝐷 − 𝑦)294
56
: (𝐻 − 𝑦)𝑑𝑦(−@̂)89:

89; , (5) 

𝐻𝐹 = 𝜌𝑔 94
6
:∫ 𝑦(𝐷 − 𝑦)(𝐻 − 𝑦)𝑑𝑦:

; = 𝜌𝑔 94
6
: ∫ [𝐷𝐻𝑦 − (𝐷 + 𝐻)𝑦5 + 𝑦<]𝑑𝑦:

; , (6) 

𝐹 = 𝜌𝑔 94
6!
: C=

5
𝐷<𝐻 − =

<
(𝐷 + 𝐻)𝐷< + =

>
𝐷>D, (7) 

𝐹 = 𝜌𝑔 94
6!
: C=

5
𝐷<𝐻 − =

<
𝐷> − =

<
𝐻𝐷< + =

>
𝐷>D, (8) 

𝐹 = =
?
𝜌𝑔 94:"

6!
: 9𝐻 − =

5
𝐷:. (9) 
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A cylindrical tank if filled with water.  In order to control the flow rate from the tank, a pressure can be 
applied to the water surface by a compressor.  For an applied absolute pressure of 3 bar, calculate the 
hydrostatic force exerted by the water on the end surface of the tank. 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
Draw the pressure distribution acting on the tank end surface due to the water in the tank. 
 
 
 
 
 
 
 
 
 
The hydrostatic pressure force on the tank surface due to the water is,  

, (1) 

, (2)  

, (3)	

. (4) 
 
Using the following parameters: 

R = 0.5 m 
p0 = 3 bar (abs) = 300 kPa (abs) 
r = 1000 kg/m3 

g = 9.81 m/s2 
=> F = 23.6 MN. 

 
Note an alternate approach to solving the problem is to break the applied pressure into a constant part at 
pressure p0 and the linearly increasing part, as shown in the figures below.  
 
 
 

		 

F = pdA
z=0

z=2R

∫ = p0 + ρgz( )
=p

! "# $#
2 R2 − R− z( )2dz⎡

⎣
⎢

⎤

⎦
⎥

=dA
! "### $###z=0

z=2R

∫

		
F =2 p0 + ρgz( ) 2Rz − z2 dz

z=0

z=2R

∫ =2 p0 2Rz − z2 dz
z=0

z=2R

∫ + ρg z 2Rz − z2 dz
z=0

z=2R

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

		
F =2 p0

πR2

2 + ρgπR
3

2
⎡

⎣
⎢

⎤

⎦
⎥

		F =πR
2 p0 + ρgR( )

1 m 

5 m 

3 bar (abs) 

outlet pipe 
water 

end surface 
of tank 

p0 

z 
2R 

dz 
R 

R - z 

[R2 – (R – z)2]1/2 

p0 p0 

= + 

	
		
F2 =2ρg z 2Rz − z2 dz

z=0

z=2R

∫			F1 = p0πR
2
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A semi-circular plane gate is hinged along B and held by horizontal force F applied at point A.  The liquid in the 
reservoir is water.  Calculate the minimum force required to hold the gate closed.  Hint:  An integral table or 
symbolic algebra software will be helpful in solving the integrals that appear in the derivation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
 
Sum moments about point B. 

 (1) 

 (2) 

 (3) 

 (4) 

Evaluate the integrals using an integral table or symbolic algebra software (e.g., Mathematica). 

 (5) 

 (6) 

 (7) 

 
  

0

0
y R

B
y

M RF ypdA
=

=

= = -å ò

   

RF = y ρg H − y( )
= pgage

  
2 R2 − y2 dy

=dA
  

y=0

y=R

∫

( ) 2 2

0

2 y R

y

gF y H y R y dy
R
r =

=

= - -ò

2 2 2 2 2

0 0

2 y R y R

y y

gF H y R y dy y R y dy
R
r = =
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2.3.2. Curved Surfaces

Figure 2.14. The parabolically-shaped wall used in the example.

The resultant pressure force and center of pressure location for curved surfaces may be found in the same way
as for flat surfaces. The only significant difference is that the unit normal vectors for the differentially-small
area elements may change with position. For example, let’s determine the net pressure force and center of
pressure on the parabolically-shaped wall shown in Figure 2.14. Assume the wall is planar and has a depth
W into the page.

Fp =

ˆ
A

p(−dA) =

ˆ
A

ρg(H − y)︸ ︷︷ ︸
=pgage

[
−(Wdxĵ −Wdyî)

]
︸ ︷︷ ︸

−dA

= −ρgW
ˆ
A

(H − y)(dxĵ − dyî). (2.45)

Before setting the limits on the integral, note that y is a function of x on the wall surface, which also means
that a small displacement in the y direction is related to a small displacement in the x direction,

y = H
( x
L

)2

=⇒ dy =
2H

L2
xdx. (2.46)

We can use this information to express the integral in terms of a single variable (we’ll use x, but we could
use y too). Substituting Eq. (2.46) into Eq. (2.45) gives,

Fp = −ρgW
ˆ x=L

x=0

[
H −H

( x
L

)2
](

dxĵ − 2H

L2
xdxî

)
, (2.47)

= −ρgWH

[
ĵ

ˆ x=L

x=0

(
1− x2

L2

)
dx− î2H

L2

ˆ x=L

x=0

(
x− x3

L2

)
dx

]
, (2.48)

= −ρgWH

[
ĵ

(
L− 1

3
L3L2

)
− î2H

L2

(
1

2
L2 − 1

4
L4L2

)]
, (2.49)

= ρgWH

(
1

2
H î− 2

3
Lĵ

)
, (2.50)

Fp =
1

2
ρgWH2î− 2

3
ρgWHLĵ. (2.51)

This result is the pressure force the fluid exerts on the wall.
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The center of pressure is found by balancing moments, identical to what was used for planar surfaces. Balance
moments about the origin,

xCP × Fp =

ˆ
A

(xî+ yĵ)× [ρg(H − y)]
[
−(Wdxĵ −Wdyî)

]
= −ρgW

ˆ
A

(H − y)(xdx+ ydy)k̂, (2.52)

(xCP î+ yCP ĵ)×
(

1

2
ρgWH2î− 2

3
ρgWHLĵ

)
(2.53)

= −ρgW k̂
ˆ x=L

x=0

[
H

(
1− x2

L2

)
xdx+H

(
1− x2

L2

)
H

(
x2

L2

)
2H

L2
xdx

]
, (2.54)

− ρgWH

(
xCP

2

3
L+ yCP

1

2
H

)
k̂ = −ρgWHk̂

ˆ x=L

x=0

[(
x− x3

L2

)
+

2H2

L4

(
x3 − x5

L2

)]
dx, (2.55)

xCP
2

3
L+ yCP

1

2
H =

1

2
L2 − 1

4

L4

L2
+

2H2

L4

(
1

4
L4 − 1

6

L6

L2

)
=

1

4
L2 +

1

6
H2, (2.56)

∴ yCP =

(
−4

3

L

H

)
xCP +

(
1

2

L2

H
+

1

3
H

)
. (2.57)

The previous equation, which is the equation of a line, is known as the line of action. It is the line along which
the resultant force acts. This line of action is shown graphically in Figure 2.15. Now find the intersection of

Figure 2.15. A sketch showing the line of action for the parabolic wall example.

the line of action and the wall by substituting Eq. (2.46) into Eq. (2.57),

H
(xCP

L

)2

=

(
−4

3

L

H

)
xCP +

(
1

2

L2

H
+

1

3
H

)
, (2.58)

(xCP
L

)2

+
4

3

(
L

H

)2 (xCP
L

)
−

[
1

2

(
L

H

)2

+
1

3

]
= 0. (2.59)

Solving this (unfortunately messy) equation gives,

xCP
L

= −2

3

(
L

H

)2

+

√
4

9

(
L

H

)4

+
1

2

(
L

H

)2

+
1

3
. (2.60)

Note that only the positive root of the previous equation makes physical sense. Now that we have xCP , the
value for yCP can then be found by substituting this value into Eq. (2.46).

Notes:
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(1) The horizontal component of the resultant pressure force in Eq. (2.51) is equal to the resultant force
acting on the vertical projected area HW , i.e., FP,x = 1

2ρgH
2W .

An alternate method for determining the resultant force and center of pressure is to balance forces on a region
of fluid bordered by the wall. For example, balance forces on the region of fluid identified by the dotted line
in Figure 2.16.

Figure 2.16. Free body diagram for the region of fluid enclosed by the red dashed line.

∑
Fx = 0 =

1

2
ρgH2W − FR,x =⇒ FR,x =

1

2
ρgH2W, (2.61)∑

Fy = 0 = −G+ FR,y =⇒ FR,y = G, (2.62)

where,

G =

ˆ x=L

x=0

ρg (H − y)dxW︸ ︷︷ ︸
=dV

=

ˆ x=L

x=0

ρg

[
H −H

( x
L

)2
]
dxW, (2.63)

= ρgHW

ˆ x=L

x=0

(
1− x2

L2

)
dx = ρgHW

(
L− 1

3

L3

L2

)
, (2.64)

G =
2

3
ρgHWL, (2.65)

so that,

FR,y =
2

3
ρgHWL. (2.66)

These magnitudes for FR,x and FR,y are exactly the same as what was found in Eq. (2.51). Note that here
FR,x and FR,y are the force components the wall exerts on the fluid so, from Newton’s Third Law, the fluid
exerts equal and opposite force components on the wall.

The center of pressure about the z axis is found by balancing moments about the origin, the same as what
was done for planar walls,

xCP × Fp =


1

3
H ĵ︸ ︷︷ ︸

CP on
left side

× 1

2
ρgH2W î︸ ︷︷ ︸

resultant force
on left side

+


(xCM î+ yCM ĵ)︸ ︷︷ ︸

center of mass

×−2

3
ρgHWLĵ︸ ︷︷ ︸

weight of
fluid region


. (2.67)
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Since the weight has no x component, we need not worry about calculating yCM . However, we do need the
x component of the center of mass, which we can find via integration (refer to the figure),

xCMG =

ˆ x=L

x=0

xρg (H − y)Wdx︸ ︷︷ ︸
=dV

, (2.68)

=

ˆ x=L

x=0

xρg

[
H −H

( x
L

)2
]
Wdx, (2.69)

= ρgHW

ˆ x=L

x=0

(
x− x3

L2

)
dx, (2.70)

xCM
2

3
ρgHWL = ρgHW

(
1

2
L2 − 1

4

L4

L2

)
, (2.71)

=
1

4
ρgHWL2, (2.72)

xCM =
3

8
L. (2.73)

Substituting this value back into the right-hand side of Eq. (2.67) and making use of the resultant pressure
force on the left-hand side,

(xCP î+ yCP ĵ)×
(

1

2
ρgH2W î− 2

3
ρgHWLĵ

)
(2.74)

=

(
1

3
H ĵ × 1

2
ρgH2W î

)
+

(
3

8
Lî×−2

3
ρgHWLĵ

)
, (2.75)

− xCP
2

3
ρgHWLk̂ − yCP

1

2
ρgH2W k̂ = −1

6
ρgH3W k̂ − 1

4
ρgHWL2k̂, (2.76)

yCP =

(
−4

3

L

H

)
xCP +

(
1

3
H +

1

2

L2

H

)
, (2.77)

which is the same line of action found previously.

Notes:

(1) Either approach to finding the resultant force and center of pressure (integration or balancing forces
on a wisely-chosen region of fluid) is fine. One method may be easier than the other, depending on
the geometry of the problem.

(2) Yet another method to finding the resultant pressure force and center of pressure relies on calculating
the center of area of the wall surface and calculating moments of inertia. This approach isn’t
described in these notes since it’s a more “formulaic” approach and is less connected to the actual
physics of the problem. Moreover, this moment-of-inertia approach often requires access to moment
of inertia tables, which may be inconvenient. A number of texts that discuss fluid statics present
this “moments-of-inertia” approach, but it’s not this author’s preferred method.
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Calculate the net horizontal pressure force acting on the half cylinder shown below.  The half cylinder has radius R 
unit depth into the page, and the gage pressure acting on it is p0. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
We can determine the net horizontal pressure force in two ways.  The first method directly integrates the horizontal 
pressure force components over the entire surface and the second method uses the surface’s projected area. 
 
Method 1:  Integrate the horizontal pressure force components over the entire surface area. 

 (1) 

 (2) 

 (3) 
 
 
 

Method 2:  Multiply the pressure with the surface’s area projected in the x-direction. 
 
The small amount of horizontal pressure force dFp,x due to the pressure p0 
acting on a small area dA inclined at an angle q as shown in the figure to  
the right is,  

 (4) 

 
By grouping terms, we see that horizontal pressure force is equivalent to multiplying the pressure by the area 
projected in the horizontal direction, dA’, i.e., the area of the surface viewed from the x-direction. 

 (5) 

 
Thus, the horizontal pressure force acting on the half-cylinder is simply the pressure multiplied by the cylinder’s 
horizontal projected area, 2R, 

   (This is the same result as before!) (6) 
 

   

dFp,x = p0 Rdθ
=dA


=dFp

 
sinθ

( ), , 0 0 0 00
0 0 0

sin sin cos 1 1p x p xF dF p Rd p R d p R p R
q p q p q p

p

q q q

q q q q q
= = =

= = =

= = = = - = - - -ò ò ò
( ), 0 2p xF p R\ =

   

dFp,x = p0dA
=dFp

 sinθ

   
dFp,x = p0 dAsinθ

=d ′A
 

( ), 0 2p xF p R\ =

R 
q p0 x 

p0 dA 
q 

q 
dA’ = dAsinq 
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Video solution: https://www.youtube.com/watch?v=8r3cn72-ai0
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The figure shows a Tainter gate used to control water flow from a dam.  The gate radius is R = 20 m, the gate width 
is w = 35 m, and the water depth is H = 10 m.  Determine the force components, magnitude, and line of action of the 
force that the water exerts on the gate.  
 

 
 

 
 
 
 
 
 
 
 
SOLUTION: 
 
First determine the force components acting on the gate, 

𝑭 = ∫ 𝑝(−𝑑𝑨)!"#
!"$ = ∫ (𝜌𝑔𝑦)[−(𝑅𝑑𝜃𝑤𝒆2%)]

!"#
!"$ , (1) 

𝑭 = ∫ (𝜌𝑔𝑅 sin 𝜃)(−𝑅𝑑𝜃𝑤𝒆2%)
&"&!
&"$ , (2) 

where, 
sin 𝜃' = #

(
  =>  𝜃' = sin)* 7#

(
8, (3) 

𝒆2% = cos 𝜃 ;̂ + sin 𝜃 >.̂ (4) 
 

Substitute and simplify, 
𝑭 = ∫ (𝜌𝑔𝑅 sin 𝜃)[−𝑅𝑑𝜃𝑤(cos 𝜃 ;̂ + sin 𝜃 >̂)]&!

$ , (5) 
𝑭 = −𝜌𝑔𝑅+𝑤∫ (sin 𝜃 cos 𝜃 𝑑𝜃;̂ + sin+ 𝜃 𝑑𝜃>̂)&!

$ , (6) 

𝑭 = −𝜌𝑔𝑅+𝑤 ?7*
+
sin+ 𝜃'8 ;̂ + @

*
+
𝜃' −

*
,
sin(2𝜃')B >̂C, (7) 

𝐹- = − *
+
𝜌𝑔𝑅+𝑤 sin+ 𝜃', (8) 

𝐹! = − *
+
𝜌𝑔𝑅+𝑤 @𝜃' −

*
+
sin(2𝜃')B, (9) 

𝐹- = − *
+
𝜌𝑔𝑅+𝑤7#

(
8
+
  =>  𝐹- = − *

+
𝜌𝑔𝐻+𝑤. (10) 

𝐹! = − *
+
𝜌𝑔𝑅+𝑤 @𝜃' −

*
+
sin(2𝜃')B  (where qM is given in Eq. (3)). (11) 

 
Using the given data, 

r = 1000 kg/m3, 
g = 9.81 m/s2, 
w = 35 m, 
H = 10 m, 
R  =  20 m, 
=> Fx = -17.2 MN and Fy =  -6.22 MN 

and the force magnitude is |F| = 18.3 MN.  The angle from the horizontal is, 
tan 𝜃./ =

0"
0#

,  (refer to the figure to the right) (12) 

qCP = 19.9° 
Note that the resultant force will pass through the center of the circle (the hinge) since the pressure force acts normal 
to the surface. 
 
 

 
 

 

R 
q y = Rsinq 

𝑑𝑨 = 𝑅𝑑𝜃𝑤𝒆2% 

x 
y 

 

H 
R 

water 
gate 

R 
H 

qM 

H𝑅+ −𝐻+ 

H 
R 

water 
gate 

Fx 

Fy 

qCP 

|F| 
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Video solution: https://www.youtube.com/watch?v=EHbeLGXqSn4
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A spring-loaded hinge is designed to hold closed the sinusoidally-shaped gate shown in the figure (assume 
unit depth into the page).  The wavelength of the gate shape is l and its amplitude is a.  The water depth is 
H < a. liquid in the figure is water.  Determine the horizontal and vertical components of the force acting in 
the hinge due to the gate, as well as the moment the hinge must supply to keep the gate in the configuration 
shown.  You may neglect the weight of the gate in your calculations. 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
 
First determine the water force acting on the gate. 

, (1) 

where 
, (2) 

. (3) 
Substituting Eqs. (2) and (3) into Eq. (1) gives, 

, (4) 

Split the integral into two parts:  one concerning the vertical force component and one concerning the 
horizontal force component.  The integral limits for the horizontal force component are simply y = 0 to y = 
H.  The integral limits for the vertical force component are x = 0 to x = L, where L may be found by noting 
that the gate is sinusoidal in shape,  

  Þ  . (5) 

Thus, Eq. (4) may be written as, 

, (6) 

, (7) 

where Eq. (5) has been used to substitute in for y.  Evaluating the integrals in Eq. (7) gives, 

F = − pdA
A
∫

p = ρg H − y( )
dA = dy 1( ) î − dx 1( ) ĵ

F = − ρg H − y( ) dy 1( ) î − dx 1( ) ĵ⎡⎣ ⎤⎦
A
∫

y = asin 2π x
λ

⎛
⎝⎜

⎞
⎠⎟ L = λ

2π
sin−1 H

a
⎛
⎝⎜

⎞
⎠⎟

F = − îρg H − y( )dy
y=0

y=H

∫ + ĵρg H − y( )dx
x=0

x=L

∫

F = − îρg H − y( )dy
y=0

y=H

∫ + ĵρg H − asin 2π x
λ

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
dx

x=0

x=L

∫

H 

a 

¼ l hinge 

H 
y 

hinge x 

L 

dA 
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, (8) 

, (9) 

where L is given in Eq. (5).  Note that these are the forces acting on the gate due to the water.  The forces 
acting on the hinge would have the same magnitude, but opposite sign, 

. (10) 

 
The horizontal pressure force is the same pressure force that’s exerted on the horizontal, projected area of 
the gate,   
 
 
 
 
 
 
 

 
 

. (11) 

 
The vertical pressure force could have also been found by balancing forces on the fluid contained within 
the span from x = 0 to x = L, 

 
 

 
 
 
 
 
 
 

, (12) 
where the rgHL(1) term is the (uniform) pressure force acting on the bottom of the section of fluid under 
consideration.  The weight of the fluid in the section is given by, 

. (13) 

Combining Eqs. (12) and (13) and solving for Fy gives, 

, (14) 

which is the same as the expression found previously. 
 
  

F = − îρg Hy − 1
2 y

2( )y=0
y=H

+ ĵρg Hx + aλ
2π
cos 2π x

λ
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥x=0

x=L

F = − î 12 ρgH
2 + ĵρg HL − aλ

2π
1− cos 2π L

λ
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

⎧
⎨
⎩

⎫
⎬
⎭

Fhinge = î 12 ρgH
2 − ĵρg HL − aλ

2π
1− cos 2π L

λ
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

⎧
⎨
⎩

⎫
⎬
⎭

Fx = − ρg H − y( )dy 1( )
y=0

y=H

∫ = − 1
2 ρgH

2

Fy∑ = 0 = −Fy −W + ρgHL 1( )

W = ρg ydx 1( )
x=0

x=L

∫ = ρg asin 2π
λ
x⎛

⎝⎜
⎞
⎠⎟ dx 1( )

x=0

x=L

∫ = ρg aλ
2π

1− cos 2π
λ
L⎛

⎝⎜
⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

Fy = ρgHL − ρg aλ
2π

1− cos 2π
λ
L⎛

⎝⎜
⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
= ρg HL − aλ

2π
1− cos 2π

λ
L⎛

⎝⎜
⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

⎧
⎨
⎩

⎫
⎬
⎭

H 
y 

hinge 

x 

H y 

hinge x 

L 

Fy 

W 
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The moment exerted by the hinge may be found by summing moments at the hinge, 
, (15) 

where 
, (16) 

. (17) 
 
 
 
 
 
 
 
 
 
 
 
 
 

Substituting these relations into Eq. (15) and simplifying gives, 
, (18) 

, (19) 

, (20) 

where Eq. (5) has been substituted in for y in the first integral.  Solving the integrals in the previous 
equation gives, 

, (21) 

, (22) 

. (23) 

  

Mhinge∑ = 0 =Mhinge + r × dFp
A
∫

r = xî + yĵ

dFp = − pdA = −ρg H − y( ) dy 1( ) î − dx 1( ) ĵ⎡⎣ ⎤⎦

Mhinge = − xî + yĵ( )× −ρg H − y( ) dy 1( ) î − dx 1( ) ĵ⎡⎣ ⎤⎦
A
∫ = ρgk̂ H − y( ) −xdx − ydy( )

A
∫

Mhinge = −ρgk̂ H − y( ) xdx + ydy( )
A
∫

Mhinge = −ρgk̂ H − asin 2π
λ
x⎛

⎝⎜
⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
xdx( )

x=0

x=L

∫ + H − y( ) ydy( )
y=0

y=H

∫
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

Mhinge = −ρgk̂ 1
2 HL

2 − asin 2π
λ
x⎛

⎝⎜
⎞
⎠⎟ xdx

x=0

x=L

∫ + 1
6 H

3⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

Mhinge = −ρgk̂ 1
2 HL

2 − λ
2π

⎛
⎝⎜

⎞
⎠⎟
2

sin 2π
λ
x⎛

⎝⎜
⎞
⎠⎟ −

λ
2π

⎛
⎝⎜

⎞
⎠⎟ x cos

2π
λ
x⎛

⎝⎜
⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥x=0

x=L

+ 1
6 H

3
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

Mhinge = −ρgk̂ 1
2 HL

2 − λ
2π

⎛
⎝⎜

⎞
⎠⎟
2

sin 2π
λ
L⎛

⎝⎜
⎞
⎠⎟ +

λL
2π

⎛
⎝⎜

⎞
⎠⎟ cos
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2.4. Buoyant Force and Center of Buoyancy

When an object is submerged in a fluid, the pressure acting on the object deeper in the fluid (i.e., in the
direction of gravity) will be larger than the pressure acting on the object shallower in the fluid. As a result,
there will be a net pressure force acting on the object. This net pressure force is known as the buoyant force.

To derive the value of the buoyant force, consider the vertical pressure forces acting on a narrow cylinder
with cross-sectional area dA within a fully-submerged object as shown in Figure 2.17.

Figure 2.17. Pressure forces on a thin cylinder of cross-sectional area dA and height l from
within a fully-submerged object.

The net pressure force in the vertical direction on the narrow cylinder, assuming an incompressible fluid, is,

dFp,net = (p+ ρfluidgl)dA− pdA = ρfluidgldA (acting opposite to gravity). (2.78)

The total net pressure force acting on the object is found by integrating these small bits of pressure force
over the entire cross-sectional area of the object,

Fp,net =

ˆ
A

dFp,net =

ˆ
A

ρfluidgldA (acting opposite to gravity). (2.79)

Since the density and gravity are assumed constant here, they may be pulled outside the integral,

Fp,net = ρfluidg

ˆ
A

ldA (acting opposite to gravity), (2.80)

= ρfluidg

ˆ
V

dV (acting opposite to gravity), (2.81)

Fp,net = FB = ρfluidgVsubmerged
object

(acting opposite to gravity), (2.82)

where the integral is simply the volume of the submerged object. This net pressure force acting on the object
is referred to as the buoyant force.

Notes:

(1) Equation (2.82) states that the buoyant force is equal to the weight of the fluid that’s been displaced
by the submerged object. This relationship is also known as Archimede’s Principle.

(2) The same analysis can be used for partially submerged objects. In that case, the pressure acting
on the top of the object is atmospheric pressure while the pressure at the bottom is patm + ρfluidgl

′,
where l′ is the length of the narrow cylinder that’s submerged in the fluid (Figure 2.18). After
integrating over the objects cross-sectional area (similar to Eq. (2.80), we would arrive at exactly
the same relation as in Eq. (2.82) except that the Vsubmerged object refers to just that volume that is
submerged in the fluid.
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Figure 2.18. Pressure forces on a thin cylinder of cross-sectional area dA. The depth of
the cylinder below the free surface is l′.

(3) There is no net pressure force on the object in the directions perpendicular to gravity since the
pressure only varies parallel to the gravitational vector.

The resultant buoyant force acts at the center of buoyancy. The center of buoyancy is found by equating the
moment caused by the resultant buoyant force acting at the center of buoyancy to the distributed moment
caused by the distributed pressure forces. Consider moments about the z axis in Figure 2.19.

Figure 2.19. Moments about the z axis due to the pressure forces acting on a thin cylinder
of cross-sectional area dA and height l from within a fully-submerged object.

xCB î× ρgV ĵ︸ ︷︷ ︸
buoyant

force

=

ˆ
A

xî× ρgldAĵ︸ ︷︷ ︸
net pressure force

on cylinder

, (2.83)

xCBρgV k̂ = ρgk̂

ˆ
A

xdV (dV = ldA), (2.84)

xCB =
1

V

ˆ
V

xdV, (2.85)

which is the center of displaced volume. Performing similar analyses about the x and y axes produces similar
results. Thus, the center of buoyancy is located at the center of the displaced volume. This is true for both
fully submerged and partially submerged objects.

C. Wassgren 160 2024-02-01



Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

2.5. Stable Orientation of a Submerged Object

Submerged objects will be in an equilibrium orientation when the forces acting on the object are such
that there is no net moment on the object. Considering only the object weight and a buoyant force, an
equilibrium orientation will only occur when the two forces are co-linear, as shown in Figure 2.20. Neither
object experiences a net moment.

Figure 2.20. The buoyant force, acting at the center of buoyancy, and weight, acting at
the center of gravity, for two fully-submerged objects in equilibrium. The object on the left
is stable, but the object on the right is unstable.

The object on the left is in a stable equilibrium while the object on the right is in an unstable equilibrium.
The reason for the difference is that if each object is rotated slightly, the object on the left will experience a
moment that restores it back to its original configuration. However, a small perturbation to the right-hand
object will result in a moment that will cause the object to move away from its initial configuration.

The stability of partially submerged objects is a particularly important topic when considering the design
of ships. The Swedish ship Vasa is a famous example of a ship that was unstable and “turtled” shortly
after setting sail for the first time. Unfortunately, stability analysis of partially submerged objects can be
complicated since the submerged volume and center of buoyancy changes as the orientation of the object
rotates. For example, consider the stability of the simple shape shown in Figure 2.21 (CG is the center of
gravity and CB is the center of buoyancy). The initial configuration of the object (on the left) appears to be

Figure 2.21. The center of buoyancy and center of gravity for a partially-submerged object.
The center of buoyancy changes location as the submerged volume changes.

in unstable equilibrium with the center of gravity above the center of buoyancy. However, when the object
is tilted (on the right), the center of buoyancy shifts to one side such that it acts to restore the object to its
initial configuration. Hence, the object is actually initially in stable equilibrium.
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A tank is divided by a wall into two independent chambers.  The left chamber is filled to a depth of HL=6m 
with water (rH20=1000 kg/m3) and the right side if filled to a depth of HR=5m with an unknown fluid.  A 
wooden cube (SGwood=0.6) with a length of L=0.20m on each side floats half submerged in the unknown 
fluid.  Air (rair=1.2 kg/m3) fills the remainder of the container above each fluid.  The right container has a 
pipe that is vented to the atmosphere while the left container is sealed from the atmosphere.  A manometer 
using mercury as the gage fluid (SGHg=13.6) connects the two chambers and indicates that h=0.150 m. 
a. Determine the density of the unknown fluid. 
b. Determine the magnitude of the force (per unit depth into the page) acting on the dividing wall due 

to the unknown fluid. 
c. Determine the magnitude of the force (per unit depth into the page) acting on the dividing wall due 

to the water. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
Balance forces on the wooden cube. 

 (1) 

 (2) 
Using the given data: 

SGwood = 0.6 
rH2O = 1000 kg/m3 
Þ  rfluid = 1200 kg/m3 
 

( ) 2 31
fluid wood20yF g L L gLr r= = -å

2fluid wood wood H O2 2SGr r r\ = =

wooden cube (SGwood=0.6)  
of length L on a side 

h 

HL water 
unknown fluid 

L 

½ L 

HR 

air air 

mercury (SGHg=13.6) 

dividing wall 

vent to the atmosphere (patm = 101 kPa (abs)) 
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Now determine the force acting on the wall due to the unknown fluid. 

 (3) 

 (4) 
Using the given data: 

patm = 101 kPa (abs) 
HR = 5 m 
rfluid = 1200 kg/m3 
g = 9.81 m/s2 
Þ  Fp,R  = 506 kN/m 
 

Now find the pressure force due to the water. 

 (5) 

 (6) 
where pL is the (absolute) pressure acting on the free surface of the water.  This pressure may be found 
using the manometer. 

 (7) 

Substitute Eqn. (7) into Eqn. (6). 

 (8) 

Using the given data: 
patm = 101 kPa (abs) 
SGHg = 13.6 
rH2O = 1000 kg/m3 
g = 9.81 m/s2 
h = 0.150 m 
HL = 6 m 
Þ  Fp,L  = 903 kN/m 
 

( )
( )

( )
!, atm fluid

0  abs

1
Ry H

p R
y dAp

F p gy dyr
=

= ==

= +ò "##$##%
21

, atm fluid2p R R RF p H gHr\ = +

( )
( )

( )
!2, H O

0  abs

1
Ly H

p L L
y dAp

F p gy dyr
=

= ==

= +ò "##$##%

2

21
, H O2p L L L LF p H gHr\ = +

H O2atm Hg atm HgLp p gh p SG ghr r= + = +

( )H O 22

21
, atm Hg H O2p L L LF p SG gh H gHr r\ = + +

h 

mercury (SGHg=13.6) 

patm pL 
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A hydrometer is a specific gravity indicator, the value being indicate by the level at which the free 
surface intersects the stem when floating in a liquid.  The 1.0 mark is the level when in distilled 
water.  For the unit shown, the immersed volume in distilled water is 15 cm3.  The stem is 6 mm in 
diameter.  Find the distance, h, from the 1.0 mark to the surface when the hydrometer is placed in a 
nitric acid solution of specific gravity 1.5. 
 
 
 
 
 
 
SOLUTION: 
Since the hydrometer is in equilibrium, its weight and the buoyant force should equal each other.  When submerged 
in distilled water, 

𝑊 = 𝜌!"#𝑔𝑉$%&',!"# = 𝜌!"#𝑔ℎ
)
*
𝑑"  =>  ℎ = +

,!"#-
$
%$

", (1) 

where A is the hydrometer’s cross-sectional area.  The height h is the location where the mark is made for distilled 
water. 
 
When submerged in nitric acid, 

𝑊 = 𝜌!.#&𝑔
)
*
𝑑"(ℎ + Δℎ)  =>  ℎ + Δℎ = +

,!'#&-
$
%$

" =
+

/0!'#&,!"#-
$
%$

". (2) 

Combining Eqs. (1) and (2), 
+

,!"#-
$
%$

" + Δℎ =
+

/0!'#&,!"#-
$
%$

", (3) 

Δℎ = +
/0!'#&,!"#-

$
%$

" −
+

,!"#-
$
%$

", (4) 

Δℎ = +
,!"#-

$
%$

" -
1

/0!'#&
− 1/, (5) 

Δℎ = ,!"#-2()*+,!"#
,!"#-

$
%$

" - 1
/0!'#&

− 1/, (6) 

Δℎ = 2()*+,!"#
$
%$

" - 1
/0!'#&

− 1/. (7) 

 
Using the given data, 

Vdisp,H2O = 15 cm3, 
d = 0.6 cm, 
SGHNO3 = 1.5, 
=>  Dh = -17.7 cm. 

The hydrometer moves upward a distance of 17.7 cm from where the distilled water mark is located. 
 
 
 
 

 
 

 

Problem *3.89 [Difficulty: 2]

Given: Hydrometer as shown, submerged in nitric acid. When submerged in
water, h = 0 and the immersed volume is 15 cubic cm.
SG 1.5= d 6 mm⋅=

Find: The distance h when immersed in nitric acid.

Solution: We will apply the hydrostatics equations to this system.

Governing Equations: Fbuoy ρ g⋅ Vd⋅= (Buoyant force is equal to weight of displaced fluid)

Assumptions: (1) Static fluid
(2) Incompressible fluid

Taking a free body diagram of the hydrometer: ΣFz 0= M− g⋅ Fbuoy+ 0=

Solving for the mass of the hydrometer: M
Fbuoy

g
= ρ Vd⋅=

When immersed in water: M ρw Vw⋅= When immersed in nitric acid: M ρn Vn⋅=

Since the mass of the hydrometer is the same in both cases: ρw Vw⋅ ρn Vn⋅=

When the hydrometer is in the nitric acid: Vn Vw
π
4

d2
⋅ h⋅−= ρn SG ρw⋅=

Therefore: ρw Vw⋅ SG ρw⋅ Vw
π
4

d2
⋅ h⋅−⋅= Solving for the height h:

Vw SG Vw
π
4

d2
⋅ h⋅−⋅= Vw 1 SG−( )⋅ SG−

π
4
⋅ d2

⋅ h⋅=

h Vw
SG 1−

SG
⋅

4

π d2
⋅

⋅= h 15 cm3
⋅

1.5 1−
1.5

4

π 6 mm⋅( )2
10 mm⋅

cm

3
= h 177 mm⋅=

   Problem 3.69

3.69
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A uniform block of steel (with a specific gravity of 7.85) will “float” at a mercury-water interface as shown 
in the figure.  What is the ratio of the distances a and b? 
 
 
 

 
 
 
 
 
 
 
 
SOLUTION:  
 
Balance forces in the vertical direction, 

, (1) 

where the buoyant forces are equal to the weights of the displaced fluids. 
 
Re-writing in terms of the lengths a and b and the block’s cross-sectional area Ablock, 

, (2) 

, (3) 

, (4) 

, (5) 

. (6) 

 
Using the given data, 

SGHg = 13.6 
SGsteel = 7.85 
Þ  a/b = 0.83 
 

Note that we could also solve this problem by balancing the block’s weight with the pressure forces acting 
on the top and bottom block surfaces. 

, (7) 
where H is the depth of the water-mercury interface.  Simplifying this equation gives, 

, (8) 

, (9) 
which is exactly the same as Eq. (3). 

FV∑ = 0 = −Wblock + FB,Hg + FB,H2O
= −ρblockVblockg + ρHgVblock,

in Hg
g + ρH2O

Vblock,
in H2O

g

−ρblockAblock a + b( ) + ρHgAblockb + ρH2O
Ablocka = 0

−ρsteel a + b( ) + ρHgb + ρH2O
a = 0

−ρH2O
SGsteelb

a
b
+1⎛

⎝⎜
⎞
⎠⎟ + ρH2O

SGHg + ρH2O
b a
b
= 0

−SGsteel
a
b
+1⎛

⎝⎜
⎞
⎠⎟ + SGHg +

a
b
= 0

a
b
=
SGHg − SGsteel

SGsteel −1

FV∑ = 0 = −Wblock + Fp,H2O
+ Fp,Hg = −ρblockAblock a + b( )g − ρH2O

g H − a( )Ablock + ρH2O
gH + ρHggb( )Ablock

−ρblock a + b( )− ρH2O
H − a( ) + ρH2O

H + ρHgb = 0

−ρblock a + b( ) + ρH2O
a + ρHgb = 0

a 
b 

water 

mercury 

steel block 
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Archimedes principle states that the buoyant force acting on a submerged object is equal to the weight of 
the fluid displaced by that object.  Is this true for compressible fluids?   
 
 
SOLUTION: 
Consider an arbitrary object immersed in a compressible fluid as shown in the figure below. 

 

 
 
 
 
 
 
Determine the net pressure force acting on a parallelpiped of the material with a differential cross-sectional 
area, 

, (1) 
where, 

, (2) 

and, 

, (3) 

where r is the density of the fluid (not the object). 
 
Equation (1) becomes, 

, (4) 

. (5) 

 
The net pressure force acting over the entire object, i.e., the buoyant force, is, 

. (6) 

Assuming that the gravitational acceleration is constant (usually a good assumption), 

, (7) 

Note that the integrals in the previous equation give the mass of the fluid displaced by the object, i.e.,  

. (8) 

Thus, just as with the incompressible case, the buoyant force in a compressible fluid is equal to the weight 
of the fluid displaced by the object, 

. (9) 

( )1 2PdF p p dA= -

  
p1 = pz=0 + ρg dz

z=0

z=z1

∫

  
p2 = pz=0 + ρg dz

z=0

z=z2

∫

  

dFP = pz=0 + ρg dz
z=0

z=z1

∫ − pz=0 − ρg dz
z=0

z=z2

∫
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

dA

1

2

z z

P
z z

dF dA gdzr
=

=

= ò

1

2

z z

P P
A A z z

F dF gdzdAr
=

=

= =ò ò ò

  

FP = g ρ dz
z=z2

z=z1

∫
A
∫ dA

  

Mfluid displaced
by object

= ρ dz
z=z2

z=z1

∫
A
∫ dA

		
Fp =Mfluid	displaced

by	object
g

p1dA 

p2dA 

dA g 

z 
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Consider	an	ice	cube	with	initial	volume	Vice,0	floating	in	a	cup	of	water	of	
initial	volume	Vwater,0.		The	specific	gravity	of	ice	is	SGice.		Show	
mathematically	that,	as	the	ice	cube	melts,	the	water	level	in	the	cup	
remains	unchanged.	
	
	
	
	
	
SOLUTION:	
If	a	mass	of	ice,	Dmice,	melts	(Dmice	<	0),	it	will	correspond	to	an	equal	increase	in	water,	Dmwater,	i.e.,	

.	 (1)	
Expressed	in	terms	of	volumes,	

,	 (2)	

.	 (3)	
		

The	volume	of	water	displaced	by	the	ice	is	found	by	equating	the	weight	of	the	displaced	water	to	
the	weight	of	the	ice	(Archimedes	Law),	

,	 (4)	
	 .	 (5)	

Thus,	if	a	volume	of	ice	melts,	DVice,	then	the	amount	of	water	displaced,	in	order	to	balance	the	new	
ice	weight,	is,	

.	 (6)	

Note	that	if	the	ice	melts	(DVice	<	0)	,	less	water	needs	to	be	displaced	to	support	the	(smaller)	ice	
weight	(DVwater,disp	<	0).	
	
Thus,	the	sum	of	the	volume	of	water	added	due	to	melting	and	the	change	in	displaced	water	volume	
due	to	a	change	in	the	weight	of	the	ice	is,	

.	 (7)	
The	increase	in	water	volume	is	exactly	balanced	by	a	decrease	in	the	displaced	water	volume,	which	
means	that	the	water	level	height	won’t	change!	
	
This	fact	has	important	implications	regarding	the	rise	in	sea	level	due	to	melting	ice.		Melting	free-
floating	ice,	e.g.,	icebergs,	won’t	result	in	an	increase	in	sea	level.		However,	ice	that	was	originally	
supported	by	land,	e.g.,	glaciers,	will	contribute	to	an	increase	in	sea	levels.	
	

!!Δmwater = −Δmice

!!ρwaterΔVwater = −ρiceΔVice = −SGiceρwaterΔVice
!!ΔVwater = −SGiceΔVice

!!ρwaterVwater,dispg= ρiceViceg= SGiceρwaterViceg

!!Vwater,disp = SGiceVice

!!ΔVwater,disp = SGiceΔVice

!!ΔVwater +ΔVwater,disp = −SGiceΔVice + SGiceΔVice =0
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Consider the system shown below.  A wooden sphere of radius R and specific gravity SGwood is half 
submerged in an unknown liquid, referred to as liquid A.  Liquid A, which has a depth HA, is separated 
from a pool of water, which has a depth HH2O, by a hinged gate tilted at an angle q with respect to the 
horizontal.  The gate has a width b into the page. 
 
 
 
 
 
 
 
 
 
 
 
 
 
a. What is the density of liquid A, rA, in terms of the specific gravity of the wooden sphere (SGwood) and 

the density of water (rH20)? 
b. What is the pressure force liquid A exerts on the inclined gate in terms of (a subset of) rA, HA, g, b, and 

q?  Write this force as a vector. 
c. Assuming the gate has negligible mass and the angle q is 90° so the gate is vertical (figure shown 

below), at what height HH20 will the gate just start to rotate about its hinge?  Write this height in terms 
of (a subset of) rA, rH20, HA, g, and b. 

 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
The density of liquid A may be found by balancing the weight of the wooden sphere with the buoyant force 
acting on it, 

, (1)  

. (2) 
 

The force that liquid A exerts on the gate may be found by integrating pressure forces along the length of 
the gate, 

, (3) 

where, 
 (gage pressure), (4) 

,  (5) 

 

FW = FB ⇒ ρwood
4
3πR

3g = ρA
1
2

4
3πR

3

half of the
sphere is

submerged

 g⇒ ρA = 2ρwood

ρA = 2SGwoodρH20

FA  on gate = − pdA
A
∫

p = ρAgy

dA = bdyî − bdxĵ

R 

R 

HA 

q 

HH20 

hinge 

liquid A water 

y 

x 

dx 

dy 

q 

L 

HA 

g 

HA 

HH20 
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so that, 

. (6) 

Note that, 
  and  , (7) 

so that Eq. (6) becomes, 

 , (8) 

.  (9) 

 
Another approach to calculating the force on the gate is to balance forces on the triangular block of liquid 
shown in the figure below. 
 
 
 
 
 
 
 
 
 
 

 , (10) 

 , (11) 

where Eq. (7) has been used.  Note that since FA on gate = -Fgate on A, the final result is the same as what was 
found in Eq. (9)! 
 
 
For the specific case when q = 90° (figure shown below), the moments about the hinge are,   
 
 
 
 
 
 

, (12)  

, (13)  

, (14) 

FA  on gate = − ρAgy( ) bdyî − bdxĵ( )
A
∫ = ρAgb − î ydy

y=0

y=HA

∫ + ĵ ydx
x=0

x=L

∫
⎛

⎝
⎜

⎞

⎠
⎟

y = x tanθ HA = L tanθ

FA  on gate = ρAgb − î ydy
y=0

y=HA

∫ + ĵ x tanθ dx
x=0

x=HA tanθ

∫
⎛

⎝
⎜

⎞

⎠
⎟

FA  on gate = − 1
2 ρAgbHA

2 î + 1
2 ρAgb

HA
2

tanθ
ĵ

 

F∑ = 0 = − ρAgy( ) dybî( )
y=0

y=HA

∫
pressure force on side of fluid block
  

+ρAg 1
2 LHAbĵ

weight of fluid block
   + Fgate on A

force gate
exerts on block



Fgate on A = 1
2 ρAgbHA

2 î − 1
2 ρAg

HA
2

tanθ
bĵ

M hinge,z∑ = 0 = − ′y + HA − HH2O( )⎡⎣ ⎤⎦ ρH20g ′y( ) bd ′y( )
′y =0

′y =HH20

∫ + y ρAgy( ) bdy( )
y=0

y=HA

∫

0 = gb −ρH20 ′y 2 + HA − HH2O( ) ′y⎡⎣ ⎤⎦d ′y
′y =0

y=HH2O

∫ + ρA y2 dy
y=0

y=HA

∫
⎛

⎝
⎜

⎞

⎠
⎟

ρH20 1
3HH2O

3 + 1
2 HA − HH20( )HH2O

2⎡⎣ ⎤⎦ =
1
3 ρAHA

3

y 

x 
q 

L 

HA 

Fgate on A 

weight 

x 

HA 

HH2O 

hinge 

y 

y’ 
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, (15) 

, (16) 

. (17) 

This equation could be solved numerically for HH20/HA given a value for rA/rH20.  The following plot shows 
example solutions.  

 
 
An alternate approach for deriving Eq. (17) is to sum moments about the hinge, but make note of the fact 
that the center of pressure on each wall is one-third of the liquid depth from the bottom of the wall, 

, (18) 

, (19) 

, (20) 

, (21) 

which is the same as Eq. (17). 
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 James Bond is trapped on a small raft in a steep walled pit filled with water as shown in the figure.  Both 
the raft and pit have square cross-sections with a side length of l=3 ft for the raft and L=4 ft for the pit.  In 
the raft there is a steel anchor (SGA=7.85) with a volume of VA=1 ft3.  In the current configuration, the 
distance from the floor of the raft to the top of the pit is H=7.5 ft.  Unfortunately, Bond can only reach a 
distance of R=7 ft from the floor of the raft.  In order for Bond to escape, would it be helpful for him to toss 
the anchor overboard?  Justify your answer with calculations.  (Hint:  The mass of water is conserved in 
this problem.) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
Consider the cases when the anchor is in the raft and out of the raft as shown in the figures below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
First consider the change in the position of the raft floor relative to the free surface of the water. 
 
Case (a):  (1) 

Case (b):  (2) 
   

mraft+Bond + manchor( )g
weight of raft & contents

  
= ρH2Ogl2h

weight of displaced water
 

   

mraft+Bond( )g
weight of raft & contents
  

= ρH2Ogl2 h+ Δh( )
weight of displaced water
  

l 

L 

(a) 

h 

D l 

L 

D + DD 

h + Dh 

(b) 

H H + DH 

H R 

l 

L 

James Bond 

anchor with volume VA and 
specific gravity, SGA 

water 
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Subtract Eqn. (2) from Eqn. (1) and simplify. 
 (3) 

   (4) 

 (5) 

 (6) 

Note that since Vanchor > 0, Dh < 0 and thus the raft moves up relative to the free surface.  However, the free 
surface will also move so we still don’t yet know whether Bond moves up or down relative to the surface of 
the pit.   
 
We must now consider the movement of the free surface of the water. 
Case (a):  (7) 

Case (b):  (8) 

Since the volume of water is conserved, Eqns. (7) and (8) must be equal. 
 (9) 

 

 (10) 

  (where Eqn. (6) has been utilized) (11) 

Note that since SGanchor > 1, DD < 0, i.e. the free surface moves downward. 
 
Combine the expressions for Dh and DD to determine the movement of the raft bottom relative to the pit 
walls. 

 (12) 
 (13) 

 (14) 

 (15) 

 
Use the given data to determine DH. 

Vanchor = 1 ft3 
L = 4 ft 
SGanchor = 7.85 
l = 3 ft 
Þ  DH = -0.44 ft (The raft moves closer to the top of the pit.)  
 

Recall that H = 7.5 ft and Bond can only reach R = 7 ft.  After tossing the anchor overboard, the bottom of 
the raft is H + DH = 7.06 ft > R = 7 ft.  Hence, Bond still can’t reach the top of the pit.   
 Goodbye, Mr. Bond. 
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A cylindrical log of radius R and length L rests against the top of a dam.  The water is level with the top of 
the log and the center of the log is level with the top of the dam.  You may assume that the contact point 
with the dam is frictionless.  Obtain expressions for 
a. the mass of the log, and 
b. the contact force between the log and dam. 
Express your answers in terms of (a subset of) rH2O, g, L, and R. 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
The mass of the log, m, may be found by performing a force balance in the vertical direction, 

, (1) 
where g is the acceleration due to gravity.  Note that the point of contact with the dam is assumed to be 
frictionless.  
 
 
 
 
 
 
 
 
 
 
 
 
 
The net vertical pressure force, FP,y, is found by integrating the vertical component of the pressure force 
around the log, 

, (2) 

, (3) 

, (4) 

where r is the density of the water.  Evaluating the integral in Eq. (4) gives, 
, (5) 

. (6) 
Substituting into Eq. (1) and solving for m gives, 

Fy∑ = 0 = mg + FP,y

 

FP,y = psinθ dA
θ=π 2

θ=2π

∫ = ρgy
=p
 sinθ Rdθ L( )

=dA
 

θ=π 2

θ=2π

∫

 

FP,y = ρg R − Rsinθ( )
=y

   sinθRdθ L( )
θ=π 2

θ=2π

∫ = ρgR2L 1− sinθ( )sinθ dθ
θ=π 2

θ=2π

∫

FP,y = ρgR2L sinθ − sin2θ( )dθ
θ=π 2

θ=2π

∫

FP,y = ρgR2L −cosθ θ=π 2

θ=2π − 1
2θ − 1

4 sin 2θ( )⎡⎣ ⎤⎦θ=π 2
θ=2π{ } = ρgR2L −1− 1

2 2π − π
2( )⎡⎣ ⎤⎦

FP,y = − 1+ 3π
4( )ρgR2L

gravity, g 

y q R 

x 

Fw 

mg 

R 
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. (7) 

An alternate, easier method for determining the vertical pressure force acting on the log is to note that the 
vertical surface forces acting along a horizontal plane at the bottom of the log is, 

, (8) 

, (9) 

, (10) 

which is the same result found in Eq. (7). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
An even easier method is to use a buoyant force, although one must recognize the appropriate volume to 
use to determine the displaced volume.  A vertical force balance for the log gives, 

  Þ  , (11) 

where FB is the buoyant force, which is the weight of the displaced fluid.  Note that in this case, the 
displaced volume of fluid is the volume of the log, plus the volume above the right, upper quadrant of the 
log as shown in the figure below, 

, (12) 
Combining Eqs. (11) and (12) gives the mass of the log, 

, (13) 
which is exactly the same result as found in the previous two methods. 
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Now consider a horizontal force balance for the log. 

, (14) 
where Fw is the horizontal force exerted by the wall on the wall and FP,x is the horizontal component of the 
net pressure force acting on the log due to the water.  The net horizontal pressure force is given by, 

, (15) 

. (16) 

Evaluate the integrals in Eq. (16), 

, (17) 

. (18) 
Substitute into Eq. (14) and solve for the wall force. 

. (19) 
 

Another, much simpler method for finding the wall force is to note that the horizontal pressure force acting 
on the log will simply be the pressure force acting on the horizontally projected area. 

, (20) 

which is precisely the same result found in Eq. (18).  Note that the horizontal pressure force is only 
evaluated from y = 0 to y = R since on the bottom half of the log, the pressure forces from either side of the 
log cancel each other out. 
 
 
 
 
 
 
 
 

Fx∑ = 0 = −Fw + FP,x

 

FP,x = − pcosθ dA
θ=π 2
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2.6. Pressure Distribution Due to Rigid Body Motion

Recall that for a static fluid with no shear stresses, a balance of forces on a small fluid element gives (Eq. (2.6)),

−∇p+ ρg = 0. (2.86)

If the fluid element is now subject to an acceleration a, then from Newton’s Second Law, Eq. (2.86) becomes,

−∇p+ ρg = ρa. (2.87)

One method for producing an acceleration without shear stresses is through rigid body translation, e.g.,
where the whole body of fluid moves together in a straight line. For this case, we can easily combine the
acceleration due to gravity with the rigid body translational acceleration,

∇p = ρ(g − a). (2.88)

For example, consider the case in which a tank of liquid is accelerated upwards and to the right as shown in
Figure 2.22 (assume a two-dimensional system for simplicity).

Figure 2.22. A two-dimensional container of liquid accelerated in rigid-body translation
in the positive x and y directions.

From Eq. (2.88), the pressure distribution in the liquid is,

∂p

∂x
= −ρax, (2.89)

∂p

∂y
= −ρ(g + ay), (2.90)

where ax and ay are the components of the applied acceleration. Note that gravity points in the -y direction.
The pressure varies in both the x and y directions. We can determine the pressure anywhere in the fluid by
integrating and combining the previous two equations (and noting that they involve partial derivatives),

∂p

∂x
= −ρax =⇒ p(x, y) = −ρaxx+ f(y), (2.91)

(f(y) is an unknown function of y and can include a constant), (2.92)

∂p

∂y
= −ρ(g + ay) =⇒ p(x, y) = −ρ(g + ay)y + g(x), (2.93)

(g(x) is an unknown function of x and can include a constant), (2.94)

∴ p(x, y) = −ρaxx− ρ(g + ay)y + constant. (2.95)

Thus, the pressure varies linearly in both the x and y directions. The constant can be found by applying the
boundary condition on the (inclined) free surface where the pressure is atmospheric.

The isobars in the fluid, i.e., the surfaces on which the pressure is constant, are found by noting,

p = p(x, y) =⇒ dp =
∂p

∂x
dx+

∂p

∂y
dy

dp=0
=⇒ dy

dx
= −∂p/∂x

∂p/∂y
, (2.96)
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where, along an isobar, dp = 0. Making use of Eqs. (2.91) and (2.93), for this particular case,

dy

dx
= − −ρax
−ρ(g + ay)

= − ax
g + ay

. (2.97)

Thus, the isobars are lines of constant slope, as shown in Figure 2.23 as dotted lines. Note that the free

Figure 2.23. Isobars in a 2D container of liquid accelerating in translation.

surface is also an isobar. This simple example demonstrates that it’s possible to measure accelerations by
measuring the surface slope.
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A U-tube manometer is accelerated in the positive x direction with an acceleration a. Determine the height 
difference h in the manometer arms in terms of the acceleration a and the distance between the arms l.  

 
 
 
SOLUTION: 
The manometer is undergoing rigid body translation in the x direction, 

−∇𝑝 − 𝜌𝑔&̂ = 𝜌𝑎*̂, (1) 
which, when expanded is, 

− !"
!#
= 𝜌𝑎, (2) 

− !"
!$
− 𝜌𝑔 = 0. (3) 

Since the pressure is a function of both x and y, i.e., p = p(x, y), 
𝑑𝑝 = !"

!#
𝑑𝑥 + !"

!$
𝑑𝑦. (4) 

Substituting Eqs. (2) and (3) into Eq. (4) and solving for the pressure, 
∫𝑑𝑝 = ∫(−𝜌𝑎)𝑑𝑥 + ∫(−𝜌𝑔)𝑑𝑦, (5) 
𝑝 = −𝜌𝑎𝑥 − 𝜌𝑔𝑦 + constant. (6) 

 
Taking the difference between two arbitrary points, 

Δ𝑝 = −𝜌𝑎Δ𝑥 − 𝜌𝑔Δ𝑦. (7) 
Since on the free surface of the two arms the pressure is a constant, Δp = 0, from Eq. (7), 

 0 = −𝜌𝑎𝑙 − 𝜌𝑔ℎ, (8) 
ℎ = <%

&
= 𝑙 . (9) 
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A person is driving with a floating helium balloon in a car. When the car accelerates, in what direction does the 
balloon move, i.e., forward, backward, stay in the same location, something else?  

 

See, for example: https://www.youtube.com/watch?v=y8mzDvpKzfY   

SOLUTION: 
When the car accelerates, the pressure gradient in the air increases as one moves from the front of the car to the 
rear.  

 

Thus, the balloon will move forward as the car accelerates (perpendicular to the isobars) due to the buoyant force 
acting on the balloon!  
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Another type of rigid body motion is rigid body rotation, where the fluid rotates at a constant speed about a
central axis (Figure 2.24). As with rectilinear acceleration, in rigid body rotation there are no shear stresses
acting on small elements of fluid.

Figure 2.24. A cylindrical container of liquid in rigid body rotation.

Equation (2.87) still holds for this system, but rather than using Cartesian coordinates, the system is better
suited to cylindrical coordinates. In cylindrical coordinates,

∇p =
∂p

∂r
êr +

1

r

∂p

∂θ
êθ +

∂p

∂z
êz. (2.98)

Thus, Eq (2.87) becomes,

∂p

∂r
= ρω2r (refer to Figure 2.25), (2.99)

∂p

∂θ
= 0, (2.100)

∂p

∂z
= −ρg. (2.101)

Since p = p(r, z), the slope of the isobars for this case is,

p = p(r, z) =⇒ dp =
∂p

∂r
dr +

∂p

∂z
dz

dp=0
=⇒ dz

dr
= −∂p/∂r

∂p/∂z
. (2.102)

Substituting Eqs. (2.99) and (2.101) gives,

Figure 2.25. Acceleration in the radial direction for a small element of fluid in rigid body
rotation.

dz

dr
= −ρω

2r

−ρg
=
ω2r

g
. (2.103)
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Solving this differential equation subject to the boundary condition that z(r = 0) = 0, i.e., setting the origin
on the fluid free surface at the centerline, ˆ z=z

z=0

dz =
ω

g

ˆ r=r

r=0

rdr, (2.104)

∴ z =
1

2

ω2r2

g
. (2.105)

Thus, the isobars for this case are parabolas (actually a paraboloids since they’re rotated about the z-axis)!
The pressure anywhere in the fluid is found by integrating Eqs. (2.99) and (2.101) and combining (note that
the pressure derivatives are partial derivatives),

∂p

∂r
= ρω2r =⇒ p(r, z) =

1

2
ρω2r2 + f(z), (2.106)

(f(z) is an unknown function of z and can include a constant), (2.107)

∂p

∂z
= −ρg =⇒ p(r, z) = −ρgz + g(r), (2.108)

(g(r) is an unknown function of r and can include a constant), (2.109)

∴ p(r, z) =
1

2
ρω2r2 − ρgz + constant. (2.110)

The constant can be determined from the boundary condition at the (parabolic) free surface where the
pressure is atmospheric. Note that at a constant elevation z, the pressure increases with the square of the
(increasing) radius while at a constant radius, the pressure varies linearly with elevation.

Notes:

(1) Rigid body rotation of liquids is often used in the manufacture of large mirrors for telescopes since
the surface shape is parabolic.
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For the cylindrical tank containing a liquid of density ρ as shown below, at what rotational speed ω will the bottom 
of the tank first be exposed? 

 
 
SOLUTION: 
Recall from the notes that the free surface of the liquid forms a parabolic shape when in rigid body rotation, 

𝑧 = !
"
#!

$
𝑟", (1) 

where z is measured from the minimum height location (located along the centerline) and r is the radius from the 
centerline.  When the bottom of the tank is first exposed, a side view of the tank looks like the figure shown below. 

 
Note that the liquid volume remains constant in this problem.  The initial volume of liquid is simply, 

𝑉 = %
&
𝐷"𝐻. (2) 

The volume when the tank bottom is first exposed is, 

𝑉 = ∫ 𝑧 (2𝜋𝑟𝑑𝑟)-./.0
'()

*'+ "⁄
*'- = ∫ !

"
#!

$
𝑟"(2𝜋𝑟𝑑𝑟)+ "⁄

- = 𝜋 #!

$ ∫ 𝑟.𝑑𝑟+ "⁄
- = %

&
#!

$
1+
"
2
&
,  (3) 

Set Eqs. (2) and (3) equal, 
%
&
𝐷"𝐻 = %

&
#!

$
1+
"
2
&
, (4) 

𝜔 = 45$/
+!

. (5) 
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CHAPTER 3

Introductory Thermodynamics

3.1. Basics

3.1.1. What is thermodynamics?

Thermodynamics is the study of energy, work, and heat, and the transformation between these quantities.

3.1.2. Where is thermodynamics used?

• power generation, e.g., fossil fuel power plants, internal combustion engines, gas turbine engines,
solar thermal power plants

• high speed flows of gases, i.e., compressible flows, e.g., jet engines, rockets, high speed aircraft
• heating, ventilation, and air conditioning
• refrigeration
• combustion
• phase changes (evaporation, condensation, sublimation)

Thermodynamics serves as a foundation for many other topics, including fluid mechanics and heat transfer.

3.1.3. Definitions

• A closed system (aka system, aka control mass) is a particular quantity of matter chosen for study.
The system may change shape and location, but it is always the same matter.

• The surroundings consist of everything that is not the system.
• The boundary of a system is the surface separating the system and surroundings.
• An isolated system is a closed system that does not interact with its surroundings. For example,

if the system consists of air in a sealed, rigid, insulated container, then the air may be consider an
isolated system since it has no mass, work, or heat transfer with the surroundings.

• A control volume (CV) (aka open system) is a particular volume chosen for study. Unlike a system,
matter may change within a control volume. Note that the control volume does not need to remain
fixed in size or location; it may move or change size and shape.

• A control surface (CS) is the surface enclosing a control volume. The orientation of the CS at a
particular location is given by the direction of its outward-pointing unit normal vector, n̂, at that
location. The outward-pointing unit normal vector has a magnitude of one, is perpendicular to the
control surface, and always points out of the CV (Figure 3.1).

• Properties are macroscopic characteristics of a system. Example properties include mass, volume,
energy, pressure, and temperature. A quantity is a property if and only if its change in value
between two states is independent of the process between these states. For example, pressure is a
property since its value only depends on the current state, but the work done on a system is not
since the work depends on the process taken to reach a given state.

• An extensive property is one that depends on the mass in the system. For example, kinetic energy
and mass are extensive properties since their values are proportional to the mass in the system.

• An intensive property is one that is independent of the mass in the system. For example, temper-
ature and pressure are intensive properties since their values are independent of how much mass is
in the system.
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Figure 3.1. Illustration of control volume (CV), control surface (CS), and outward-
pointing, unit normal vectors.

• A specific property is an extensive property per unit mass. A specific property is also an intensive
property. An example of a specific property is specific volume v = V/m where V is the system
property and m is the system mass.

• An easy way to determine whether a property is extensive or intensive is to divide the system into
two parts and see how the property is affected.

• The state of a system is the system’s condition or configuration as described by its properties in
sufficient detail so that it is distinguishable from other states. Often only a subset of properties is
needed to define a state since some properties may be related.

• A process is the transformation of a system from one state to another. A few common processes
include:

– isothermal process: A process that occurs at constant temperature.
– isobaric process: A process that occurs at constant pressure.
– isochoric or isometric process: A process that occurs at constant volume.
– adiabatic process: A process in which there is no heat transfer between the system and sur-

roundings.
– isentropic process: A process that occurs at constant entropy.

• A process is in steady state if the system’s state does not change with time.
• A system is in a state of equilibrium if there are no potentials driving the system to another state.

Examples of driving potentials include unbalanced forces, unbalanced temperatures, an electric
potential (aka voltage).

• A process path is the series of states that a system passes through during some process.
• A quasi-equilibrium process is one where the process proceeds in such a manner that the system re-

mains infinitesimally close to an equilibrium state at all times. One can interpret a quasi-equilibrium
process as occurring slowly enough so that the system has time to adjust internally such that prop-
erties in part of the system do not change any faster than those properties in other parts of the
system.

• A reversible process is one in which the system is in a state of equilibrium at all points in its path.
In a reversible process, the system and the surroundings can be restored exactly to their initial
states.

• An irreversible process is one where the system is not in a state of equilibrium at all points in its
path. The system and surroundings cannot be returned to their exact initial states in an irreversible
process. Note that all natural processes are irreversible. Several effects causing irreversibility include
viscosity, heat conduction, and mass diffusion.
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• A cycle is a sequence of processes that begins and ends at the same state. At the conclusion of a
cycle, all properties have the same values they had at the beginning of the cycle. Thus, there is no
change in the system’s state at the end of a cycle.

• An equation of state is a relationship between properties of a particular substance or class of
substances. Equations of state cannot be obtained from thermodynamics but are obtained either
from experimental measurements or from some molecular model. Note that there can be various
types of equations of state, e.g., two equations of state for an ideal gas include a thermal equation
of state, which is the ideal gas law, p = ρRT , and a caloric equation of state, which describes the
relationship between the internal energy and temperature, du = cvdT .

3.2. Energy, Work, and Heat

Now let’s move our discussion to the three basic thermodynamic concepts of energy, work, and heat.

3.2.1. Energy

The energy associated with some phenomenon is not a physical quantity but is, in fact, just a number resulting
from a formula containing physically measurable quantities related to that phenomenon. For example, the
energy associated with the macroscopic motion of a system of mass, m, moving with a speed, V, is equal
to 1

2mV
2. By itself, the energy associated with a phenomenon is not a very useful quantity. However,

experiments examining the total energy of a system, i.e., the sum of all the various energies, have resulted in
a very remarkable observation. When the system does not interact with its surroundings, the total energy of
the system remains constant. The energy associated with a particular phenomenon may change; however, it
can only change at the expense of the energy associated with some other phenomenon. We’ll examine this
observation in greater detail a little later, but for now we will define the various types of energy that are
most commonly encountered in engineering thermodynamics.

3.2.1.1. Kinetic Energy, KE

The energy associated with the macroscopic motion of a system relative to a coordinate system xyz is known
as the kinetic energy, KE,

KE =
1

2
mV 2, (3.1)

where m is the mass of the system and Vxyz is the speed of the system in the coordinate system xyz.

3.2.1.2. Potential Energy, PE

The energy associated with a system’s ability to do work in an external force field, such as a gravity field, is
known as the potential energy, PE. For example, the gravitational potential energy for a mass, m, located
in a gravitational field with gravitational acceleration, g, pointing in the −z direction is,

PE = mgz, (3.2)

where z is the height of the mass above some reference plane.

3.2.1.3. Internal Energy, U

The internal energy of a system is comprised of a number of sub-classes of energy which include:

(1) sensible energy. This is the energy associated with the internal molecular translational, rotational,
and vibrational motion. Temperature is a measure of this type of internal energy. The larger the
temperature of a system, the greater its sensible energy.

(2) latent energy. This is the energy associated with the attraction between molecules. We concern
ourselves with latent energy most often when examining processes that involve a change of phase,
such as going from a solid to a liquid or from a liquid to a gas (or vice versa).

(3) chemical energy. This is the energy associated with the attraction between atoms.
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(4) nuclear energy. This is the energy associated with the attraction between particles within an atom,
such as the attraction between protons and neutrons. There are other forms of internal energy (e.g.,
the energy associated with electric and magnetic dipole moments) but we rarely encounter these in
typical engineering applications. In these notes we’ll only concern ourselves with sensible energy.

The total energy of a system, E, is the sum of these various types of energy,

E = U +KE + PE. (3.3)

Note that the total, internal, kinetic, and potential energies are extensive properties, i.e., the magnitude of
these energies depends on the system mass. In terms of specific quantities (extensive properties per unit
mass) we have,

e = u+
1

2
V 2 +G, (3.4)

where e is the specific total energy, u is the specific internal energy, V is the velocity magnitude (i.e.,
speed), and G is a (conservative) potential energy function. Note that the force per unit mass resulting
from a conservative potential energy function is found by taking the negative of its gradient, i.e., if G = gz
where g is the gravitational acceleration and z is the height of the system above some reference plane, then
fgravity = −∇G = −gk̂.

The values of the specific internal energy, u, at different states for various substances are tabulated in
thermodynamic property tables. Most introductory thermodynamics books have such tables for steam,
refrigerants, and a variety of gases.

3.2.2. Work, W

Work is an energy interaction (a way to transfer energy) occurring at the boundary between a system and
its surroundings. Thus, work is not a property of a system but rather is associated with a process that the
system is undergoing. The work done on the system by its surroundings depends on the path of the process.
A quantity that is also commonly encountered when discussing work is the power, Ẇ , defined as the work
done per unit time,

Ẇ =
δW

dt
. (3.5)

The small amount of work done on a system, δWon sys, is equal to the dot product of the force acting on the
system, Fon sys, and the distance over which the force acts, ds,

δWon sys︸ ︷︷ ︸
small amount of work

on the system

= Fon sys︸ ︷︷ ︸
force acting

on the system

· ds︸︷︷︸
small distance over
which the force acts

. (3.6)

The corresponding power is,

Ẇ =
δW

dt
= F · ds

dt
= F ·V, (3.7)

where V is the velocity.

The total work required in going from state 1 (indicated by s1) to state 2 (s2), W12, may be found by
integrating Eq. (3.6) between the two states,

W12 =

ˆ s2

s1

δW =

ˆ s2

s1

F · ds. (3.8)

Note that the work depends on the path taken from s1 to s2, so in addition to the integral, the path in going
from s1 to s2 must be known.
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A block with weight, w, is pushed on a frictional surface.  The friction coefficient between the block and the surface 
is µ.  Determine the amount of work done by the friction force on the block when moving the block from state 1 to 
state 2 using the paths shown. 
 
 
 
 
 
 
 
 
 (a)  (b) 

 
SOLUTION: 
The magnitude of the friction force acting on the block is F = µw, which acts over the small horizontal displacement 
dx.  Since the friction force always acts in the direction opposite to the displacment, 

.  (1) 
For case (a) the total displacement is just L.  Hence, the total work done on the block is, 

. (2) 

The total displacement for case (b) is 3L.  Hence, the total work for this case is, 

. (3) 

Thus, even though the block starts and ends at the same location, the work done on the block by the friction 
during the process is different since the paths are different. 

δWon block = F ⋅ds = −µwdx

  
Won block,12 = δW

1

2

∫ = −µwL

  
Won block,12 = δW

1

2

∫ = −3µwL

1 2 

L 

1 2 

L 
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Now let’s consider a few different types of work that can be done by or on a system. The types of work we’ll
present here include work due to gravity, acceleration, pressure, electricity, springs, and rotating shafts. In
the following drawings, the system is enclosed by a dashed line.

3.2.2.1. Gravitational Work (aka Potential Energy)

Consider the minimum amount of work required to move an object with mass, m, to a higher elevation in a
gravity field, assuming a quasi-static process so that accelerations can be neglected (Figure 3.2),

Won sys,12 =

ˆ ∆h

0

Fon sys · ds, (3.9)

=

ˆ ∆h

0

(mgêz) · (dzêz), (3.10)

Won sys,12 = mg∆h . (3.11)

The work is equal to the change in the potential energy of the system! Note that the work on the surroundings

Figure 3.2. Illustration of the work due to a change in elevation.

is equal to, but has the opposite sign, of the work done on the system.

3.2.2.2. Acceleration Work (aka Kinetic Energy)

Consider the minimum work required to accelerate an object with mass, m, from speed, V1, to speed, V2

(Figure 3.3),

Won sys,12 =

ˆ 2

1

Fon sys · ds, (3.12)

=

ˆ V2

V1

 m
dV

dt︸ ︷︷ ︸
Newton’s 2nd Law

êx

 ·(V dt︸︷︷︸
=dx

êx

)
, (3.13)

= m

ˆ V2

V1

V dV, (3.14)

Won sys,12 =
1

2
m
(
V 2

2 − V 2
1

)
. (3.15)

The work is equal to the change in the kinetic energy of the system!
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Figure 3.3. Illustration of the work due to acceleration.

Figure 3.4. Illustration of the work due to a pressure force.

3.2.2.3. Pressure Work

Consider the work done by the expansion of a fluid (a gas or liquid) in a piston (Figure 3.4),

Won surr,12 =

ˆ 2

1

Fon surr · ds, (3.16)

=

ˆ x2

x1

(pAêx) · (dxêx) , (3.17)

=

ˆ x2

x1

pAdx, (3.18)

Won surr,12 =

ˆ V2

V1

pdV . (3.19)

Note that dV = Adx. Note also that in this example, the work on the surroundings has been calculated instead
of the work acting on the system. To get the work done on the system, we simply have, Won sys = −Won surr.

If we plot how the pressure changes with volume, we get a p-V diagram, as shown in Figure 3.5. Note that
different paths from state 1 to state 2 will give different work values, as shown in Figure 3.6. One example of
a particular pressure-volume relationship is known as a polytropic process in which the pressure and volume
are related by,

pV n = c, (3.20)

where n and c are constants.
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Figure 3.5. Illustration of an example path on a p− V plot. The area under the curve is
equal to the work done by the fluid on the surroundings in going from volume 1 to volume
2.

(a) (b)

Figure 3.6. Different paths result in different values for the work. Here, W12,A > W12,B .

3.2.2.4. Electric Work

Electrons moving across a system boundary can do work on a system since, in an electric field a force acts on
an electron. When N Coulombs of electrons pass through a potential difference, V (the voltage), the electric
work done on the system is,

Wonsys = NV. (3.21)

The corresponding power is,

Ẇon sys = V Ṅ = V I = I2R =
V 2

R
, (3.22)

where I is the current and R is the resistance of the system. Note that Ohm’s Law (V = IR) has been used
in deriving the last two expressions on the right hand side of Eq. (3.22).
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3.2.2.5. Spring Work

Now let’s examine the work required to compress a spring with stiffness, k (Figure 3.7),

Won sys,12 =

ˆ 2

1

Fon sys · ds, (3.23)

=

ˆ x2

x1

(−kxêx) · (dxêx) , (3.24)

Won sys,12 =
1

2
k
(
x2

1 − x2
2

)
. (3.25)

Note that k is assumed constant in this equation.

Figure 3.7. An illustration of spring work.

3.2.2.6. Shaft Work

Another method of transferring energy between a system and the surroundings is through shaft work (Fig-
ure 3.8). Shaft work is most often associated with rotating fluid machines such as compressors, pumps,
turbines, fans, propellers, and windmills. The power acting on a system due to a rotating shaft is given by,

Ẇon sys = Ton sys · ω , (3.26)

where Ton sys is the torque acting on the system (assumed constant here) and ω is the angular velocity of
the shaft.

Figure 3.8. An illustration of shaft work.
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A gas in a piston assembly undergoes a polytropic expansion from an initial volume, Vi=0.1 m3, and initial 
pressure, pi = 2 bar (abs) (1 bar = 1*105 Pa), to a final volume of Vf = 0.5 m3.  Determine the work the gas 
does on the piston for n = 1.5 and n = 1 (where pV n = constant). 
 
 
SOLUTION: 
 
The work the gas performs on the piston is given by:  

 (1) 

where, for a polytropic expansion, 
 (2) 

where n is a constant.  Substitute Eq. (2) into Eq. (1). 

 (3) 

 
When n = 1.5, the constant is 

𝑐 = #2 ∗ 10!	Pa+,,-,,.
"#!

/#0.1	m$+-.
"%!

/
&.!

= 6.32 ∗ 10$	N ⋅ m(.! (4) 

and the work performed by the gas, using Eq. (3), is: 
𝑊)→+ =

,.$(∗&."	0⋅2#.%

3..!
[(0.5	m$)3..! − (0.1	m$)3..!], (5) 

𝑊)→+ = 2.2 ∗ 104	N ⋅ m. (6) 
 
When n = 1, the constant is: 

 	𝑐 = #2 ∗ 10!	Pa+,,-,,.
"#!

/#0.1	m$+-.
"%!

/ = 2 ∗ 104	N ⋅ m (7) 

and the work performed by the gas, using Eq. (3), is: 
𝑊)→+ = (2 ∗ 104	N ⋅ m) ln ?..!	2

"

..&	2"@, (8) 
𝑊)→+ = 3.2 ∗ 104	N ⋅ m. (9) 
  

3

3

0.5 m

0.1 m

V

i f

V

W pdV
=

®

=

= ò

constant=npV c=

3
3

3

3
3

3

0.5 m10.5 m
0.1 m

0.5 m0.1 m
0.1 m

1
1

ln 1

nV
n

i f

V

c V n
nW cV dV
c V n

-=
-

®

=

ì
¹ï -= = í

ï =î
ò

gas 

piston 
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Determine the work done by the gas on the piston shown below as it expands quasi-statically from a 
volume of 0.02 m3 to 0.04 m3 given that the piston area is 0.01 m2 and the mass resting on the piston is 100 
kg (neglect the weight of the piston).  Assume that atmospheric pressure is 101 kPa (abs). 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
The work done by the gas on the surroundings is, 

, (1) 

where, 
p = patm + mg/A = 101 kPa (abs) + (100 kg)(9.81 m/s2)/(0.01 m2) = 1.99*105 Pa (2) 
 The pressure in the gas balances the atmospheric pressure plus the weight of the mass divided by 

the piston area.  Note that this pressure is a constant throughout the process since we’re always 
balancing the same mass and atmospheric pressure. 

V1 = 0.02 m3 
V2 = 0.04 m3 
 

Since the pressure remains constant throughout the process, Eq. (1) may be written as, 

. (3) 

Substituting the numbers given above, 
Wby gas = 3.9 kJ. 
 

Wby gas = pdV
V1

V2

∫

Wby gas = pdV
V1

V2

∫ = p dV
V1

V2

∫ = p V2 −V1( )

g 

gas 

mass 

piston 

patm 

gas 

mass 

piston 

patm 
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A 12 V automotive battery is charged with a constant current of 1.5 A for 3 hrs.  Determine the work done on the 
battery.  
 
 
SOLUTION: 
The work done on the battery is, 

, 

. 
 

   
Won battery = W dt

t=0

t=T

∫ = VI dt
t=0

t=T

∫ =VIT = 12 V( ) 1.5 A( ) 3 hr ⋅3600 s
hr( )

on battery 0.2 kJW\ =

battery 
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3.2.3. Heat

Heat is another form of boundary energy interaction occurring between a system and its surroundings. The
difference between heat and work is that heat transfer occurs due to differences in temperature and work
occurs through mechanical or electrical means. Heat moves from regions of high temperature to regions of
low temperature. Like work, heat is not a property of a system but rather is associated with a process. The
amount of heat transferred during a process depends on the path taken during the process. To signify its
path dependence, the small amount of heat transferred in a process is signified using the inexact differential,
δQ.

Heat can be transferred between the system and surroundings via three methods: conduction, convection,
and radiation.

3.2.3.1. Conduction

Conduction is the transfer of energy from the more energetic particles of a substance to the adjacent less
energetic ones as a result of interactions between the particles. Conduction can occur in any substance:
solids, liquids, and gases. In gases and liquids, conduction occurs due to collisions between molecules during
their random motion. In solids, conduction occurs as a result of molecular vibrations and electron transfer.
As the more energetic particles collide or contact the less energetic particles, there is a transfer of energy
causing an increase in the energy of the less energetic particles and a decrease in energy of the more energetic
particles.

The temperature of a region containing many molecules is a measure of the energy due to random transla-
tional, rotational, and vibrational motions of the molecules. The larger the temperature, the more random
energy the molecules have. Thus, conduction or the transfer of energy due to molecular interactions, will
occur from regions of high temperature to regions of low temperature.

The rate of heat transfer, Q̇, (this is a vector quantity since the heat energy travels in a particular direction)
due to conduction through an area, A, of a substance is given by Fourier’s Law of Heat Conduction,

Q̇ = −kA∇T, (3.27)

where k is a material property of the substance known as the thermal conductivity, and ∇T is the temperature
gradient in the substance. Note that the negative sign in the equation is required so that heat moves from
regions of higher temperature to regions of lower temperature.

The thermal conductivity is a measure of how well a material can conduct heat energy. Materials that
conduct heat energy well have large k, e.g., kdiamond = 2300 W m−1 K, and those that conduct heat energy
poorly have small k, e.g., kair = 0.026 W m−1 K.

3.2.3.2. Convection

Convection is the mode of energy transfer between and a solid surface and an adjacent fluid that is in motion;
it involves the combined effects of conduction and relative fluid motion (also known as advection).

Convection can be further classified as forced convection or free (or natural) convection. In forced convection,
the fluid motion is produced via external means, e.g., by a fan or pump. In free convection, the fluid motion
is induced by buoyant forces arising from density difference in the fluid caused by temperature variations.

The rate of heat transfer, Q̇, leaving a surface with area, As, and entering the fluid due to convection is given
by Newton’s Law of Cooling,

Q̇ = hAs (Ts − Tf ) , (3.28)

where h is the heat transfer coefficient for the system and Ts is the temperature of the surface that is
in contact with the fluid with temperature, Tf . The heat transfer coefficient depends on the surface and
fluid properties as well as the flow characteristics. It is generally an experimentally determined property
for all but the simplest flow situations. Typical ranges for the free convection heat transfer coefficient are
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2 − 25 W m−1 K−1 and 50 − 1000 W m−1 K−1 for gases and liquids, respectively. For forced convection, the
range is 25− 250 W m−1 K−1 and 50− 20000 W m−1 K−1 for gases and liquids, respectively.

3.2.3.3. Radiation

Radiation is the energy emitted by matter in the form of electromagnetic waves as a result of changes in the
electronic configurations of the atoms or molecules. Unlike conduction and convection, radiation does not
require an intervening medium for transferring heat.

The rate at which heat is emitted from a surface with area, As, depends on the absolute temperature of the
surface, Ts, as indicated by the modified Stefan-Boltzmann Law,

Q̇emitted = εσAsT
4
s , (3.29)

where Q̇emitted is the rate at which heat is emitted from the surface, ε is the emissivity of the surface (0 ≤ ε ≤
1), and σ is the Stefan-Boltzmann constant (σ = 5.67× 10−8 Wm−2K−4) = 0.1714× 10−8 Btuh−1ft−2°R−4)).

A blackbody is an object with an emissivity of one, σblackbody = 1, i.e., a blackbody is a perfect emitter of
radiation.

Surfaces can also absorb radiation. The heat flux absorbed by a surface via radiation is given by,

Q̇absorbed = αQ̇incident, (3.30)

where α is the absorptivity of the surface (0 ≤ α ≤ 1). Note that a blackbody is defined as having α = 1
making it is both a perfect emitter and perfect absorber of radiation.

Actual determination of the rate at which radiation is emitted and absorbed by a surface can be complicated
since the rate depends on factors such as surface orientation, the effects of the intervening medium, and the
surface spectral characteristics.

For the special case in which a small surface interacts with a much larger surface, the intervening fluid has no
affect on the radiation transfer, and α = σ (termed a grey body), the rate of heat transfer from the surface
to the surroundings via radiation is,

Q̇emitted = εσAs
(
T 4
s − T 4

surr

)
. (3.31)

C. Wassgren 196 2024-02-01



  COE_03
   

Page 1 of 1 

An insulated frame wall of a house has an average thermal conductivity 
of 0.0318 Btu/(hr×ft×°R).  The thickness of the wall is 6 in.  At steady 
state, the rate of energy transfer by conduction through an area of 160 ft2 
is 400 Btu/hr, and the temperature decreases linearly from the inner 
surface to the outer surface.  If the outside surface temperature of the wall 
is 30 °F, what is the inner surface temperature in °F? 
 
 
 
 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
From Fourier’s Law, the heat transfer through the wall is: 

 (1) 

 
Re-arrange to solve for TH. 

 (2) 

 
Using the given parameters: 

k = 0.0318 Btu/(hr×ft×°R) 
Dx = 6 in = 0.5 ft 
A = 160 ft2 

 = 400 Btu/hr 
TC = 30 °F = 490 °R 
Þ TH = 529 °R = 69 °F 
 

  
Qx = −kA dT

dx
≈ −kA

TC −TH

Δx

  
TH = TC +

!Q
kA

Δx

Q!

x 

k = 0.0318 Btu/(hr×ft×°R) 
Dx = 6 in = 0.5 ft 
A = 160 ft2 

 = 400 Btu/hr 
TC = 30 °F = 490 °R 
 

  
Q

Dx 

A 

TC TH 

qx 
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A cartridge electrical heater is shaped as a cylinder of 
length 200 mm and outer diameter of 20 mm.  Under 
normal operating conditions the heater dissipates 2 kW 
while submerged in a water flow which is at 20 °C and 
provides a convection heat transfer coefficient of 5000 
W/(m2×K).  Neglecting heat transfer from the ends of the 
heater, determine the heater’s surface temperature.  If the 
water flow is inadvertently terminated while the heater 
continues to operate, the heater surface is exposed to air 
which is also at 20 °C but for which the heat transfer 
coefficient is 50 W/(m2×K).  What is the corresponding 
surface temperature?  What are the consequences of such an event? 
 
 
SOLUTION: 
 
 
 
 
 
 
Determine the surface temperature using Newton’s Law of Cooling. 

 (1) 
where A = pDL.  Re-arranging gives: 

 (2) 

 
Using the given parameters: 
T∞ = 20 °C = 293 K 

 = 2000 W 
h = 5000 W/(m2×K) 
D = 20*10-3 m 
L = 200*10-3 m 
Þ A = 1.3*10-2 m2 
 TS = 325 K = 52 °C 
 

If instead, h = 50 W/(m2×K), then: 
TS = 3500 K = 3200 °C 

This temperature is probably large enough to melt the cartridge heater! 

( )SQ hA T T¥= -!

S
QT T
hA¥= +
!

Q!

D 

L 

 Q!

TS 

T∞ 
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An uninsulated steam pipe passes through a room in which the air and walls are at 25 °C.  The outside 
diameter of the pipe is 70 mm, and its surface temperature and emissivity are 200 °C and 0.8, respectively.  
If the coefficient associated with free convection heat transfer from the surface to the air is 15 W/(m2×K), 
what is the rate of heat loss from the surface per unit length of pipe? 
 
 
SOLUTION: 
 
The convective heat transfer rate, , is given by Newton’s Law of Cooling: 

 (1) 
where h is the convection heat transfer coefficient, AS is the surface area of the pipe, TS is the surface 
temperature of the pipe and T∞ is the ambient temperature. 
 
The radiative heat transfer rate, , is given by: 

 (2) 

where e is the surface emissivity and s is the Stefan-Boltzmann constant. 
 
The total heat transfer rate from the pipe is: 

 (3) 
 

Using the given parameters: 
h = 15 W/(m2×K) 
D = 70*10-3 m  Þ  AS  =  pDL  Þ  AS/L  =  0.22 m 
TS = 200 °C = 473 K 
T∞ = 15 °C = 288 K 
e = 0.8 
s = 5.67*10-8 W/(m2×K4) 
Þ  = 580 W/m 

  = 420 W/m 

  
 

CQ!

( )C S SQ hA T T¥= -!

RQ!

( )4 4
R S SQ A T Tes ¥= -!

T C RQ Q Q= +! ! !

/CQ L!

/RQ L!

/ 1 kW/mTQ L =!
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3.3. The First Law of Thermodynamics

In words and in mathematical form, the First Law of Thermodynamics is: The increase in total energy of a
system is equal to the energy added to the system via heat transfer plus the energy added to the system via
work done on the system,

dEsys = δQinto sys + δWon sys, (3.32)

where dEsys is a small increase in the total energy of the system, δQinto sys is a small amount of energy
transferred into the system via heat transfer, and δWon sys is a small amount of energy added to the system
via work done on the system by the surroundings (Figure 3.9). Note that work and heat are just methods
of transferring energy, hence, the First Law of Thermodynamics can also be thought of as Conservation of
Energy.

Figure 3.9. A schematic showing a system and the directions of energy transfer.

Notes:

(1) Since energy is a property of a system, an exact differential (the “d” operator in dE) is used to
specify the small change in the energy. In other words, the difference in energy between two states
depends only upon the endpoint states and is independent of the path between the two states. The
small change in heat and work are indicated using an inexact differential (the “δ” operator in δQ
and δW ) to signify that both heat and work are path dependent processes.

(2) Note that different disciplines have different notations for the First Law. In particular, in thermo-
dynamics, work is usually discussed in terms of the work done by the system on the surroundings
so that the First Law becomes,

dEsys = δQinto sys − δWby sys. (3.33)

In order to avoid confusion regarding the proper sign for work, these notes will try to clearly specify
whether work is being done on or by the system. Understanding that if one does work on a system,
the system’s energy will increase is generally sufficient to avoid most sign convention problems.

(3) We can also write the First Law in terms of time rates of changes by taking the limit of the changes
in the properties over a short amount of time as the time duration approaches zero,

dEsys

dt
= δQ̇into sys + δẆon sys = δQ̇into sys − δẆby sys. (3.34)

Now let’s consider a few simple examples.
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A rigid tank contains a hot fluid that is cooled while being stirred.  Initially the internal energy of the fluid 
is 800 kJ.  During the cooling process, the fluid loses 500 kJ of heat and the stirring propeller does 100 kJ 
of work on the fluid.  What is the final internal energy of the fluid? 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
Apply the 1st Law to the system of fluid contained within the tank. 

 
where 

Ei = Ui = 800 kJ 
Qinto system = -500 kJ 
Won system = 100 kJ 
Þ Ef = Uf = 400 kJ 

 
 
 
 
 
 
 
 

into system on systemf iE E E Q WD = - = +

fluid 

rigid tank 

stirring propeller 
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Four kilograms of a certain gas is contained within a piston-cylinder assembly.  The gas undergoes a 
polytropic process where:  pV1.5=constant.  The initial pressure is 3 bars (abs), the initial volume is 0.1 m3, 
and the final volume is 0.2 m3.  The change in the specific internal energy of the gas in the process is  
Du = -4.5 kJ/kg.  There are no significant changes in the kinetic or potential energies of the gas.  What is 
the net heat transfer for the process?  
 
 
 
 
 
 
 
 
SOLUTION: 
Apply the First Law to the system of gas as shown in the figure below, 
 
 
 
 
 
 

 
, (1) 

where, 
𝑊!"	$%$ = ∫ −𝑝𝑑𝑉&'&!

&'&"
= ∫ −(𝑐𝑉().+)𝑑𝑉&'&!

&'&"
= 2𝑐(𝑉(,.+)&"

&! = 2𝑝)𝑉)).+,-.
'-

(𝑉.(,.+ − 𝑉)(,.+), (2) 

and, 
.   (The kinetic and potential energy changes are negligible.) (2) 

 
Re-arranging Eq. (1) and substituting Eqs. (2) and (3) gives, 

𝑄/0010
2!	$%$

= 𝑚$%$Δ𝑢$%$ − 2𝑝)𝑉)).+(𝑉.(,.+ − 𝑉)(,.+). (3) 

 
Using the given values: 

msys = 4 kg 
Dusys = -4500 J/kg 
p1 = 3*105 Pa 
V1 = 0.1 m3 
V2 = 0.2 m3 

Þ Qadded = -0.426 kJ    (heat is leaving the system) 
 

sys added on sys
to sys

E Q WD = +

sys sys sys sys sysE m e m uD = D = D

gas 

gas 
pA 
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A gas contained within a piston-cylinder assembly undergoes two processes, A and B, between the same 
end states, 1 and 2, where at state 1 the pressure is 10 bar, the volume is 0.1 m3, the internal energy is 400 
kJ, and at state 2 the pressure is 1 bar, the volume is 1.0 m3, and the internal energy is 200 kJ. 
 
Process A: Process from 1 to 2 during which the pressure-volume relation is pV = constant. 
Process B: Constant volume process from state 1 to a pressure of 2 bar, followed by a linear pressure-

volume process to state 2. 
 
Kinetic and potential energy effects can be ignored.  For each of the processes A and B, 
a. Sketch the process on a p-V diagram, 
b. evaluate the work by the gas on the piston, in kJ, and  
c. evaluate the heat transfer from the gas in kJ. 
 
 
SOLUTION: 
The processes are sketched on the plot shown below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The work may be found by integrating the pdV work given the two processes described, 

, (1) 

where for process A, 

, (2) 

noting that pV = c Þ p = c/V .  The constant c may be found from the initial (or final) conditions, 
, (3) 

. (4) 

Substituting the given numbers, 
p1 = 10 bar = 10*102 kPa  
V1 = 0.1 m3 

V2 = 1.0 m3 
Þ Wby gas on piston, path A = 230 kJ (5) 
 

  

Wby gas
on piston

= pdV
1

2

∫

Wby gas
on piston,
path A

= c dV
VV=V1

V=V2

∫ = c ln V2

V1

⎛
⎝⎜

⎞
⎠⎟

p1V1 = c = p2V2

Wby gas
on piston,
path A

= p1V1 ln V2

V1

⎛
⎝⎜

⎞
⎠⎟

V 

p 

p1 = 10 bar 

p2= 1 bar 

V1 = 0.1 m3 V2 = 1.0 m3 

A 
p3 = 2 bar 

B 
gas 
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The heat transferred from the gas may be found using the 1st Law of Thermodynamics, 
, (6)  

where the total change of energy in the gas is due only to changes in internal energy (U).  Using the given 
parameters, 

U1 = 400 kJ 
U2 = 200 kJ 
Wby gas = 230 kJ  (from Eq. (5)) 
Þ DU = -200 kJ  Þ  Qinto gas = 30 kJ (7) 

Thus, 30 kJ of heat is transferred into the gas (-30 kJ of heat is transferred from the gas). 
 
For process B, there is no work done in the constant volume part of the process since the volume doesn’t 
change.  The work in the linear pressure-volume part of the process is, 

, (8) 

, (9) 

, (10) 

where the pressure varies linearly with the volume, 

,  (equation of a line) (11) 

Substituting the given data, 
p2 = 1 bar = 1*102 kPa 
p3 = 2 bar = 2*102 kPa 
V1 = 0.1 m3 
V2 = 1.0 m3 
Þ  135 kJ (12) 

 
The heat transferred into the gas may be found using Eq. (6) with the following parameters, 

U1  = 400 kJ  (Note that the internal energies are independent of the path.  They’re a property!) 
U2 = 200 kJ 
Wby gas = 135 kJ (from Eq. (12)) 
Þ  Qinto gas = -65 kJ (13) 

Thus, 65 kJ of heat is transferred from the gas to the surroundings. 
 

 

ΔEgas
=ΔUgas


=Qinto
gas

−Wby
gas

⇒Qinto
gas

= ΔUgas +Wby
gas

Wby gas
on piston,
path B

= pdV
V=V1

V=V2

∫ = p2 − p3

V2 −V1

⎛
⎝⎜

⎞
⎠⎟
V −V1( ) + p3

⎡

⎣
⎢

⎤

⎦
⎥dV

V=V1

V=V2

∫ = p2 − p3

V2 −V1

⎛
⎝⎜

⎞
⎠⎟

1
2V

2 −V1V( ) + p3V
⎡

⎣
⎢

⎤

⎦
⎥
V1

V2

Wby gas
on piston,
path B

= p2 − p3

V2 −V1

⎛
⎝⎜

⎞
⎠⎟

1
2V2

2 − 1
2V1

2 −V1V2 +V1
2( ) + p3 V2 −V1( )

Wby gas
on piston,
path B

= 1
2
p2 − p3

V2 −V1

⎛
⎝⎜

⎞
⎠⎟
V2

2 − 2V1V2 +V1
2( ) + p3 V2 −V1( )

p = p2 − p3
V2 −V1

⎛
⎝⎜

⎞
⎠⎟
V −V1( ) + p3

Wby gas
on piston,
path B

=
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A gas is contained in a closed rigid tank fitted with a paddle wheel.  The paddle wheel stirs the gas for 20 
min, with the power varying with time t according to (10 W/min)t.  Heat transfer from the gas to the 
surroundings takes place at a constant rate of 50 W.  Determine: 
a. the rate of change of energy of the gas at time 10 min, in watts, and 
b. the net change in energy of the gas after 20 min, in kJ. 
 
 
SOLUTION: 
Apply the 1st Law to the system of gas within the tank, 

, (1) 

where  and  .  Thus, at t = 10 min, 

, (2) 

. 

 
The net change in energy of the gas is found by integrating Eqn. (2) in time, 

 (3) 

 
 
 

   

dEsys

dt
= Qadded

to sys
+ Won sys

   
Qinto sys = −50 W

   
Won sys = 10 W

min( )t

  

dEsys

dt
= −50 W + 10 W

min( )t

  
∴

dEsys

dt
= 50 W

  
ΔEsys =

dEsys

dtt=0

t=20 min

∫ dt = 50 W + 10 W
min( )t⎡⎣ ⎤⎦

t=0

t=20 min

∫ dt = 50 W( )t+ 1
2 10 W

min( )t2⎡⎣ ⎤⎦t=0

t=20 min

sys 60 kJE\D =

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

C. Wassgren 205 2024-02-01



Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

3.4. Thermodynamics Cycles

A cycle is a sequence of processes that begins and ends at the same state. At the conclusion of a cycle, all
properties have the same values they had at the beginning of the cycle. Thus, there is no change in the
system’s state at the end of a cycle. Mathematically,

∆Esys,cycle︸ ︷︷ ︸
=0

= Qinto sys,
cycle

+Won sys,
cycle

= Qinto sys,
cycle

−Wby sys,
cycle

, (3.35)

or,

Qinto sys,
cycle

= −Won sys,
cycle

or Qinto sys,
cycle

= Wby sys,
cycle

, (3.36)

where the total energy change over the cycle is zero since over a cycle we start and end at the same state.
Note that Qinto sys,cycle is the net amount of heat added to the system over the cycle and Wby sys, cycle is the
net amount of work done by the system over the cycle.

Cycles are common in many engineering applications. For example, power generation, heat pumps, and
refrigeration all involve thermodynamic cycles. Let’s consider two general classes of cycles: a power cycle
and a refrigeration (or heat pump) cycle.

3.4.1. Power Cycle

In a power cycle, illustrated in Figure 3.10, heat moves from a hot reservoir (part of the surroundings) into
the system, which then makes use of the heat to do work on the surroundings, and then ejects the remaining
heat to a cold reservoir (another part of the surroundings).

Figure 3.10. Illustration of a power cycle.

Utilizing Eq. (3.36) gives,

Wby sys,
cycle

= QH,cycle −QC,cycle, (3.37)

where QH is the heat transfer interaction with the hot reservoir and QC is the heat transfer interaction with
the cold reservoir.

Notes:

(1) The heat added to the system (QH) must be greater than the heat removed from the system (QC)
in order for the system to do work on the surroundings.

(2) The heat into the system is generally produced by the combustion of fuel, solar radiation, or a
nuclear reaction. The heat out of the system is generally discharged into the surrounding air or a
body of water.
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(3) The efficiency of the power cycle, η, is defined as the ratio of the amount of work produced in the
cycle to the amount heat added to the system,

η :=
Wby,cycle

QH,cycle
=
QH,cycle −QC,cycle

QH,cycle
= 1− QH,cycle

QC,cycle
, (3.38)

where Eq. (3.37) has been used. The efficiency can never be more than one since the heat out of
the system will never be more than the heat into the system over a cycle. We’ll discuss the limits
on power cycle efficiency in greater detail when discussing the Second Law of Thermodynamics.

3.4.2. Refrigeration and Heat Pump Cycles

In refrigeration and heat pump cycles, illustrated in Figure 3.11, heat moves from a cold reservoir (part of
the surroundings) into the system, work is done on the system to then eject heat from the system to a hot
reservoir (another part of the surroundings). Utilizing Eq. (3.36),

Figure 3.11. Illustration of refrigeration and heat pump cycles.

Won sys,
cycle

= QH,cycle −QC,cycle. (3.39)

Notes:

(1) In refrigeration and heat pump cycles, work is done on the system to make the heat out of the
system larger than the heat into the system. Hence, QH,cycle > QC,cycle.

(2) The objective of a refrigeration cycle is to remove heat from the cold reservoir, e.g., a house or
refrigerator, to a hot reservoir, e.g., the surrounding environment. A heat pump does the same
thing (moves heat from a cold reservoir to a hot reservoir), but the objective is to add heat to the
hot reservoir, e.g., remove heat from the environment to raise the temperature in a house. In many
of these applications, the power supplied to the system is electrical power.

(3) The system in a typical refrigerator or heat pump is the fluid used within the device. It is what
moves the heat (energy, actually) between the cold and hot reservoirs.

(4) Since the goal of a refrigerator is to efficiently remove heat from the cold reservoir, we can define
the coefficient of performance (COP ) of the refrigeration cycle, to be the ratio of the amount heat
added to the system from the cold reservoir to the work done on the system over the cycle,

COPref :=
QC,cycle

Won sys,cycle
=

QC,cycle

QH,cycle −QC,cycle
=

1

QH,cycle/QC,cycle − 1
, (3.40)

where Eq. (3.39) has been used. Note that the heat out of the system is greater than the heat into
the system (since work is done on the system). The refrigeration coefficient of performance can
vary from zero to very large values. The larger the COPref, the larger the transfer of heat from the
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cold reservoir for a given amount of work over the cycle. The COPref for a high efficiency consumer
refrigerator is between 1.6 – 3.1. Limits on the value for COPref will be discussed further after
examining the Second Law of Thermodynamics.

(5) The goal of a heat pump is to efficiently move heat into a hot reservoir; hence, we can define the
coefficient of performance (COP ) of the heat pump cycle, as the ratio of the amount heat added to
the hot reservoir to the work done on the system over the cycle,

COPHP :=
QH,cycle

Won sys,cycle
=

QH,cycle

QH,cycle −QC,cycle
=

1

1−QC,cycle/QH,cycle
, (3.41)

where Eq. (3.39) has been used. The heat pump coefficient of performance can never be less than
one since the heat out of the system always be larger than the heat into the system (work is done
on the system). The larger the COPHP, the larger the transfer of heat for a given amount of work
over the cycle. A typical COPHP for a commercial heat pump is between 3 – 4. Limits on the value
for COPHP will be discussed further after examining the Second Law of Thermodynamics.

(6) In the U.S., refrigeration and heat pump COP s are often expressed as Energy Efficiency Ratios,
EERs, which are simply COP s, but with an unfortunate mix of English and SI units,

EER :=
Q̇ in Btu/h

Ẇon sys,cycle in W
. (3.42)

Using appropriate unit conversions,

COP =

(
0.292

W

Btu/h

)
EEP. (3.43)

(7) Note that Eqs. (3.36) - (3.41) may all be written in rates of change too,

Q̇into sys,
cycle

= −Ẇon sys,
cycle

or Q̇into sys,
cycle

= Ẇby sys,
cycle

(3.44)

Ẇby sys,
cycle

= Q̇H,cycle − Q̇C,cycle, (3.45)

η :=
Ẇby,cycle

Q̇H,cycle

, (3.46)

Ẇon sys,
cycle

= Q̇H,cycle − Q̇C,cycle, (3.47)

COPref :=
Q̇C,cycle

Ẇon sys,cycle

, (3.48)

COPHP :=
Q̇H,cycle

Ẇon sys,cycle

. (3.49)
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A gas within a piston-cylinder assembly undergoes a thermodynamic cycle consisting of three processes in 
series: 
 
Process 1 – 2: Compression with constant internal energy (pV = constant) 
Process 2 – 3: Constant volume cooling to a pressure of 140 kPa (abs) and a volume of 0.028 m3 
Process 3 – 1: Constant pressure expansion with a total work of 10.5 kJ acting on the piston 
 
For the cycle, the net amount of work done by the gas on the piston is -8.3 kJ.  There are no changes in 
kinetic or potential energy. 
a. Sketch the processes on a p-V diagram. 
b. Determine the volume at state 1, in m3. 
c. Determine the work and heat transfer for process 1 – 2, each in kJ. 
d. Is this a power cycle or a refrigeration/heat pump cycle?  Explain. 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The volume at state 1 may be found by knowing that the work in going from state 3 to state 1 is 10.5 kJ, 

,   (since the pressure is constant from 3 to 1) (1) 

. (2) 

Using the given parameters, 
V3 = 0.028 m3 

 = 10.5 kJ 

p  = 140 kPa (abs) 
Þ  V1 = 0.103 m3 (3) 

 

The work in going from state 1 to state 2 can be found by knowing that the total work done by the gas on 
the piston over the whole cycle is -8.3 kJ, because the volume remains constant in going from state 2 to 
state 3, the corresponding work is zero, and the work on the piston in going from state 3 to state 1 is 10.5 
kJ, 

, (4) 

. (5) 

 

Wby gas
on piston,
3→1

= pdV
3

1

∫ = p dV
V=V3

V=V1

∫ = p V1 −V3( )

V1 =V3 +

Wby gas
on piston,
3→1

p

Wby gas
on piston,
3→1

 

Wby gas
on piston,
cycle

=−8.5  kJ
 

=Wby gas
on piston,
1→2

+Wby gas
on piston,
2→3

=0
 

+Wby gas
on piston,
3→1

=10.5  kJ
 

Wby gas
on piston,
1→2

= −18.8 kJ

p 

V 

1 

2 

3 
140 kPa 

0.028 m3 
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The heat transferred in the process from state 1 to state 2 can be found using the 1st Law of 
Thermodynamics and noting that the energy remains unchanged in going from 1 to 2, 

   Þ   (6) 

 
Since Wby gas,cycle = -8.3 kJ < 0, this is a refrigeration (or heat pump) cycle.  

 

ΔEgas,
1→2

=0


=Qinto gas,
1→2

−Wby gas,
1→2

=−18.8  kJ


Qinto gas,
1→2

= −18.8 kJ
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A refrigerator steadily receives a power input of 0.15 kW while rejecting energy by heat transfer to the surroundings 
at a rate of 0.6 kW.   

 
 
a. Determine the rate at which energy is removed by heat transfer from the refrigerated space. 
b. Determine the refrigerator’s coefficient of performance. 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Apply the 1st Law to the system to determine the rate at which heat is transferred from the refrigerator interior into 
the system, 

�̇�!"!#$,&' = �̇�( − �̇�), (1) 
�̇�) = �̇�( − �̇�!"!#$,&'. (2) 

Using the given data, 
�̇�( = 0.6 kW, 
�̇�!"!#$,&' = 0.15 kW, 
ð 	�̇�) = 0.45 kW. 

 
The coefficient of performance for a refrigeration cycle is, 

𝐶𝑂𝑃*$+ =
,̇!

.̇"#"$%,'(
. (3) 

Using the given data, 
COPref = 3.0. 
 

hot reservoir 
(atmosphere) 

system 

cold reservoir 
(refrigerator interior) 

�̇�!"!#$,&' 

�̇�) 

�̇�( 
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3.5. Properties

In order to analyze real-world systems, we must be able to relate describe the properties and the relation
between the properties of systems. In this section we examine how properties are presented and how they’re
related for a few important classes of materials. First, however, we must define a few terms:

• The phase of a substance has homogeneous chemical composition and physical structure. The three
phases of matter are solid, liquid, and vapor.

• A pure substance is one that is uniform and invariable in chemical composition. A pure substance
can exist in more than one phase, but all of the phases must have identical chemical compositions.

• A simple, compressible system is one in which electrical, magnetic, surface tension, gravitational,
and motion effects are negligible. Systems consisting of pure water or uniform mixtures of non-
reacting gases are examples of simple, compressible systems. The state principle states that any
two independent intensive thermodynamic properties will uniquely define the system’s state. If ad-
ditional effects are significant, e.g., gravitational forces and accelerations, then additional properties
are required, e.g., elevation and velocity.

p - v -T Diagrams
For simple, compressible systems, we can show the relationship between pressure, specific volume, and tem-
perature in (3D) p - v -T diagrams (Figures 3.12 and 3.13). It’s most convenient, however, to show (2D)
projections of these diagrams onto the p -T , p - v, and T - v planes. Please refer to the following two figures
in the following discussion of the important features of these diagrams.

• Three single-phase regions can be identified on the plots: solid, liquid, and vapor.
– The state in these regions is fixed by two independent properties, e.g., (p, v), (p, T ), or (v, T ).
– Above a critical pressure, temperature, and specific volume, known as the critical point, the

difference between liquid and vapor is no longer discernible. The properties at the critical point
are referred to as critical properties. Values for the critical pressure and temperature may often
be found in the back of textbooks (e.g., Table A-1 in Moran et al., 8th ed.) or online.

• Three two-phase regions in which two phases exist in equilibrium can also be identified in the plots.
These regions correspond to solid-vapor, solid-liquid, and liquid-vapor.

– These regions correspond to situations involving melting or freezing (transition from solid to
liquid or liquid to solid, respectively); vaporization (boiling – turning to vapor by increasing
the temperature while holding pressure constant, or cavitation – turning to vapor by decreasing
the pressure while holding the temperature constant) or condensation (transition from vapor
to a liquid); and sublimation (transition from a solid to a vapor).

– In these two-phase regions, the pressure and temperature are not independent. Hence, to define
a state we need the specific volume, v, and either the pressure or the temperature, (p or T ).

• A single three-phase line, along which solid, liquid, and vapor exist in equilibrium. This line is
referred to as the triple line.

• The state at which a phase change begins is known as a saturation state.
– The two-phase (liquid-vapor) dome-shaped region is known as the vapor dome.
– The lines bordering the vapor dome are known as the saturated liquid and saturated vapor

lines.
– The point at the top of the dome is known as the critical point, which is at the critical temper-

ature, Tc, and critical pressure, pc, and critical specific volume, vc. The critical temperature is
the maximum temperature at which liquid and vapor phases can co-exist in equilibrium.

• The projection of the p - v -T diagram onto the p -T plane is known as a phase diagram.
– The two-phase regions are projected as lines in this view.
– The saturation temperature is the temperature at which a phase change takes place at a

given pressure. The corresponding pressure is known as the saturation pressure. For each
saturation pressure there is a unique corresponding saturation temperature, hence, T and p
are not independent during a change of phase.

– The triple line projects to the triple point in a phase diagram.
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Figure 3.12. p - v -T surface and projections for a substance that expands on freezing. (a)
3D view, (b) phase diagram, (c) p - v diagram. Figure 3.2 from Moran et al., 7th ed.

– The triple point of water occurs at 273.16 K and 0.6113 kPa (abs).
– For a substance that expands on freezing, e.g., water, the solid-liquid phase line tilts toward the

left. For a substance that contracts upon freezing, the solid-liquid saturation line tilts toward
the right.

• The projection of the p - v -T diagram onto the p - v plane is also useful (Figure 3.14).
– Lines of constant temperature are referred to as isotherms.
– For T < Tc, the pressure remains constant in the two-phase regions along an isotherm. In the

single-phase regions along an isotherm, the pressure decreases with increasing v.
– The isotherm is at an inflection point when passing through the critical point.

• The projection of the p - v -T diagram onto the T - v plane is frequently used (Figure 3.15).
– Lines of constant pressure are known as isobars.
– The temperature remains constant with pressure along an isobar in the two-phase region.
– In the single-phase regions, the temperature increases with increasing specific volume along an

isobar.
– For pressures greater than the critical pressure, the temperature increases continuously with

increasing specific volume along an isobar.

The p - v -T sketches shown in the previous figures are distorted from what they actual plots look like.
Figure 3.16 shows an example of a p - v plot for water drawn to scale. Note the use of logarithmic axes.
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Figure 3.13. p - v -T surface and projections for a substance that contracts on freezing. (a)
3D view, (b) phase diagram, (c) p - v diagram. Figure 3.2 from Moran et al., 7th ed.

Figure 3.14. Sketch of a p - v plot.
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Figure 3.15. Sketch of a T - v plot.

Figure 3.16. A p - v plot for water. Note the logarithmic scales.

Now consider the T - v projection more closely and, specifically, the region near the vapor dome as shown in
Figure 3.17.

• The phase of a substance to the left of the vapor dome is known as a liquid, subcooled liquid, or
compressed liquid (CL).

– Point “l” in the figure is in this liquid region.
– The term “subcooled” refers to the fact that along an isobar, the temperature is too low for

the substance to be a vapor.
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Figure 3.17. Sketch of a T - v diagram. Figure 3.3 from Moran et al., 7th ed.

– The term “compressed” refers to the fact that at a given temperature, the pressure is larger
than the pressure required to reach the saturation state. The pressure increases moving upward
and toward the left across the isobars.

• The phase of a substance to the right of the vapor dome is known as a superheated vapor (SHV).
– The term “superheated” refers the fact that the temperature is larger than what would be

required to reach a liquid-vapor saturation state along a given isobar.
– Point “s” is in the superheated vapor region.

• Within the vapor dome (the two-phase, or saturated (S) region), both liquid and vapor can exist in
equilibrium. In order to specify how much of the substance is in liquid form versus vapor form, we
define the quality of the mixture, x, which is the mass fraction of vapor at a given state, i.e., how
much of the total mass is vapor. We’ll come back to this term a little later. For now, it’s sufficient
to know that, from the definition of quality, a quality of zero corresponds to a saturated liquid (no
vapor) while a quality of one corresponds to a saturated vapor (all vapor). Similar parameters can
be defined for two-phase regions consisting of solid-vapor and solid-liquid.

• There are three similar sounding terms used frequently in the two-phase region, but each of these
terms represents a different thing:

– saturated liquid: In this phase, the state is on the saturated liquid line, i.e., at the left edge of
the saturated phase, which means it’s 100% liquid, i.e., it has a quality of zero.

– saturated vapor: In this phase, the state is on the saturated vapor line, i.e., at the right edge
of the saturated phase, which means it’s 100% vapor, i.e., it has a quality of one.

– saturated: In this phase, the substance contains both liquid and vapor. The state is within the
vapor dome. The quality for a saturated substance is between zero and one.

Although the property plots are helpful for qualitatively understanding the relationship between properties
and phases of a substance, they’re not particularly useful for quantitative analysis. Fortunately, tables (and
computer databases – see for example http://webbook.nist.gov/chemistry/fluid/ have been prepared
that provide quantitative values for the relationship between properties.

Figure 3.18 highlights the saturation (liquid-vapor) region in a T - v diagram. The properties corresponding
to this region for water are given in Figure 3.19 as two tables. Recall that the pressure and temperature are
related in this two-phase region. Thus, there is a unique temperature, known as the saturation temperature,
at each pressure, known as the saturation pressure. The difference between the two tables is that one is
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ordered according to convenient temperature increments (top table) while the other is ordered by convenient
pressure increments (bottom table).

Figure 3.18. A sketch of a T - v diagram highlighting the region under the vapor dome
corresponding to the saturation properties.

Figure 3.19. Example table for the saturation properties for water organized by tempera-
ture (top) and pressure (bottom). These tables are from Moran et al., 7th ed.

At each saturation temperature and pressure, the tables provide the specific volume and other properties
(specific internal energy, specific enthalpy, and specific entropy) at saturated liquid and saturated vapor
conditions. The actual properties of the water will lie somewhere between or equal to the saturated liquid
and saturated vapor conditions when the water is in a saturated state, e.g., vsat. liquid ≤ v ≤ vsat. vapor.
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What the actual property values are depends on the quality of the water (the mass fraction of vapor in the
two-phase mixture), a topic to be discussed later.

Figure 3.20 presents super-heated vapor phase region in a T - v plot. Example properties for water in this
region are given in Figure 3.21. Recall that the pressure and temperature are independent in this single-phase
region and, thus, the table entries are organized based on a given pressure and range of temperatures. For
each pressure, the saturation temperature (the temperature at which the vapor touches the vapor dome along
the saturated vapor line) is also reported.

Figure 3.20. A sketch of a T - v diagram highlighting the super-heated vapor region.

Figure 3.21. Example table for the superheated vapor (SHV) properties for water. This
table is from Moran et al., 7th ed.

Figure 3.22 presents the compressed liquid phase region in a T - v plot. Example properties for water in this
region are given in Figure 3.23. Recall that the pressure and temperature are independent in this single-phase
region and, thus, the table entries are organized based on a given pressure and range of temperatures. For
each pressure, the saturation temperature (the temperature at which the liquid touches the vapor dome along
the saturated liquid line) is also reported.
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In what phase (liquid, saturated, vapor, etc.) is water for the following conditions? 
a. T = 24 °C, p = 0.1 bar (abs) 
b. p = 4 bar (abs), T = 180 °C 
c. p = 20 bar (abs), v = 0.01 m3/kg 
d.  T = 30 °C, p = 0.04246 bar (abs) 
e. T = 30 °C, v = 1.0043*10-3 m3/kg 
f. p = 25 bar (abs), v = 0.07998 m3/kg 
 
 
SOLUTION: 
a. T = 24 °C, p = 0.1 bar (abs) 

Using Table A.2 (attached to the end of this example), at T = 24 °C, psat = 0.02985 bar (abs).  Since p > psat, 
the water will be in a compressed liquid phase. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b. p = 4 bar (abs), T = 180 °C 

Using Table A.3 (attached to the end of this example), at p = 4 bar (abs), Tsat = 143.6 °C.  Since T > Tsat, the 
water will be in a superheated vapor phase. 

 
 
 
 
 
  

v 

T 

24 °C 

p = 0.02985 bar 

p = 0.1 bar 

v 

p 

T = 180 °C 

T = 143.6 °C 

4 bar 
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c. p = 20 bar (abs), v = 0.01 m3/kg 

Using Table A.3 (attached to the end of this example), at p = 20 bar (abs), vsat liquid = 1.1767*10-3 m3/kg and 
vsat vapor = 0.09963 m3/kg.  Since vsat liquid < v < vsat vapor, the water will be in a saturated (i.e., two phase) 
phase.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d.  T = 30 °C, p = 0.04246 bar (abs) 

Using Table A.2 (attached to the end of this example), at T = 30 °C, psat = 0.04246 bar (abs).  Since p = psat, 
the water will be in a saturated (two-phase) phase. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
  

v 

p 

0.01 m3/kg 

20 bar 

 vsat vapor  vsat liquid 

 Tsat = 212.4 °C (Table A.3) 

v 

T 

30 °C 

p = 0.04246 bar 

We don’t know where the state is within the 
vapor dome without knowing more 
information, e.g., the quality or specific 
volume. 
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e. T = 30 °C, v = 1.0043*10-3 m3/kg 

Using Table A.2 (attached to the end of this example), at T = 30 °C, vsat liquid = 1.0043*10-3 m3/kg.  Since v = 
vsat liquid, the water will be in saturated liquid phase. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f. p = 25 bar (abs), v = 0.07998 m3/kg 

Using Table A.3 (attached to the end of this example), at p = 25 bar (abs), vsat vapor = 0.07998 m3/kg.  Since v 
= vsat vapor, the water will be in a saturated vapor phase.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

v 

T 

30 °C 

psat = 0.04246 bar (from Table A.2) 

vsat liquid 

v 

p 

25 bar 

 vsat vapor 

 Tsat = 224.0 °C (Table A.3) 
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Figure 3.22. A sketch of a T - v diagram highlighting the compressed liquid region.

Figure 3.23. Example table for the compressed liquid (CL) properties for water. This
table is from Moran et al., 7th ed.

3.5.1. Linear Interpolation

In order to save space, the properties in the tables are listed in coarse increments, e.g., increments of 2.5 MPa
and 20 or 40 °C. To approximate property values between the ones stated in the tables, we can use linear
interpolation. Linear interpolation is the process of estimating the values of a property assuming a linear
relationship between neighboring data points. Hence, to estimate the value of a property P at a value V
given the property’s values at neighboring points VS and VL, corresponding to points in the table just smaller
than and larger than the value V of interest, we can use the equation of a line (Figure 3.24),

P − PS =

(
PL − PS
VL − VS

)
(V − VS) (3.50)

where PS and PL are the property values at VS and VL, respectively.
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What is the specific volume of compressed liquid water at 5.0 MPa (abs) and 60 °C?

 

 
 
 
SOLUTION: 
Since there is no specific volume data at 60 °C at 5.0 MPa in Table A-5 shown below, we can approximate the 
specific volume at 60 °C using linear interpolation, 

, (1) 

where 
v40 °C = 1.0056*10-3 m3/kg 
v40 °C = 1.0268*10-3 m3/kg 
T40 °C = 40 °C 
T60 °C = 60 °C 
T80 °C = 80 °C 
Þ n60 °C = 1.0162*10-3 m3/kg 
 

 
(Table from Moran et al., 7th ed.) 

 
 
 

v
60 oC

− v
40 oC

=
v

80 oC
− v

40 oC

T
80 oC

− v
40 oC

⎛

⎝
⎜

⎞

⎠
⎟ T

60 oC
−T

40 oC( )

 
(From Moran et al., 7th ed.) 
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What is the specific internal energy of compressed liquid water at 3.0 MPa and 60 °C? 
 
 
SOLUTION: 
For this case, there is no table entry for either 3.0 MPa or 60 °C so we must linearly interpolate with respect to both 
temperature and pressure (called bilinear interpolation), 

, (1) 

, 

, 

where, 
u2.5 MPa, 40 °C = 167.25 kJ/kg 
u2.5 MPa, 80 °C = 334.29 kJ/kg 
u5.0 MPa, 40 °C = 166.95 kJ/kg 
u5.0 MPa, 80 °C = 333.72 kJ/kg 
T2.5 MPa, 40 °C = T5.0 MPa, 40 °C = 40 °C 
T2.5 MPa, 60 °C = T5.0 MPa, 60 °C  = 60 °C 
T2.5 MPa, 80 °C = T5.0 MPa, 80 °C  = 80 °C 
p2.5 MPa, 60 °C = 2.5 MPa 
p3.0 MPa, 60 °C = 3.0 MPa 
p5.0 MPa, 60 °C = 5.0 MPa 
Þ u2.5 MPa, 60 °C = 250.77 kJ/kg, u5.0 MPa, 60 °C = 250.34 kJ/kg Þ u3.0 MPa, 60 °C = 250.68 kJ/kg 

Note that the same result would be achieved if we interpolated first with respect to pressure and then with respect to 
temperature. 
 

 
(Table from Moran et al., 7th ed.) 
 

u
2.5  MPa,60  oC

− u
2.5  MPa,40 oC

=
u

2.5  MPa,80  oC
− u

2.5  MPa,40 oC

T
2.5  MPa,80  oC

−T
2.5  MPa,40 oC

⎛

⎝
⎜

⎞

⎠
⎟ T

2.5  MPa,60 oC
−T

2.5  MPa,40 oC( )

u
5.0  MPa,60  oC

− u
5.0  MPa,40 oC

=
u

5.0  MPa,80  oC
− u

5.0  MPa,40 oC

T
5.0  MPa,80  oC

−T
5.0  MPa,40 oC

⎛

⎝
⎜

⎞

⎠
⎟ T

5.0  MPa,60 oC
−T

5.0  MPa,40 oC( )

u
3.0  MPa,60  oC

− u
2.5  MPa,60 oC

=
u

5.0  MPa,60  oC
− u

2.5  MPa,60 oC

p
5.0  MPa,60 oC

− p
2.5  MPa,60 oC

⎛

⎝
⎜

⎞

⎠
⎟ p

3.0  MPa,60 oC
− p

2.5  MPa,60 oC( )

 
(From Moran et al., 7th ed.) 
  

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

C. Wassgren 226 2024-02-01



Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

Figure 3.24. Schematic showing how to linearly interpolate a property value.

3.5.2. Quality

Recall that Figure 3.19 presented two tables for saturated water properties (aka, water in two-phase, liquid-
vapor equilibrium along the saturated liquid and the saturated vapor lines). The pressure and temperature
are uniquely related in this two-phase region (and along the saturated liquid and vapor lines). The top table
(Table A-2) presents the property data organized according to temperature while the bottom table (Table
A-3) presents the same data organized according to pressure. The subscripts “f” and “g” in the table refer
to “fluid” and “gas”, which is a historical notation. It is better to refer to the properties as being either at
the saturated liquid state (subscript “f” in the table) or in the saturated vapor state (subscript “g” in the
table). Similar tables exist for two-phase solid-liquid and solid-vapor.

Within the two-phase liquid-vapor region (i.e, the vapor dome), the fraction of mass that is vapor is given
by the quality, x, which is defined as,

x :=
mv

ml +mv
(3.51)

where mv and ml are the masses of vapor and liquid, respectively. Note that the fraction of mass that is
liquid is,

ml

ml +mv
=
ml +mv −mv

ml +mv
=
ml +mv

ml +mv
− mv

ml +mv
= 1− x (3.52)

Hence, a quality of zero corresponds to a saturated liquid (all liquid, mv = 0) while a quality of one corre-
sponds to a saturated vapor (all vapor, ml = 0). The quality can be used to determine the value of properties
within the two-phase region, given the saturated liquid and saturated vapor properties. For example, the
specific volume of a mixture (subscript “m”) of liquid (subscript “l”) and vapor (subscript “v”) in equilibrium
(i.e., in the vapor dome), assuming the quality x is known, is,

Vm = Vl + Vv (3.53)

vm =
Vm
mm

=
Vl + Vv
mm

=
Vl
mm

+
Vv
mm

(3.54)

where Vm is the total volume of the mixture. The quantity mm is the total mass of the mixture, i.e.,
mm = ml +mv. Hence,

vm =
Vl

ml +mv
+

Vv
ml +mv

=
mlvl

ml +mv
+
mv + vv
ml +mv

=

(
ml

ml +mv

)
vl +

(
mv

ml +mv

)
vv (3.55)

where the volume is related to the specific volume via V = mv. Making use of Eqs. (3.51) and (3.52),

vm = (1− x) vl + xvv (3.56)

Thus, the specific volume of a mixture of liquid and vapor can be thought of as the specific volume of the
saturated liquid multiplied by its mass fraction ((1 − x)vl) plus the specific volume of the saturated vapor
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multiplied by its mass fraction (xvv). Equation (3.56) may also be re-arranged to give,

vm = vl + x (vv − vl)︸ ︷︷ ︸
=vlv

(3.57)

where vlv is the change in the specific volume during vaporization (liquid turns to vapor). Hence, the specific
volume of the liquid-vapor mixture is the specific volume of the liquid (vl) plus the mass fraction that has
turned to vapor multiplied by the change in specific volume during vaporization (x(vv − vl)).
A similar approach may be used to find other properties in the two-phase liquid-vapor region, such as specific
internal energy, e.g.,

um = (1− x)ul + xuv = ul + x (uv − ul) (3.58)
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What is the quality of water at a pressure of 1.00 bar (abs) and specific volume of 0.01 m3/kg? 
 
 
SOLUTION: 
The specific volume of a saturated substance is, 

.  (1) 
Re-arrange to solve for the quality, 

. (2) 

For water at 1.00 bar (abs) (using Table A.3), 
vv = 1.694 m3/kg, 
vl = 1.0432*10-3 m3/kg. 

Solving Eq. (2) when v = 0.01 m3/kg, 
x = 0.0053. 

 
 
 

 

v = xvv + 1− x( )vl

x = v − vl
vv − vl

 
(From Moran et al., 7th ed.) 
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A closed, rigid tank fitted with a fine-wire electric resistor is filled with Refrigerant 22, initially at -10 °C, a quality 
of 80%, and a volume of 0.01 m3.  A 12 V battery provides a 5 A current to the resistor for 5 min.  If the final 
temperature of the refrigerant is 40 °C, determine the heat transfer, in kJ, from the refrigerant. 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
The heat transferred from the refrigerant to the surroundings may 
be found using the First Law applied to the refrigerant (our 
system), 

  Þ  , (1) 

where,  
,  (2) 

assuming that other forms of energy change, e.g., kinetic and 
potential, are negligible.  Note that since the container is closed, 
the initial and final refrigerant masses will be the same.  
Furthermore, the resistor wire is not considered to be part of the 
system. 
 
The specific internal energy at state 1 is also found using the thermodynamic property tables, 

, (3) 
where, at -10 °C in the saturated liquid-vapor phase, 

x = 0.80, 
uv = 223.02 kJ/kg, 
ul = 33.27 kJ/kg, 
 Þ u1 = 185.07 kJ/kg. 
 

The specific volume at state 1 may be found in a similar manner, 
, (4) 

where, 
x = 0.80, 
vv = 0.0652 m3/kg, 
vl = 0.7606*10-3 m3/kg, 
 Þ v1 = 0.0523 m3/kg. 
 

The mass of the refrigerant may be found from the initial state, 

,  (The electrical wire volume is assumed negligible compared to the tank volume.) (5) 

where, 
V = 0.01 m3, 
Þ  m = 0.191 kg. 
 

  

ΔER22 =Qinto
R22

+Won
R22

Qinto
R22

= ΔER22 −Won
R22

ΔER22 = ΔUR22 =U2 −U1 = m u2 − u1( )

u1 = xuv + 1− x( )ul

v1 = xvv + 1− x( )vl

m = V
v1

battery resistor 

Refrigerant 22 

battery resistor 

Refrigerant 22 

Qin 
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The specific internal energy at state 2 (after the 5 min) is found using the thermodynamic property tables for 
Refrigerant 22 at a temperature of 40 °C and a specific volume of, 

v2 = v1  (since the container volume and refrigerant mass remain constant). (6) 
 

Using the two-phase liquid-vapor thermodynamic table, observe that at the final temperature of T2 = 40 °C, the 
saturated vapor specific volume is 0.0151 m3/kg, which is smaller than the specific volume at state 2, n2 = 0.0523 
m3/kg.  Hence, the refrigerant must be in a superheated vapor phase.  Interpolating from the superheated vapor table 
using T2 and v2, 

u2 = 250.33 kJ/kg. 
 
Combining m, u2, and u1, Eq. (2) becomes, 

DU = 12.46 kJ/kg. 
 
There is no work acting on the refrigerant since the container volume remains constant and because the electrical 
work goes into the wire, which is not part of the system, 

.  (7) 

  
There is, however, heat that is transferred from the wire into the system.  This heat may be found by applying the 1st 
Law to the wire.  Assuming steady conditions so that the change in total energy of the wire is zero, the total heat 
from the wire will equal the total (electrical) work done on the wire, 

, (8) 

where the total work done on the wire is, 
 (assuming that neither the voltage nor current change over time Dt), (9) 

with, 
V = 12 V, 
I = 5 A, 
Dt = 5 min = 300 s, 
Þ Won wire = 18 kJ Þ Qfrom wire = 18 kJ.   

 
Break the heat into the refrigerant into two heat components, one from the wire and one from the remainder of the 
surroundings, 

. (10) 

  
Substituting the expressions for heat, work, and energy into Eq. (1), 

, (11)  

Þ  = -5.54 kJ. 

Since we’re interested in the heat from the refrigerant,  
 = 5.54 kJ. (12)  

 
The process and states are shown schematically in the following T-v plot. 
 
 
  

Won
R22

= 0

 
ΔEwire
=0 (steady)
 = −Qfrom

wire
+Won

wire
⇒Qfrom

wire
=Won

wire

Won
wire

=VIΔt

Qinto R22 =Qinto R22,
from wire

+Qinto R22,
from elsewhere

Qinto R22,
from elsewhere

= ΔU −Qinto R22,
from wire

Qinto R22,
from elsewhere

Qfrom R22,
into elsewhere

= −Qinto R22,
from elsewhere

T 

v 

T2 

T1 

v2 = v1 

p1 

p2 
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SLVM Table for R22 (from Moran et al., 8th ed., Wiley). 
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SHV Table for R22 (from Moran et al., 8th ed., Wiley) 
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SHV Table for R22 (from Moran et al., 8th ed., Wiley) 
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3.5.3. Enthalpy

The sum of the internal energy U and the pressure multiplied by the volume pV frequently appears in
thermo-fluid analyses and so is given the special name, enthalpy, H,

H := U + pV . (3.59)

Note that enthalpy is a property since U , p, and V are also properties. On a per unit mass basis (making it
an intensive property), the enthalpy becomes the specific enthalpy, h,

h := u+ pv . (3.60)

Notes:

(1) It is important to note that the specific internal energies and specific enthalpies in the tables (along
with the specific entropies, a property to be discussed later), are calculated with respect to a
particular reference state. For example, the internal energy of water is defined to be zero at a
saturated liquid state of 0.01 °C, i.e., Usat,H2O @ 0.01 °C := 0. Since most thermodynamic analyses
involve calculating differences in properties, e.g., ∆U , the choice of reference state does not affect
the results. For example, if a new reference state is chosen such that Unew = Utable + c where Utable

is the internal energy found in one of the tables and c is an arbitrary constant, then ∆Unew =
Unew,2 − Unew,1 = (Utable,2 + c) − (Utable,1 + c) = Utable,2 − Utable,1 = ∆Utable. Thus, the choice of
reference state is irrelevant.

(2) Property values for compressed liquids are often approximated using the saturated liquid property
values at the corresponding temperature, i.e.,

v(T, p)CL ≈ vl(T ), (3.61)

u(T, p)CL ≈ ul(T ). (3.62)

These approximations may be made because in the compressed liquid region, the spacing between
isobars is very small as one moves between specific volumes (and specific internal energies), as can
be seen in Figure 3.25.

The specific enthalpy may be approximated as,

h(T, p)CL ≈ ul(T ) + pvl(T ). (3.63)

Note that,
hl(T ) = ul(T ) + psat(T )vl(T ) =⇒ ul(T ) = hl(T )− psat(T )vl(T ). (3.64)

Substituting into Eq. (3.63) gives,

h(T, p)CL ≈ hl(T )− psat(T )vl(T ) + pvl(T ), (3.65)

h(T, p)CL ≈ hl(T ) + [p− psat(T )]vl(T ). (3.66)
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Determine the relative errors in calculating the specific volume, specific internal energy, and specific enthalpy for 
liquid water at a temperature and pressure of 100 °C and 100 bar, respectively, using thermodynamic property tables 
and using the saturated liquid state approximations. 
 
 
SOLUTION: 
From the thermodynamic property tables for liquid water at 100 °C and 100 bar (e.g., Table A-5, Moran et al., 7th 
ed.), 

v = 1.0385*10-3 m3/kg 
u = 416.12 kJ/kg 
h = 426.50 kJ/kg 

Using the saturated liquid approximations (e.g., Table A-2, Moran et al., 7th ed.), 
v ≈ 1.0435*10-3 m3/kg at 100 °C  
ul ≈ 418.94 kJ/kg at 100 °C  
h ≈ 429.37 kJ/kg at 100 °C, hl = 419.04 kJ/kg and psat,100 °C = 1.014 bar 
 

The relative error, e, in a property, P, is, 

. (1) 

Thus, ev = 0.005, eu = 0.007, and eh = 0.007.  The error is less than 1% in all cases, implying that the approximations 
are good ones.  
 

εP =
Papprox − Pactual

Pactual
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Five kg of water is contained in a piston-cylinder assembly, initially at 5 bar and 240 °C.  The water is slowly heated 
at constant pressure to a final state.  If the heat transfer into the water for the process is 2960 kJ, determine the 
temperature at the final state, in °C, and the work done by the water on the piston, in kJ.  Kinetic and potential 
energy effects are negligible. 
 
SOLUTION: 
Apply the 1st Law to the water in the piston, 

, (1) 

where 
DEH2O = DUH2O = m(u2 – u1). (2) 

 
The specific internal energy at the initial state (state 1) may be found from the thermodynamic tables for water at p1 
= 5 bar and T1 = 240 °C.  Note that saturation temperature for liquid water at 5 bar is 151.86 °C; hence, the water 
must be in the superheated vapor region since T1 is greater than the saturation temperature.  Using the table, 

u1 = 2707.6 kJ/kg, 
v1 = 0.4646 m3/kg, 
h1 = 2939.9 kJ/kg. 
 

The work done by the water on the piston is, 

, (3) 

where the pressure is constant (p1 = p2 = 5 bar) throughout the process.  Substituting into Eq.  
, (4) 

, (5) 

, (6) 

, (7) 

where h is the specific enthalpy of the water.  Substituting values, 
h1 = 2939.9 kJ/kg 
Qinto = 2960 kJ 
m = 5 kg 
Þ h2 = 3531.9 kJ/kg 
 

From the thermodynamic two-phase liquid-vapor table for water at p2 = 5 bar, the saturated vapor specific enthalpy 
is 2748.7 kJ/kg, which is smaller than h2.  Hence, the water at state 2 will be in the superheated vapor state.  Using 
the thermodynamic superheated vapor table with h2 and p2, and interpolating, 

T2 = 522 °C 
v2 = 0.7314 m3/kg 
 

Using Eq. (3) and the values for v1, v2, m, and p, 
Wby H2O = 667 kJ/kg 
 

Sketches of the process on T-v and p-v plots are shown. 
 
 
 
 
 

ΔEH2O =Qinto
H2O

−Wby
H20

Wby H2O = pdV
V1

V2

∫ = p V2 −V1( ) = pm v2 − v1( )

m u2 − u1( ) =Qinto
H2O

− pm v2 − v1( )
m u2 + p2v2 − u1 − p1v1( ) =Qinto

H2O

m h2 − h1( ) =Qinto
H2O

h2 = h1 +
Qinto
H2O

m

p1 = p2 

2 

1 

v 

T 

v1 v2 

T1 

T2 

p1 = p2 
2 

1 

v 

p 

v1 v2 

T1 

T2 

water 
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A closed, rigid tank is initially filled with 0.8 kg of water at 70 bar (abs) and a volume of 0.001 m3 (state 1).  
Heat transfer occurs between the water and the surroundings until the pressure in the water is 35 bar (abs) 
(state 2). 
a. Is the initial phase of the water a compressed liquid, saturated, or superheated vapor?  Justify your 

answer. 
b. Determine the specific internal energy at the initial state, in kJ/kg. 
c. Calculate the specific volume at the final state, in m3/kg. 
d. Is the final phase of the water a compressed liquid, saturated, or superheated vapor?  Justify your 

answer. 
e. Determine the final specific internal energy of the water, in kJ/kg. 
f. Determine the work done by the water during the process, in kJ.  
 
 
SOLUTION: 
The system is the water as shown in the following figure. 
 
 
 
 
 
 
 
 
 
The specific volume at state 1 is, 

, (1) 

where V = 0.001 m3 and m = 0.8 kg.  Hence, 
v1 = 1.25*10-3 m3/kg. (2)  

At a pressure of p1 = 70 bar, the specific volume for a saturated liquid state is 1.3513*10-3 m3/kg (from 
Table A-3 in Moran et al., 7th ed.).  Since the specific volume at state 1 is smaller than this value, state 1 
must be in a compressed liquid phase. 
 
Since the water is in a compressed liquid state, we can use the saturated liquid value of the specific internal 
energy at the same temperature (recall that uCL(p,T) ≈ ul(T)) to approximate the actual specific internal 
energy (found from Table A-3).  Since the temperature isn’t given we can estimate it from the specific 
volume.  Recall that for a compressed liquid, vCL(p,T) ≈ vl(T).  Thus, using Table A-2 in Moran et al., the 
temperature corresponding to v1= vCL = 1.25*10-3 m3/kg is approximately T = 250 °C.  The corresponding 
saturated liquid specific internal energy is, 

 u1 = 1080.4 kJ/kg. (3) 
 

The specific volume at state 2 will be identical to the specific volume at state 1 since the tank volume and 
water mass remain unchanged, i.e., 

v2 = v1 = 1.25*10-3 m3/kg. (4) 
 

At p2 = 35 bar (abs), the specific volumes for the saturated liquid and saturated vapor states (Table A-3) 
are, respectively, 

vl2 = 1.2347*10-3 m3/kg, (5) 
vv2 = 0.05707 m3/kg. (6) 

The specific volume for state 2 (Eq. (4)) falls between these two values.  Hence, state 2 is in a saturated 
phase.  
 
Since state 2 is in a saturated phase, the specific internal energy is found using the quality at state 2.  The 
quality at state 2 can be found using the specific volume at state 2, 

v1 =
V
m

water 
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, (7) 

 x2 = 2.74*10-4. (8) 
The specific internal energy at the saturated liquid and saturated vapors states (Table A-3) is, respectively,  

ul2 = 1045.4 kJ/kg, (9) 
uv2 = 2603.7 kJ/kg. (10) 

Hence, the specific internal energy at state 2 is, 
, (11) 

u2 = 1045.8 kJ/kg. (12) 
 

Since the volume doesn’t change during the process, there is no work done by the water, 
. (13) 

v2 = x2vv2 + 1− x2( )vl2 ⇒ x2 =
v2 − vl2
vv2 − vl2

u2 = x2uv2 + 1− x2( )ul2

Won
H2O

= 0
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Figure 3.25. A T - v plot for water highlighting the close spacing of isobars in the com-
pressed liquid region.

3.5.4. Specific Heat

Recall that internal energy, sensible energy in particular, is related to temperature. Furthermore, we know
from experience that some materials heat up at different rates than others. For example, 4.5 kJ of energy
added to a 1 kg mass of iron will raise the iron’s temperature from 20 °C to 30 °C. To raise 1 kg of water from
20 °C to 30 °C, however, requires 41.8 kJ; about nine times the amount of energy than is required to raise the
iron’s temperature an equivalent amount.

The property that quantifies the energy storage capability of matter is called the specific heat (aka specific
heat capacity). The specific heat of a substance is the energy required to raise the temperature of a unit
mass of a substance by one degree. In general, the energy required to raise the temperature of a substance
will depend on the process path. Two particular processes of interest are where the system’s volume is held
constant while energy is added and where the pressure in the system is held constant while energy is added.

The specific heat at constant volume, cv, is the energy required to raise the temperature of a unit mass by
one degree during a constant volume process. For a pure, simple compressible substance with u(T, v), the
specific heat at constant volume is defined as,

cv :=
∂u

∂T

∣∣∣∣
v

, (3.67)
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where the subscript “v” indicates that the volume is held constant during differentiation.

The specific heat at constant pressure, cp, is the energy required to raise the temperature of a unit mass by
one degree during a constant pressure process. For a pure, simple compressible substance with h(T, p), the
specific heat at constant pressure is defined as,

cp :=
∂h

∂T

∣∣∣∣
p

, (3.68)

where the subscript “p” indicates that the pressure is held constant during differentiation.

Notes:

(1) Note that cp is greater than cv since at constant pressure, the system is allowed to expand and
the energy for this expansion work must also be supplied to the system. The exception is for
incompressible substances where the system does not expand and thus cp = cv.

(2) The ratio of the specific heats frequently appears in thermo-fluid analyses and is defined as the
specific heat ratio, k,

k :=
cp
cv

. (3.69)

Since cp ≥ cv, k ≥ 1.
(3) In general, cv and cp are functions of temperature and pressure; however, for certain classes of

substances, such as incompressible materials and ideal gases, the pressure dependence is negligible
and only the temperature dependence is considered.

(4) The specific heat at constant volume (cv) can be used in processes where the volume varies. Likewise,
the specific heat at constant pressure (cp) can be used in processes where the pressure varies. The
terms “at constant volume” and “at constant pressure” are used only in the definitions of the specific
heats. For example, consider the constant pressure process path shown in Figure 3.26. Although
the process is at constant pressure, we can still evaluate cv at different points along the path since
at each point one can imagine a local constant volume process.

Figure 3.26. Illustration of a constant pressure process path. At each point along the path,
one can locally evaluate the specific heat at constant volume, cv = ∂u

∂T |v, even though the
process is at constant pressure.
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3.5.5. Incompressible Substances

Liquids and solids are often approximated in engineering applications as being incompressible, meaning that
their specific volumes (or densities) remain constant, i.e., v = constant. For example, referring to Figure 3.25,
large changes in pressure produce very small changes in specific volume in the compressed liquid region.
Similarly, since the isobars are nearly vertical in the compressed liquid region, large changes in temperature
at a given pressure also only change the specific volume only slightly.

In addition to the specific volume assumption, it’s a reasonable approximation to assume that the specific
internal energy is a function only of temperature, i.e., u(T ), for incompressible substances. Recall that
when using the compressed liquid tables we often use the approximation that uCL(T, p) ≈ ul(T ), i.e., for
compressed liquids the pressure plays little role in determining the specific internal energy. From Eq. (3.67),

cv =
du

dT
, (3.70)

where u(T ) and, thus, cv = cv(T ). In addition,

h(T, p) = u(T ) + pv =⇒ cp =
∂h

∂T

∣∣∣∣
p

=
du

dT
= cv. (3.71)

Thus,

cp(T ) = cv(T ) = c(T ) , (3.72)

for an incompressible substance. Note that c = c(T ), in general.

Notes:

(1) Recall that the properties of liquids can be approximated using the corresponding saturated liquid
properties (Eqs. (3.61), (3.62), and (3.66)). The saturated liquid specific internal energy is only a
function of temperature, identical to what is noted in Eq. (3.70).

(2) The change in specific internal energy may be found by integrating Eq. (3.70),

c =
du

dT
=⇒ du = cdT, (3.73)

u2 − u1 =

ˆ T2

T1

c(T )dT. (3.74)

The specific enthalpy may be found using its definition and the previous relation,

h2 − h1 = u2 − u1 + (p2 − p1)v, (3.75)

h2 − h1 =

ˆ T2

T1

c(T )dT + (p2 − p1)v, (3.76)

where v = constant. In applications where the change in temperature is small (“small” depends on
the substance, but as a rough guide assume less than a few hundreds of Kelvin), the specific heat
may be reasonably assumed to be constant and thus Eqs. (3.74) and (3.76) may be written as,

u2 − u1 = c(T2 − T1), (3.77)

h2 − h1 = c(T2 − T1) + (p2 − p1)v. (3.78)

(3) Values for the specific heat for liquids and solids are often tabulated in the back of textbooks (e.g.,
Table A-1 in Moran et al., 8th ed.) or can be found online.
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A passive solar house that is losing heat to the outdoors at an average rate of 50,000 kJ/hr is maintained at 
22 °C at all times during a winter night for 10 hr.  The house is to be heated by 50 glass containers each 
containing 20 L of water that is heated to 80 °C during the day by absorbing solar energy.  A thermostat-
controlled, 15 kW back-up electric resistance heater turns on whenever necessary to keep the house at  
22 °C.   
a. How long will the electric heating system need to run during the night? 
b. How long would the electric heater run during the night if the house did not incorporate solar heating? 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
Apply the 1st Law to the house. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (1) 

The change in total energy of the house will consist of the change in the internal energy (potential and 
kinetic energy changes will be negligible).  Furthermore, the total internal energy change will include the 
total energy change in the house structure, house air, and water tanks. 

 (2) 

Since the house structure and air are maintained at a constant temperature, DUhouse = DUair = 0.  Hence, Eqn. 
(1) can be re-written as: 

 (3) 

system into on
system system

E Q WD = +

system system house air water
structure

E U U U UD = D = D + D + D

water into on
system system

U Q WD = +

house  
maintained at 22 °C 

50 glass containers filled with 20 L of water 
each at an initial temperature of 80 °C 

heat loss of 
50,000 kJ/hr 

house  
maintained at 22 °C 

 into
house
Q

 on
house

W
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The total change in the internal energy of the water (assuming an incompressible fluid) is given by: 
 (4) 

 
The total heat added to the house is: 

 (5) 

and the total work done on the house by the electric heater is: 
 (6) 

where Dt is the time over which the heater operates. 
 
Substitute Eqns. (4)-(6) into Eqn. (3). 

 (7) 
 

Using the given parameters in Eqn. (7). 
mwater = 50(20 L)(0.001 m3/L)(1000 kg/m3) = 1000 kg 
cwater = 4.179 kJ/(kg×K)   (from a thermodynamics table) 
Tf,water = 22 °C 
Ti,water = 80 °C 
Þ Dt = 4.8 hrs     Hence, the heater must be on for 4.8 hrs at night with the water tanks. 
 

If the water containers were not present, then the left-hand side of Eqn (7) would be zero (DUwater = 0) and: 
Þ Dt = 9.3 hrs     Hence, the heater must be on for 9.3 hrs at night without the water tanks. 

 
 

 

( )water water water ,water ,waterf iU m c T TD = -

( )( )into
system

50,000 kJ/hr 10 hr 500,000 kJQ = - = -

( )on
system

15 kWW t= D

( ) ( )water water ,water ,water 500,000 kJ+ 15 kWf im c T T t- = - D
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A steel rivet of mass 2 lbm, initially at 1000 °F, is placed in a large tank containing 5 ft3 of liquid water 
initially at 70 °F.  Eventually, the rivet and water cool back to 70 °F as a result of heat transfer to the 
surroundings.  Taking the rivet and water as the system, determine the heat transfer, in Btu, to the 
surroundings.  The specific heat for steel is 0.11 Btu/(lbm×°R). 
 
 
SOLUTION: 
 
Apply the 1st Law to the rivet/water system. 
 
 
 
 
 
 
 
 
 

 (1) 

Assuming that the tank is rigid, Won system = 0.  Furthermore, the change in the total energy of the system will 
be due solely to changes in the internal energy, i.e. DEsystem = DUsystem where: 

 (2)  

Substitute Eqn. (2) into Eqn. (1) and simplify. 
 (3) 

Since the final water temperature is the same as the initial water temperature, i.e. Tf,water = Ti,water, the change 
in the water internal energy will be zero.  Hence, 

 (4) 

 
Using the given parameters. 

Tf,rivet = 70 °F 
Ti,rivet = 1000 °F 
crivet = 0.11 Btu/(lbm×°R) 
mrivet = 2 lbm 
Þ Qinto system = -205 Btu  (205 Btu leave the system) 
 
 
 
 

system into on
system system

E Q WD = +

( ) ( )
system rivet water

rivet rivet ,rivet ,rivet water water ,water ,waterf i f i

U U U

m c T T m c T T

D = D + D

= - + -

( ) ( )into rivet rivet ,rivet ,rivet water water ,water ,water
system

f i f iQ m c T T m c T T= - + -

( )into rivet rivet ,rivet ,rivet
system

f iQ m c T T= -

rivet 
water 

 into
system
Q!
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3.5.6. Ideal Gases

One particularly important class of substances that is the ideal gas. An ideal gas is a model describing the
behavior of real gases in the limit of zero pressure and infinite temperature (i.e., zero density). It does not
account for the interaction between molecules of the gas (e.g., inter-molecular forces). Nevertheless, the ideal
gas model is a reasonably accurate model for gases where the system pressure is less than 0.05 times the
critical pressure or the system temperature is more than twice the critical temperature (to be discussed).

3.5.6.1. Equation of State

An equation of state is a relationship between properties of a particular substance or class of substances.
Equations of state cannot be obtained from thermodynamics but are obtained either from experimental
measurements or from some molecular model. Note that there can be various types of equations of state,
e.g., two equations of state for an ideal gas include a thermal equation of state which is the ideal gas law,
p = ρRT , and a caloric equation of state which describes the relationship between the internal energy and
temperature, du = cv(T )dT .

Thermal Equation of State
The thermal equation of state for an ideal gas is given by what is commonly referred to as the ideal gas law,

p = ρRT or pv = RT or pv̄ = R̄UT or pV = mRT or pV = nR̄UT, (3.79)

where p is the absolute pressure of the gas, ρ is the gas density (= 1/v, i.e., the inverse of the specific
volume), R is the gas constant for the gas of interest, and T is the absolute temperature. The quantity v̄ is
the specific volume on a per mole basis, e.g., [v̄] = m3/mol, V is the volume, e.g., [V ] = m3, m is the mass,
e.g., [m] = kg, and n is the amount of the substance, e.g., [n] = kmol. The quantity R̄U is the universal gas
constant (discussed in the following notes).

Notes:

(1) Absolute pressures and temperatures must be used when using the ideal gas law or anything derived
from the ideal gas law.

(2) The gas constant, R, will be different for different gases. The gas constant can be determined in
terms of the universal gas constant,

R =
R̄U
MW

, (3.80)

where R̄U = 8314 J/(kmol ·K) = 1545.4 (ft · lbf)/(lbmol · °R) = 1.986 Btu/(lbmol · °R) and MW is
the molecular weight of the gas. The gas constant for air is Rair = 287 J/(kg ·K) or, in English
units, Rair = 53.3 (ft · lbf)/(lbm · °R). Note that MWair = 28.98 kg kmol−1.

(3) The compressibility factor, Z, is defined as,

Z :=
pv

RT
=

p

ρRT
. (3.81)

If Z ≈ 1 for a gas, then it can be modeled well with the ideal gas model. The compressibility
factor, Z, is plotted in Figure 3.27 for a variety of substances as a function of the reduced pressure,
p/pc, and reduced temperature, T/Tc, where pc and Tc are the critical pressure and temperature for
the substance. Note that the critical temperature is the temperature above which a gas cannot be
liquefied no matter how large a pressure is applied. The critical pressure is the minimum pressure
for liquefying a gas at the critical temperature.
(a) For values of p/pc < 0.05 or T/Tc > 2, Z ≈ 1 so in this range the ideal gas model works well.
(b) Table 3.1 lists the critical temperature and pressure values for various substances.

(4) One should be careful in treating superheated water vapor, i.e., steam, as an ideal gas. Figure 3.28
shows a T - v plot for water. The points in the plot are the relative error between a specific volume
found using the thermodynamic property table, which is very accurate, and the specific volume
using the Ideal Gas Law, which is approximate ([|vtable− videal|/vtable] ∗ 100%). The shaded area in
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Figure 3.27. A plot of the compressibility factor Z as a function of the reduced pressure
PR = p/pc for different reduced temperatures TR = T/Tc.

Table 3.1. Critical temperatures and critical pressures for various gases.

Gas Tc [K] pc [atm]
air 132.41 37.25
He 5.19 2.26
H2 33.24 12.80
N2 126.2 33.54
O2 154.78 50.14

CO2 304.20 72.90
CO 132.91 34.26

the plot is the region where the relative error is less than 1%, i.e., the region where steam can be
reasonably modeled using the Ideal Gas Law. As a rule of thumb, it’s better to use the property
tables for water in the superheated vapor region rather than assuming ideal gas behavior.
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Figure 3.28. A T - v plot for water. The numbers on the isobars indicate the relative error
in the specific volume found from the table vs. the Ideal Gas Law, i.e., [|vtable−videal|/vtable]∗
100%. The shaded error is the region where the relative error is less than 1%, i.e., using the
Ideal Gas Law in this region will give an accurate prediction of the specific volume. The
figure is Figure 3.49 from Çengel, Y.A. and Boles, M.A., Thermodynamics - An Engineering
Approach, 5th ed., McGraw-Hill.
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A tank contains 0.5 m3 of nitrogen (N2) at -71 °C and 1356 kPa (abs).  Determine the mass of nitrogen, in 
kg, using, 
a. the ideal gas model, and 
b. data from the compressibility chart. 
 
SOLUTION: 
Using the ideal gas model, 

  Þ  ,  (1) 

Using the given data, 
p = 1356*103 Pa 
T = -71 °C = 202 K 

  = 8314 J/(kmol.K) 
Þ   = 1.23 m3/kmol 

 
The molecular weight of N2 is MN2 = 28.01 kg/kmol.  Hence, 

   Þ  v = 0.0442 m3/kg (2) 

 
The mass may be found from the specific volume and the volume of the tank, 

   Þ  m = 11.31 kg (3) 

using V = 0.5 m3. 
 
In order to use the compressibility chart, we must first calculate the reduced temperature and reduced 
pressure.  Note that the critical temperature and critical pressure for N2 are Tc = 126 K and pc = 33.9 bar (= 
33.9*105 Pa).  Hence, 

   Þ  TR = 1.603, (4) 

   Þ  pR = 0.400. (5) 

Using the compressibility chart (e.g., Figure A-1 from Moran et al., 7th ed.) with these reduced values, 
Z = 0.98. (6) 

Hence, the specific volume using the compressibility chart will be 0.98 times the specific volume using the 
ideal gas law (where Z = 1, Eq. (2)), 

v = 0.0433 m3/kg. (7) 
Thus, from Eq. (3), the mass is, 

m = 11.54 kg (8) 
 

The relative error in using the ideal gas model is, 

, (9)  

e = 0.020. (10) 
Assuming ideal gas behavior only results in a 2% error in the calculation of the mass, which is sufficiently 
small for most engineering calculations. 

 

pv = RT v = RT
p

R
v

v = v
M

m = V
v

TR =
T
Tc

pR =
p
pc

ε =
mideal gas −mcompressibility

mcompressibility
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Caloric Equation of State
Now let’s return to a discussion of the caloric equation of state for an ideal gas. Since an ideal gas is considered
a simple, compressible system, the internal energy, u, is uniquely determined by two properties. Here we’ll
use the properties of temperature, T , and specific volume, v(= 1/ρ),

u = u(T, v), (3.82)

so that any change in the internal energy is given by,

du =
∂u

∂T

∣∣∣∣
v

dT +
∂u

∂v

∣∣∣∣
T

dv. (3.83)

Utilizing our definition for specific heat given in Eq. (3.67) we have,

du = cvdT +
∂u

∂v

∣∣∣∣
T

dv. (3.84)

The second term on the right-hand side of Eq. (3.84) is zero for an ideal gas. (This can be shown using
Maxwell’s relations, a topic not addressed in these notes. See for example, Moran and Shapiro, Fundamentals
of Engineering Thermodynamics, 3rd ed., Wiley, Section 11.4.2.) Thus, the internal energy of an ideal gas,
u, is a function only of the temperature,

u = u(T ) =⇒ du =
du

dT
dT. (3.85)

Using the definition given in Eq. (3.67) we have,

du = cv(T )dT. (3.86)

Integrating both sides and noting that the specific heat can be a function of temperature in general,

u− uref =

ˆ T

Tref

cv(T )dT, (3.87)

where the subscript “ref” indicates some reference state. Evaluating at two different states,

u2 − u1 =

ˆ T2

T1

cv(T )dT. (3.88)

The specific enthalpy is also only a function of temperature for an ideal gas as shown below,

h = u+
p

ρ
= u+RT =⇒ h = h(T ). (3.89)

Taking the derivative of the specific enthalpy with respect to the temperature and using the definition given
in Eq. (3.68) we see that,

dh =
dh

dt
dT = cp(T )dT, (3.90)

h− href =

ˆ T

Tref

cp(T )dT, (3.91)

or,

h2 − h1 =

ˆ T2

T1

cp(T )dT, (3.92)

where cp is the specific heat at constant pressure which can, in general, be a function of temperature and the
subscript “ref” indicates some reference state. In addition,

dh = du+RdT = cvdT +RdT, (3.93)

= (cv +R)dT. (3.94)

Comparing Eqs. (3.90) and (3.94) we see that the specific heats for an ideal gas are related in the following
manner,

cp = cv +R . (3.95)
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The specific heat ratio, k, defined as,

k :=
cp
cv

, (3.96)

appears frequently in thermo-fluid systems. Other helpful relations that can be derived by combining
Eqs. (3.95) and (3.96) include,

cp =
kR

k − 1
, (3.97)

cv =
R

k − 1
. (3.98)

Notes:

(1) When the temperature change for a process is sufficiently small (small depends on the substance,
but a few hundred Kelvin is a good rule of thumb), the dependence of cv and cp on temperature
can be reasonably neglected, i.e., cv = constant1 and cp = constant2. As a result, Eqs. (3.88) and
(3.92) may be written as,

u2 − u1 = cv(T2 − T1), (3.99)

h2 − h1 = cp(T2 − T1). (3.100)

An ideal gas with constant specific heats is referred to as a perfect gas.
(2) The values for cv and cp as a function of temperature have been tabulated for various gases in the

back of some textbooks, e.g., Table A-20 in Moran et al., 8th ed.
(3) Since air is a frequently used substance in engineering, the values for several properties, such as

specific internal energy and specific enthalpy, taking into account the temperature dependence of
cv and cp have been tabulated in some textbooks, e.g., Table A-22 in Moran et al., 8th ed.

(4) Plots of the variation in the specific heat at constant pressure made dimensionless by the universal
gas constant (c̄p/R̄U ) for various gases are shown in Figure 3.29. Note that for air the specific heat
does not vary more than approximately 12% over a few hundred Kelvin in the range T > 270 K.
Hence, a perfect gas assumption for air flows in this range and a temperature change of less than a
few hundred Kelvin is reasonable. Obviously it would be more accurate to account for the variation
due to temperature. The specific heat temperature dependence can be predicted from statistical
mechanics models. The variations in specific heat are due to the activation of different energy
storage modes (e.g., vibration and rotation) within the gas molecules at different temperatures.
More detail on this topic can be found in Callen, H.B., Thermodynamics and an Introduction to
Thermostatistics, Wiley.
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One kilogram of air, initially at 5 bars (abs) and 77 °C, and 3 kg of carbon dioxide (CO2), initially at 2 bars 
(abs) and 177 °C, are confined to opposite sides of a rigid, well-insulated container.  The partition is free to 
move and allows conduction from one gas to the other without energy storage in the partition itself.  
Determine: 
a) the final equilibrium temperature 
b) and the final pressure 
You may assume that the specific heats for both the air and CO2 remain constant over the range of 
temperatures:  cv,air=0.726 kJ/(kg×K); cv,CO2=0.750 kJ/(kg×K); cp,air=1.013 kJ/(kg×K); cp,CO2=0.939 kJ/(kg×K) 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
Apply the 1st Law to the following CV. 
 
 
 
 
 
 
 
 
 
 
 
 

 (1) 

where 
 

  (well-insulated tank) 

  (rigid tank) 

 
Assuming constant specific heats (perfect gases) and simplifying COE gives: 

 
 

Since the partition is conductive,  resulting in: 

 

 (2) 

CV into on
CV CV

E Q WD = +

( ) ( )
2 2 2CV CV CO CO , CO , air air, air,f i f i f iE U U U m u u m u uD = D = - = - + -

into
CV

0Q =

on
CV

0W =

( ) ( )
2 2 2 2CO ,CO CO , CO , air ,air air, air, 0v f i v f im c T T m c T T- + - =

2CO , air,f f fT T T= =

( ) ( )
2 2 2CO ,CO CO , air ,air air, 0v f i v f im c T T m c T T- + - =

2 2 2

2 2

CO ,CO CO , air ,air air,

CO ,CO air ,air

v i v i
f

v v

m c T m c T
T

m c m c
+

\ =
+

air 
1 kg 
initially at  
5 bars 
77 °C 

CO2 

3 kg 
initially at  
2 bars 
177 °C 

movable,  
conductive  

partition 

well-insulated, rigid tank 

air 
1 kg 
initially at  
5 bars 
77 °C 

CO2 

3 kg 
initially at  
2 bars 
177 °C 

movable,  
conductive  

partition 

well-insulated, rigid tank 
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Using the given values: 
mCO2 = 3 kg 
cv,CO2 = 0.750 kJ/(kg×K) 
TCO2,i = 177 °C = 450 K 
mair = 1 kg 
cv,air = 0.726 kJ/(kg×K) 
Tair,i = 77 °C = 350 K 
Þ Tf = 426 K = 153 °C 
 
 

The final pressure in each compartment will be the same otherwise the partition would continue to move.  
Use the ideal gas law to determine the final densities of the gases in terms of the final temperature and 
pressure. 

 (3) 

In addition, the total volume of the tank is the sum of the final volumes occupied by each gas. 

 (4) 

Combine Eqns. (3) and (4) and simplify. 

 

 

 (5) 

The tank volume is known from the initial masses, pressures, and temperatures. 

 (6) 

 
Using the given data: 

mCO2 = 3 kg 
RCO2 = 0.1889 kJ/(kg×K) 
TCO2,i = 177 °C = 450 K 
pCO2,i = 2 bar = 202.7 kPa 
mair = 1 kg 
Rair = 0.287 kJ/(kg×K) 
Tair,i = 77 °C = 350 K 
pair,i = 5 bar = 506.63 kPa 
Tf = 426 K (from previous part of the problem) 
Þ Vtank = 1.46 m3  and pf  =  250 kPa = 2.46 bar 
 
 
 
 

pp RT
RT

r r= Þ =

   

Vtank =
mCO2

ρCO2 , f

=VCO2 , f



+
mair

ρair , f

=Vair , f



2

2

CO air
tank CO air

f f

f f

R T R T
V m m

p p
= +

2

2

CO air
CO air

tank tank

f f
f

R T R T
p m m

V V
= +

( )2 2CO CO air air
tank

f
f

T
p m R m R

V
= +

   

Vtank =
mCO2

ρCO2 ,i

=VCO2 ,i



+
mair

ρair ,i

=Vair ,i


= mCO2

RCO2
TCO2 ,i

pCO2 ,i

+ mair

RairTair ,i

pair ,i
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A piston-cylinder assembly contains carbon monoxide modeled as an ideal gas with a constant specific heat 
ratio of k = 1.4.  The carbon monoxide undergoes a polytropic expansion with n = k from an initial state, 
where the temperature is 200 °F and pressure of 40 psia, to a final state where the volume is twice the 
initial volume.  Determine: 
a. the final temperature, in °F, and final pressure, in psia, and 
b. the work done by the gas and heat transfer into the gas, each in Btu/lbm. 
 
 
SOLUTION: 
Treat the CO as an ideal gas.  Hence, 

 or  .   (1) 
 

Since the process is polytropic, 

 or   Þ  , (2) 

where n = k = 1.4, for this case, and c is a constant, which can be determined from the initial state.  Note 
that the mass of CO remains constant, so combining Eqs. (1) and (2) gives, 

!!
!"

"!
""
= #!

#"
⇒ #""

"!
$
$ "!
""
= #!

#"
⇒ #""

"!
$
$%&

= #!
#"

. (3) 
Using the given parameters and Eqs. (2) and (3), 

p1 = 40 psia 
T1 = 200 °F = 660 °R 
n = k = 1.4 
V2 = 2V1 
Þ  p2 = 15.16 psia, T2 = 500.2 °R = 40.19 °F 
 
 

 The work done by the gas may be found using, 

     (𝑛 ≠ 1), (4) 

, (5) 

. (6) 

where the initial conditions have been used to determine the constant c.  The specific volume v2 may be 
found using Eq. (1), 

. (7)  

Using the given data, 
MCO = 28.01 lbm/lbmmol 

CO  = 1.986 Btu/(lbmmol.°R) 
p1 = 40 psia = 5760 lbm/(ft.s2) 
T1 = 660 °R 
v2 = 2v1 

n = k = 1.4 
Þ  RCO = 0.07090 Btu/(lbm.°R),  v1 = 8.124*10-3 ft3/lbm,  v2 = 1.625*10-2 ft3/lbm 

Þ  Wby gas/m = 28.33 Btu/lbm. 
 

The heat added to the gas may be found using the 1st Law applied to the gas, 

  Þ    Þ  , (8)  

pV = mRT pv = RT

pV n = c p = c
V n

p2
p1

= V1
V2

⎛
⎝⎜

⎞
⎠⎟

n

Wby gas = pdV
V1

V2

∫ = c V −n dV
V1

V2

∫ = c
1− n

V2
1−n −V1

1−n( ) = p1V1
n

1− n
V2

1−n −V1
1−n( )

Wby gas =
p1m

nv1
n

1− n
m1−n v2

1−n − v1
1−n( )

Wby gas

m
= p1v1

n

1− n
v2

1−n − v1
1−n( )

v = RT
p

R

 

ΔEsys

=ΔUsys


=Qinto sys −Wby sys mΔusys =Qinto sys −Wby sys

Qinto sys

m
= Δusys +

Wby sys

m

CO 
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where kinetic and potential energies have been neglected.  The change in specific internal energy of the 
gas, assuming ideal gas behavior, may be found either through ideal gas tables at the appropriate 
temperatures (e.g., Table A-23E of Moran et al., 7th ed.), 

  = 3275.8 Btu/lbmmol (at T1 = 660 °R)  Þ  u1 = 117.0 Btu/lbm 
  = 2479.2 Btu/lbmmol (at T2 = 500 °R)  Þ  u2 = 88.51 Btu/lbm 

Note that  where MCO = 28.01 lbm/lbmmol.  Hence, from Eq. (8) and the previously calculated 
value for specific work, 

Qinto gas/m = -0.16 Btu/lbm. 
 

If we instead assume that the CO behaves as a perfect gas (an ideal gas with constant specific heats), 
, (9) 

where cv = 0.178 Btu/(lbm.°R)  (from Table A-20E in Moran et al., 7th ed., at a temperature of 100 °F).  
Thus,  

Qinto gas/m = -0.11 Btu/lbm. 
We get approximately the same result using either method.   
 
It can be shown that the heat transfer is, in fact, identically zero for a polytropic expansion of an ideal gas 
when n = k, as is the case here.  Combining Eqs. (6) and (7) gives, 

, (10) 

, (11) 

where Eq. (2) has been used in the last step.  Continuing to simplify, 

 . (12) 

Since we’re told that n = k for this polytropic process, 

, (13) 

where the relationship between the specific heat at constant volume, the gas constant, and the specific heat 
ratio has been used for an ideal gas.  Note that the right hand side of this expression is the change in the 
specific internal energy, assuming a perfect gas (ideal gas with constant specific heats),  

. (14) 

Thus, from the 1st Law, we must have Q = 0.  Our previous answers were close to zero, but there is some 
numerical error.  Plus, the Q = 0 result assumes constant specific heats, which isn’t exactly true.  
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(a)

(b)

Figure 3.29. Plots of (A) c̄p/R̄U as a function of temperature for various gases. (Figure
from ???.) (B) cp as a function of temperature for air at various pressures. (Figure from
The Engineering ToolBox.)

3.6. The Second Law of Thermodynamics

The First Law must be satisfied for a process to occur, but it doesn’t indicate if the process will occur. For
example, consider a system consisting of a block sliding down an inclined surface under the action of gravity.
The block is initially at rest and is at rest at the final state so the change in kinetic energy is zero. Assume
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there are also no heat or work interactions with the surroundings. In this scenario,

∆U +mg∆z = 0 =⇒ ∆U = −mg∆z. (3.101)

Hence, if the block moves down the inclined plane (∆z < 0), the block’s internal energy increases (∆U > 0).
This scenario is reasonable based on our experience with blocks on planes. However, the First Law also
states that if the block moves up the plane (∆z > 0), then the internal energy of the block would decrease
(∆U < 0). We never see this process occurring spontaneously in practice, but the First Law doesn’t preclude
it from happening.

The Second Law of Thermodynamics is frequently used to predict the direction or possibility of a process,
such as in the case of the block on an inclined plane described previously. In addition, the Second Law is
used for other purposes, including,

• establishing conditions for equilibrium,
• establishing theoretical limits of a process, and
• evaluating factors limiting attainment of the theoretical performance.

The Second Law can also be used for,

• defining a temperature scale independent of a substance or class of substances, and
• evaluation of thermodynamic properties.

The Second Law of Thermodynamics has been stated in several ways. The three common statements are,

(1) the Clausius Statement,
(2) the Kelvin-Planck Statement, and
(3) entropy.

We’ll discuss the first two statements now, but leave the discussion of entropy for later.

3.6.1. The Clausius Statement of the Second Law of Thermodynamics

It is impossible for any system to operate in such a way that the sole result is the transfer of heat from a
cooler object to a hotter object (refer to Figure 3.30 for an illustration).

Figure 3.30. An illustration of the Clausius statement of the Second Law of Thermodynamics.

Note:

• It is certainly possible to transfer heat from cold objects to hot objects, e.g., refrigerators and heat
pumps do this, but their operation doesn’t violate the Clausius statement since the heat transfer
isn’t the sole effect. Refrigerators and heat pumps require the input of work to make the heat
transfer occur.
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3.6.2. The Kelvin-Planck Statement of the Second Law of Thermodynamics

It is impossible for any system to operate in a thermodynamic cycle and deliver a net amount of energy by
work to its surroundings while receiving energy by heat transfer from a single thermal reservoir (refer to
Figure 3.31 for an illustration).

Figure 3.31. An illustration of the Kelvin-Planck statement of the Second Law of Ther-
modynamics.

Notes:

(1) A thermal reservoir is a body that is sufficiently large so that its temperature remains essentially
unchanged despite a transfer of energy to or from it via heat transfer. Thermal reservoirs can be
either energy sinks or energy sources, i.e., energy can be transferred to them or from them via
heat transfer, respectively, without changing the thermal reservoir’s temperature. The defining
characteristic of a thermal reservoir is its temperature.

(2) Recall from earlier work that the thermal efficiency of a power cycle, for example, is,

η = 1− QC,cycle

QH,cycle
. (3.102)

The Kelvin-Planck statement indicates that QC,cycle 6= 0 which implies that the efficiency cannot
be 100%.

(3) Mathematically, the Kelvin-Planck statement may be written as,

Wby sys,
cycle

≤ 0 (single reservoir). (3.103)

In other words, when there is energy exchange via heat transfer with just a single reservoir (hence
the “single reservoir” comment in parentheses), the work done by the system over a cycle cannot
be positive (as given by Kelvin-Planck). We can put work into the system or produce no work, but
no work can be done by the system.

(4) The Clausius and Kelvin-Planck statements are equivalent. This fact can be shown by considering
the following scenario (Figure 3.32).
(a) Assume the system on the left transfers energy QC from the cold reservoir to the hot reservoir,

which we know is a violation of the Clausius Statement of the Second Law.
(b) The system on the right operates over a cycle and produces work. This power cycle does not

violate the Second Law.
(c) The combined system within the dotted line consists of a cold reservoir and two devices (left

and right dashed objects). This combined system (dotted line) executes a cycle while receiving
energy by heat transfer from a single hot reservoir (QH −QC) and produces work. Thus, this
dotted line cycle violates the Kelvin-Planck Statement of the Second Law.

(d) Thus, we observe that a violation of the Clausius Statement results in a violation of the Kelvin-
Planck Statement. A similar argument can be performed in reverse to demonstrate that a
violation of the Kelvin-Planck Statement results in a violation of the Clausius Statement.
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Figure 3.32. A schematic illustrating the equivalence of the Clausius and Kelvin-Planck
statements of the Second Law.

Since a violation of one results in a violation of the other, we conclude that the statements are
equivalent.

3.6.3. Reversible and Irreversible Processes

A reversible process is one in which the system is in a state of equilibrium at all points in its path. In a
reversible process, the system and the surroundings can be restored exactly to their initial states.

An irreversible process is one where the system is not in a state of equilibrium at all points in its path. The
system and surroundings cannot be returned to their exact initial states in an irreversible process. Note that
all natural processes are irreversible.

Notes:

(1) Examples of reversible processes include frictionless pendulums and adiabatic expansion/compression
occurring slowly in a frictionless piston-cylinder.

(2) Thermal reservoirs are considered to be reversible.
(3) All real-world processes are irreversible.
(4) Examples of irreversibilities include: heat transfer through a finite temperature gradient, unre-

strained expansion of a gas or liquid, spontaneous chemical reaction, spontaneous mixing, friction,
electric current flow through a resistance, and inelastic deformation.

(5) Irreversibility can occur within a system, in the surroundings, or both. If a system has no dissipative
internal processes, then it’s considered internally reversible. For an internally reversible process,
Eq. (3.103) becomes Wby cycle = 0 (single reservoir). If the surroundings have no dissipative pro-
cesses, it is considered externally reversible. For an internally irreversible process, then Eq. (3.103)
becomes Wby cycle < 0 (single reservoir).

(6) Proofs to determine if a process is irreversible typically rely on proof by contradiction. The process
is assumed to be reversible and then combined with one or more other reversible processes to form
a thermodynamic cycle. Next, it is shown that the cycle violates the Kelvin-Planck statement of
the Second Law.
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A rigid insulated tank is divided into halves by a partition.  On one side of the partition is a gas.  The other 
side is initially evacuated.  A valve in the partition is opened and the gas expands to fill the entire volume.  
Using the Kelvin-Planck statement of the 2nd Law, demonstrate that this process is irreversible. 
 
 
 

 

 
 
 
 
 
 
 
SOLUTION: 
Note that since the tank is well insulated and rigid, there is no heat transfer into the tank nor is there any 
work.  Furthermore, the kinetic energy at the beginning and end of the process is zero and there is no 
change in potential energy.  Hence, from the 1st Law, 

.  (1) 

 
 
 
 
 
 
 
 
 
 
 
 
 

Process 1. Assume that the process is reversible, meaning that the system can start with the gas in both 
chambers and the gas can spontaneously move from the right chamber into the left.  Note that 
the pressure in the left chamber will now be larger than the pressure in the right chamber. 

Process 2. Let part of the gas pass from the left chamber through a turbine into the right chamber until 
the pressure in both chambers is the same.  Since there has been some work done,  

U < Ui (2) 
Process 3. Remove part of the tank insulation and add energy into the system from a thermal reservoir 

until the system’s energy returns to Ui.  Since the system is back to its original state, we have 
completed a cycle. 

 
The net result of this cycle is to draw energy from a single reservoir by heat transfer and produce an 
equivalent amount of work.  Such a cycle violates the Kelvin-Planck statement of the 2nd Law.  Since 
extracting energy from a turbine (Process 2) and heat transfer from a thermal reservoir (Process 3) are 
possible, Process 1 must be impossible.  Thus, gas spontaneously expanding from one tank into another, 
lower pressure tank must be an irreversible process. 

ΔEsys =Qinto
sys

+Won
sys

⇒U f =Ui

gas initially 
evacuated 

valve 

thermal 
reservoir 
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3.6.4. Performance Measures for Cycles

Recall that the power cycle thermal efficiency is given by,

η :=
Wby sys

QH
=
QH −QC

QH
= 1− QC

QH
. (3.104)

The refrigeration cycle coefficient of performance is,

COPref :=
QC

Won sys
=

QC
QH −QC

=
1

QH/QC − 1
, (3.105)

and the heat pump cycle coefficient of performance is,

COPHP :=
QH

Won sys
=

QH
QH −QC

=
1

1−QC/QH
. (3.106)

Notes:

• The subscript “cycle” has been removed in the previous equations for convenience; however, the
evaluations for work and heat are still over a cycle.

• From the Kelvin-Planck statement of the Second Law of Thermodynamics, in the power cycle, we
cannot have QC = 0, which implies that η < 1.

• From the Clausius statement of the Second Law, in the refrigeration and heat pump cycles, we
cannot have Won sys = 0, implying that COPref and COPHP must remain finite.

Corollaries to the Second Law of Thermodynamics
It can be shown (refer to the proof at the end of this section) that the following corollaries to the Second
Law are also true.

(1) The thermal efficiency of an irreversible power cycle will always be less than the thermal efficiency of
a reversible power cycle when the two power cycles operate between the same two thermal reservoirs,
i.e.,

ηirreversible < ηreversible (same thermal reservoirs). (3.107)

(2) All reversible power cycles operating between the same two thermal reservoirs have the same thermal
efficiency, i.e.,

ηreversible,1 = ηreversible,2 (same thermal reservoirs). (3.108)

(3) The coefficient of performance for a reversible refrigeration cycle (or heat pump cycle) will be larger
than the coefficient of performance or an irreversible refrigeration cycle (or heat pump cycle) when
operating between the same two thermal reservoirs, i.e.,

COPirreversible < COPreversible (same thermal reservoirs). (3.109)

(4) All reversible refrigeration (or heat pump) cycles operating between the same two reservoirs will
have the same coefficient of performance, i.e.,

COPreversible,1 = COPreversible,2 (same thermal reservoirs). (3.110)

The proof for the first corollary is presented now. Consider the situation shown in the left-hand schematic
of Figure 3.33. A reversible and irreversible system receive the same energy QH from a hot reservoir. The
irreversible system produces work Wby,I and discharges energy QC,I into a cold reservoir while the reversible
system produces work Wby,R and discharges energy QC,R into the same cold reservoir. From the First Law
applied separately to the irreversible and reversible systems and assuming both operate over a cycle,

0 = (QH −QC,I)−Wby,I =⇒ Wby,I = QH −QC,I, (3.111)

0 = (QH −QC,R)−Wby,R =⇒ Wby,R = QH −QC,R, (3.112)

where the change in the total energy of each of the two systems is zero since both are operating over a cycle.
Choose the reversible system such that QC,R > QC,I and, thus, Wby,R < Wby,I. Now switch the direction
of the reversible system (indicated by the dashed arrows in the figure) and consider the combined system
indicated by the dashed, red line in the figure. Note that this combined system includes the hot reservoir since
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Figure 3.33. Schematic used to prove the first and second corollaries to the Second Law.

there is no net energy transfer to/from it since QH is removed by the irreversible system, but then replaced
by the reversible one. The energy received by the combined system from the cold reservoir is QC,R−QC,I > 0
and the net work done by the combined system is Wby,I −Wby,R > 0. This combined system is shown in the
right-hand schematic of Figure 3.33. Since the combined system operates over a cycle and interacts with a
single thermal reservoir, from the Kelvin-Plank Statement of the Second Law (Eq. (3.103)),

Wby,I −Wby,R < 0 =⇒ Wby,I < Wby,R. (3.113)

Note that the inequality has been used since the combined system includes irreversibilities. Since the thermal
efficiency is given by,

η =
Wby

QH
, (3.114)

and QH is the same for the irreversible and reversible systems, we conclude that,

ηR > ηI . (3.115)

Thus, we have proven the first corollary to the Second Law.

The second corollary can be proven by replacing the irreversible system in Figure 3.33 with a reversible one
so that there are two reversible systems (call these “R1” and “R2”). Following the same arguments as before,
we will arrive at the following statement using the Kelvin-Plank Statement of the Second Law,

Wby,R2 −Wby,R1 = 0 =⇒ Wby,R2 = Wby,R1. (3.116)

Here, the equals sign is used since the combined system is reversible. Since the works and heat transfers are
the same, the efficiencies of the two reversible systems must be identical.

Proofs for the third and fourth corollaries are not provided here, but follow similar arguments.

3.6.5. Kelvin Absolute Temperature Scale

Note that from the Second Law Corollaries, the reversible cycle performance measures depend solely on the
interaction with the thermal reservoirs, namely (QC/QH) in Eqs. (3.104) - (3.106) since all reversible cycle
efficiencies are identical. Since it is the temperature difference between the reservoirs that drives this heat
transfer, we can conclude that,

QC
QH

∣∣∣∣
rev. cycle

= fcn

(
TC
TH

)
, (3.117)

where TC and TH are the temperatures of the cold and hot reservoirs, respectively. Note that since the left
hand side of the equation is dimensionless, the right hand side must also be dimensionless. The function
fcn is determined by how we define temperature. In the Kelvin absolute temperature scale, we define the
temperatures such that the function is a simple linear one, i.e.,

QC
QH

∣∣∣∣
rev. cycle

=
TC
TH

. (3.118)
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By definition, the ratio of temperatures on the Kelvin scale is equal to the ratio of the heat fluxes. Equa-
tion (3.118) only provides a ratio of temperatures; it doesn’t actually set a value for the temperature. To
complete the thermodynamic scale, we arbitrarily set the value of T on the Kelvin scale at the triple point
of water to be,

Ttriple pt of H2O = 273.16 K. (3.119)

Notes:

(1) Since the performance of a reversible cycle is independent of the details of the cycle, e.g., work-
ing fluid, cycle components, etc., it also means that (QC/QH)rev,cycle and thus TC/TH are also
independent of the details of the cycle. This means that the Kelvin absolute temperature scale is
independent of any substance or cycle details.

(2) Since QC > 0 (to satisfy the Kelvin-Planck statement of the Second Law), it also means that
TC > 0. Thus, the minimum temperature limit on the Kelvin scale is zero Kelvin, which can never
be reached as stipulated by the Second Law.

(3) We can substitute Eq. (3.118) into Eqs. (3.104) - (3.106) to determine reversible, i.e., ideal, cycle
performance measures,
(a) Power cycle reversible thermal efficiency,

ηrev = 1− TC
TH

. (3.120)

(b) Refrigeration cycle reversible coefficient of performance,

COPref,rev =
TC

TH − TC
. (3.121)

(c) Heat pump cycle reversible coefficient of performance,

COPHP,rev =
TH

TH − TC
. (3.122)

Interestingly, the maximum performance of these cycles is independent of the details of the cycle
(design, working materials, etc.). The only factors that matter are the (absolute) temperatures of
the thermal reservoirs.
For a power cycle, the maximum efficiency increases as TH increases or TC decreases. For example,
if a combustion process is used to supply heat to the system, the hotter the combustion gases (TH),
the more efficient the reversible cycle. In most practical power cycles, the cycle discharges heat
to the environment so there is often less control over TC . Similar arguments may be made for
refrigeration and heat pump cycles.

(4) We can still calculate the efficiency and COP s of any cycle, reversible or irreversible, using Eqs. (3.104)
- (3.106). However, for a reversible cycle, we can also make use of Eqs. (3.120) - (3.122).
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An internally reversible power cycle with a thermal efficiency of 40% receives 50 kJ of energy by heat 
transfer from a hot reservoir at 600 K and rejects energy by heat transfer to a cold reservoir at a temperature 
TC.  Determine the energy rejected and the temperature TC. 
 
 
SOLUTION: 
 
We can determine the heat transfer to the cold reservoir using the 
power cycle thermal efficiency in terms of the heat transfers,  

. (1) 

Using the given data, 
h = 0.40, 
QH,cycle =  50 kJ,  
Þ  QC,cycle = 30 kJ.  
 

The temperature of the reservoir can be found by noting that for a reversible cycle, 

. (2) 

Using the parameters given above in addition to TH = 600 K, 
TC = 360 K. 

η = 1−
QC ,cycle

QH ,cycle

⇒QC ,cycle = 1−η( )QH ,cycle

QH

QC rev,
cycle

= TH
TC

⇒TC = TH
QC

QH rev,
cycle

hot body 

cold body 

QC,cycle 

QH,cycle 

Wcycle 
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Figure 3.34. Schematic used in proving the Clausius Inequality.

3.6.6. Clausius Inequality

It can be shown using the Second Law (given later in this section) that for a system undergoing a thermo-
dynamic cycle, (ˆ

b

δQ

T

)
cycle

≤ 0, (3.123)

where δQinto is the heat into a system over a small boundary area and T is the absolute temperature at that
part of the boundary. The integral over “b” refers to an integral over the system’s boundary surface. The
equality (=) holds for internally reversible processes (no irreversibilities in the system) and the inequality
applies when internal irreversibilities are present (< 0).

Notes:

(1) Equation (3.123) may be also written as,(ˆ
b

δQinto

T

)
cycle

= −σcycle, (3.124)

where,

σcycle > 0 internally irreversible system, (3.125)

σcycle = 0 internally reversible system, (3.126)

σcycle < 0 impossible (violates the Second Law). (3.127)

The parameter σcycle is the entropy produced by irreversibilities in the system over the cycle.

The proof for the Clausius Inequality is as follows. Consider Figure 3.34, which consists of a reservoir with
absolute temperature TR, an intermediate system, and a main system. The main system receives energy with
magnitude δQ via heat transfer at a location on the system boundary where the absolute temperature is T .
The main system uses this energy to perform work δW . In order to avoid potential irreversibility caused
by heat transfer across a finite temperature difference (from TR to T ), the energy transfer occurs through
an intermediate system, which operates reversibly. This intermediate system receives energy δQ′ from the
reservoir, produces work δW ′, and discharges the energy δQ, which goes into the main system. Since this
intermediate system operates reversibly, we have from the definition of the absolute temperature scale (refer
to Section 3.6.5),

δQ′

δQ
=
TR
T

=⇒ δQ′ = TR
δQ

T
. (3.128)
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Although the figure only shows a single intermediate system and a single transfer of energy into the main
system, we can imagine additional intermediate systems and energy transfers into the main system at various
locations on the main system boundary. Now apply the First Law of Thermodynamics to the combined
system shown by the red dashed line in the figure,

dEC =

ˆ
b

δQ′ − δWC , (3.129)

where δWC is the sum of all the intermediate system works and the main system’s work. The boundary
integral on the heat transfer term refers to all of the heat transfers from the reservoir into the intermediate
systems. Let the main system and the intermediate systems operate over a cycle so that dEC = 0 and, thus,

0 =

ˆ
b

δQ′ − δWC . (3.130)

Note that the subscript “cycle” has not been included for convenience. Substituting Eq. (3.128) and re-
arranging,

δWC =

ˆ
b

TR
δQ

T
= TR

ˆ
b

δQ

T
. (3.131)

where the reservoir temperature TR is moved outside the integral since it is a constant. The combined system
operates over a cycle (since its components operate over a cycle) and interacts with a single reservoir and,
thus, from the Kelvin-Plank Statement of the Second Law (Eq. (3.103)),

WC ≤ 0 =⇒
ˆ
b

δQ

T
≤ 0, (3.132)

which is the same as Eq. (3.123). Recall that the “<” occurs when the combined system has internal
irreversibilities and the “=” occurs when the combined system is internally reversible. Since the intermediate
systems are reversible, if there are any irreversibilities, they must occur in the main system.
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A system executes a power cycle while receiving 1050 kJ by heat transfer at a temperature of 525 K and 
discharging 700 kJ by heat transfer at 350 K.  There are no other heat transfers. 
a. Determine if the cycle is internally reversible, irreversible, or impossible. 
b. Determine the thermal efficiency.  Compare this value with the maximum possible efficiency. 
 
 
SOLUTION: 
To determine if the cycle is internally reversible, irreversible, or impossible, 
consider the Clausius Inequality, 

, (1) 

where,  
QH/TH = (1050 kJ)/(525 K) = 2 kJ/kg, 
QC/TC = (700 kJ)/(350 K) = 2 kJ/kg, 

Þ = 2 kJ/K – 2 kJ/kg = 0.   

(Note QC < 0 since heat leaves the system.  We’re also assuming that the temperature at the boundaries 
to the system where the heat is added/removes is the same as the adjacent reservoir.) 

Thus, we see that the cycle is internally reversible. 
 
The thermal efficiency is, 

, (2) 

Þ  h = 0.33. 
The maximum possible efficiency is, 

, (3) 

Þ  hmax = 0.33. 
 

The cycle is operating at the maximum possible efficiency since it is internally reversible. 

δQinto,cycle

TAsys
∫ ≤ 0

δQinto

Tb
∫

⎛
⎝⎜

⎞
⎠⎟ cycle

= QH

TH
− QC

TC

η = 1− QC

QH

ηmax = 1−
TC
TH

hot reservoir 

cold reservoir 

QC,cycle 

QH,cycle 

Wcycle 
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Consider the vapor power plant cycle shown in the figure.  The working fluid is water.  Water flows 
through the boiler and condenser at constant pressure and through the turbine and pump adiabatically.  
Kinetic and potential energy effects can be ignored.  The process data are: 

Process 4 – 1: constant pressure at 1 MPa (abs) from saturated liquid to saturated vapor, 
Process 2 – 3: constant pressure at 20 kPa (abs) from x2 = 0.88 to x3 = 0.18. 

a. Determine if the cycle is internally reversible, irreversible, or impossible. 
b. Determine the thermal efficiency of the cycle. 
c. Compare the thermal efficiency from (b) to the maximum possible efficiency.  
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
First sketch the cycle on a p-v diagram for convenience. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Using the thermodynamic property tables for water in a saturated state (e.g., Table A-3 in Moran et al., 7th 
ed.): 

T41 = 179.9°C = 453.05 K @ 1 MPa = 10 bar (abs), 
T23 = 60.06°C = 333.21 K @ 20 kPa = 0.2 bar (abs). 

In addition, also using Table A-3 in Moran et al., 7th ed. at the given saturation temperature, 
State 4: h4 = hl = 762.81 kJ/kg (saturated liquid state) 
State 1: h1 = hv = 2778.1 kJ/kg (saturated vapor state) 
State 2: h2 = x2h2v + (1 – x2)h2l = (0.88)(2609.7 kJ/kg) + (1 – 0.88)(251.4 kJ/kg) = 2326.7 kJ/kg 
State 3: h3 = x3h3v + (1 – x3)h3l = (0.18)(2609.7 kJ/kg) + (1 – 0.18)(251.4 kJ/kg) = 675.89 kJ/kg 
 

 
 

 
 
 

 
 

 
 
 
 

boiler 

condenser 

turbine pump 

4 1 

2 3 

v 

p 

T4 = T1=T41 

T2 = T3 = T23 

4 1 

2 3 

boiler 

condenser 

turbine pump 

4 1 

2 3 

�̇�!",$% 

�̇�&'(,)* 

�̇�&'(,%) �̇�!",*$ 

hot res. @ TH 

cold res. @ TC 

sys 

�̇�+ = �̇�!",$% 

�̇�, = �̇�&'(,)* 
�̇�&'(,"-( = �̇�&'(,%) − �̇�!",*$ 

p2 = p3 

p4 = p1 
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Applying the 1st Law to a control volume surrounding the boiler, assuming steady flow, negligible changes 
in kinetic and potential energy across the control volume, and no work other than pressure, 

�̇�!",$% = �̇�(ℎ% − ℎ$) ⟹
.̇!",$%
0̇

= ℎ% − ℎ$. (1) 
Similarly, for the condenser, 

�̇�&'(,)* = �̇�(ℎ) − ℎ*) ⟹
.̇&'(,)*
0̇

= ℎ) − ℎ*. (2) 
 

Apply the 1st Law to control volumes surrounding the turbine and pump, assuming steady flow, negligible 
changes in kinetic and potential energy across the control volume, and adiabatic conditions, 

�̇�&'(,%) = �̇�(ℎ% − ℎ)) ⟹
1̇&'(,%)

0̇
= ℎ% − ℎ). (3) 

�̇�!",*$ = �̇�(ℎ$ − ℎ*) ⟹
1̇!",*$
0̇

= ℎ$ − ℎ*. (4) 
 
Substituting the specific enthalpy values found previously, 

.̇!",$%
0̇

 = 2015.29 kJ/kg 
.̇&'(,)*
0̇

 = 1650.81 kJ/kg 
1̇&'(,%)

0̇
 = 451.4 kJ/kg 

1̇!",*$
0̇

 = 86.92 kJ/kg 
 
To determine if the cycle is internally reversible, irreversible, or impossible, consider the Clausius 
Inequality applied to the entire cycle (or, alternately, the Entropy Equation with dS/dt = 0 because the cycle 
is at steady state), 

∫
2.̇!"(&,+,+-.

34 = −�̇�, (5) 
where, 

∫
2.̇!"(&,+,+-.

34 = −�̇� = �̇� -.̇!",$% 0̇⁄

3/
− .̇&'(,)* 0̇⁄

30
., (6) 

6̇
0̇
= −-)7%8.):	kJ kg⁄

$8*.78	K
− %@87.A%	kJ kg⁄

***.)%	K
., (7) 

6̇
0̇
= 0.507	 kJ

kg.K
. (8) 

Thus, we see that the cycle is internally irreversible.  Note that in this analysis it is assumed that the 
temperatures at which the heat enters and leaves the CV are TH = T41 and TC = T23 since we’re not given any 
information about their temperatures.  In reality, this would not be the case since there must be some 
temperature difference between the hot/cold reservoir and the boiler/condenser to drive the heat transfer, 
i.e., TH > T41 and TC < T23.  If there was a temperature difference between TH and T41 and TC an T23, then 
this would create even more irreversibility due to the larger temperature gradient. 
 
The thermal efficiency of the cycle is, 

𝜂 = 1 − .̇0
.̇/

= 1 – (1650.81 kJ/kg)/(2015.29 kJ/kg) (9) 

Þ  h = 0.18 = 18%. 
We could have also calculated the efficiency using the work generated, 

𝜂 = 1̇&'(,".( 0̇⁄
.̇/ 0̇⁄

= B1̇&'(,%)C1̇!",*$D 0̇⁄

.̇!",$% 0̇⁄
= ($8%.$	kJ kg⁄ CA@.:)	kJ kg⁄ )

2015.29	kJ kg⁄ = 0.18 (10) 

which is the same result as found previously. 
 
The maximum possible efficiency is, 

𝜂0LM = 𝜂!"(.N-O.= 1 – (333.21 K)/(453.05 K), (11) 
Þ  hmax = 0.26 = 26%. 

Since the cycle is irreversible, the actual efficiency is less than the maximum possible efficiency. 
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3.6.7. Entropy

Recall from Eq. (3.124) that the Clausius Inequality is given by,(ˆ
b

δQinto

T

)
cycle

= −σcycle, (3.133)

where,

σcycle > 0 internally irreversible system, (3.134)

σcycle = 0 internally reversible system, (3.135)

σcycle < 0 impossible (violates the Second Law). (3.136)

Consider a system undergoing a cycle in which two different internally reversible cycles are considered: path
A then C and path B then C. From Eq. (3.133),(ˆ

b

δQinto

T

)
cycle

= 0, (3.137)

since the cycle is internally reversible. Expanding the integral along the cycle’s two paths,ˆ
A,b

δQinto

T
+

ˆ
C,b

δQinto

T
= 0, (3.138)

and, ˆ
B,b

δQinto

T
+

ˆ
C,b

δQinto

T
= 0. (3.139)

Combining the previous two equations, ˆ
A,b

δQinto

T
=

ˆ
B,b

δQinto

T
. (3.140)

Thus, the result of the integral is independent of the (reversible) path, which means that the integral can be
considered a change in properties between the end points. Recall that property values are independent of
path. This system property is defined as the entropy and is defined as,

S2 − S1 :=

ˆ 2

1,b

δQinto

T

∣∣∣∣
internally
reversible

, (3.141)

or in differential form,

dS :=
δQinto

T

∣∣∣∣
internally
reversible

. (3.142)

Note that the integrals in Eqs. (3.139) - (3.142) are performed over the system boundary while traversing
the path from state 1 to state 2.

Notes:

(1) Entropy S is an extensive property. The specific entropy s is the entropy per unit mass, i.e.,
s = S/m. The dimensions of entropy are [energy]/[temperature], e.g., kJ K−1 or Btu °R−1. Typical
units for specific entropy are kJ/(kg ·K) or Btu/(lbm · °R).

(2) Since entropy is a property, the change in entropy between two states is independent of the path
between the two states. The internally reversible path in Eq. (3.141) is used just to define entropy.
Even if a process path between two states isn’t reversible, as shown in Figure 3.35, we can still
calculate the entropy at each of the endpoints since we can imagine reversible paths from some
reference state to each endpoint. A later note discusses irreversible process paths in more detail.

(3) From Eq. (3.141), adding heat in an internally reversible manner into a system increases its entropy.
Removing heat in an internally reversible manner reduces its entropy.

(4) The change in entropy for a process can be positive, negative, or zero; it just depends on the heat
transfer (which occurs reversibly).

C. Wassgren 270 2024-02-01



Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

Figure 3.35. An illustration showing how the path for defining the property of entropy
involves a reversible path from a reference point to a given state, but the entropy difference
between two end states in an irreversible process can still be calculated.

(5) The specific entropy for a two-phase mixture may be found using the quality,

s = xsv + (1− x)sl. (3.143)

(6) The specific entropy for a compressed liquid may be approximated as the specific entropy of a
saturated liquid at the same temperature,

sCL(T, p) ≈ sl(T ). (3.144)

(7) As with p - v and T - v diagrams, T - s and h - s (aka Mollier) diagrams are often helpful in visualizing
processes (Figure 3.36).

(8) For a process that is both adiabatic and internally reversible, Eq.(3.141) indicates that the process
is also isentropic, i.e., S2 − S1 = 0 or dS = 0. Many real processes are often idealized as being
isentropic. An isentropic process need not be adiabatic and internally reversible, however. It’s
possible to have internally irreversible processes in which heat is removed that end up producing
no net entropy. We’ll discuss this scenario a little later in the notes.

(9) We can re-arrange Eq. (3.141) to give,

δQ into,
internally
reversible

= TdS, (3.145)

Q into,12,
internally
reversible

=

ˆ 2

1

TdS. (3.146)

Thus, the area under an internally reversible process path on a T -S diagram is equal to the energy
entering a system via heat transfer (Figure 3.37).

(10) Now let’s consider the possibility of processes that may not be internally reversible. Let’s consider
a cycle that consists of a process from state 1 to state 2, and a return process from state 2 to state
1. The return process (2 to 1) will be assumed to be internally reversible. The first process (from
1 to 2) can be either internally reversible or internally irreversible. Combining Eqs. (3.133) and
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Figure 3.36. Example T - s and h - s (aka Mollier) diagrams. Figures are from Moran et
al., 7th ed.

Figure 3.37. A schematic showing that the area under an internally reversible process path
in a T -S plot is equal to the energy added to the system via heat transfer.

(3.141) gives,

(ˆ
b

δQinto

T

)
cycle

= −σcycle =⇒
ˆ 2

1,b

δQinto

T
+

ˆ 1

2,b

δQinto

T

∣∣∣∣
internally
reversible︸ ︷︷ ︸

the cycle

= −σcycle, (3.147)

ˆ 2

1,b

δQinto

T
+ σcycle = −

ˆ 1

2,b

δQinto

T

∣∣∣∣
internally
reversible

=

ˆ 2

1,b

δQinto

T

∣∣∣∣
internally
reversible

= S2 − S1, (3.148)

S2 − S1︸ ︷︷ ︸
change in system

entropy between states

=

ˆ 2

1,b

δQinto

T︸ ︷︷ ︸
entropy transferred

into the system
through the boundary

via heat transfer

+ σ12︸︷︷︸
entropy produced

in the system during
the process from 1 to 2

(3.149)
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where,

σ12 > 0 irreversibilities in the system in going from 1 to 2, (3.150)

σ12 = 0 reversible system in going from 1 to 2, (3.151)

σ12 < 0 impossible in going from 1 to 2. (3.152)

Note that σ12 = 0 since we assumed that the return process was internally reversible.
Equation (3.149) may also be written on a rate basis,

dS

dt︸︷︷︸
rate of change in
system entropy

=

ˆ
b

Q̇into

T︸ ︷︷ ︸
rate at which entropy

is transferred into
the system through

the boundary
via heat transfer

+ σ̇︸︷︷︸
rate at which entropy

is produced
in the system

(3.153)

where,

σ̇ > 0 irreversibilities in the system, (3.154)

σ̇ = 0 reversible system, (3.155)

σ̇ < 0 impossible. (3.156)

Note that the process in going from 1 to 2 in Eqs. (3.149) and (3.153) need not be internally
reversible. If it is internally reversible, then σ12 = 0 and we recover Eq. (3.141). If the process from
1 to 2 is internally irreversible, then σ12 > 0. The change in entropy can be positive, negative, or
zero depending on the contributions due to heat transfer and entropy production due to internal
irreversibilities; however, the entropy production term must be positive or equal to zero. Note that
it is possible to have an isentropic process (S2 = S1) for an internally irreversible process (σ12 > 0)
as long as heat is removed from the system during the process (δQinto < 0) and the boundary
integral term exactly balances the entropy production term in magnitude.

(11) An isolated system is one that has no interaction with the surroundings, i.e., no work input/output
and no heat transfer with the surroundings. In such a case, the change in total energy of the system
must be zero from the first law, i.e., ∆Esys = 0. In addition, the change in entropy of the system
will equal the entropy production within the system due to irreversibilities, i.e., ∆Ssys = σ ≥ 0.
Since all real processes have irreversibilities, the change in entropy for a real, isolated system must
be positive.
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During a process involving a 1 kg mass of material, 9000 J of heat leaves the system and enters the 
surroundings.  The temperature at the surface of the system is 300 K.  Determine if the process is internally 
reversible, internally irreversible, or impossible for the following conditions: 
a. The change in the specific entropy of the system is -30.0 J/(kg.K).  
b. The change in the specific entropy of the system is -20.0 J/(kg.K).  
c. The change in the specific entropy of the system is -40.0 J/(kg.K). 
 
 
SOLUTION: 
 
 
 
 
 
The Entropy Equation applied to the control volume shown in the figure, 

∆𝑆 = ∫ !"!"#$
#$ + 𝜎  =>%

&
= ∆𝑠 + '

&
"$%#
#&%'(

. (1) 

 
We’re given that m = 1 kg, Qout = 9000 J, and Tsurf = 300 K.  Now consider the different cases,  

a. %
&
= −30.0	 J

kg.K
+ '

('	kg)
(0111	J)
(211	K)

= 0    Þ  This process is internally reversible. 

b. %
&
= −20.0	 J

kg.K
+ '

('	kg)
(0111	J)
(211	K)

= 10.0	 J
kg.K

  Þ  This process is internally irreversible. 

c. %
&
= −40.0	 J

kg.K
+ '

('	kg)
(0111	J)
(211	K)

= −10.0	 J
kg.K

  Þ  This process is impossible. 
 
 

system 

Qout 
Tsurface 
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One kilogram of water contained in a piston-cylinder assembly, initially at 160 °C, 150 kPa (abs), 
undergoes an isothermal compression process to saturated liquid.  For the process, the work done by the 
water is -471.5 kJ.  Determine for the process: 
a. the heat transfer into the water, and 
b. the change in entropy of the water. 
 
SOLUTION: 
The heat transfer into the water may be found from the 1st Law: 

  Þ  , (1) 

where DEsys = DU (neglected changes in kinetic and potential energy) and Wby sys = -471.5 kJ.  The change 
in internal energy is, 

DU = m(u2 – u1), (2) 
where, 

m = 1 kg 
u1 = 2595.2 kJ/kg  (@ 160 °C, 150 kPa = 1.5 bar Þ superheated vapor; found from Table A-4 in 

Moran et al., 7th ed.) 
u2 = 674.86 kJ/kg  (saturated liquid at 160 °C; from Table A-2 in Moran et al., 7th ed.) 

Thus, 
DU = -1920.34 kJ/kg, 
Qinto = -2390 kJ/kg  (heat leaves the water). 
 
 

The change in the water’s entropy may be found using the thermodynamic tables. 
s1 = 7.4665 kJ/(kg.K) (@160 °C, 150 kPa = 1.5 bar Þ superheated vapor; found from Table A-4 in 

Moran et al., 7th ed.) 
s2 = 1.9427 kJ/(kg.K) (saturated liquid at 160 °C; from Table A-2 in Moran et al., 7th ed.) 

Thus, 
S2 – S1 = m(s2 – s1), 
Þ  S2 – S1 = -5.5238 kJ/K. 

 
A plot of the process on a T-s diagram is shown in the following figure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Although not specifically asked for, we can check to see if this process is internally reversible by checking 
to see if the entropy production term is zero, 

, (3) 

  

ΔEsys =Qinto
sys

−Wby
sys

Qinto
sys

= ΔEsys +Wby
sys

S2 − S1 =
δQinto

T1,b

2

∫ +σ 12 ⇒σ 12 = S2 − S1 −
δQinto

T1,b

2

∫

s 

T 

1 2 

H2O 

7.4665 kJ/(kg.K) 1.9427 kJ/(kg.K) 

160 °C 

1.5 bar 
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Since the process is isothermal, T remains constant so that we can write the previous equation as, 

. (4) 

Substituting the values, 
S2 – S1 =  -5.5238 kJ/K, 
Qinto,12 = -2392 kJ, 
T = 160 °C = 433 K, 
=>  s12 = 4.5*10-4 kJ/K,  

which is close enough to zero (within numerical error) for the process to be considered internally 
reversible. 
 
 
 
 

σ 12 = S2 − S1 −
Qinto,12

T
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3.7. Combining the First and Second Laws

Recall that for a system, the First Law of Thermodynamics, written on a per mass and differential basis, is,

desys = δqinto sys + δwon sys. (3.157)

If we consider a pure, simple, compressible substance (no kinetic or potential energies to consider and only
pdV work), then Eq. (3.157) may be written as,

du = δqinto − pdv. (3.158)

Note that the subscript “sys” has been dropped for convenience. Using the Second Law (Eq. (3.146)) to
substitute for the heat transfer term and noting that when we use Eq. (3.146), we’re assuming an internally
reversible process,

du = Tds− pdv =⇒ Tds = du+ pdv , (3.159)

or, if written in terms of the enthalpy (dh = du+ pdv + vdp),

Tds = dh− vdp (3.160)

Note that pdv work is considered internally reversible work if done quasi-statically. The boxed equations are
known as the Tds equations and are useful in relating changes in entropy to other system properties.

Notes:

(1) Even though the Tds equations were derived making use of an internally reversible process, since
the equations only involve properties, the process used to go between the states is irrelevant. The
Td equations hold for reversible and irreversible process paths.

(2) Recall that during a change of phase, e.g., in the vapor dome, the pressure and temperature of a
substance remain constant =⇒ dp = 0 and T = constant. Thus, Eq. (3.160) indicates that,

ds =
dh

T
=⇒ ∆s =

∆h

T
(during a phase change). (3.161)

(3) For an incompressible substance, dv = 0 and du = c(T )dT so that Eq. (3.159) becomes,

Tds = c(T )dT =⇒ ds = c(T )
dT

T
=⇒ s2 − s1 =

ˆ T2

T1

c(T )

T
dT (incompressible substance) . (3.162)

The change in specific entropy depends only on the (absolute) temperature. If we can further assume
that c is constant (a reasonable assumption in many instances when the change in temperature is
less than a few hundred Kelvin or degrees Rankine), then Eq. (3.162) becomes,

s(T2)− s(T1) = c ln

(
T2

T1

)
(incompressible substance, constant specific heat) . (3.163)

(4) For an ideal gas, pv = RT (vdp+pdv = RdT ), du = cv(T )dT , and dh = cp(T )dT , so that Eq. (3.159)
becomes,

Tds = cv(T )dT +RdT − vdp = cv(T )dT +RdT −RT dp
p

= [cv(T ) +R]dT −RT dp
p
. (3.164)

Recall that for an ideal gas that cp(T ) = cv(T ) +R so that the previous equation becomes,

ds = cp(T )
dT

T
−Rdp

p
. (3.165)

Integrating this equation gives,

s(T2, p2)− s(T1, p1) =

ˆ T2

T1

cp(T )
dT

T
−R ln

(
p2

p1

)
(ideal gas) . (3.166)
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Similarly, Eq. (3.160) becomes,

Tds = dh− vdp = cp(T )dT −RdT + pdv = [cp(T )−R]dT +RT
dv

v
, (3.167)

ds = cv(T )
dT

T
+R

dv

v
= cv(T )

dT

T
−Rdρ

ρ
, (3.168)

s(T2, v2)− s(T1, v1) =

ˆ 2

1

cv(T )

T
dT +R ln

(
dv

v

)
=

ˆ 2

1

cv(T )

T
dT −R ln

(
ρ2

ρ1

)
(3.169)

Note that ρ = 1/v =⇒ dρ = −dv/v2 =⇒ dρ/ρ = −dv/v has been used in the previous
equations. Since evaluating the integral involving cp(T ) in Eq. (3.166) is inconvenient, let’s define
a new variable,

s◦(T ) =

ˆ T

T ′

cp(T )

T
dT, (3.170)

where T ′ is an arbitrary reference temperature. Values of s◦(T ) are frequently presented in ther-
modynamic tables for various ideal gases and on a per mole basis (e.g., Tables A-22 and A-23 in
Moran et al., 8th ed.; refer to Figure 3.38). The integral involving cp(T ) can now be written as,

s◦(T2)− s◦(T1) =

ˆ T2

T ′

cp(T )

T
dT −

ˆ T1

T ′

cp(T )

T
dT =

ˆ T2

T1

cp(T )

T
dT, (3.171)

and Eq. (3.166) may be written as,

s(T2, p2)− s(T1, p1) = s◦(T2)− s◦(T1)−R ln

(
p2

p1

)
(ideal gas). (3.172)

Figure 3.38. Ideal gas properties for air, including s◦ values. This table is from Moran et
al., 8th ed.

(5) If we assume we’re dealing with a perfect gas (cv and cp are constants), Eqs. (3.166) and (3.169)
become,

s(T2, p2)− s(T1, p1) = cp ln

(
T2

T1

)
−R ln

(
p2

p1

)
(perfect gas) (3.173)

s(T2, v2)− s(T1, v1) = cv ln

(
T2

T1

)
+R ln

(
v2

v1

)
(perfect gas) (3.174)

s(T2, ρ2)− s(T1, ρ1) = cv ln

(
T2

T1

)
−R ln

(
ρ2

ρ1

)
(perfect gas) . (3.175)
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(6) For an isentropic process involving an ideal gas, Eq. (3.172) simplifies to,

0 = s◦(T2)− s◦(T1)−R ln

(
p2

p1

)
. (3.176)

Re-arranging this equation gives,

p2

p1
= exp

[
s◦(T2)− s◦(T1)

R

]
=

exp
[
s◦(T2)
R

]
exp

[
s◦(T1)
R

] . (3.177)

For convenience, define a new parameter, pr (note that this is not the reduced pressure used in
determining the compressibility factor Z), so that Eq. (3.177) becomes,

pr(T ) := exp

[
s◦(T )

R

]
, (3.178)

so that Eq. (3.177) becomes,

p2

p1
=
pr(T2)

pr(T1)
. (3.179)

The parameter pr(T ) is often pre-tabulated as a function of temperature for common ideal gases,
such as air (for example, refer to Table A-22 in Moran et al., 8th ed., shown in Figure 3.38). A similar
approach can be used for determining the relationship between specific volume and temperature.
Using the ideal gas law,

v2

v1
=

RT2

p2
RT1

p1

=

RT2

pr(T2)

RT1

pr(T1)

=
vr(T2)

vr(T1)
, (3.180)

where,

vr(T ) :=
RT

pr(T )
. (3.181)

As with pr(T ), vr(T ) is often pre-tabulated for common ideal gases, such as air (refer to Table A-22
in Moran et al., 8th ed.; Figure 3.38). Using the quantities pr(T ) and vr(T ) in tabulated form makes
it easier to perform calculations involving an ideal gas with variable specific heats. The influence of
the variations of the specific heats with temperature are pre-calculated in the variables pr and vr.

(7) For an isentropic process involving a perfect gas, Eqs. (3.173) - (3.175) reduce to,

0 = cp ln

(
T2

T1

)
−R ln

(
p2

p1

)
=⇒ p2

p1
=

(
T2

T1

) cp
R

=

(
T2

T1

) cp
cp−cv

=

(
T2

T1

) cp/cv
cp/cv−1

, (3.182)

p2

p1
=

(
T2

T1

) k
k−1

, (3.183)

0 = cv ln

(
T2

T1

)
+R ln

(
v2

v1

)
=⇒ v2

v1
=

(
T2

T1

)−cv
R

=

(
T2

T1

) −cv
cp−cv

=

(
T2

T1

) 1
1−cp/cv

, (3.184)

v2

v1
=

(
T2

T1

) 1
1−k

, (3.185)

0 = cv ln

(
T2

T1

)
−R ln

(
ρ2

ρ1

)
=⇒ ρ2

ρ1
=

(
T2

T1

) cv
R

=

(
T2

T1

) cv
cp−cv

=

(
T2

T1

) 1
cp/cv−1

, (3.186)

ρ2

ρ1
=

(
T2

T1

) 1
k−1

. (3.187)
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Combining Eqs. (3.183) and (3.185) shows,

p2

p1
=

(
v2

v1

)−k
=⇒ p =

c

vk
=⇒ pvk = c, (3.188)

where c is a constant. Hence, an isentropic process involving a perfect gas is a polytropic process
with n = k, where n is the exponent in the polytropic process equation. Note that if n = 1 for an
ideal gas, then the polytropic process is isothermal (pv = RT ). If n = 0, then the process is isobaric
(constant pressure). If n = ±∞, then the process is isometric (constant volume).

(8) There are many engineering situations in which the isentropic assumption is a reasonable approx-
imation to real life. For example, in high speed gas flows through nozzles and diffusers, the heat
transfer is often small (→ adiabatic) and the irreversibilities due to viscous dissipation are con-
centrated in a thin boundary layer adjacent to the walls of the devices. Hence, most of the flow
can be considered adiabatic and reversible, meaning that it can also be considered isentropic. This
approximation is used frequently in high-speed gas flows. Since air is often the fluid of interest,
we often make the additional assumption that the flow involves an ideal or perfect gas. Hence, the
previous equations described in Notes 6 and 7 are frequently used.
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A vendor claims that an adiabatic air compressor takes in air at standard atmospheric conditions and 
delivers the air at 650 kPa (gage) and 285 °C.  Is this possible?  Justify your answer. 
 
 
SOLUTION: 
 
Use the 2nd Law of Thermodynamics to determine whether or not the process can occur. 
 
At the inlet (state 1), we have standard atmospheric conditions: 

 (1) 
At the outlet (state 2): 

 (2) 
 

The change in entropy between the states may be found using the following relation, which assumes that air 
behaves as a perfect gas: 

 (3) 

Substitute the given values: 

 (4) 

 (5) 
 

Since for an adiabatic process we must have Ds ³ 0, the process is feasible. 

1 1101 kPa, 293 Kp T= =

( ) ( )2 2650 101  kPa, 285 273  Kp T= + = +

2 2
2 1

1 1

ln lnp
T ps s c R
T p
æ ö æ ö

- = -ç ÷ ç ÷
è ø è ø

( )( ) ( )( )2 1
558 K 751 kPa1004 J kg K ln 287 J kg K ln
293 K 101 kPa

s s æ ö æ ö- = × - ×ç ÷ ç ÷
è ø è ø

( )2 1 71 J kg Ks s\ - = ×
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The temperature of a 12 oz (0.354 l) can of soft drink is reduced from 20 °C to 5 °C by a 
refrigeration cycle.  The cycle receives energy by heat transfer from the soft drink and 
discharges energy by heat transfer at 20 °C to the surroundings.  There are no other heat 
transfers.  Determine the minimum theoretical work input required.  You may ignore the 
aluminum can in your calculations. 
 
 
SOLUTION: 
A schematic of the situation is shown below. 
 
 
 
 
 
 
 
Apply the 1st Law to a system consisting of the can and the refrigeration equipment, 

, (1) 

where, 
DEsys = DEcan + DEref. cycle, (2) 

where changes in kinetic and potential energies are ignored for the can so DEcan = DUcan.  Furthermore, 
since the refrigeration equipment operates over a cycle, DEref. cycle = 0.  Hence, Eq. (1) becomes, 

  Þ   . (3) 
 

The change in the can internal energy is, 
DUcan = mc(Tcan,f – Tcan,i), (4) 

where the soft drink is modeled as an incompressible substance since it’s a liquid.  The parameter m is the 
mass of the can and c is its specific heat.  
 
The heat transferred out of the system may be found by applying the 2nd Law, 

  Þ  , (5) 

where, 
DSsys = DScan + DSref. cycle.   (6) 

Since the refrigeration equipment operates on a cycle, DSref. cycle = 0.  The absolute temperature at the 
boundary of the system where the heat is transferred out of the system is TH and s is the entropy produced 
during the process due to irreversibilities. 
 
Substituting Eq. (5) into Eq. (3) and simplifying gives, 

. (7)  
 

Since we’re interested in the minimum amount of work required during the process, consider the case when 
s = 0 (an internally reversible process).  Recall that s > 0 when irreversibilities are present.  Since the soft 
drink is assumed to be an incompressible substance,  

. (8) 

  

ΔEsys =Qinto
sys

+Won
sys

ΔUcan = −QH +Won Won = ΔUcan +QH

ΔSsys =
δQinto

T1,b

2

∫ +σ = −QH

TH
+σ QH = THσ −THΔSsys

Won = ΔUcan +THσ −THΔSsys

ΔScan = mc ln
Tcan,f
Tcan,i

⎛

⎝⎜
⎞

⎠⎟

can ref. 
cycle QH QC 

Won 

surroundings 
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Substituting Eqs. (4) and (8) into Eq. (7) (with s = 0) gives, 

  , (9) 

. (10) 

 
Using the following parameters, 

m = (1000 kg/m3)(0.354 l)(10-3 m3/l) = 0.354 kg   (assume the density of liquid water) 
c = 4.2 kJ/(kg.K)  (assume the specific heat of liquid water) 
Tcan,f = 5 °C = 278 K 
Tcan,i = 20 °C = 293 K 
TH = 20 °C = 293 K 
Þ Win,min = 0.591 kJ 

 
If we assume the soft drink is a compressed liquid instead of being incompressible, then the change in 
entropy is, 

, (11) 
where sCL(T, p) ≈ sl(T).  Treating the soda as water and using Table A-2 in Moran et al., 8th ed., 

sl(Tsoda,f = 5 °C) = 0.0761 kJ/(kg.K), 
sl(Tsoda,i = 20 °C) = 0.2966 kJ/(kg.K), 
=>  DSsoda = -0.0781 kJ/K, 

which is identical to the result found using the incompressible substance model. 
 

 

Won,min = mc Tcan,f −Tcan,i( )−THmc ln Tcan,f
Tcan,i

⎛

⎝⎜
⎞

⎠⎟

Won,min = mc Tcan,f −Tcan,i( )−TH ln Tcan,f
Tcan,i

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

ΔSsoda = mΔssoda ≈ m sl Tsoda,f( )− sl Tsoda,i( )⎡⎣ ⎤⎦

s 

Tsoda,f 

Tsoda,i 

ssoda,f 
ssoda,i 

pi 
pf  < pi 

i 

f 
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A rigid, insulated tank with a volume of 21.61 ft3 is filled initially with air at 100 psia and 535 °R.  A leak 
develops and air slowly escapes until the pressure of the air remaining in the tank is 15 psia.  Determine the 
mass of air remaining in the tank and its temperature. 
 
 
SOLUTION: 
 
 
 
 
 
 
 
Assume the leaking process is adiabatic because the tank is insulated, and reversible since the air is leaking 
slowly.  Since the process is adiabatic and reversible, it’s also isentropic. Furthermore, treat the air as an 
ideal gas.  For an ideal gas undergoing an isentropic process, 

, (1)  

where p1 = 30 psia, p2 = 15 psia, and pr(T1 = 535 °R) = 1.3423 (interpolating in Table A-22E, Moran et al., 
8th ed.), 

=>  pr(T2) = 0.6711. 
Interpolating in Table A-22E, we find that T2 = 439 °R.   
 
Note that if we assume air is a perfect gas (an ideal gas with constant specific heats), then for an isentropic 
process, 

, (2)  

=>  T2 = 439 °R, which is identical to the result found assuming ideal gas behavior. 
 

The mass of air remaining in the tank may be found using the ideal gas law, 
p2V2 = m2RT2  =>  m2 = (p2V2)/(RT2), (3) 

where V2 = 21.61 ft3,  = 1545 ft.lbf/(lbmol.°R), and M = 28.97 lbm/lbmol, 
=>  Rair =  = (1545 ft.lbf/(lbmol.°R)/28.97 lbm/lbmol) = 53.33 ft.lbf/(lbm.°R), 
=>  m2 = 1.99 lbm. 

 
 

 
 

p2
p1

=
pr T2( )
pr T1( ) ⇒ pr T2( ) = pr T1( ) p2

p1

⎛
⎝⎜

⎞
⎠⎟

p2
p1

= T2
T1

⎛
⎝⎜

⎞
⎠⎟

k
k−1

⇒ T2 = T1
p2
p1

⎛
⎝⎜

⎞
⎠⎟

k−1
k

Ru
Ru M

T 

s 

p1 > p2 

T1 

p2 
T2 

s2 = s1 
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An insulated box is initially divided into halves by a frictionless, thermally conducting piston.  On one side 
of the piston is 1.5 m3 of air at 400 K, 4 bar (abs).  On the other side is 1.5 m3 of air at 400 K, 2 bar (abs).  
The piston is released and equilibrium is attained, with the piston experiencing no change of state.  
Determine: 
a. the final temperature, 
b. the final pressure, and 
c. the entropy produced. 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
Apply the 1st Law to a system consisting of the two chambers of air and the piston, 
 
 
 
 
 
 
 
 
 

  Þ  DUsys = 0 (1) 

where DEsys = DUsys (no changes in kinetic and potential energies), Qinto sys = 0 (adiabatic) and Won sys = 0 
(rigid tank).  Noting also that, 

DUsys = DU1 + DU2 + DUpiston, (2) 
where DU1 is the change in the internal energy of the air on the left hand side, DU2 is the change in internal 
energy of the air on the right hand side, and DUpiston is the change in internal energy of the piston (DUpiston = 
0), Eq. (2) may be written as, 

DU1 + DU2 = 0  Þ  m1Du1 + m2Du2 = 0  Þ  m1(u1,f – u1,i) + m2(u2,f – u2,i) = 0. (3) 
Since the initial temperatures of the air are the same (T1,i = T2,i = Ti = 400 K), u1,i = u2,i = ui (assuming air 
behaves as an ideal gas) and since at final equilibrium the temperatures are also the same (T1,f = T2,f = Tf) , 
u1,f = u2,f = uf, 

(m1 + m2)uf – (m1 + m2)ui = 0, 
Þ  uf = ui  Þ  Tf = Ti = 400 K. (4) 
 

The final pressures in each chamber will also be equal at equilibrium, 
p1,f = p2,f = pf. (5) 

From the ideal gas law applied to the whole system, 

, (6) 

where V1,f + V2,f = V1,i + V2,i = Vtotal = 3.0 m3.  The masses in each chamber may also be found using the 
ideal gas law and the initial conditions, 

ΔEsys =Qinto
sys

+Won
sys

pf =
m1 +m2( )RTf

V1, f +V2, f( )

air 
1.5 m3 
400 K 

4 bar (abs) 

air 
1.5 m3 
400 K 

2 bar (abs) 

air 
1.5 m3 
400 K 

4 bar (abs) 

air 
1.5 m3 
400 K 

2 bar (abs) 
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   and  . (7) 

where, 
p1,i = 4 bar = 4*105 Pa 
V1,i  = V2,i = 1.5 m3 
Rair = 287 J/(kg.K) 
T1,i = T2,i = 400 K 
p2,f = 2 bar = 2*105 Pa 
Þ  m1 = 5.23 kg and m2 = 2.61 kg 
Þ  pf = 3*105 Pa = 3 bar 

 
The entropy produced during the process may be determined using the Tds equation for an ideal gas, 

, (8) 

, (9) 

where, since Tf = Ti, the s0 terms cancel.  Using the given and calculated pressures, 
s1,f – s1,i = 8.26*101 J/(kg.K), 
s2,f – s2,i = -1.16*102 J/(kg.K). 
 

The total change in entropy for the system is, 
Sf – Si = m1Ds1 + m2Ds2, (10) 
Þ  DS = 1.27*102 kJ/K 
 
 
 
 

m1 =
p1,iV1,i
RT1,i

m1 =
p1,iV1,i
RT1,i

s1, f − s1,i = s
0 T1, f( )− s0 T1,i( )− R ln p1, f

p1,i

⎛

⎝⎜
⎞

⎠⎟

s2, f − s2,i = s
0 T2, f( )− s0 T2,i( )− R ln p2, f

p2,i

⎛

⎝⎜
⎞

⎠⎟

T 

s 

T1,i = T2,i = Tf 

pf p1,i p2,i 

sf s2,i s1,i 
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3.8. Common Thermodynamic Cycles

Important: The reader should read the Conservation of Mass, First Law, and Second Law sections of
Chapter 4 prior to reading this section since this section involves applying these relations to control volumes,
which have mass crossing the control volume boundaries.

In this section we review several thermodynamic cycles encountered in practice, including:

• the Carnot cycle (not common in practice, but real cycles are often compared to this ideal cycle),
• the Rankine cycle and improvements to the Rankine cycle,
• the Otto, Diesel, and dual cycles, and
• the Brayton cycle and improvements to the Brayton cycle.

3.8.1. Carnot Cycle

The Carnot cycle is one particular type of internally reversible cycle and serves as a point of comparison for
other real and internally reversible cycles. Carnot cycles include power, refrigeration, and heat pump cycles.
This section, however, focuses specifically on Carnot power cycles. The Carnot refrigeration and heat pump
cycles are similar to the power cycle, but operate in the opposite direction.

The Carnot power cycle consists of the following four internally reversible processes:

(1) Process 1 – 2: Isothermal expansion at TH .
(2) Process 2 – 3: Adiabatic expansion (Q23 = 0).
(3) Process 3 – 4: Isothermal compression at TC .
(4) Process 4 – 1: Adiabatic compression (Q41 = 0).

As mentioned previously, a Carnot refrigeration or heat pump cycle would operate in reverse, i.e., Process 1
- 2 would be an isothermal compression, Process 2 - 3 would be an adiabatic compression, etc.

Notes:

(1) Figure 3.39 illustrates the four Carnot power cycle processes for a piston-cylinder arrangement. The
corresponding processes are shown on the p - v and T - s diagrams for a substance remaining entirely
in the vapor phase throughout the cycle. Note that Carnot cycles can also involve working fluids
that change phase.

(2) One can also have a Carnot cycle involving a system of components, as shown in Figure 3.40. The
same four processes described at the beginning of this section occur in this system. In the particular
case shown in the p - v and T - s plots, the working fluid is a saturated liquid vapor mixture.

(3) Since each of the processes in a Carnot cycle is internally reversible, the entire Carnot cycle is
also internally reversible. Furthermore, in a Carnot cycle, the absolute temperatures at which the
energy is added to or removed from the working fluid via heat transfer are TH and TC . Hence, the
efficiency and coefficients of performance of a Carnot cycle are given by,

ηrev = 1− TC
TH

, (3.189)

COPref,rev =
TC

TH − TC
, (3.190)

COPHP,rev =
TH

TH − TC
. (3.191)

(4) In order to be internally reversible, the heat addition and removal processes with the thermal
reservoirs must not occur over a finite temperature gradient, i.e., the temperature of the system
must equal the temperature of the thermal reservoir during the heat addition and heat removal
processes. In a real system, there must be some finite temperature difference to drive the heat
transfer process, which is one reason a real cycle would not be reversible. Similarly, in order to be
internally reversible, the working fluid must have no viscosity, there should be no friction in the
system, and all of the processes must be in quasi-equilibrium.
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Figure 3.39. A sketch of the four processes of a Carnot power cycle for a piston-cylinder
system. The corresponding processes are sketched on p - v and T - s plots for a working fluid
that remains entirely in the vapor phase throughout the cycle.

(5) It’s possible for a system to have the same set of processes as the Carnot cycle (isothermal expansion,
adiabatic expansion, isothermal compression, adiabatic compression), but not be reversible. For
example, the heat transfer may occur over a finite temperature difference or the working fluid may
be viscous. In that case, the efficiency of the cycle will be less than the Carnot efficiency.
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Figure 3.40. A sketch of a Carnot power cycle and p - v, and T - s plots for a simple vapor
power cycle in which the working fluid remains as a saturated liquid-vapor mixture.
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An ideal gas within a piston-cylinder assembly undergoes a Carnot refrigeration cycle.  The isothermal compression 
occurs at 325 K from 2 bar (abs) to 4 bar (abs).  The isothermal expansion occurs at 250 K.  Determine: 
a. the coefficient of performance, 
b. the heat transfer to the gas during the isothermal compression, in kJ per kmol of gas, 
b. the heat transfer to the gas during the isothermal expansion, in kJ per kmol of gas, and 
c. the magnitude of the net work input over the cycle, in kJ per kmol of gas. 
 
 
SOLUTION: 

 
 
 

 
 
 
 
 
 
Since a Carnot cycle is reversible, the coefficient of performance is, 

 , (1) 

with TH =  325 K and TC = 250 K  =>  COPref,rev = 3.33. 
 
The heat transfer to the gas during isothermal compression (process 3-4) can be found using the 1st Law for the 
process.  From the 1st Law applied to the system identified in the figure, specifically for the process from 3 to 4, 

, (2) 

where DEsys,34 = 0 since we’re assuming no change in kinetic or potential energy during the process, and since the 
process is isothermal and we’re working with an ideal gas in which u = u(T), DU34 = 0.  The work done by the system 
during this compression is, 

, (3) 

where the ideal gas law has been used a couple of times (pV = mRT) couple with the fact that the process is 
isothermal with T = TH and m = constant.  Since we’re asked to find the heat in kJ per kmol, re-write Eq. (3) on a per 
mole basis (recall m = n/M and R = MRu, where M is molecular weight), 

. (4) 

Combining Eqs. (4) and (2) gives, 

 . (5) 

Using the given data, 
Ru =  8.314 kJ/(kmol.K) 
TH = 325 K 
p3 = 2 bar (abs) 
p4 = 4 bar (abs) 
=>  Qinto sys,34/n = -1870 kJ/kmol   (heat is leaving the system during this compression process) 
 

  

COPref,
rev

= TC
TH −TC

ΔEsys,34 =Qinto sys,34 +Won sys,34 ⇒Qinto sys,34 =Wby sys,34

Wby sys,34 = pdV
V3

V4

∫ = mRTH
V

dV
V3

V4

∫ = mRTH
dV
VV3

V4

∫ = mRTH ln V4

V3

⎛
⎝⎜

⎞
⎠⎟
= mRTH ln p3

p4

⎛
⎝⎜

⎞
⎠⎟

Wby sys,34 = n M( ) MRu( )TH ln p3

p4

⎛
⎝⎜

⎞
⎠⎟
⇒

Wby sys,34

n
= RuTH ln p3

p4

⎛
⎝⎜

⎞
⎠⎟

Qinto sys,34

n
= RuTH ln p3

p4

⎛
⎝⎜

⎞
⎠⎟

ideal gas 
1-2:  isothermal expansion 
2-3:  adiabatic compression 
3-4:  isothermal compression 
4-1:  adiabatic expansion 
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To determine the heat transfer during isothermal expansion, make use of the definition of the absolute 
temperature scale, 

, (6) 

where QC = Qinto,12 and QH = -Qinto,34.  Using the given data, 
=>  Qinto,12/n = 1440 kJ/kmol. 

 
The magnitude of the net work input over the cycle may be found using the definition of the coefficient of 
performance for a refrigeration cycle, 

. (7) 

Using the given data,  
=>  Won sys,net/n =  433 kJ/kmol. 

 

QC

QH rev,
cycle

= TC
TH

⇒QC =QH
TC
TH

⇒Q12 = −Q34
TC
TH

COPref ≡
QC

Won sys,net

⇒Won sys,net =
QC

COPref
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Two kilograms of air within a piston-cylinder assembly execute a Carnot power cycle with maximum and minimum 
temperatures of 750 K and 300 K, respectively.  The heat transfer to the air during the isothermal expansion is 60 
kJ.  At the end of the isothermal expansion the volume is 0.4 m3.  Assuming the ideal gas model for the air, 
determine: 
a. the thermal efficiency, 
b. the pressure and volume at the beginning of the isothermal expansion, in kPa (abs) and m3, respectively, 
c. the work and heat transfer for each of the four processes, in kJ, and 
d. sketch the cycle on a p-V diagram. 
 
 
SOLUTION: 

 
 
 
 

 
 
 
 
 
 
 
Since the cycle is a Carnot power cycle, which is reversible, the efficiency is given by, 

. (1) 

Using the given temperatures (TC = 300 K and TH = 750 K) => hrev = 0.6. 
 
The pressure and volume at the beginning of the isothermal expansion (state 1) may be found combining the 1st 
Law applied to the system shown in the figure, with the given heat transfer, and the definition of the power cycle 
efficiency.  Applying the 1st Law to the system for the process from 1 to 2, 

, (2) 

whereWby,12 = -Won,12.  Furthermore, DE12 = 0 since the change in kinetic and potential energy in going from state 1 
to state 2 is zero, and since the process is isothermal and the system is an ideal gas (u = u(T)) => DU12 = 0.  The heat 
added to the system in going from 1 to 2 is given (= 60 kJ) and thus the work done by the system is also known.  
The work done by the system may also be found using, 

, (3) 

where the ideal gas law has been used (pV = mRT) along with the fact that the process from 1 to 2 is isothermal 
with T = TH.  The mass is constant too.  Since the volume at the end of the isothermal expansion process is given (V2 
= 0.4 m3), we can solve for V1, 

, (4) 

with, 
V2 = 0.4 m3, 
Wby,12 = 60 kJ, 
m = 2 kg, 
Rair = 0.287 kJ/(kg.K), 
TH = 750 K, 
=>  V1 = 0.348 m3. 

  

ηrev = 1−
TC
TH

ΔE12 =Qinto,12 +Won,12 ⇒Wby,12 =Qinto,12

Wby,12 = pdV
V1

V2

∫ = mRTH
V

dV
V1

V2

∫ = mRTH
dV
VV1

V2

∫ = mRTH ln
V2
V1

⎛
⎝⎜

⎞
⎠⎟

Wby,12 = mRTH ln
V2
V1

⎛
⎝⎜

⎞
⎠⎟
⇒V1 =V2 exp −

Wby,12

mRTH

⎛
⎝⎜

⎞
⎠⎟
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The pressure at state 1 may be found using the ideal gas law, 

  (T1 = TH), (5) 

=>  p1 = 1.24 MPa (abs). 
 

The work and heat for process 1-2 have already been calculated.  The heat for processes 2-3 and 4-1 are zero, i.e., 
Q23 = Q41 = 0, since these processes are adiabatic. 
 
The work done on the system during process 2-3 may be found using the 1st Law, 

, (6) 
where u2 = u2(T2 = TH) and u3 = u3(T3 = TC) since the air is being treated as an ideal gas.  These specific internal 
energies may be looked up in a table, e.g., Table A-22 from Moran et al., 8th ed., 

u2 = 551.99 kJ/kg and u3 = 214.07 kJ/kg  =>  Won,23 = DU23 = 676 kJ. (7) 
If a perfect gas model is used, then, 

DU23 = mcv(T3 – T2) =>  DU23 = 673 kJ, (8) 
where cv = 0.748 kJ/(kg.K) (Table A-20, Moran et al., 8th ed.).  This result is less than 1% different than the ideal gas 
result. 
 
The work done on the system during process 4-1 will be identical in magnitude, but opposite in sign to the work 
done on the system during process 2-3 since both processes are adiabatic and operate between the same 
temperatures.  Hence, Won,41 = -676 kJ. 
 
For process 3-4, the heat transferred into the system may be found using the definition of the absolute 
temperature scale (since the process is assumed reversible), 

, (9) 

Using the given data, Qout of,34 = 24 kJ.   
 
Since the process from 3 to 4 is isothermal, we’re dealing with an ideal gas, and there is no change in kinetic or 
potential energy, the 1st Law gives, 

, (10) 

 =>  Won,34 = 24 kJ. 
 

As a check, we can substitute the heat and work values into the definition for the power cycle efficiency, 

, (11) 

where Wby sys,net = Wby,12 + Wby,23 + Wby,34 + Wby,41 = (60 kJ) + (676 kJ) + (-24 kJ) + (-676 kJ) = 36 kJ, 
=>  h = 0.6, which is exactly the value expected from part (a). 
 

Also, from the 1st Law applied to the entire cycle (recall DEcycle = 0), we must have, 
Qinto,net = Wby,net, 

where Qinto,net = Qinto,12 + Qinto,23 + Qinto,34 + Qinto,41 = (60 kJ) + (0) + (-24 kJ) + (0) = 36 kJ, which is precisely Wby,net 
found previously. 
 

p1 =
mRTH
V1

ΔE23 =Qinto,23 +Won,23 ⇒Won,23 = ΔU23 = m u3 − u2( )

QC

QH rev,
cycle

= TC
TH

⇒QC =QH
TC
TH

⎛
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TH
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3.8.2. The Rankine Cycle and Improvements

The Rankine Cycle and its variations are commonly used vapor power cycles for large-scale power generation,
such as in natural gas and coal-fired power plants, nuclear power plants, and solar power plants. The standard
Rankine cycle consists of the following four processes (refer to Figure 3.41):

• Process 1 – 2 : Expansion of the working fluid from saturated vapor through the turbine.
• Process 2 – 3 : Heat transfer from the working fluid as it flows at constant pressure through the

condenser to a saturated liquid state.
• Process 3 - 4 : Compression of the working fluid in the pump in the compressed liquid region.
• Process 4 - 1 : Heat transfer to the working fluid as it flows at constant pressure through the boiler.

If the turbine and pump have 100% isentropic efficiencies, then the cycle is referred to as an “ideal standard
Rankine cycle”, state 2 is identified as state “2s”, and state 4 is identified as state “4s”.

Notes:

(1) Using Eq. (3.189) as a guide, we observe that the thermal efficiency of a power cycle generally
increases as the average temperature at which the heat is added in the boiler increases and the
average temperature at which the heat is rejected in the condenser decreases.
(a) An (internally reversible) Carnot cycle has a larger thermal efficiency than an ideal (internally

reversible) Rankine cycle operating between the same two thermal reservoirs since the average
temperature at which heat is added in the boiler is smaller for the Rankine cycle due to the
portion of the path from States 4 - 1 in the condensed liquid phase.

(b) Increasing the average temperature at which heat is added may be achieved by increasing the
boiler pressure, thus shifting the path from 4 - 1 to a larger temperature isotherm, or by moving
State 1 into a superheated vapor (SHV) phase along the same isotherm. Increasing the boiler
pressure can be costly due to the increased stress on the pipe system; however, moving State
1 into a SHV phase while at the same pressure is relatively easy. Moving into the SHV region
is known as a Rankine Cycle with Superheat and is discussed in a following note.

(c) The smallest possible condenser temperature corresponds to just larger than the temperature
of the surroundings since the surroundings are where the heat is being rejected. Recall that
heat is transferred from a hotter object to a colder one so the working fluid temperature would
need to be slightly larger than the surrounding temperature. In practice, the cold reservoir
usually corresponds to the atmospheric air or a large body of water, such as the ocean, a lake,
or a river.

(d) The typical thermal efficiency of a standard Rankine cycle is on the order of 20 - 40%.
(e) The ratio of the power required by the pump to the power generated by the turbine is known

as the back work ratio, bwr,

bwr :=
ẆP

ẆT

. (3.192)

The bwr in a typical Rankine cycle is generally small - on the order of 1 - 3%, for example.
(f) The vibration and mechanical stress generated when a pump impeller encounters alternating

regions of vapor (small density) and liquid (large density) can damage the pump. Thus, states
3 and 4 are always either in a saturated liquid or compressed liquid phase. In practice, state
3 is often in the compressed liquid region rather than in a saturated liquid phase to provide a
margin of safety to keep the working fluid liquid.

(g) Assuming internally reversible, adiabatic pump operation, i.e., 100% isentropic efficiency, the
power required by the pump is (refer to Eq. (4.152), assuming negligible changes in kinetic and
potential energies across the pump),

ẆP = ṁv(p4 − p3). (3.193)

This power assumes that the working fluid can be modeled as an incompressible substance
through the pump, which is reasonable since, as the previous note states, the working fluid is
a compressed liquid through the pump.
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Figure 3.41. A sketch showing the components of a standard vapor power Rankine cycle.
The corresponding processes are sketched on a T - s plot. The “2s” and “4s” states correspond
to, respectively, flow through the turbine and pump with 100% isentropic efficiencies.

(h) Again for mechanical reasons, turbines perform best with superheated vapor or a saturated
liquid vapor mixture at a large quality. Liquid droplets impacting high speed turbine blades
can cause damage.

(2) As discussed previously, one improvement to the standard Rankine cycle is the Rankine Cycle with
Superheat. The components of this cycle are identical to the standard Rankine cycle, but the T - s
diagram is different (Figure 3.42). Specifically, in order to raise the average temperature at which
energy is added via heat transfer from the hot reservoir, the working fluid leaves the boiler in a
superheated vapor phase (State 3).
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Figure 3.42. A T - s plot for a Rankine cycle with superheating.

(a) The larger average temperature at which heat is added in a Rankine cycle with superheating
results in a larger thermal efficiency as compared to a standard Rankine cycle.

(b) Another advantage of superheating is that the working fluid passes through the turbine either
as a superheated vapor or a high quality saturated liquid-vapor mixture.

(3) An illustration of a Rankine Cycle with Reheat and the corresponding T - s plot are shown in
Figure 3.43). In this cycle, the working fluid leaves the boiler (also often called a steam generator)
at State 1, passes through a first-stage turbine (State 2), then re-enters the boiler for additional
heating (State 3; hence, the name “reheat”). The re-energized working fluid then passes through a
second-stage turbine (State 4) to complete the remainder of the cycle.
(a) The reheating process increases the average temperature at which heat is added in the cycle,

thus, increasing the thermal efficiency as compared to a standard Rankine cycle.
(b) The first stage turbine typically exits in the superheated vapor phase (State 2). In addition,

the quality at the exit of the second stage turbine (State 4) is larger than that in a standard
Rankine cycle and may even be in a superheated vapor phase.

(4) The Rankine Cycle with Supercritical Reheat has the same components as the reheat cycle, but
heating in the steam generator occurs in the supercritical phase (above the critical point on the
vapor dome). A representative T - s plot is shown in Figure 3.44).
(a) The larger average temperature at which heat is added in a Rankine cycle with supercritical

reheating results in a larger efficiency as compared to a standard Rankine cycle.
(b) The first stage turbine typically exits in the superheated phase (State 2). In addition, the

quality at the exit of the second stage turbine (State 4) is larger than that in a standard
Rankine cycle and may even be in a superheated vapor phase.

(c) The large pressures and temperatures in a Rankine cycle with supercritical reheat requires the
use of more expensive components, including high pressure piping and steam generator, and
turbine materials that can withstand high temperatures. Thus, the capitol cost of this type
of facility is much higher than it would be for a standard Rankine cycle facility. However,
a Rankine cycle with supercritical reheating can achieve thermodynamic efficiencies of up to
nearly 50%.
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Figure 3.43. An illustration of a Rankine cycle with reheat and the corresponding T - s plot.
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Figure 3.44. A T - s plot for a Rankine cycle with supercritical reheating.
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Consider a steam-power plant cycle in which saturated water vapor enters the turbine at 12.0 MPa (abs) and 
saturated liquid exits the condenser at a pressure of 0.012 MPa (abs). The net power output of the cycle is 122 MW. 
a. Assuming that the isentropic efficiencies of the turbine and pump are 80%, determine the following: 

i. the mass flow rate of the water, in kg/h, 
ii. the rate of heat transfer into the boiler, in MW 
iii. the rate of heat transfer from the condenser, in MW, and 
iv. the thermal efficiency of the power plant cycle. 

b. Draw a T-s diagram for the cycle, clearly indicating the process paths, states, and isobar values.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION:  
First determine the properties at each of the states. 
 
At State 1:   

We’re given that the water is in a saturated vapor phase and p1 = 12.0 MPa (abs) = 120 bar (abs).   
Using the Saturated Property Tables for water,  

T1 = T1,sat = 324.68 °C, h1 = h1g = 2685.4 kJ/kg, and s1 = s1g = 5.4939 kJ/(kg.K) 
 
At State 2: 

We’re given that the turbine has an isentropic efficiency of 80%.  In addition, since the pressure is 
assumed to remain constant across the condenser, p2 = p3 = 0.012 MPa (abs) = 0.12 bar (abs).  At this 
pressure, interpolating from the Saturated Property Tables for water, 

T2 = T2,sat = 48.66 °C, h2f = 203.73 kJ/kg, h2g = 2588.9 kJ/kg, s2f = 0.68576 kJ/(kg.K), and s2g = 
8.10048 kJ/(kg.K). 

The isentropic efficiency of the turbine is given by, 
𝜂!"#$%&',%)'& ≡

*̇!"	$%

*̇!"	$%,'()*
= ,+-,,

,+-,,(
, (1) 

Thus, 
ℎ. = ℎ/ − 𝜂!"#$%&',%)'&(ℎ/ − ℎ.)), (2) 

To find h2s, assume the turbine operates isentropically from 1 to 2, so that s2s = s1 = 5.4939 kJ/(kg.K).  
Thus, 

𝑥.) =
,,(-,,-
,,.-,,-

= ),(-)-,
).,-)-,

  => ℎ.) = ℎ.0 + *ℎ.1 − ℎ.0+ ,
),(-),-
),.-),-

- . (3) 

Using the values found previously, h2s = 1748.33 kJ/kg.  Substituting into Eq. (2) gives, 
h2 = 1937.41 kJ/kg. 

The quality for this state is, 
𝑥. =

,,-,,-
,,.-,,-

  =>  x2 = 0.7269. (4) 

The specific entropy at state 2 is then, 
=> 𝑠. = (1 − 𝑥.)𝑠.0 + 𝑥.𝑠.1  =>  s2 = 6.07521 kJ/(kg.k). (5) 

Note that s2 > s1, as expected for adiabatic operation of the turbine. 
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At State 3: 

We’re given that the water is in a saturated liquid phase and p3 = 0.012 MPa (abs) = 0.12 bar (abs). 
Using the Saturated Property Tables for water and interpolating, 

T3 = 48.66 °C, h3 = 203.73 kJ/kg, v3 = 0.0010012 m3/kg, and s3 = 0.68576 kJ/(kg.K) 
 
At State 4: 

We’re given that the pump has an isentropic efficiency of 80%.  In addition, since the pressure is 
assumed to remain constant across the boiler, p1 = p4 = 12.0 MPa (abs) = 120 bar (abs).   
 
The isentropic efficiency of the pump is given by, 

𝜂2"32,%)'& ≡
*̇'*/0	$%,'()*
*̇	'*/0	$%

= ,1(-,2
,1-,2

, (6) 

ℎ4 = ℎ5 +
(,1(-,2)
83453,'()*

, (7) 

Assuming an isentropic process from State 3 to State 4s (i.e., s4s = s3 = 0.68576 kJ/(kg.K)) and since 
the water can be treated as an incompressible substance at State 4s,  

Tds = dh – vdp =>  dh = vdp  =>  h4s – h3 = v3(p4s – p3), (8) 
Using the parameters calculated previously, along with p4s = 120 bar (abs), 

h4s = 215.86 kJ/kg. 
Using Eq. (7), 

h4 =  218.89 kJ/kg. 
 

Applying Conservation of Mass to individual control volumes surrounding each component and assuming 
steady flow gives, 

�̇� = �̇�/ = �̇�. = �̇�5 = �̇�4. (9) 
 

Apply the 1st Law to a control volume surrounding the turbine and pump. 
 
 
 
 
 
 
 
 
 

9:$%
9!

= �̇�%&!;	=> − �̇�&'!,$?	=> +∑ �̇�*ℎ + +
,𝑉

. + 𝑔𝑧+%& −∑ �̇�*ℎ + +
,𝑉

. + 𝑔𝑧+;"! , (10) 
where, 

9:$%
9!

= 0  (Assuming steady state operation.), (11) 
�̇�%&!;	=> = 0  (Assuming adiabatic operation.), (12) 
�̇�&'!,$?	=> = �̇�$?	=> − �̇�;&	=>, (13) 
∑ �̇�*ℎ + +

,𝑉
. + 𝑔𝑧+ − ∑ �̇�*ℎ + +

,𝑉
. + 𝑔𝑧+;"!%& = �̇�(ℎ5 − ℎ4 + ℎ/ − ℎ.). (14) 

(The changes in kinetic and potential energies are assumed to be negligibly small.)  
Substitute and simplify, 

�̇�&'!,$?	=> = �̇�(ℎ5 − ℎ4 + ℎ/ − ℎ.), (15) 

�̇� = *̇*)/,!"	$%
(,2-,1@,+-,,)

. (16) 
Using the parameters calculated previously in addition to the given net power output of 122 MW, 

 �̇� =599*103 kg/h. 
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The rate of heat transfer in the boiler is found by applying the 1st Law to a control volume surrounding the 
boiler. 
 
 
 
 
 
 
 
 
 

9:$%
9!

= �̇�%&!;	=> − �̇�$?	=> +∑ �̇�*ℎ + +
,𝑉

. + 𝑔𝑧+%& −∑ �̇�*ℎ + +
,𝑉

. + 𝑔𝑧+;"! , (17) 
where, 

9:$%
9!

= 0  (Assuming steady state operation.), (18) 
�̇�$?	=> = 0   (A boiler is a passive device.), (19) 
∑ �̇�*ℎ + +

,𝑉
. + 𝑔𝑧+ − ∑ �̇�*ℎ + +

,𝑉
. + 𝑔𝑧+;"!%& = �̇�(ℎ4 − ℎ/). (20) 

(The changes in kinetic and potential energies are assumed to be negligibly small.)  
Substitute and simplify, 

�̇�%&!;	=> = �̇�(ℎ/ − ℎ4), (21) 
Using the parameters calculated previously in addition to the given net power output of 122 MW, 

 �̇�%&!;	=> =411 MW. 
 

To find the heat transfer from the condenser, apply the 1st Law to a control volume surrounding the 
condenser. 

 
 
 
 
 
 
 
 

 
 
 
 

9:$%
9!

= −�̇�;"!	;0	=> − �̇�$?	=> + ∑ �̇�*ℎ + +
,𝑉

. + 𝑔𝑧+%& − ∑ �̇�*ℎ + +
,𝑉

. + 𝑔𝑧+;"! , (22) 
where, 

9:$%
9!

= 0  (Assuming steady state operation.), (23) 
�̇�$?	=> = 0   (A condenser is a passive device.), (24) 
∑ �̇�*ℎ + +

,𝑉
. + 𝑔𝑧+ − ∑ �̇�*ℎ + +

,𝑉
. + 𝑔𝑧+;"!%& = �̇�(ℎ. − ℎ5). (25) 

(The changes in kinetic and potential energies are assumed to be negligibly small.)  
Substitute and simplify, 

�̇�;"!	;0	=> = �̇�(ℎ. − ℎ5), (26) 
Using the parameters calculated previously in addition to the given net power output of 122 MW, 

 �̇�;"!	;0	=> =289 MW. 

�̇�%&!;	=> 
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Alternately, the rate of heat transfer out from the boiler could be found by applying the 1st Law to a 
control volume that surrounds the entire cycle, 
 

 
 
 
 
 
 
 
 
 
 
 

9:$%
9!

= �̇�&'!,%&!;	=> − �̇�&'!,$?	=> + ∑ �̇�*ℎ + +
,𝑉

. + 𝑔𝑧+%& −∑ �̇�*ℎ + +
,𝑉

. + 𝑔𝑧+;"! , (27) 
where, 

9:$%
9!

= 0  (Assuming steady state operation.), (28) 
�̇�&'!,%&!;	=> = �̇�%&!;	=> − �̇�;"!	;0	=>, (29) 
∑ �̇�*ℎ + +

,𝑉
. + 𝑔𝑧+ − ∑ �̇�*ℎ + +

,𝑉
. + 𝑔𝑧+;"!%& = 0,  (30) 

(Since there is no mass transfer across the CV surface.)  
Substitute and simplify, 

�̇�&'!,$?	=> = �̇�%&!;	=> − �̇�;"!	;0	=>, (31) 
�̇�;"!	;0	=> = �̇�%&!;	=> − �̇�&'!,$?	=> . (32) 

Using the value found previously for the heat transfer into the control volume and given net power done 
by the cycle, 

�̇�;"!	;0	=> =289 MW, 
which is the same value found previously. 
 
The thermal efficiency of the power plant is, 

𝜂 ≡ *̇*)/,!"	$%

Ȧ'*/0	$%
, (33) 

Using the parameters found previously, 
h = 0.297. 
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On the island of Hawaii lava flows continuously into the ocean.  It is proposed 
to anchor a floating power plant offshore of the lava flow that uses ammonia as 
the working fluid.  The plant would exploit the temperature variation between 
the warm water near the surface at 130 ºF and seawater at 50 ºF from a depth of 
500 ft to produce power.  Using the properties of pure water for the seawater 
and modeling the power plant as a Rankine cycle, determine: 
a. the plant’s thermal efficiency, and 
b. the mass flow rate of ammonia in lbm/min, for a net power output of 300 

hp. 
c. the mass flow rates of seawater through the boiler and condenser, in 

lbm/min. 
For a related story, see:   
https://www.scientificamerican.com/article/hawaii-first-to-harness-deep-ocean-temperatures-for-power/ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
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�̇�!" �̇�#$%  
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Working fluid:  ammonia 
State 1: 
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saturated vapor 
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State 3: 
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isentropic turbine efficiency = 0.80 
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boiler 

condenser 

turbine pump 

warm seawater @ 130 ºF 

cold seawater @ 50 ºF 

�̇�!" �̇�#$%  
1 

2 3 

4 

125 ºF 

55 ºF 

5 
6 

7 8 
T 

s 

1 

2 3 

4 

2s 
4s 

p2 = p2s = p3  

p1 = p4 = p4s  

T2 = T2s = T3  

T1  
T4  
T4s  

s 1
 =

 s 2
s  

s 2
  

s 3
 =

 s 4
s  s 4
  

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

C. Wassgren 303 2024-02-01



  Cycles_16 

 Page 2 of 4 

First find the temperatures, specific enthalpies, and specific entropies at each of the states using the property tables 
for ammonia. 

State p [psia] T [ºF] Phase x [-] h [Btu/lbm] s [Btu/(lbm. ºR)] 
1 286.47 (= psat) 120 sat. vapor 1 632.95 1.1405 
2 107.66 (= p3) 60 SLVMo,= 0.932429 591.626 1.16038 
2s 107.66 (= p2) 60 SLVMo 0.912476 581.295 1.1405 (= s1) 
3 107.66 (= psat) 60 sat. liquid 0 108.87 0.2314 
4 286.47 (= p1) 61.08 CL+ N/A 109.881 0.23374 
4s 286.47 (= p4) 60 CL+ N/A 109.729 0.2314 (= s3) 

 
oFor a SLVM, 
𝑥 = &'&!

&"'&!
, (1) 

ℎ = (1 − 𝑥)ℎ( + 𝑥ℎ). (2) 
State 2s:   

T2s = 60 ºF, s2s = s1 = 1.1405 Btu/(lbm.ºR)];  sf2s = 0.2314 Btu/(lbm.ºR), sg2s = 1.2277 Btu/(lbm.ºR)  
=> x2s = 0.912476. 
hf2s = 108.87 Btu/lbm, hg2s = 626.61 Btu/lbm  =>  h2s = 581.295 Btu/lbm. 

State 2: 
T2 = 60 ºF, h2 = 591.626 Btu/lbm (see below);  hf2 = 108.87 Btu/lbm, hg2 = 626.61 Btu/lbm   
=> x2 = 0.932429. 
sf2 = 0.2314 Btu/(lbm.ºR), sg2 = 1.2277 Btu/(lbm.ºR)   =>  s2 = 1.16038 Btu/(lbm.ºR). 

 
=To find the conditions at State 2, make use of the turbine isentropic efficiency, 

𝜂%$*+.,!&.". =
/̇#$%

/̇#$%,'()*
= 1+'1,

1+'1,(
  =>  ℎ2 = ℎ3 − 𝜂%$*+.,!&.".(ℎ3 − ℎ2&) = 591.626 Btu/lbm, (3) 

where h1 = 632.95 Btu/lbm, h2s = 581.295 Btu/lbm, and hturb.,isen.= 0.80. 
 
+ For a compressed liquid, 

ℎ45(𝑇, 𝑝) ≈ ℎ((𝑇) + [𝑝 − 𝑝&6%(𝑇)]𝑣((𝑇)   and   𝑠45(𝑇, 𝑝) ≈ 𝑠((𝑇) (4) 
State 4s: 

p4s = 286.47 psia, s4s = s3 = 0.2314 Btu/(lbm.ºR)  =>   
T4s = 60 ºF, psat,4s = 107.66 psia, vf4s = 0.02597 ft3/lbm, hf4s = 108.87 Btu/lbm => h4s = 109.729 Btu/lbm. 

 
=To find the conditions at State 4, make use of the pump isentropic efficiency, 

𝜂7$87,!&.". =
/̇'*,'()*
/̇'*

= 1-('1.
1-'1.

  =>  ℎ9 = ℎ: +
1-('1.

;/$0/,'()*.
= 109.881 Btu/lbm, (5) 

where h3 = 108.87 Btu/lbm, h4s = 109.729 Btu/lbm, and hpump,isen.= 0.85.  The temperature corresponding to this 
specific enthalpy is, after some linear interpolation, T4 = 61.08 ºF, and the specific entropy is, s4 = 0.23374 
Btu/(lbm.ºR). 
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Now apply the 1st Law to a control volume surrounding the turbine, 
<=23
<%

= ∑ �̇�(ℎ + 𝑘𝑒 + 𝑝𝑒)!" −∑ �̇�(ℎ + 𝑘𝑒 + 𝑝𝑒)#$% + �̇�!" − �̇�#$%, (6) 
where, 

<=23
<%

= 0       (assuming steady state operation), (7) 
∑ �̇�(ℎ + 𝑘𝑒 + 𝑝𝑒)!" − ∑ �̇�(ℎ + 𝑘𝑒 + 𝑝𝑒)#$% = �̇�(ℎ3 − ℎ2), (8) 

(neglecting kinetic and potential energy changes;  from COM �̇�3 = �̇�2 = �̇�) 
�̇�!" = 0  (assuming adiabatic operation), (9) 
�̇�#$% =?. (10) 

Substitute and solve for the power, 
/̇#$%
8̇

= ℎ3 − ℎ2. (11) 
Using the data from the table and the given mass flow rate, 

/̇#$%
8̇

= 41.324 Btu/lbm. 
 

Apply the 1st Law to a control volume surrounding the pump, 
<=23
<%

= ∑ �̇�(ℎ + 𝑘𝑒 + 𝑝𝑒)!" −∑ �̇�(ℎ + 𝑘𝑒 + 𝑝𝑒)#$% + �̇�!" + �̇�!", (12) 
where, 

<=23
<%

= 0       (assuming steady state operation), (13) 
∑ �̇�(ℎ + 𝑘𝑒 + 𝑝𝑒)!" − ∑ �̇�(ℎ + 𝑘𝑒 + 𝑝𝑒)#$% = �̇�(ℎ: − ℎ9), (14) 

(neglecting kinetic and potential energy changes;  from COM �̇�: = �̇�9 = �̇�) 
�̇�!" = 0  (assuming adiabatic operation), (15) 
�̇�!" =?. (16) 

Substitute and solve for the power, 
/̇'*
8̇
= ℎ9 − ℎ:. (17) 

Using the data from the table and the given mass flow rate, 
/̇'*
8̇
=  1.011 Btu/lbm. 

 
Apply the 1st Law to a CV surrounding the boiler, 

<=23
<%

= ∑ �̇�(ℎ + 𝑘𝑒 + 𝑝𝑒)!" −∑ �̇�(ℎ + 𝑘𝑒 + 𝑝𝑒)#$% + �̇�!" − �̇�#$%, (18) 
where, 

<=23
<%

= 0       (assuming steady state operation), (19) 
∑ �̇�(ℎ + 𝑘𝑒 + 𝑝𝑒)!" − ∑ �̇�(ℎ + 𝑘𝑒 + 𝑝𝑒)#$% = �̇�(ℎ9 − ℎ3), (20) 

(neglecting kinetic and potential energy changes;  from COM �̇�3 = �̇�9 = �̇�) 
�̇�!" =?, (21) 
�̇�#$% = 0   (the steam generator is a passive device). (22) 

Substitute and solve for the rate of heat transfer, 
>̇'*
8̇
= ℎ3 − ℎ9. (23) 

Using the data from the table and the given mass flow rate, 
>̇'*
8̇
= 523.069 Btu/lbm. 

 
Using the power in and power out results, 

/̇#$%,*)%
8̇

= /̇#$%
8̇

− /̇'*
8̇
= 40.313 Btu/lbm (24) 

 
The thermal efficiency for the power cycle is, 

𝜂 = /̇#$%,*)% 8̇⁄
>̇'* 8̇⁄

 = 0.0771 = 7.71%   (25) 
 
  

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

C. Wassgren 305 2024-02-01



  Cycles_16 

 Page 4 of 4 

This thermal efficiency is less than the Carnot cycle thermal efficiency of 
𝜂46*"#% = 1 − @2

@4
= 0.136 = 13.6%, (26) 

where TC = 509.67 ºR (= 50 ºF) and TH = 589.67 ºR (= 130 ºF).  The Rankine cycle efficiency is smaller than the 
Carnot cycle efficiency because of irreversibilities in the cycle.  Even if the Rankine cycle was ideal (isentropic 
conditions across the pump and turbine), it would still have a smaller efficiency than the Carnot cycle because the 
average temperature during heat addition is smaller than that for a Carnot cycle, i.e., the average temperature from 
State 4 to State 1 is smaller than the average temperature from State 4 to State 1 in a Carnot cycle. 
 
The mass flow rate in the cycle can be determined using Eq. (24) and the given net power output of �̇�#$%,".% = 300 
hp, 

/̇#$%,*)%
8̇

= 40.313 Btu/lbm =>  �̇� = :AA	hp
9A.:3:	Btu lbm⁄ = 316 lbm/min.  (27) 

 
 
Now determine the mass flow rate of the cooling water for the boiler.  Apply a control volume around the boiler and 
apply the 1st Law, 

<=23
<%

= ∑ �̇�(ℎ + 𝑘𝑒 + 𝑝𝑒)!" −∑ �̇�(ℎ + 𝑘𝑒 + 𝑝𝑒)#$% + �̇�!" + �̇�!", (28) 
where, 

<=23
<%

= 0       (assuming steady state operation), (29) 
∑ �̇�(ℎ + 𝑘𝑒 + 𝑝𝑒)!" − ∑ �̇�(ℎ + 𝑘𝑒 + 𝑝𝑒)#$% = �̇�(ℎ9 − ℎ3) + �̇�+,&K(ℎL − ℎM), (30) 

(neglecting kinetic and potential energy changes;  from COM �̇�9 = �̇�3 = �̇� and �̇�L = �̇�M = �̇�+,&K) 
�̇�!" = 0  (assuming adiabatic operation), (31) 
�̇�!" = 0   (the device is passive). (32) 

Substitute and solve for the boiler seawater mass flow rate, 
0 = �̇�(ℎ9 − ℎ3) + �̇�+,&K(ℎL − ℎM), (33) 
�̇�+,&K = �̇� ;1-'1+

15'16
<. (34) 

The mass flow rate for the cycle was found in Eq. (27).  The specific enthalpies for States 4 and 1 are given in the 
table at the start of this solution.  Not enough information is given to determine the specific enthalpies for States 5 
and 6 using the compressed liquid approximation; however, since the temperature is small and seawater can be 
reasonably assumed to be incompressible, let, 

∆ℎ = ∆𝑢 + 𝑣∆𝑝 = ∆𝑢 = 𝑐∆𝑇. (35) 
where Dp = 0 since the pressure of the surrounding seawater at the inlet and outlet to the boiler is approximately the 
same.  The specific heat for seawater is found from a property table to be c = 0.999 Btu/(lbm.ºR).  Using T5 = 130 ºF 
and T6 = 125 ºF along with the previously determined values, 

�̇�+,&K = 33000 lbm/min. 
 

Performing a similar 1st Law analysis for a CV surrounding the condenser, but with c = 1.005 Btu/(lbm.ºR), 
�̇�N,&K = �̇� ;1,'1.

17'18
<, (36) 

�̇�N,&K = 30300 lbm/min. 
 
The efficiency of this power plant is small (7.71%).  Even for an ideal Carnot cycle the efficiency is small (13.6%). 
The small cycle thermal efficiency coupled with the large mass flow rates required for pumping the seawater 
(decreasing the net power out of the cycle even further) and the material and structural costs for operating in 
corrosive seawater make for a weak incentive to construct and operate this powerplant from a financial point of 
view. 
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Consider a vapor power cycle with reheat where the working fluid is water.  The pump and turbines operate 
adiabatically.  At the exit of both turbines, the water exits as saturated water vapor.  The mass flow rate through the 
system is 2.1 kg/s. 
a. Determine the net power developed by the cycle, in kW. 
b. Determine the thermal efficiency of the power cycle. 
c. Sketch the cycle on a T-s plot, indicating states, paths, and isobars.  You needn’t include numerical values for 

the properties. 
 
 

 
 

 
 
 

 
 
 
 
SOLUTION:  
Applying Conservation of Mass to individual control volumes surrounding each component and assuming steady 
flow gives, 

�̇� = �̇�! = �̇�" = �̇�# = �̇�$ = �̇�% = �̇�&. (1) 
 

Apply the 1st Law to a control volume that surrounds both turbines and the pump. 
 
 
 
 
 
 
 
 
 

'(!"
')

= �̇�*+),	./ − �̇�01	./ + ∑ �̇�)ℎ + #
$𝑉" + 𝑔𝑧.*+ − ∑ �̇�)ℎ + #

$𝑉" + 𝑔𝑧.,2) , (2) 
where, 

'(!"
')

= 0  (Assuming steady state operation.), (3) 
�̇�*+),	./ = 0  (Assuming adiabatic operation.), (4) 
∑ �̇�)ℎ + #

$𝑉" + 𝑔𝑧. − ∑ �̇�)ℎ + #
$𝑉" + 𝑔𝑧.,2)*+ = �̇�(ℎ% − ℎ& + ℎ! − ℎ" + ℎ# − ℎ$). (5) 

(The changes in kinetic and potential energies are assumed to be negligibly small.)  
Substitute and simplify, 

�̇�01	./ = �̇�(ℎ% − ℎ& + ℎ! − ℎ" + ℎ# − ℎ$), (6) 
 
Using the given data, 

�̇�01	./ = 2150 kW. 
 
The thermal efficiency of the power cycle is given by, 

𝜂 ≡ 3̇%&'
5̇(%')

. (7) 
  

State p [bar (abs)] h [kJ/kg] x 
1 160 3355.6 - 
2 15 2791.0 1 
3 15 3169.8 - 
4 1.5 2693.1 1 
5 1.5 466.97 0 
6 160 486.74 - 
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To find the heat added to the power cycle, apply the 1st Law to a control volume that surrounds the boiler, 
 
 
 
 
 
 
 
 
 
 

'(!"
')

= �̇�*+),	./ − �̇�01	./ + ∑ �̇�)ℎ + #
$𝑉" + 𝑔𝑧.*+ − ∑ �̇�)ℎ + #

$𝑉" + 𝑔𝑧.,2) , (8) 
where, 

'(!"
')

= 0  (Assuming steady state operation.), (9) 
�̇�01	./ = 0  (The boiler is a passive device.), (10) 
∑ �̇�)ℎ + #

$𝑉" + 𝑔𝑧. − ∑ �̇�)ℎ + #
$𝑉" + 𝑔𝑧.,2)*+ = �̇�(ℎ& − ℎ! + ℎ" − ℎ#). (11) 

(The changes in kinetic and potential energies are assumed to be negligibly small.)  
Substitute and simplify, 

�̇�*+),	./ = �̇�(ℎ! − ℎ& + ℎ# − ℎ"), (12) 
 
Using the given data, 

�̇�*+),	./ = 6820 kW. 
 

Substituting values into Eq. (7) gives the power cycle thermal efficiency, 
h = 0.315. 
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Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

3.8.3. Vapor Compression Refrigeration and Heat Pump Cycles

The objective of a vapor compression refrigeration cycle is to remove energy from a cold reservoir and move
it to the hot reservoir. For example, the cold reservoir may be the interior of a refrigerator or freezer and
the hot reservoir is the kitchen, or it could be the interior of a home and the hot reservoir is the outdoors.
In this latter case, the device running the refrigeration cycle is known as an air conditioner.

The objective of a heat pump cycle is to move energy from the cold reservoir into the hot reservoir. For
example, the cold reservoir might be the outdoors and the hot reservoir would be the interior of a home.
Another example is a heat pump water heater where the cold reservoir is the room containing the water
heater and the hot reservoir is the water within the water heater tank.

The component schematics for refrigeration and heat pump cycles are identical. Similarly, the cycles traced
out by the two cycles on a T - s plot have the same features. A schematic of the components and the T - s
diagram are shown in Figure 3.45.

The temperature of the working fluid, typically a refrigerant, must be smaller than the temperature of the
cold reservoir in order to have heat transfer into the working fluid in the evaporator (Process 4-1). Once the
energy is absorbed, the compressor increases the pressure and temperature of the working fluid to raise its
temperature to value larger than the hot reservoir temperature (Process 1-2). This increase in temperature is
required in order for heat transfer to be from the working fluid in the condenser to the hot reservoir (Process
2-3). In order to return the working fluid to a cold temperature in the evaporator, a throttling device is used
to decrease the pressure and temperature (Process 3-4).

Notes:

(1) Expansion of the working fluid from State 3 to State 4 is achieved through a throttling device rather
than using a turbine. Although expansion through a throttling device is inherently non-isentropic,
expansion through a turbine would also be inefficient and produce little power due to the low quality
of the saturated vapor-liquid mixture and, thus, low specific enthalpies. In addition, a turbine is
a more complex device and would present additional engineering and maintenance challenges. In
a heat pump or air conditioner, the throttling device is in the form of an expansion valve. In a
refrigerator, the throttling device is simply a long, narrow tube called a capillary tube. The pressure
decreases across both devices (going from State 3 to State 4) since a higher pressure at the inlet
side is required in order to push the viscous working fluid through the valve/tube.

(2) Real compressors operate best on superheated vapor rather than saturated liquid-vapor mixtures
and, thus, State 1 is often in the superheated vapor region. Compression of superheated vapor is
known as “dry compression” while compression of a saturated liquid-vapor mixture is called “wet
compression”.

(3) For a refrigeration cycle, the rate of heat transfer from the cold reservoir is known as the refrigeration
capacity. One ton of refrigeration capacity = the rate of heat transfer required to freeze one ton of
water in 24 hrs with an enthalpy of fusion of 334 kJ/kg = 200 Btu/min ≈ 211 kJ/min = 3.517 kW.

(4) Recall that the “efficiency” of refrigeration and heat pump cycles are quantified using coefficients
of performance,

COPref =
Q̇C

ẆC

, (3.194)

COPHP =
Q̇H

ẆC

. (3.195)

(5) A refrigeration/heat pump cycle with a 100% isentropic efficiency is called an “ideal” refrigera-
tion/heat pump cycle. Note that the throttling device is still non-isentropic, however. In an actual
heat pump cycle, the location of State 1 is in the superheated vapor region (discussed in a previous
note) and the location of State 3 may be in the compressed liquid region.

(6) The coefficients of performance for the refrigeration/heat pump cycle shown in Figure 3.45 are less
than the coefficients of performance for refrigeration/heat pump Carnot cycles operating between
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Figure 3.45. A schematic showing the components of refrigeration and heat pump cycles,
and the corresponding T - s plot. The dashed line for Process 3-4 (flow through the throttling
device) indicates that this process occurs abruptly and in an uncontrolled manner, i.e., the
path is not well defined for this process.
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identical thermal reservoirs. Recall that the Carnot cycle coefficients of performance are,

COPref,rev =
TC

TH − TC
, (3.196)

COPHP,rev =
TH

TH − TC
. (3.197)

Even if the compressor has 100% isentropic efficiency, the fact that the temperature isn’t constant
in the condenser and evaporator (where heat transfer occurs), the non-isentropic expansion in the
throttling device, and other real-world effects (viscosity, heat transfer across a finite temperature
difference) results in decreased thermal efficiency.

(7) Using Eq. (3.196) as a guide, we see that as the hot reservoir temperature (TH) decreases, the
coefficient of performance for a refrigeration cycle increases. Thus, keeping a refrigerator/freezer in
a cool basement or a garage during the winter will improve the device’s thermodynamic efficiency.

(8) Using Eq. (3.197) as a guide, we see that as the cold reservoir temperature (TC) decreases, the
coefficient of performance for a heat pump decreases. Home heat pumps using atmospheric air as
the cold reservoir often have electric back-up heaters in order to account for the decreased efficiency
when the air temperature becomes very cold. For example, if TH = 20 °C and TC = 10 °C, then
COPHP,rev = 29.3. However, if TC = 0 °C, then COPHP,rev = 14.7. Of course a real heat pump
won’t have the same coefficients of performance as a Carnot cycle heat pump, but the principle
that the coefficient of performance decreases as the cold reservoir temperature decreases still holds.
Heat pumps using the Earth or a large body of water as the cold reservoir are less susceptible to
this issue since the cold reservoir temperature in those cases remains nearly constant.

(9) A heat pump can be designed to operate as an air conditioner (i.e., a refrigeration cycle) through
the use of a reversing valve. To learn more on this topic, the reader is encourage to look online for
more detailed descriptions on practical heat pump design.
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In a vapor-compression refrigeration cycle, ammonia exits the evaporator as saturated vapor at -22 °C.  The 
refrigerant enters the condenser at 16 bar (abs) and 160 °C, and saturated liquid exits at 16 bar (abs).  There 
is no significant heat transfer between the compressor and its surroundings, and the refrigerant passes 
through the evaporator with a negligible change in pressure.  If the refrigerating capacity is 150 kW, 
determine: 
a. the mass flow rate of refrigerant, 
b. the power input to the compressor, 
c. the coefficient of performance, and 
d. the isentropic compressor efficiency. 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
First determine the properties at the various states using Tables from Moran et al., 7th ed. 
 
State 1: T1 = -22 °C, saturated vapor  (Table A-13) 
 Þ  p1 = 1.7390 bar, h1 = 1415.08 kJ/kg, s1 = 5.6457 kJ/(kg.K) 
 
State 2: p2 = 16 bar, T2 = 160 °C  Þ  superheated vapor (Table A-15) 
 Þ h2 = 1798.45 kJ/kg, s2 = 5.7475 kJ/(kg.K) 
 
State 3: p3 = 16 bar, saturated liquid (Table A-14)  
 Þ  T3 = 41.03 °C, h3 = 376.46 kJ/kg, s3 = 1.3729 kJ/(kg.K) 
 
State 4: throttling process from 3 to 4, constant pressure from 4 to 1 
 Þ  h4 = h3 = 376.46 kJ/kg, p4 = p1 = 1.7390 bar 
  
 
The mass flow rate may be determined by applying the 1st Law to the evaporator and making use of the 
refrigeration capacity (=  = 150 kW), 

, (1) 

Þ   = 0.144 kg/s. 
 

The power input into the compressor is found by applying the 1st Law to the compressor, 
, (2)  

Þ   = 55.4 kW. 
 

 
⇥Qadded

 
⇥Qadded = ⇥m h1 − h4( )⇒ ⇥m =

⇥Qadded

h1 − h4( )
 ⇥m

 
⇥Won comp = ⇥m h2 − h1( )

 
⇥Won comp

s 

T 

4 

3 

2 

1 

2s 
condenser 

evaporator 

C 

1 

2 
3 

4 

  

  

T1 = -22 °C 
sat. vapor 

p2 = 16 bar 
T2 = 160 °C 

p3 = 16 bar 
sat. liquid 

ref. cap. = 150 kW 
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The coefficient of performance for the refrigeration cycle is defined as, 

, (3) 

Þ  COPref = 2.71. 
 

The isentropic efficiency of the compressor is defined as, 

, (4) 

where 
p2s = p2 = 16 bar and s2s = s1 = 5.6457 kJ/(kg.K) Þ  h2s = 1755.38 kJ/kg, T2s = 143 °C (interpolating 
from Table A-15), 
Þ  hcomp = 0.888.  

 
COPref ≡

⇥Qadded
⇥Won

 
ηcomp ≡

⇥Won comp,s

⇥Won comp

=
⇥Won comp,s ⇥m
⇥Won comp ⇥m

= h2s − h1

h2 − h1
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A process requires a heat transfer rate of 3*106 Btu/h at 170 °F.  It is proposed that a Refrigerant 134a 
vapor-compression heat pump be used to develop the process heating using a wastewater stream at 125 °F 
as the lower-temperature source.  The compressor isentropic efficiency is 80%.  Sketch the T-s diagram for 
the cycle and determine the: 
a. specific enthalpy at the compressor exit, in Btu/lbm, 
b. temperatures at each of the principal states in °F, 
c. mass flow rate of the refrigerant in lbm/h, 
d. compressor power, in Btu/h, and 
e. coefficient of performance and compare with the coefficient of performance for a Carnot heat pump 

cycle operating between reservoirs at the process temperature and the wastewater temperature, 
respectively.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
The specific enthalpy at state 2 may be found since the compressor efficiency is known (hcomp = 0.80),  

, (1) 

where, 
s2s = s1 = 0.2154 Btu/(lbm.°R) using Table A-11E from Moran et al., 7th ed. with p1 = 180 psia and 
knowing state 1 is in a saturated vapor state (T1 = 117.74 °F) 
Þ h2s = 123.32 Btu/lbm knowing p2s = p2 = 400 psia (Table A-12E and interpolation; T2s = 186 °F, 
SHV) 
Þ h2 = 124.97 Btu/lbm   (using Table A-12E and interpolation T2= 191.63 °F, SHV) 

 
Knowing p3 = p2 = 400 psia and h3 = 76.11 Btu/lbm (saturated liquid state, Table A-11E) Þ T3 = 179.95 °F. 
Knowing p4 = p1 = 180 psia and h4 = 76.11 Btu/lbm (SLVM Table A-11E) Þ T4 = 117.74 °F. 
 
Apply the 1st Law to the condenser to determine the mass flow rate, 

, (2) 

Þ  = 6.13*104 lbm/h. 
  

 
ηcomp ≡

⇥Won comp,s

⇥Won comp

=
⇥Won comp,s ⇥m
⇥Won comp ⇥m

= h2s − h1

h2 − h1

⇒ h2 = h1 +
h2s − h1

ηcomp

 
⇥Qremoved = ⇥m h2 − h3( )⇒ ⇥m =

⇥Qremoved

h2 − h3( )
 ⇥m

condenser 

evaporator 

C 

1 

2 
3 

4 

  

  

170 °F 

125 °F 
wastewater 

State p [psia] h [Btu/lbm] 
1 180 116.74 
2 400 ? 
3 400 76.11 
4 180 76.11 
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The compressor power is found by applying the 1st Law to the compressor, 
, (3) 

Þ  = 5.05*105 Btu/h. 
 

The coefficient of performance for the heat pump cycle is, 

, (4) 

 Þ  COPhp = 5.95. 
 

The COPhp for the corresponding Carnot cycle operating between TC = 125 °F (= 585 °R) and TH = 170 °F 
(= 630 °R) is, 

, (5) 

 Þ COPhp,rev = 14. 
The Carnot cycle COP is larger than the actual COP, as expected.  Much of the cause for irreversibility in 
the actual system is due to the fact that the system temperatures from 2-3 and from 4-1 are substantially 
different than the hot and cold reservoir temperatures of TH = 170 °F and TC = 125 °F leading to large, 
finite temperature differences.  Such large differences are needed for practical heat transfer rates between 
the condenser, evaporator, and the surroundings. 
 
A sketch of the states and processes are shown on the following T-s diagram. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
⇥Won comp = ⇥m h2 − h1( )

 
⇥Won comp

 
COPhp ≡

⇥Qremoved
⇥Won comp

COPhp,rev =
TH

TH −TC

s 

T 

1 

2 

2s 

3 

4 

180 psia 

400 psia 

118 °F 

180 °F 

186 °F 
192 °F 

125 °F 

170 °F TH 

TC 
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3.8.4. The Otto, Diesel, and Dual Cycles

The Otto, Diesel, and dual cycles are idealizations of the cycles observed in internal combustion, piston-
cylinder engines. Before analyzing these cycles, it is useful to first describe the components and processes
involved in a four-stroke internal combustion (IC) engine, which is the most common type of engine.

Figure 3.46 illustrates the components in a typical IC engine piston-cylinder arrangement. The piston moves
vertically within the cylinder as the crankshaft turns. When the piston is at its lowest point it’s considered
to be at bottom dead center, bdc and when the piston is at its highest point it’s at the top dead center, tdc.
The volumes within the cylinder at these two points are, respectively, Vbdc and Vtdc. The piston stroke is the
vertical distance between the bdc and tdc. At the top of the cylinder are valves, which open and close during
the piston movement. Opening an intake valve allows for fresh air (and possibly fuel) to enter the cylinder
while opening an outlet valve allows the piston to push out exhaust gases after combustion has occurred.

The figure also shows a spark plug at the top center of the cylinder. Spark plugs are used to ignite the air/fuel
mixture in spark ignition IC engines. In a compression ignition IC engine, the spark plug is removed and
instead fuel is injected at this location. The high temperature generated during compression of the air/fuel
mixture in a compression ignition engine is enough to initiate combustion.

Figure 3.46. An illustration of the components in a typical IC engine piston-cylinder ar-
rangement. This figure is from Moran, M.J., Shapiro, H.N., Boettner, D.D., and Bailey,
M.B., Fundamentals of Engineering Thermodynamics, Wiley, 7th ed.

The processes involved in a four-stroke IC engine are shown in Figure 3.47. As shown in the figure, in the
intake stroke the air/fuel mixture is drawn into the cylinder as the piston moves downward and an intake
valve is opened (the exhaust valve is closed). Next, the air/fuel mixture is compressed within the cylinder
during the compression stroke. During this process both valves are closed. Near the end of the compression
stroke the spark plug fires in a spark-ignition engine causing rapid combustion of the fuel. If the engine
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instead operates via compression ignition, then combustion initiates a bit later in the compression stroke.
The valves are closed during this process. Once ignition begins, the piston is forced downward by the rapid
expansion of the combustion gases. This is the power stroke. After reaching the bottom dead center, the
exhaust stroke begins in which the piston moves back upwards while the exhaust valve is opened (the intake
valve is closed), which forces the combustion products out of the cylinder. The cycle then repeats after the
piston reaches the top dead center. Note that the crankshaft completes two revolutions during this four
stroke process.

Figure 3.47. Illustrations of the different processes in a four stroke, internal com-
bustion engine. Note that the crankshaft turns twice during the four-stroke process.
This figure is from Encyclopedia Britannica, https://www.britannica.com/technology/
four-stroke-cycle.

A representative p - v plot for a four-stroke cycle is shown in Figure 3.48. The intake stroke starts at top dead
center, with the inlet valve opened and exhaust valve closed, and moves at nearly constant pressure to bottom
dead center, at which point the intake valve closes. The compression stroke compresses the air/fuel mixture
until reaching the top dead center, moving from the bottom right to the top left in the plot (decreasing
volume and increasing pressure). Combustion initiates near the end of the compression stroke. Note that the
crankshaft has now completed one rotation. Next, the power stroke begins as the combustion gases push the
piston downward, with the piston moving (and cylinder volume increasing) from top dead center to bottom
dead center (increasing volume and decreasing pressure). Near the end of the power stroke the exhaust valve
opens. Lastly, the exhaust stroke occurs and the piston moves back upwards at nearly constant pressure to
push the combustion gases out through the exhaust valve. When the piston reaches top dead center another
crankshaft rotation has occurred. The cycle then repeats.

We’ll use an air standard analysis to study the Otto, Diesel, and dual cycles. An air standard analysis is
a highly simplified model to provide qualitative understanding of cycles that use air as the working fluid.
The numerical values in an air standard analysis generally won’t be accurate when compared to experimen-
tal values; however, the air standard model can still provide valuable insight into the influence of various
parameters on performance measures.

The assumptions made in an internal combustion engine air standard analysis include:

(1) The air mass in the system remains constant.
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Figure 3.48. A representative p - v plot for a four-stroke, IC engine. This figure is from
Moran, M.J., Shapiro, H.N., Boettner, D.D., and Bailey, M.B., Fundamentals of Engineering
Thermodynamics, Wiley, 7th ed.

(2) There are no intake or exhaust processes.
(3) Air is modeled as an ideal gas.
(4) Combustion is modeled as a heat addition process and the working fluid remains as air.
(5) The exhaust process is modeled as a constant volume heat removal process.
(6) All processes are internally reversible.

In a cold air standard analysis, we further assume constant specific heats, i.e., a perfect gas assumption.

Two definitions used in the analysis of IC cycles include:

• The mean effective pressure, mep, defined as

mep :=
Wout,net

Vbdc − Vtdc
(3.198)

The mep can be used to compare the work output between different cycles having the same working
volume.

• The compression ratio, r,

r :=
Vbdc

Vtdc
=
vbdc

vtdc
> 1. (3.199)

As is shown in the following analyses, increasing the compression ratio increases the thermal effi-
ciency of the cycle.
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3.8.4.1. Otto Cycle

The Otto cycle is an idealization of the cycle shown in Figure 3.48 for a spark ignition IC engine. The
processes in an air-standard Otto cycle include (refer to Figure 3.49):

• Process 1 - 2 : isentropic compression of the working fluid as the piston moves from bottom dead
center to top dead center (compression stroke),

• Process 2 - 3 : constant volume heat addition to the working fluid while the piston is at top dead
center (combustion)

• Process 3 - 4 : isentropic expansion of the working fluid as the piston moves from top dead center
to bottom dead center (power stroke)

• Process 4 - 1 constant volume heat removal from the working fluid while the piston is at bottom
dead center (exhaust and intake strokes)

Figure 3.49. Illustrations of the processes involved in an air standard Otto cycle including
p - v and T - s plots. Compare this p - v plot to the one shown in Figure 3.48.

The cycle can be analyzed using the First Law applied to the air in the cylinder, neglecting changes in kinetic
and potential energy. For Process 1 - 2,

∆U12 = m(u2 − u1) = Qin,12 +Won,12, (3.200)

=⇒ Won,12 = m(u2 − u1). (3.201)

where Qin,12 = 0 since the process is isentropic and internally reversible.
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For Process 2 - 3,

∆U23 = m(u3 − u2) = Qin,23 −Wby,23, (3.202)

=⇒ Qin,23 = m(u3 − u2). (3.203)

where Wby,23 = 0 since the process is at constant volume.

For Process 3 - 4,

∆U34 = m(u4 − u3) = Qin,34 −Wby,34, (3.204)

=⇒ Wby,34 = m(u3 − u4). (3.205)

where Qin,34 = 0 since the process is isentropic and internally reversible.

For Process 4 - 1,

∆U41 = m(u1 − u4) = −Qout,41 −Wby,41, (3.206)

=⇒ Qout,41 = m(u4 − u1). (3.207)

where Wby,41 = 0 since the process is at constant volume.

The thermal efficiency of the cycle is,

ηOtto =
Wby,net

Qin
=
Wby,34 −Won,12

Qin,23
=

(u3 − u4)− (u2 − u1)

(u3 − u2)
=

(u3 − u2)− (u4 − u1)

(u3 − u2)
, (3.208)

or, re-writing further,

ηOtto = 1− u4 − u1

u3 − u2
= 1− Qout,41

Qin,23
. (3.209)

The compression ratio for the cycle (Eq. (3.199)) is,

r =
vbdc

vtdc
=
v1

v2
=
v4

v3
. (3.210)

Recall that the compression (Process 1-2) and power (Process 3-4) strokes are modeled in the air standard
analysis as isentropic processes involving an ideal gas. Thus,

r =
v1

v2
=
vr(T1)

vr(T2)
, (3.211)

and,

r =
v4

v3
=
vr(T4)

vr(T3)
. (3.212)

Thus,
vr(T1)

vr(T2)
=
vr(T4)

vr(T3)
. (3.213)

For a cold air standard analysis, which assumes perfect gas behavior, the previous two relations may be
written as,

1

r
=
v2

v1
=

(
T2

T1

) 1
1−k

=⇒ T2

T1
= rk−1. (3.214)

and,

r =
v4

v3
=

(
T4

T3

) 1
1−k

=⇒ T4

T3
= r1−k (3.215)

where k is the specific heat ratio. Combining,

rk−1 =
T2

T1
=
T3

T4
=⇒ T4

T1
=
T3

T2
. (3.216)

Again, assuming perfect gas behavior, Eq. (3.209) may be written as,

ηOtto = 1− cv(T4 − T1)

cv(T3 − T2)
= 1− T1

T2

(
T4

T1
− 1

T3

T2
− 1

)
. (3.217)
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Using Eq. (3.216),

ηOtto = 1− T1

T2
= 1− 1

rk−1
. (3.218)

Notes:

(1) Typical values for the compression ratio for a spark ignition IC engine are r = 8 to 10 with engine
thermal efficiencies of η = 30 to 35% (these are real efficiencies, not reversible efficiencies).

(2) As the compression ratio r increases, the thermal efficiency η increases. In practice, the compres-
sion ratio is limited by auto-ignition, which causes engine knock. Auto-ignition occurs when the
temperature reaches a sufficiently high value during compression that the air/fuel mixture ignites
prior to spark ignition. Higher octane fuels can go to higher compression ratios before knocking
occurs.

(3) As the specific heat ratio k increases, the thermal efficiency η increases. The specific heat ratio is
determined by the type of fuel used. In addition, the specific heat ratio increases as the temperature
decreases.

3.8.4.2. Diesel Cycle

The Diesel cycle is an idealization of the cycle shown in Figure 3.48 for a compression ignition IC engine.
The processes in an air-standard Diesel cycle include (refer to Figure 3.50):

• Process 1 - 2 : isentropic compression of the working fluid as the piston moves from bottom dead
center to top dead center (compression stroke),

• Process 2 - 3 : constant pressure heat addition to the working fluid starting from the top dead center
(combustion and start of power stroke)

• Process 3 - 4 : isentropic expansion of the working fluid as the piston continues to move to bottom
dead center (power stroke)

• Process 4 - 1 constant volume heat removal from the working fluid while the piston is at bottom
dead center (exhaust and intake strokes)

The cycle can be analyzed using the First Law applied to the air in the cylinder, neglecting changes in kinetic
and potential energy. For Process 1 - 2,

∆U12 = m(u2 − u1) = Qin,12 +Won,12, (3.219)

=⇒ Won,12 = m(u2 − u1). (3.220)

where Qin,12 = 0 since the process is isentropic and internally reversible.

For Process 2 - 3,

∆U23 = m(u3 − u2) = Qin,23 −Wby,23, (3.221)

=⇒ Qin,23 = m(u3 − u2) + p23(v3 − v2) = m(h3 − h2). (3.222)

Note that this process is different than the corresponding process for an Otto cycle. For the Diesel cycle,
Process 2 - 3 is at constant pressure while in the Otto cycle the process is at constant volume. Thus, there
is some work done during this process for a Diesel cycle.

For Process 3 - 4,

∆U34 = m(u4 − u3) = Qin,34 −Wby,34, (3.223)

=⇒ Wby,34 = m(u3 − u4). (3.224)

where Qin,34 = 0 since the process is isentropic and internally reversible.

For Process 4 - 1,

∆U41 = m(u1 − u4) = −Qout,41 −Wby,41, (3.225)

=⇒ Qout,41 = m(u4 − u1). (3.226)

where Wby,41 = 0 since the process is at constant volume.
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Figure 3.50. Sketches of the p - v and T - s plots for a Diesel cycle. Compare this p - v plot
to the one shown in Figure 3.48. These plots are originally from from Moran, M.J., Shapiro,
H.N., Boettner, D.D., and Bailey, M.B., Fundamentals of Engineering Thermodynamics,
Wiley, 7th ed.

The thermal efficiency of the cycle is,

ηDiesel = 1− Qout,41

Qin,23
= 1− u4 − u1

h3 − h2
. (3.227)

The compression ratio for the cycle (Eq. (3.199)) is,

r =
vbdc

vtdc
=
v1

v2
, (3.228)

and, since Processes 1 - 2 and 3 - 4 are isentropic processes involving an ideal gas,

r =
v1

v2
=
vr(T1)

vr(T2)
and

v3

v4
=
vr(T3)

vr(T4)
. (3.229)

Note also that v4 = v1 = vtdc.

For a cold air standard analysis,

r =
v1

v2
=

(
T2

T1

) 1
k−1

=⇒ T2

T1
= rk−1, (3.230)

v3

v4
=

(
T4

T3

) 1
k−1

=⇒ T4

T3
=

(
v3

v4

)k−1

. (3.231)

For a Diesel cycle, we also define a cut-off ratio, rc, which is the ratio of specific volumes during Process 2 -
3, i.e.,

rc :=
v3

v2
=
T3

T2
, (3.232)
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where the temperature ratio follows from the Ideal Gas Law since the pressure remains constant during
Process 2 - 3. Combining Eqs. (3.231) and (3.232),

T4

T3
=

(
v3

v4

)k−1

=

(
v3

v1

)k−1

=

(
v3

v2

v2

v1

)k−1

, (3.233)

∴
T4

T3
=
(rc
r

)k−1

. (3.234)

For the cold air standard analysis, Eq. (3.227) can be written as,

ηDiesel = 1− cv(T4 − T1)

cp(T3 − T2)
, (3.235)

= 1− 1

k

T1

T2

(
T4

T1
− 1

T3

T2
− 1

)
, (3.236)

= 1− 1

k

1

rk−1

(
T4

T3

T3

T2

T2

T1
− 1

rc − 1

)
, (3.237)

= 1− 1

k

1

rk−1

[(
rc
r

)k−1
rcr

k−1 − 1

rc − 1

]
, (3.238)

∴ ηDiesel = 1− 1

rk−1

[
rkc − 1

k(rc − 1)

]
. (3.239)

Notes:

(1) Typical values for the compression ratio for a compression ignition IC engine are r = 12 to 24 with
engine thermal efficiencies of η = 40 to 45% (these are real efficiencies, not reversible efficiencies).

(2) As the compression ratio r increases, the thermal efficiency η increases. Diesel engines are not
limited by engine knock.

(3) Since they rely on compression ignition, Diesel cycle engines are built for larger pressures. They
tend to last longer than spark ignition engines.

(4) The quantity in square brackets in Eq. (3.239) is greater than one for k > 1 and rc > 1. Thus,
comparing Eq. (3.239) to Eq. (3.218), we observe that the thermal efficiency of the Diesel cycle is
less than the thermal efficiency for the Otto cycle at the same compression ratio r. Furthermore,
the thermal efficiency of the Diesel cycle decreases as rc increases. As stated previously, however,
in practice the compression ratios for compression ignition engines are larger than the compression
ratios for spark ignition engines and, thus, the actual efficiencies tend to be larger for compression
ignition engines. Additional non-air standard cycle factors, such as air/fuel combustion chemistry,
also factor into why compression ignition engines are more efficient in practice.

(5) As the specific heat ratio k increases, the thermal efficiency η increases. The specific heat ratio is
determined by the type of fuel used. In addition, the specific heat ratio increases as the temperature
decreases.

3.8.4.3. Dual Cycle

The dual cycle combines elements of the combustion processes of the Otto and Diesel cycles to better ap-
proximate a real engine cycle. The processes in a dual cycle are (refer to Figure 3.51):

• Process 1 - 2 : isentropic compression of the working fluid as the piston moves from bottom dead
center to top dead center (compression stroke),

• Process 2 - 3 : constant volume heat addition to the working fluid while the piston is at top dead
center (beginning of combustion)

• Process 3 - 4 : constant pressure heat addition to the working fluid starting from the top dead center
(remaining combustion and start of power stroke)
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• Process 4 - 5 : isentropic expansion of the working fluid as the piston continues to move to bottom
dead center (power stroke)

• Process 5 - 6 constant volume heat removal from the working fluid while the piston is at bottom
dead center (exhaust and intake strokes)

Figure 3.51. Sketches of the p - v and T - s plots for a dual cycle. Compare this p - v plot
to the one shown in Figure 3.48.

Analysis of the dual cycle won’t be described here, but it follows closely the First Law analyses that have
already been presented for Otto and Diesel cycles.
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An air-standard Otto cycle has a compression ratio of 10.  At the beginning of compression, the pressure is 100 kPa 
(abs) and temperature is 27 ºC.  The mass of air is 5 g and the maximum temperature in the cycle is 727 ºC.  
Determine: 
a. the heat rejection, in kJ, 
b. the net work, in kJ, 
c. the thermal efficiency of the cycle,  
d. the mean effective pressure, in kPa (abs), and 
e. sketch the process on a T-s plot, clearly indicating states, paths, and lines of constant specific volume. 
 
SOLUTION:  
 
 
 
 
 
 
Note:  T1 = 27 ºC = 300 K and T3 = 727 ºC = 1000 K. 
 
Assume air is an ideal gas so that, 

!!
!"
= "#($!)

"#($")
 =>  𝑣&(𝑇') = 𝑣&(𝑇()

!!
!"

 (1) 
where, 

V2/V1 = 1/10 = 0.1    (given), 
vr(T1 = 300 K) = 621.2 (using the Ideal Gas Table for air),  
ð  vr(T2) = 62.12.  

Using the Ideal Gas Table for air,  
T2 = 730 K and u2 = 536.1 kJ/kg. 

In addition, u1 = 214.1 kJ/kg. 
 

Similarly, 
!$
!%
= "#($$)

"#($%)
 =>  𝑣&(𝑇)) = 𝑣&(𝑇*)

!$
!%

 (2) 
where, 

V4/V3 = 10/1 = 10    (given), 
vr(T3 = 1000 K) = 25.17 (using the Ideal Gas Table for air), 
ð  vr(T4) = 251.7. 

Using the Ideal Gas Table for air, 
T4 = 430 K and u4 = 308.0 kJ/kg. 

In addition, u3 = 758.9 kJ/kg. 
 

Apply the 1st Law to the system (i.e., the air), for process 2-3, 
∆𝐸+,+,'* = 𝑄./01	+,+,'* −𝑊3,	+,+,'*, (3) 

where, 
∆𝐸+,+,'* = ∆𝑈+,+,'* = 𝑚(𝑢* − 𝑢')  (Neglecting changes in kinetic and potential energies.), (4) 
𝑊3,	+,+,'* = 0  (Constant volume process.) (5) 

Substitute and simplify, 
𝑄./01	+,+,'* = 𝑚(𝑢* − 𝑢'). (6) 

Using the previously determined and given values, 
Qinto sys,23 = 1.114 kJ. 

 
Similarly, for process 4-1, 

∆𝐸+,+,)( = 𝑄./01	+,+,)( −𝑊3,	+,+,)(, (7) 
where, 

∆𝐸+,+,)( = ∆𝑈+,+,)( = 𝑚(𝑢( − 𝑢))  (Neglecting changes in kinetic and potential energies.), (8) 
𝑊3,	+,+,)( = 0  (Constant volume process.) (9) 

Substitute and simplify, 

T  

s  

v2 = v3 

1 

2 

3 

4 

air 
 v4 = v1 

T3 

T4 

T1 

T2 

s1 = s2 s3 = s4 
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𝑄./01	+,+,)( = 𝑚(𝑢( − 𝑢)). (10) 
Using the previously determined and given values, 

Qinto sys,41 = -0.4695 kJ.   Thus, 0.470 kJ of energy is rejected via heat transfer from the system. 
 
The net work for the cycle may be found by applying the 1st Law to the system over the entire cycle, 

∆𝐸+,+,4,456 = 𝑄./01	+,+,4,456 −𝑊3,	+,+,4,456, (11) 
where, 

∆𝐸+,+,4,456 = 0  (The net change in properties over a cycle is zero.) (12) 
𝑄./01	+,+,4,456 = 𝑄./01	+,+,'* + 𝑄./01	+,+,)(  (No heat is added in processes 1-2 and 3-4.) (13) 

Substitute and simplify, 
𝑊3,	+,+,4,456 = 𝑄./01	+,+,'* + 𝑄./01	+,+,)(  . (14) 

 
Using the previously calculated values, 

𝑊3,	+,+,4,456 = 0.645 kJ. 
 

Alternately, we could have found the net work by applying the 1st Law to the compression and power strokes of the 
cycle separately, 

𝑚(𝑢' − 𝑢() = −𝑊3,	+,+,(', (15) 
𝑚(𝑢) − 𝑢*) = −𝑊3,	+,+,*), (16) 
ð 𝑊3,	+,+,(' = -1.61 kJ  and 𝑊3,	+,+,*) = 2.2545 kJ, 
ð 𝑊3,	+,+,4,456 = 𝑊3,	+,+,(' +𝑊3,	+,+,*) = 0.645 kJ, which is the same answer found previously.  

 
The thermal efficiency for the cycle is, 

𝜂 ≡ 7&'	)'),+'+,-

8./01	)')
, (17) 

Using the previously calculated values, 
h = 0.578. 

 
The mean effective pressure is given by, 

𝑚𝑒𝑝 ≡ 7&'	)'),+'+,-

!"9!!
  =>  𝑚𝑒𝑝 ≡ 7&'	)'),+'+,-

!"((9!! !"⁄ )    (18) 
where, 

𝑉( =
;<2.#$"

="
, (19) 

with, 
Rair = 0.287 kJ/(kg.K), p1 = 100 kPa (abs), and V2/V1 = (1/10) = 0.1, 
ð  V1 = 4.31*10-3 m3  =>  mep = 166 kPa (abs) 
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The displacement volume of an internal combustion engine is 3 L.  The processes within each cylinder of the engine 
are modeled as an air-standard Diesel cycle with a cutoff ratio of 2.5.  The state of the air at the beginning of 
compression is fixed by p1 = 95 kPa (abs), T1 = 22°C, and V1 = 3.17 L.  Determine: 
a. the net work per cycle, 
b. the power developed by the engine if the cycle repeats 1000 times per minute, 
c. and the thermal efficiency of the cycle. 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
 
First, determine the mass of air in the cylinder using the ideal gas law, 

𝑚 = !!"!
#$!

, (1) 
Using the given values with R = 0.287 kJ/(kg.K), 

m = 3.5570*10-3 kg. 
 
Now determine the properties at each state: 

State 1:   
p1 = 95 kPa (abs), T1 = 22°C = 295 K, and V1 = 3.17 L   
=>  u1 = 210.5 kJ/kg  and  vr(T1 = 295 K) = 647.9  (from the Ideal Gas Table (IGT) for air) 
 

State 2:   
V2 = V1 – 3.0 L = 0.17 L  (given that the displacement volume is 3 L), (2) 
%"
%!
= ""

"!
= %#($")

%#($!)
 =>  𝑣((𝑇)) = 𝑣((𝑇*) '

""
"!
(, (3) 

where V1 = 3.17 L, V2 = 0.17 L, 
ð vr(T2) = 34.745  =>  T2 = 896.15 K,  u2 = 671.405 kJ/kg, h2 = 928.59 kJ/kg  (interpolating in the IGT) 
The pressure may be found using the ideal gas law, 
ð 𝑝) =

+#$"
""

   =>  p2 = 5381.37 kPa. (4) 
 

State 3: 
The cut-off ratio is given as rc = 2.5 = V3/V2 = T3/T2  => T3 = 2240.4 K,  V3 = 0.425 L, (5) 
=> h3 = 2553.87 kJ/kg,  u3 = 1911.76 kJ/kg, vr(T3) = 1.8925  (interpolating in the IGT) 

 
State 4: 

%$
%%
= "$

"%
= %#($$)

%#($%)
 =>  𝑣((𝑇,) = 𝑣((𝑇-) '

"$
"%
( = 𝑣((𝑇-) '

"$
"!
∙ "!
""
∙ ""
"%
(, (6) 

where V4 = V1, V1 = 3.17 L (given), V2 = 0.17 L (Eq. (2)), and V2/V3 = 1/rc = 1/2.5  (Eq. (5)),   
=>  vr(T4) = 14.1157  =>  T4 = 1209.8 K  and  u4 = 942.17 kJ/kg  (interpolating in the IGT) 
 
 

  

air 

p 

v 

1 

2 3 

4 
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The work into the air during the compression stroke is found by applying the 1st Law to the air (assuming negligible 
changes in KE and PE and an adiabatic process), 

 𝑚(𝑢) − 𝑢*) = 𝑊./,*) (7) 
Using the previously calculated values, 

𝑊./,*) = 1.6394 kJ. 
 

Now calculate the work done by the air during the heat addition and power strokes using the 1st Law, 
𝑊123,)- = 𝑝)(𝑉- − 𝑉)), (8) 
𝑚(𝑢, − 𝑢-) = −𝑊123,-, (9) 

Using the previously calculated values, 
𝑊123,)- = 1.3722 kJ  and  𝑊123,-, = 3.449 kJ   

The net work out is, 
𝑊123,/43 = 𝑊123,)- +𝑊123,-, −𝑊./,*), (10) 
𝑊123,/43 = 3.18 kJ  (This is the work over one cycle.) 
 

Alternately, we could apply the 1st Law over the whole cycle, keeping in mind that the total energy does not change 
over the cycle, 

0 = 𝑄./,)- − 𝑄123,,* +𝑊./,*) −𝑊123,)- −𝑊123,-,, (11) 
0 = 𝑄./,)- − 𝑄123,,* −𝑊123,/43, (12) 
𝑊123,/43 = 𝑄./,)- − 𝑄123,,*. (13) 

 
The heat transfer into the system during the combustion process is, 

𝑚(𝑢- − 𝑢)) = 𝑄./,)- − 𝑝)(𝑉- − 𝑉)),  (noting that p3 = p2), (14) 
𝑄./,)- = 𝑚(𝑢- − 𝑢)) + 𝑝)(𝑉- − 𝑉)) = 𝑚(ℎ- − ℎ)). (15) 

Using the previously calculated values, 
𝑄./,)- = 5.7811 kJ. 

 
The heat transfer out of the system is, 

𝑚(𝑢, − 𝑢*) = −𝑄123,,*. (16) 
𝑄123,,* = 2.6025 kJ. 

 
Using the calculated heat values and Eq. (13), 

𝑊123,/43 = 3.18 kJ, which is the same value found previously. 
 

The power is, 
�̇�123,/43 = '5&'(,*+(

*	cycle
( '*;;;	cycle

*	min
( '*	min

?;	s
(, (17) 

�̇�123,/43 = 53.0 kJ/s = 53.0 kW. 
 

 
The thermal efficiency is, 

𝜂 = 5&'(,*+(
A,*

, (18) 
Using Wout,net = 3.18 kJ and Qin = 5.7811 kJ, 

ð h = 0.550 = 55.0%. 
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3.8.5. The Brayton Cycle and Improvements

The Brayton cycle is a thermodynamic model for gas turbine engines. In a simple gas turbine engine
(components shown schematically in Figure 3.52), air enters a compressor, which does work on the air to
increase its pressure and temperature. Downstream of the compressor is a combustor. In the combustor, fuel
is added to the air and the air/fuel mixture is ignited, increasing the working fluid temperature significantly.
The combustion products move downstream through a turbine, which extracts power from the working fluid.
Part of the power from the turbine is used to drive the compressor. In an energy generation application, the
remainder of the power is used to drive a generator to create electricity. If the gas turbine engine is used as
a jet engine, then only a small portion of the working fluid energy is extracted for excess power. Instead,
the remainder of the flow energy is converted to kinetic energy via a nozzle at the engine outlet to provide
thrust.

Figure 3.52. Illustrations of the components in open and closed gas turbine cycles.

The left side of Figure 3.52 is an open gas turbine engine cycle while the right side is a closed cycle. In a
closed cycle, the working fluid (usually air) is recycled throughout the cycle. In an open cycle, however, fresh
air enters the cycle and then is discharged to the atmosphere downstream of the turbine. The figure shows
a grayed-out heat exchanger since discharging the exhaust to the atmosphere then pulling in fresh air from
the atmosphere is effectively the same as running the air through a heat exchanger. Because the atmosphere
is large, the high temperature air leaving the turbine eventually comes into thermal equilibrium with the
surrounding atmosphere.

Like the internal combustion engine analyses described in the previous section, the basic study of a gas turbine
engine cycle uses an air standard analysis. The assumptions made in this air standard analysis include:

(1) Air is modeled as an ideal gas.
(2) Combustion is modeled as a heat addition process and the working fluid remains as air. The

combustion chemistry and changes to the working fluid are ignored.

In a cold air standard analysis, we further assume constant specific heats, i.e., a perfect gas assumption.

The processes in an ideal Brayton cycle analysis, used to model a gas turbine engine cycle, include (Fig-
ure 3.53):
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• Process 1 - 2 : isentropic compression of the working fluid through the compressor,
• Process 2 - 3 : constant pressure heat addition to the working fluid through the heat exchanger

(combustion),
• Process 3 - 4 : isentropic expansion of the working fluid through the turbine,
• Process 4 - 1 : constant pressure heat transfer from the working fluid as it flows through the heat

exchanger.

Figure 3.53. Illustrations of the processes in a Brayton cycle shown on p - v and T - s plots.

A more detailed analysis of the Brayton cycle involves applying the First Law to control volumes surrounding
the various components. For example, for control volumes surrounding the turbine and the compressor,

Ẇby turbine

ṁ
= h3 − h4 and

Ẇon compressor

ṁ
= h2 − h1. (3.240)

Applying the First Law to control volumes surrounding the heat exchangers,

Q̇added

ṁ
= h3 − h2 and

Q̇removed

ṁ
= h4 − h1. (3.241)

The thermal efficiency of this power cycle is,

ηBrayton =
Ẇnet, out

Q̇added

=
Ẇby turb/ṁ− Ẇon comp/ṁ

Q̇added/ṁ
, (3.242)

=
(h3 − h4)− (h2 − h1)

(h3 − h2)
=

(h3 − h2)− (h4 − h1)

(h3 − h2)
, (3.243)

= 1− (h4 − h1)

(h3 − h2)
= 1− Q̇removed

Q̇added

. (3.244)

The back work ratio (bwr) for the cycle is,

bwr =
Ẇon compressor

Ẇby turbine

=
h2 − h1

h3 − h2
. (3.245)

The bwr for a typical gas turbine is 40 – 80%. The typical bwr for a vapor power plant (Rankine cycle) is 1
– 3%. The difference is due to the fact that the specific volume for a gas is large, but is small for a liquid.
Recall that for a steady, internally reversible, process with one inlet and one outlet and negligible changes in

kinetic and potential energies: Ẇby/ṁ =
´ 2

1
vdp.

Notes:

(1) Across the compressor and turbine, the typical pressure ratios (p2/p1 = p3/p4) are 5 – 20 and
typical engine thermal efficiencies are 35 – 60%.

C. Wassgren 330 2024-02-01



Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

(2) A larger pressure ratio across the compressor (p2/p1) gives a larger efficiency since a larger pressure
at State 2 corresponds to a larger average temperature through the combustor where heat addition
occurs (recall that ηrev = 1 − TC/TH). Alternately, increasing the temperature leading into the
turbine (T3) also leads to a larger efficiency; however, the temperature at the turbine inlet is
typically limited by metallurgical considerations.

(3) Consider the case when T3 is fixed (for example, due to metallurgical factors), but p2/p1 is varied,
as shown in Figure 3.54. Cycle A has a larger thermal efficiency than Cycle B since the pressure
ratio for Cycle A is larger.

Figure 3.54. Two Brayton cycles, but different pressure ratios. Both cycles have the
same temperature leaving the combustor (T3 = T ′3), but Cycle A (1-2’-3’-4’) has a larger
compressor pressure ratio than Cycle B (1-2-3-4), i.e., p′2/p1 > p2/p1.

The area enclosed by Cycle B is larger than the area for Cycle A; hence, Cycle B has a larger work
per unit mass flow rate. In order for Cycle A to produce the same work, a larger mass flow rate would
be required, potentially requiring a larger set of components, which might be unacceptable for use on
an aircraft where weight is a significant design factor. Hence, in aircraft applications, aircraft engine

designers typically design for maximum work per unit mass flow rate, i.e.,
(
Ẇnet,out/ṁ

)
max,fixedT3.

(4) A larger value for the specific heat ratio k results in a larger thermal efficiency. The specific heat
ratio is governed by the type of fuel used.

(5) Recall that from the First Law, the Second Law, and the Tds equations combined together, for a
steady state flow with a single inlet-outlet and negligible changes in kinetic and potential energies:

Ẇout

ṁ
= wout = −

ˆ 2

1

vdp and
Ẇin

ṁ
= win =

ˆ 2

1

vdp (3.246)

Thus, the specific work extracted by the turbine can be increased if the specific volume of the working
fluid can be increased, and the specific work into the compressor can be decreased if the specific
volume can be decreased. These are the ideas behind the concept of “reheating” and “intercooling”.
Intercooling between successive compressor stages is used to decrease the specific volume of the
working fluid. From the Ideal Gas Law,

v =
RT

p
(3.247)

For p = constant in an intercooling heat exchanger (refer to Figure 3.55), if T decreases, then v also
decreases and, from Eq. (3.246), win decreases. Thus, intercooling between compressor stages can
reduce the specific work required to drive the compressor.
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Figure 3.55. A gas turbine engine cycle with intercooling between compressor stages, re-
heating between the turbine stages, and a regenerator.

Reheating between successive turbine stages is used to increase the specific volume of the working
fluid (Figure 3.55). Again, from the Ideal Gas Law, if the pressure remains constant in the reheating
heat exchanger and the temperature of the working fluid increases, then the specific volume will
increase. From Eq. (3.246), wout will increase. Similar to intercooling, reheating between turbine
stages can increase the specific work obtained from the turbine.
Another method for improving a Brayton Cycle is to use regenerative heating of the working fluid.
Regeneration is when the working fluid is preheated in a heat exchanger using the hot combustion
gas in order to reduce the amount of heat (and fuel) needed in the combustor. From the First Law
applied to the combustor (Figure 3.55),

Q̇in = ṁ(h5 − hx), (3.248)

where hx > h4 due to heat transfer with the hot combustion gases. Thus, Q̇in in the combustor
decreases with the use of the regenerator and, as a result, the cycle thermal efficiency increases since
Q̇in decreases.
To determine the effectiveness of using the exhaust working fluid to preheat the working fluid leading
into the combustor, we can define a regenerator effectiveness,

ηref :=
hx − h4

h8 − h4
. (3.249)

The effectiveness is defined in this manner since the largest temperature that State x can reach is
the temperature at State 8 (Figure 3.56). Thus, we compare the actual specific heat transfer into
the working fluid between States 4 and x to the ideal specific heat transfer, assuming State x has
the same temperature as State 8 (and, thus, the same specific enthalpy since specific enthalpy is a
function only of temperature for an ideal gas).
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Figure 3.56. Top: A schematic of a counterflow regenerator. Bottom: A plot of the working
fluid temperatures as a function of position in the regenerator. State 4 to state x is the flow
leading into the combustor. State 8 to state y is the flow leading into the heat removal heat
exchanger. The cooler working fluid traveling from State 4 to State x heats up due to heat
transfer from the warmer fluid traveling from State 8 to State y. The dashed line in the plot
shows the ideal temperature profile for the fluid traveling from State 4 to State x.
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Air enters the compressor of an ideal cold air-standard Brayton cycle at 100 kPa (abs) and 300 K, with a mass flow 
rate of 6 kg/s. The compressor pressure ratio is 10 and the turbine inlet temperature is 1400 K. For a specific heat 
ratio of 1.4, calculate:  
1. the thermal efficiency of the cycle,  
2. the back work ratio, and  
3. the net power developed.  
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
 
 
Calculate the thermal efficiency for the Brayton cycle, 

𝜂 = 1 − %!!
!"
&
"#$
$ , (1) 

where, 
k = 1.4, 
p2/p1 = 10, 
ð h = 0.482. 

 
The back work ratio (bwr) is, 

𝑏𝑤𝑟 ≡ "̇%&'(	*(+,

"̇-.	'/0-
, (2) 

where, 
�̇�$%&'	)'*! = �̇�(ℎ+ − ℎ,) = �̇�𝑐!(𝑇+ − 𝑇,),   (3) 
�̇�-.	&/0- = �̇�(ℎ1 − ℎ2) = �̇�𝑐!(𝑇1 − 𝑇2),   (4) 

so that Eq. (2) becomes, 
𝑏𝑤𝑟 = 3!43"

31432
. (5) 

Note that Eqs. (3) and (4) were derived by applying the 1st Law to CVs that surround the compressor and turbine, 
respectively, and assuming steady flow, one inlet and one outlet, adiabatic conditions, and neglecting changes in 
kinetic and potential energies.  In addition, the air is assumed to be a perfect gas (constant specific heats). 
 
The temperature ratios T2/T1 and T4/T3 may be found by noting that the flow through the compressor and turbine are 
assumed to be adiabatic an reversible => isentropic.  Since the air is also assumed to be a perfect gas, the 
temperature and pressure ratios are related by, 

3!
3"
= %!!

!"
&
$#"
$ . (6) 

32
31
= %!2

!1
&
$#"
$ . (7) 

 
 For the given values, 

p2/p1 = 10, k = 1.4  =>  T2/T1 = 1.9307 , 
p4/p3 = 1/10, k = 1.4  =>  T4/T3 = 0.51795, 

combustor 

C T 

1 

2 3 

4 

T3 = 1400 K p2/p1 = 10 

p1 = 100 kPa (abs) 
T1 = 300 K 
�̇� = 6 kg/s 
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(Since the pressure remains constant in the combustor, p3 = p2.  In addition, the pressure at 4 will be the same as the 
pressure at 1, i.e., p4 = p1, since both are either open to the atmosphere or are connected via another heat exchanger.) 
 
Given that T1 = 300 K and T3 = 1400 K,  

ð T2 = 579.2 K, 
ð T4 = 725.1 K. 

Substituting these temperature values into Eq. (5) gives, 
bwr = 0.414. 
 

The net power developed is, 
�̇�-.,%6& = �̇�-.	&/0- − �̇�$%&'	)'*! = �̇�-.	&/0- 31 −

"̇%&'(	*(+,

"̇-.	'/0-
4 = �̇�-.	&/0-(1 − 𝑏𝑤𝑟),   (8) 

�̇�-.,%6& = �̇�𝑐!(𝑇1 − 𝑇2)(1 − 𝑏𝑤𝑟),   (9) 
where Eq. (4) has been used to derive Eq. (9).  Using the given values, 

cp = 1.005 kJ/(kg.K),    (value for air at 300 K, since it’s a cold air-standard analysis) 
�̇� = 6 kg/s, 
ð �̇�-.,%6& = 2390 kW. 
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Air enters the compressor of an air-standard Brayton cycle with a volumetric flow rate of 60 m3/s at 0.8 bar (abs) 
and 280 K.  The compressor pressure ratio is 20 and the maximum cycle temperature is 2100 K.  The compressor 
and turbine isentropic efficiencies are 92% and 95%, respectively.  Determine: 
a. the net power developed from the cycle, 
b. the rate of heat addition in the combustor, and 
c. the thermal efficiency of the cycle. 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
 
 
Apply the 1st Law to a control volume surrounding the compressor and turbine, 

0 = �̇�(ℎ! − ℎ" + ℎ# − ℎ$) − �̇�%&',)*', (1) 
(assuming steady state, negligible KE and PE, and adiabatic conditions) 

�̇�%&',)*' = �̇�(ℎ! − ℎ" + ℎ# − ℎ$). (2) 
 
The mass flow rate can be found from the conditions at State 1 and using the ideal gas law, 

�̇� = 𝜌!�̇�! = - +!
,-!
. �̇�!, (3) 

ð �̇� = 59.731 kg/s 
 

Now determine the specific enthalpies at each of the states. 
State 1: 

T1 = 280 K  =>  h1 = 280.1 kJ/kg, pr(T1) = 1.0889   (from the Ideal Gas Table) 
 

State 3: 
T3 = 2100 K  =>  h3 = 2377 kJ/kg,  pr(T3) = 2559 (from the IGT) 
 

State 2: 
𝜂.%/+,01*) =

2"#32!
2"32!

  =>  ℎ" = ℎ! +
2"#32!

4$%&',)#*+
. (4) 

 
State 2s:  p2/p1 = p2s/p1 = 20, 

+"#
+!
= +,(-"#)

+,(-!)
  => 𝑝7(𝑇"1) = 𝑝7(𝑇!) -

+"#
+!
.   (isentropic compression of an ideal gas), (5) 

=>  pr(T2s) = 21.778  =>  T2s = 649.33 K, h2s = 659.29 kJ/kg  (from IGT) 
 
Using Eq. (4) and the given and computed values, 

h2 = 692.26 kJ/kg. 
 

  

combustor 

C T 

1 

2 3 

4 

T3 = 2100 K p2/p1 = 20 

p1 = 0.8 bar (abs) = 80 kPa (abs) 
T1 = 280 K 
�̇�! = 60 m3/s 

hcomp,isen = 0.92 
hturb,isen = 0.95 �̇�)*',%&' 

�̇�0) 
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State 4: 
𝜂'&78,01*) =

2-32.
2-#32.

  =>  ℎ$ = ℎ# + 𝜂'&78,01*)(ℎ$1 − ℎ#). (6) 
 
State 4s:  p3/p4 = p3/p4s = p2/p1 = 20, 
 

+.
+-#

= +,(-.)
+,(--#)

  => 𝑝7(𝑇$1) = 𝑝7(𝑇#) -
+-#
+.
.   (isentropic expansion of an ideal gas), (7) 

=>  pr(T4s) = 127.95  =>  T4s = 1029.19 K, h4s = 1079.57 kJ/kg  (from IGT) 
 
Using Eq. (6) and the given and computed values, 

h4 = 1144.44 kJ/kg. 
 
Using the state data, mass flow rate, and Eq. (2), 

�̇�%&',)*' = 49.0 MJ. 
 

The rate of heat addition into the combustor is found by applying the 1st Law to a control volume surrounding the 
combustor, 

0 = �̇�(ℎ" − ℎ#) + �̇�0), (8) 
(assuming steady state, negligible KE and PE, and a passive device) 

�̇�0) = �̇�(ℎ# − ℎ"). (9) 
Using the previously calculated quantities, 
�̇�0) = 101 MW. 

 
The cycle’s thermal efficiency is, 

𝜂 = 9̇%/0,+*0
;̇)+

, 

=>  h = 0.487 = 48.7%. 
 

 
 

s 

T 
3 

4s 

1 

2s 
p2-3 =

 const. >
 p4-1 

p4-1 = const. 

2 4 

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

C. Wassgren 337 2024-02-01



  Cycles_19 

 Page 1 of 2 

Air enters the compressor of a regenerative air-standard Brayton cycle with a volumetric flow rate of 60 m3/s at 0.8 
bar (abs) and 280 K.  The compressor pressure ratio is 20 and the maximum cycle temperature is 2100 K.  The 
compressor and turbine have isentropic efficiencies of 92% and 95%, respectively.  For a regenerator effectiveness 
of 85%, determine: 
a. the net power developed, 
b. the rate of heat addition in the combustor, 
c. the thermal efficiency of the cycle. 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To determine the net power developed, apply the 1st Law to a CV surrounding the compressor and turbine, 

�̇�!"#,%&# = �̇�(ℎ' + ℎ( − ℎ) − ℎ*)    (assuming SSSF, adiabatic, and negligible KE and PE). (1) 
 
The rate of heat transfer in the combustor is found by applying the 1st Law to a CV surrounding the combustor, 

�̇�+% = �̇�(ℎ( − ℎ,)    (assuming SSSF, passive device, and negligible KE and PE). (2) 
 
 
Now find the properties at the various states. 

 
State 1: 

�̇� = 60 m3/s, p1 = 0.8 bar (abs) = 80 kPa (abs), T1 = 280 K   
=>  h1 = 280.1 kJ/kg  and pr(T1) = 1.0889  (from the Ideal Gas Table for air) 
Also, from the ideal gas law,   
=>  𝜌' =

-!
./!

 = 0.9955 kg/m3  =>  �̇� = 𝜌�̇� = 59.731 kg/s (3) 
 

State 3: 
T3 = 2100 K, 
=>  h3 = 2377 kJ/kg  and pr(T3) = 2559  (from the Ideal Gas Table for air) 

 
State 2: 

p2/p1 = 20 = p2s/p1  and  hcomp,isen = 0.92 (given), 
𝜂0!1-,+2&% =

3"#,"%&#
3"#

= 4'%54!
4'54!

  =>  ℎ) = ℎ' +
4'%54!

6()*+,"%&#
. (4) 

For an ideal gas undergoing an isentropic process, 
-'%
-!
= -,(/'%)

-,(/!)
  =>  𝑝9(𝑇)2) = 𝑝9(𝑇') 0

-'%
-!
1, (5)   

=>  pr(T2s) = 21.778 =>  T2s = 649.33 K, h2s = 659.29 kJ/kg (IGT),  
=>  h2 = 692.26 kJ/kg. 
 

  

combustor �̇�+% 
3 

4 2 

regenerator 
y 

heat 
exchanger 

turbine compressor 

1 

�̇�!"#,%&#  

�̇�!"# 

x 
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State 4: 
p3/p4 = 20 = p3/p4s (= p2/p1)  and  hturb,isen = 0.95 (given), 
𝜂#"9:,+2&% =

3)-.
3)-.,"%&#

= 4/540
4/540%

  =>  ℎ* = ℎ( − 𝜂#"9:,+2&%(ℎ( − ℎ*2). (6) 

For an ideal gas undergoing an isentropic process, 
-0%
-/
= -,(/0%)

-,(//)
  =>  𝑝9(𝑇*2) = 𝑝9(𝑇() 0

-0%
-/
1, (7) 

=>  pr(T4s) = 127.95  =>  T4s = 1029.19 K, h4s = 1079.57 kJ/kg (IGT),  
=>  h4 = 1144.44 kJ/kg. 
 

State x: 
From the definition of the regenerator effectiveness, 

𝜂9&; =
4154'
4054'

  =>  ℎ, = ℎ) + 𝜂9&;(ℎ* − ℎ)), (8) 
Using the previously calculated specific enthalpy values and the given hreg = 0.85, 
=>  hx = 1076.61 kJ/kg. 

 
Using these state data, Eq. (1) gives, 

�̇�!"#,%&# = 49.0 MW, 
and Eq. (2) gives, 

�̇�+% = 77.7 MW. 
 

The thermal efficiency for the cycle is, 
𝜂0<0=& =

>̇)-.,#&.
@̇"#

= 0.631 = 63.1%. (9) 
 

Note that as hreg increases, then hx approaches h4 and �̇�+% decreases.  As a result, the thermal efficiency for the cycle 
would increase.  In the limit of hreg = 100%, �̇�+%,1+% = 73.6 MW and hcycle,max = 66.6%.  In contrast, without the 
regenerator (hreg = 0), then �̇�+%,1A, = 100.6 MW and hcycle,min = 48.7%.  Thus, we observe that including a 
regenerator can substantially improve the cycle’s thermal efficiency. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

T 

s 

1 

2 

3 

4 

x 

y 

p2 =
 px 

= p3 

p1 = py =
 p4 
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Air enters the compressor of a cold air-standard Brayton cycle with regeneration and reheat at 100 kPa (abs), 300 K, 
with a mass flow rate of 6 kg/s.  The compressor pressure ratio is 10 and the inlet temperature for each turbine stage 
is 1400 K.  The pressure ratios across each turbine stage are equal.  The turbine stages and compressor each have 
isentropic efficiencies of 80% and the regenerator effectiveness is 80%.  For a specific heat ratio of 1.4, calculate: 
a. the thermal efficiency of the cycle, 
b. the back work ratio, and 
c. the net power developed by the cycle. 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Since we’re assuming a cold air-standard analysis, state the properties of the air in the analysis: 

R = 0.287 kJ/(kg.K) and cp@300 K = 1.005 kJ/(kg.K). 
 

The net power from the cycle is found by applying the 1st Law to a CV surrounding the compressor and turbines 
(assuming SSSF, adiabatic operation, negligible KE and PE), 

�̇�!"#,%&# = �̇�(ℎ' − ℎ( + ℎ) − ℎ* + ℎ+ − ℎ,), (1) 
and, since we’re performing a cold air-standard analysis, meaning the air is a perfect gas, 

�̇�!"#,%&# = �̇�𝑐-(𝑇' − 𝑇( + 𝑇) − 𝑇* + 𝑇+ − 𝑇,). (2) 
 

The power into the compressor is found by applying the 1st Law to a CV surrounding just the compressor (assuming 
SSSF, adiabatic operation, negligible KE and PE), 

�̇�.% = �̇�(ℎ( − ℎ'), (3) 
�̇�.% = �̇�𝑐-(𝑇( − 𝑇')     (assuming perfect gas behavior). (4) 

 
The back work ratio (bwr) is, 

𝑏𝑤𝑟 = /̇!"
/̇#$%

= /̇!"
/̇#$%,"'%1/̇!"

. (5) 
 
The rate at which heat is added into the two combustors is found by applying the 1st Law to CVs surrounding each 
combustor  (assuming SSSF, passive devices, negligible KE and PE), 

�̇�.% = �̇�.%,' + �̇�.%,( = �̇�(ℎ) − ℎ2) + �̇�(ℎ+ − ℎ*), (6) 
�̇�.% = �̇�𝑐-(𝑇) − 𝑇2 + 𝑇+ − 𝑇*)  (assuming perfect gas behavior). (7) 

 
The thermal efficiency of the cycle is, 

𝜂 = /̇#$%,"'%
3̇!"

. (8) 
 

 
  

regen. 
comb. 1 

comb. 2 

HX 

C T1 T2 

1 

2 3 
x 

y 

4 5 

6 

�̇�!"#,%&# 

�̇�.%,' 

�̇�.%,( 
�̇�!"# 

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

C. Wassgren 340 2024-02-01



  Cycles_20 

 Page 2 of 3 

Now find the temperatures at the various states. 
 

State 1: 
�̇� = 6 kg/s, p1 = 100 kPa (abs), T1 = 300 K   (given) 
 

State 2s:  (assuming the process is isentropic and involves a perfect gas) 
4()
4*
= 1-()

-*
2
+,*
+    =>  T2s = 579.21 K  using p2s/p1 = p2/p1 = 10. (9) 

 
State 2: 

𝜂5!6-,.7&% =
8!",!)'"
8!"

= 9():9*
9(:9*

= 5-(4():4*)

5-(4(:4*)
 =>  𝑇( = 𝑇' +

4():4*
=.#/-,!)'"

, (10) 

=>  T2 = 649.01 K. 
 

State 3: 
T3 = 1400 K  (given) 
 

State 4s: 
40)
41
= 1-0)

-1
2
+,*
+    =>  T4s = 1007.56 K  using p3/p4s = 3.162.    (11) 

Note that since we’re told that the pressure drops across both turbine stages are equal, 
-(
-*
= -1

-2
= 1-1

-0
2 1-0

-3
23

>'

1-3
-2
23

>-1 -0⁄

= 1-1
-0
2
(
  =>  -1

-0
= 4

-(
-*

  =>  -1
-0
= -3

-2
= 3.162. (12) 

 
State 4: 

𝜂#"@A,.7&% =
8#$%

8#$%,!)'"
= 91:90

91:90)
= 5-(41:40)

5-(41:40))
 =>  𝑇* = 𝑇) − 𝜂#"@A,.7&%(𝑇) − 𝑇*7), (13) 

=>  T4 = 1086.05 K. 
 

State 5: 
T5 = 1400 K  (given) 
 

State 6s: 
42)
43
= 1-2)

-3
2
+,*
+    =>  T6s = 1007.56 K  using p6s/p5 = 3.162  (Eq. (12)) (14) 

 
State 6: 

𝜂#"@A,.7&% =
8#$%

8#$%,!)'"
= 93:92

93:92)
= 5-(43:42)

5-(43:42))
 =>  𝑇, = 𝑇+ − 𝜂#"@A,.7&%(𝑇+ − 𝑇,7), (15) 

=>  T6 = 1086.05 K. 
 

State x: 
𝜂@&B =

94:9(
92:9(

= 5-(44:4()

5-(42:4()
  =>  𝑇2 = 𝑇( + 𝜂@&B(𝑇, − 𝑇(). (16) 

=>  Tx = 998.64 K  using hreg = 0.80 (given) and the previously calculated values. 
 
 

Using the calculated temperatures and Eqs. (2), (4), (5), (7), and (8), 
�̇�!"#,%&# = 1680 kW, 
�̇�.% = 2100 kW, 
�̇�.% = 4300 kW, 
bwr = 0.556 = 55.6%, 
h = 0.390 = 39.0%. 
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CHAPTER 4

Integral Analysis

4.1. Lagrangian and Eulerian Perspectives

There are two common ways to study a moving fluid:

(1) Look at a particular location and observe how all the fluid passing that location behaves. This is
called the Eulerian point of view.

(2) Look at a particular piece of fluid and observe how it behaves as it moves from location to location.
This is called the Lagrangian point of view.

For example, Let’s say we want to study migrating birds. We could either:

(1) stand in a fixed spot and make measurements as birds fly by (Eulerian point of view; Figure 4.1),
or

(2) tag some of the birds and make measurements as they fly along (Lagrangian point of view; Fig-
ure 4.1).

(a) (b)

Figure 4.1. Studying birds using (A) Eulerian and (B) Lagrangian approaches.

4.1.1. Lagrangian (aka Material, Particle, Substantial) Derivative

Figure 4.2. An illustration showing the path of a fluid particle.
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If we follow a piece of fluid (Lagrangian viewpoint), how will some property of that particular piece of fluid
change with respect to time? Let’s say we’re interested in looking at the time rate of change of temperature,
T , that the particle observes as it moves from location to location (Figure 4.2. The particle may experience a
temperature change because the temperature of the entire field of fluid may be changing with respect to time
(i.e., the temperature field may be unsteady). In addition, the temperature field may have spatial gradients
(different temperatures at different locations, i.e., non-uniform) so that as the particle moves from point to
point it will experience a change in temperature. Thus, there are two effects that can cause a time rate of
change of temperature that the particle experiences: unsteady effects, also known as local or Eulerian effects,
and spatial gradient effects, also known as convective effects. We can describe this in mathematical terms by
writing the temperature of the entire field as a function of time, t, and location, x,

T = T (t,x). (4.1)

Note that the location of the fluid particle is a function of time: x = x(t) so that,

T = T (t,x(t)). (4.2)

Taking the time derivative of the temperature, expanding the location vector into its x, y, and z components,
and using the chain rule gives,

dT

dt

∣∣∣∣ following a
fluid particle

=
∂T

∂t
+
∂T

∂x

dx

dt︸︷︷︸
=ux

+
∂T

∂y

dy

dt︸︷︷︸
=uy

+
∂T

∂z

dz

dt︸︷︷︸
=uz

. (4.3)

Note that dx/dt, dy/dt, and dz/dt are the particle velocities ux, uy, and uz respectively. Writing this in a
more compact form,

DT

Dt
=
∂T

∂t
+ ux

∂T

∂x
+ uy

∂T

∂y
+ uz

∂T

∂z
, (4.4)

=
∂T

∂t
+ (u ·∇)T. (4.5)

The notation, D/Dt, indicating a Lagrangian (also sometimes referred to as the material, particle, or sub-
stantial) derivative, has been used in Eq. (4.4) to indicate that we’re following a particular piece of fluid.
More generally, we have,

D

Dt
(. . . )︸ ︷︷ ︸

Lagrangian rate of
change (changes as we
follow a fluid particle)

=
∂

∂t
(. . . )︸ ︷︷ ︸

local or Eulerian
rate of change (changes
due to unsteady effects)

+ (u ·∇) (. . . )︸ ︷︷ ︸
convective rate

of change (changes due to
a change in particle position)

, (4.6)

=
∂

∂t
(. . . ) + ux

∂

∂x
(. . . ) + uy

∂

∂y
(. . . ) + uz

∂

∂z
(. . . ) . (4.7)

where (. . . ) represents any field quantity of interest.

Notes:

(1) The Lagrangian derivatives in cylindrical and spherical coordinates are,

cylindrical:
D

Dt
=

∂

∂t
+ ur

∂

∂r
+
uθ
r

∂

∂θ
+ uz

∂

∂z
, (4.8)

spherical:
D

Dt
=

∂

∂t
+ ur

∂

∂r
+
uθ
r

∂

∂θ
+

uφ
r sin θ

∂

∂φ
. (4.9)

(4.10)
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(2) The acceleration experienced by a fluid particle is given by,

Cartesian:
Du

Dt
=
∂u

∂t
+ ur

∂u

∂r
+
uθ
r

∂u

∂θ
+ uz

∂u

∂z
, (4.11)

cylindrical:


ar = ∂ur

∂t + ur
∂ur
∂r + uθ

r
∂ur
∂θ + uz

∂ur
∂z −

u2
θ

r

aθ = ∂uθ
∂t + ur

∂uθ
∂r + uθ

r
∂uθ
∂θ + uz

∂uθ
∂z −

uruθ
r

az = ∂uz
∂t + ur

∂uz
∂r + uθ

r
∂uz
∂θ + uz

∂uz
∂z

(4.12)

spherical:


ar = ∂ur

∂t + ur
∂ur
∂r + uθ

r
∂ur
∂θ +

uφ
r sin θ

∂ur
∂φ −

1
r

(
u2
θ + u2

φ

)
aθ = ∂uθ

∂t + ur
∂uθ
∂r + uθ

r
∂uθ
∂θ +

uφ
r sin θ

∂uθ
∂φ −

1
r

(
uruθ − u2

φ cot θ
)

aφ =
∂uφ
∂t + ur

∂uφ
∂r + uθ

r
∂uφ
∂θ +

uφ
r sin θ

∂uφ
∂φ + 1

r (uruφ + uθuφ cot θ)

(4.13)
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a. A fluid velocity field is given by: 

ˆ2 xt=u e  
Will a fluid particle accelerate in this flow?  Why? 

b. Now consider the following flow: 
ˆ xx=u e  

Will a fluid particle accelerate in this flow?  Why? 
 

 
SOLUTION: 
 
Part (a): 
The acceleration is given by: 

    

a = Du
Dt

= ∂u
∂t
=2êx

!
+ ux

2t
!

∂u
∂x
=0
!

+ uy
∂u
∂y

=0
!

+ uz
∂u
∂z

=0
!

 

Hence, for the given flow: 
ˆ2 x=a e   Yes, fluid particles will accelerate due to the local (or Eulerian) derivative. 

 
 
Part (b): 
The acceleration is given by: 

    

a = Du
Dt

= ∂u
∂t
=0
!

+ ux

x
!

∂u
∂x
=êx

!
+ uy

∂u
∂y

=0
!

+ uz
∂u
∂z

=0
!

 

Hence, for the given flow: 
ˆxx=a e   Yes, fluid particles will accelerate due to the convective derivative. 
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For the diffuser shown below, determine: 
a. the acceleration of a fluid particle for any x and t, and 
b. the value of c (other than c=0) for which the acceleration is zero for any x at t=2 s.  Assume V0=10 ft/s 

and l=5 ft. 
c. Explain how the acceleration can be zero if the flow rate is increasing with time. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
The acceleration of a fluid particle is the Lagrangian derivative of the velocity. 

 (1) 

Substitute the given velocity field. 

 

 (2) 

 
At t = 2 s: 

 

 (3) 

Solve numerically for c when V0 = 10 ft/s and l = 5 ft. 
Þ c = 0.124 s-1 

 
The acceleration of a fluid particle can be zero even though the flow rate is increasing because the local 
acceleration (¶u/¶t) exactly balances the convective deceleration (u¶u/¶x). 

 
 
 

D u
Dt t x

¶ ¶
= = +

¶ ¶
u u ua

( ) ( ) ( )

( ) ( )

0 0 0

0
0 0

ˆ ˆ1 e 1 1 e 1 1 e 1

ˆ ˆe 1 1 e 1 1 e

ct ct ct

ct ct ct

x x xV V V
t l l x l

Vx xV c V
l l l

- - -

- - -

¶ é ù é ù ¶ é ùæ ö æ ö æ ö= - - + - - - -ç ÷ ç ÷ ç ÷ê ú ê ú ê ú¶ ¶è ø è ø è øë û ë û ë û
é ù é ùæ ö æ ö= - + - - - -ç ÷ ç ÷ê ú ê úè ø è ø ë ûë û

a i i

i i

( )20
0

ˆ1 e 1 ect ctVxV c
l l

- -é ùæ ö\ = - - -ç ÷ ê úè ø ë û
a i

( ) ( )22 20
0

ˆ, 2 1 e 1 ec cVxx t V c
l l

- -é ùæ ö= = = - - -ç ÷ ê úè ø ë û
a 0 i

( )22 20e 1 ec cV
c

l
- -= -

 

where V0, c, and l are constants 

0
ˆ(1 e )(1 )ct xV

l
-= - -u iy 

x 

½ l 
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A fluid velocity field is given by, 
, 

where c is a constant.  Determine 
a. the components of the acceleration and 
b. the points in the flow field where the acceleration is zero. 

 
 
SOLUTION: 
 
The acceleration of a fluid element is given by, 

 (1) 

where, 

  (steady flow) 

 

 

 (2) 
 

Set the acceleration equal to zero, 
 

  (This is locus of points where the total acceleration is zero.) (3) 

2 2ˆ ˆ( ) ( )cy cx= +u i j

x y
D u u
Dt t x y

¶ ¶ ¶
= = + +

¶ ¶ ¶
u u u ua

t
¶

=
¶
u 0

( )( )2 2 2ˆ ˆ2 2xu cy cx c xy
x
¶

= =
¶
u j j

( )( )2 2 2ˆ ˆ2 2yu cx cy c x y
y
¶

= =
¶
u i i

2 2 2 2ˆ ˆ2 2c x y c xy\ = +a i j

2 2 2 2ˆ ˆ2 2c x y c xy= = +a 0 i j
either  0  or  0x y\ = =
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The velocity field near a planar stagnation point (see the figure below) is given as, 

 where U0 and L are positive constants 

Determine the acceleration of a fluid particle along the line x = 0. 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
The acceleration of a fluid particle is, 

, (1) 

where, 

  (steady flow) 

 

 

 (2) 

 
Along the line x = 0, 

 (3) 

0 0ˆ ˆx y
x yU U
L L

æ ö æ ö= -ç ÷ ç ÷
è ø è ø

u e e

x y
D u u
Dt t x y

¶ ¶ ¶
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¶ ¶ ¶
u u u ua

t
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=
¶
u 0

2
0 0 0 2

1 ˆ ˆx x x
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x L L L
¶ é ù é ùæ ö æ ö æ ö= =ç ÷ ç ÷ ç ÷ê ú ê ú¶ è ø è ø è øë û ë û
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The market price, P (in dollars), of used cars of a certain model is found to be: 
  
where x is the distance in miles west of Detroit, MI and t is the time in days.  If a car of this model is driven 
from Detroit at t=0 towards the west at a rate of 400 miles per day, determine: 
a. whether the value of the car is increasing or decreasing, and 
b. how much of this change is due to depreciation and how much is due to moving into a better market. 
 
 
SOLUTION: 
 
To determine if the value of the car is decreasing, take the Lagrangian derivative of the market price. 

  (where u is the speed of the car) (1) 

  Hence, the value of the car is increasing. 

 
The car depreciates at a rate of -$2/day (this is ¶P/¶t).  The change in the car’s value increases at a rate of 
$8/day due to moving into a different market (this is u¶P/¶x). 
 

( ) ( )$1000 $0.02 / mile $2 / dayP x t= + -

( ) ( )( )
$8/ day

$2/day 400 miles/day $0.02/mileDP P Pu
Dt t x

=

¶ ¶
= + = - +
¶ ¶ !"""""#"""""$

$6/dayDP
Dt

\ =
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You are climbing up the side of Triangle Mountain, so named because the sides are relatively straight, making the 
cross-section of the mountain look like a triangle.  The mountain is 5 km high and has a base of 40 km, as shown.  
 

 
 
You are worried about how hot you will get on your trip and the rate at which the temperature will change with time.  
The temperature decreases with altitude at a rate of 5 °C/km.  Also, the temperature changes in time as the sun heats 
the ground.  The temperature (in °C) as you climb the mountain is given by: 

 

where t is measured in hours from midnight, to = 9 hrs, and y is the altitude measured in meters from the base of the 
mountain. 
 
You start ascending the mountain at 6:00 A.M. and travel at a speed of 4.0 km/hr up the mountain side.   
 
a. Derive an expression for the time derivative of temperature you experience as you climb up the mountain. 
b. Calculate the rate of change in temperature at the moment you reach the mountain peak (in °C/hr). 
 
 
SOLUTION: 
 
Write the Lagrangian time derivative, keeping in mind that the two variables of interest are t and y: 

 (1) 

where 

, (2) 

, (3) 

. (4) 

 
Substitute and simplify. 

 (5) 

 
You reach the peak in 5.15 hrs (= 5 km / (0.97 km/hr)), which means you reach the peak at 11:09 A.M (t = 11.15 
hrs).  Evaluating Eqn. (5) using t0 = 9 hrs gives, at the moment you reach the peak: 

DT/Dt = -3.74 °C/hr (6) 

( ) ( ) ( ) ( )2
, 25 C 0.005 C m 5 C sin

24 hrs
ot t

T y t y
p -é ù

= - + ê ú
ë û

! ! !

y
DT T Tu
Dt t y

¶ ¶
= +
¶ ¶

( )0225 C cos
24 hrs 24 hrs

t tT
t

pp -é ù¶
= × ê ú¶ ë û

!

( )
( ) ( )2 2

5 km4.0 km hr 0.97 km hr
20 km 5 km

yu
é ù
ê ú= =
ê ú+ë û

0.005 C mT
y
¶

= -
¶

!

( ) ( )025  C cos 4.85 C hr
12 hrs 24 hrs

t tDT
Dt

pp -é ù
= -ê ú

ë û

!

!

4.0 km/hr 
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4.2. The Reynolds Transport Theorem

Recall that we can look at the behavior of small pieces of fluid in two ways: the Eulerian perspective or
the Lagrangian perspective. Often we’re interested in the behavior of an entire system of fluid (many pieces
of fluid) rather than just an individual piece. How do we analyze this situation? We can use Eulerian and
Lagrangian approaches for analyzing a macroscopic amount of fluid but we need to first develop an important
tool called the Reynolds Transport Theorem.

Why do we want to do this? It turns out that the behavior of fluids (most substances in fact) can be described
in terms of a few fundamental laws. These laws include:

• Conservation of Mass,
• Newton’s 2nd Law,
• the angular momentum principle,
• the First Law of Thermodynamics, and
• the Second Law of Thermodynamics.

These laws are typically easiest to apply to a particular system of fluid particles (Lagrangian perspective).
However, the Lagrangian forms of the laws are typically difficult to use in practical applications since we
can’t easily keep track of many individual bits of fluid. It’s much easier to apply the laws to a particular
volume in space instead (referred to as a control volume, an Eulerian perspective). For example, tracking
the behavior of individual bits of gas flowing through a rocket nozzle would be difficult. It’s much easier
to just look at the behavior of the gas flowing into, out of, and within the volume enclosed by the rocket
nozzle. The Reynolds Transport Theorem is a tool that will allow us to convert from a system point of view
(Lagrangian) to a control volume point of view (Eulerian).

Let’s consider a system of fluid particles that is coincident (occupying the same region in space) as our control
volume (CV) at some time, t (Figure 4.3). At some later time, t + δt, the system may have moved relative

Figure 4.3. A sketch of a system and control volume of fluid that are coincident at time t.

to the CV (Figure 4.4).

Let B be some transportable property (i.e., some property that can be transported from one location to
another, e.g., mass, momentum, energy) and β be the corresponding amount of B per unit mass (Figure 4.5),
i.e.,

Bsys =

ˆ
Vsys

βρdV, (4.14)

BCV =

ˆ
CV

βρdV, (4.15)

where Bsys and BCV refer to the total amount of B in the system and control volume, respectively. Note
that at time t, the total amounts of B in the system and control volume are equal since the system and CV
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Figure 4.4. A sketch of a system and control volume of fluid at time t+ δt.

are coincident,

Bsys(t) = BCV (t). (4.16)

However, at time, t+ δt, the system and CV no longer occupy the same region in space so that, in general,

Figure 4.5. A sketch of a system of fluid illustrating a small amount the transportable
quantity B, i.e., dB.

Bsys(t+δt) 6= BCV (t+δt). Note that B may be changing with time so that, in general, Bsys(t+δt) 6= Bsys(t).
In Figure 4.6, Bout is the amount of B that has left the CV and Bin is the amount of B that has entered the
CV.

Figure 4.6. A sketch of a system and control volume showing Bout and Bin at t+ δt.

Utilizing the figure shown above, we see that,

BCV (t+ δt) = Bsys(t+ δt)−Bout(t+ δt) +Bin(t+ δt). (4.17)
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Subtracting Bsys(t) from both sides and dividing through by δt gives,

BCV (t+ δt)−Bsys(t)

δt
=
Bsys(t+ δt)−Bsys(t)

δt
− Bout(t+ δt)

δt
+
Bin(t+ δt)

δt
. (4.18)

Now let’s substitute BCV (t) = Bsys(t) on the left hand side of the equation, subtract Bout(t)/δt and Bin(t)/δt
on the right-hand side (note that Bout(t) = Bin(t) = 0), and then take the limit of the entire equation as
δt→ 0,

lim
δt→0

BCV (t+ δt)−Bsys(t)

δt
= lim
δt→0

Bsys(t+ δt)−Bsys(t)

δt
(4.19)

− lim
δt→0

Bout(t+ δt)−Bout(t)

δt
+ lim
δt→0

Bin(t+ δt)−Bin(t)

δt
, (4.20)

dBCV
dt

=
DBsys

Dt
− dBout

dt
+
dBin

dt
. (4.21)

Note that the D/Dt notation has been used to signify that the first term on the right-hand side of Eq. (4.21)
represents the time rate of change as we follow a particular system of fluid (Lagrangian perspective). Re-
arranging the equation and substituting in for BCV and Bsys using Eqs. (4.15) and (4.14),

D

Dt

(ˆ
Vsys

βρdV

)
=

d

dt

(ˆ
VCV

βρdV

)
+
d(Bout −Bin)

dt
. (4.22)

The last term on the right-hand side of Eq. (4.22) represents the net rate at which B is leaving the control
volume through the control surface (CS). Let’s examine this term more closely by zooming in on a small
piece of the control surface and observing how much B leaves through this surface in time δt (Figure 4.7).

Figure 4.7. A sketch of a system and control volume of fluid at time t+δt. The parallelpiped
is the small volume of fluid that has left the control volume through the area dA over time
δt. Note that in the figure, the area dA = dAn̂.

The component of the fluid velocity out of the control volume through surface, dA, is given by,

uout through dA = urel · dA. (4.23)

where urel = usys−uCS is the velocity of the fluid relative to the control surface. The volume of fluid leaving
through surface dA in time δt is then,

δV = (urel · dA) δt. (4.24)

Thus, the volumetric flow rate, dQ, (volume per unit time) through surface dA is given by,

dQ = urel · dA. (4.25)

Note that the mass flow rate, dṁ through the small area is,

dṁ = ρdQ = ρurel · dA. (4.26)
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Now use Eq. (4.25) to write the net rate at which B leaves the control volume,

d (Bout −Bin)

dt
=

ˆ
CS

βρdQ =

ˆ
CS

β (ρurel · dA) . (4.27)

Combining Eq. (4.27) with Eq. (4.22) gives,

D

Dt

(ˆ
Vsys

βρdV

)
︸ ︷︷ ︸

rate of increase of
B within the system

=
d

dt

(ˆ
VCV

βρdV

)
︸ ︷︷ ︸

rate of increase of
B within the CV

+

ˆ
CS

β (ρurel · dA)︸ ︷︷ ︸
net rate at which B leaves

the CV through the CS

. (4.28)

This is the Reynolds Transport Theorem!
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Consider a fluid flowing with the following velocity profile: 
 

where A = 1 s-1, B = 2 s-1, and C = 3 (m×s)-1.   
a. Determine the magnitude of the volumetric flow rate through the fixed surface shown in the figure 

below. 
b. What is the magnitude of the average velocity through the surface? 
 
 

 
 
 
 
 
 
 

SOLUTION: 
 
First determine the unit normal vector for the surface.  The unit normal vector to the surface may be found 
by normalizing the cross product of the two vectors lying on the surface’s edges emanating from the origin. 

 (1) 

 (2) 

 (3) 

 (4) 

 
Now find the volumetric flow rate, Q, through the surface.  Note that the fluid velocity varies in all three 
directions so the flow rate must be found through integration.  Also note that urel = ufluid – usurface = ufluid 
since usurface = 0. 

  where s is the distance in the v1 direction (5) 

 (6) 

 (7) 

Now relate s to x. 
 (8) 

Substitute Eqn. (8) into Eqn. (7) and solve. 

 (9) 

 (10) 

 (11) 
The average velocity through the surface is: 

  Þ   (12)  

fluid
ˆ ˆ ˆAx By Cxy= + +u i j k

1
ˆ ˆ ˆ3 0 1= + +v i j k

2
ˆ ˆ ˆ0 2 0= + +v i j k
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Consider a fluid velocity field given by: 
 

where C is a constant.  Determine the volumetric flow rate through a surface of area A that is attached to an 
arm of radius R that rotates with constant angular speed w in the x-y plane as shown in the figure below.  
Express your result in terms of (a subset of) C, R, w, A, and q. 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
SOLUTION: 
 
The unit normal vector for the surface is: 

 (1) 
The flow rate through the surface, Q, is: 

 (2) 

Note that since the fluid velocity is uniform, integration over the area isn’t required.   
 
The velocity of the fluid relative to the surface, urel, is: 

 (3) 

 (4) 
 

 
 
Substitute Eqns. (4) and (1) into Eqn. (2) and simplify. 

 (5) 

 (6) 

  

fluid
ˆC=u i

ˆ ˆˆ cos sinq q= +n i j

rel rel ˆ
A

Q d A= × = ×òu A u n

( )rel fluid surface
ˆ ˆ ˆsin cosC Rw q q= - = - - +u u u i i j

( )rel
ˆ ˆsin cosC R Rw q w q\ = + -u i j

( ) ˆ ˆ ˆ ˆsin cos cos sinQ C R R Aw q w q q qé ù é ù= + - × +ë û ë ûi j i j

( )sin cos sin cosQ A C R Rw q q w q q= + -é ùë û
cosQ AC q\ =

R 

ufluid 

A 

x 

y 

w 

outward pointing normal 
vector for surface 

q 

q 

q 
usurface  
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The velocity field in the region shown is given by: 
 

where a = 10 s-1 and b = 5 m/s.  For depth w into the page, an element of area 1 may be represented by 
wdz(-j) and an element of area 2 by wdy(-k).  (Note that both are drawn outward from the control volume, 
hence the minus signs.) 
1. Find an expression for u×dA1. 
2. Evaluate . 

3. Find an expression for u×dA2. 
4. Find an expression for u (u×dA2).  
 5. Evaluate . 

 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 

 (1) 

 (2) 

 (3) 

 (4) 

 (5) 

Note that z = 0 along dA2. 
 

ˆ ˆaz b= +u j k

1

1
A

d×ò u A
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2

2
A

d×ò u u A

( ) ( )1
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Determine the mass flow rate through the fixed surfaces shown below.  Assume the velocities are uniform over the 
area. 
 
 
 
 
 
 
 
SOLUTION: 
The mass flow rate is, 

�̇� = 𝜌𝒖!"# ⋅ 𝑨, (1) 
where, 

𝒖!"# = 𝒖$#%&' − 𝒖() = (𝑈* +̂) − (𝟎)  (in both cases), (2) 
|𝑨| = 𝐴  (in both cases), (3) 
𝒏2+ = sin 𝜃 +̂ + cos 𝜃 :̂   (left), (4) 
𝒏2, = −sin 𝜃 +̂ − cos 𝜃 :̂  (right). (5) 

 
�̇�+ = 𝜌*𝑈*𝐴 sin 𝜃   (left). (6) 
�̇�, = −𝜌*𝑈*𝐴 sin 𝜃   (right). (7) 

 
 

A 

UF, ρF  
 θ   

𝒏2  

A 

UF, ρF  
 θ  

𝒏2  

X 

Y 
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Determine the mass flow rate through the moving surfaces shown below.  Assume the velocities are uniform over 
the area. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
The mass flow rate is, 

�̇� = 𝜌𝒖!"# ⋅ 𝑨, (1) 
where, 

𝒖!"#,% = 𝒖&#'() − 𝒖*+ = (𝑈, +̂) − (−𝑈*+ +̂)   (upper left), (2) 
𝒖!"#,- = 𝒖&#'() − 𝒖*+ = (𝑈, +̂) − (𝑈*+ +̂)  (upper right), (3) 
𝒖!"#,. = 𝒖&#'() − 𝒖*+ = (𝑈, +̂) − (−𝑈*+.̂)     (bottom).   (4) 

and, in all cases, 
𝑨 = sin 𝜃 +̂ + cos 𝜃 .̂, (5) 

 
Substituting and performing the dot products, 

�̇�% = 𝜌,𝐴(𝑈, +𝑈*+) sin 𝜃, (6) 
�̇�- = 𝜌,𝐴(𝑈, −𝑈*+) sin 𝜃, (7) 
�̇�. = 𝜌,𝐴(𝑈, sin 𝜃 + 𝑈*+ cos 𝜃). (8) 

 
 

X 

Y 

A 

UF, ρF  
θ  

𝒏8  

UCS 

A 

UF, ρF  
 θ  

𝒏8  

UCS 

A 

UF, ρF  
 θ  

𝒏8  UCS 
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4.3. Conservation of Mass

In words and in mathematical terms, COM for a system is:

The mass of a system remains constant. =⇒ D

Dt

ˆ
Vsys

ρdV︸ ︷︷ ︸
system mass

= 0. (4.29)

where D/Dt is the Lagrangian derivative (implying that we’re using the rate of change as we follow the
system), V is the volume, and ρ is the density. Using the Reynolds Transport Theorem, Eq. (4.29) can be
converted into an expression for a control volume,

D

Dt

ˆ
Vsys

ρdV =
d

dt

ˆ
CV

ρdV +

ˆ
CS

(ρurel · dA) = 0, (4.30)

d

dt

ˆ
CV

ρdV︸ ︷︷ ︸
rate of increase of

mass inside the CV

+

ˆ
CS

(ρurel · dA) = 0︸ ︷︷ ︸
net rate at which mass leaves

the CV through the CS

(4.31)

This equation is Conservation of Mass for a control volume!

Notes:

(1) Carefully draw your control volume. Don’t neglect to draw a control volume or draw a control
volume and then use a different one.

(2) Make sure you understand what each term in Conservation of Mass represents.
(3) Carefully evaluate the dot product in the mass flux term.
(4) You must integrate the terms in conservation of mass when the density or velocity are not uniform.
(5) Note that the first term in Eq. (4.31) is the rate of increase of mass in the CV, which can be

re-written as,
d

dt

ˆ
CV

ρdV =
d

dt
(MCV ) =

dMCV

dt
, (4.32)

where MCV is the mass inside the control volume. Similarly, the second term in Eq. (4.31), which
is the net rate at which mass leaves the CV through the CS, may be written as,ˆ

CS

(ρurel · dA) =
∑

all outlets

ṁ−
∑

all inlets

ṁ, (4.33)

where ṁ is a mass flow rate. Combining Eqs. (4.31) - (4.33) gives:

dMCV

dt
=

∑
all inlets

ṁ−
∑

all outlets

ṁ . (4.34)

Note that the net mass flow rate term has been moved to the right side of the equation.
(6) The term “steady state” means that none of the properties within the control volume change with

time, i.e.,
d

dt
(· · · )CV = 0, (4.35)

where the dots can be any property.
(7) The term “steady flow” means that the mass flow rates into and out of the control volume do not

change with time, i.e.,
ṁi = constanti, (4.36)

where the subscript “i” refers to each inlet/outlet.
(8) It’s possible to have a steady state, but not a steady flow. For example, consider a simple system

consisting of a rigid tank with a single inlet (i) and a single outlet (o) with the mass flow rates
ṁi = ṁo = A sin (ωt) (not steady flow). From Conservation of Mass, the mass inside the tank
would not vary with time and, thus, the control volume would be at steady state.
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(9) It’s possible to have steady flow, but not steady state. For example, consider the same rigid tank
system, but this time ṁi > ṁo, where each mass flow rate is a constant (steady flow). From
Conservation of Mass, the mass within the control volume increases with time and, thus, would not
be at steady state.

Let’s consider a few examples to see how COM is applied.
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Consider the flow of an incompressible fluid between two parallel plates separated by a distance 2H.  If the 
velocity profile is given by: 

 

where uc is the centerline velocity, determine the average velocity of the flow, .  Assume the depth into 
the page is w. 
 
 
 
 
 
 
 
 
SOLUTION: 
 
The volumetric flow rate using the average velocity profile must give the same volumetric flow rate using 
the real velocity profile. 

 (1) 

 
 
 
 
 
 

  (There is no need to integrate since the velocity is uniform over y.) (2) 

  Þ   (3) 

 (4) 

 
 
 
 
 
 

÷÷
ø

ö
çç
è

æ
-= 2

2

1
H
yuu c

u

    

Qreal = u ⋅dA
A
∫ = dQ

A
∫ = uc 1− y2

H 2
⎛
⎝⎜

⎞
⎠⎟

dyw
=dA

=dQ
  

=
y=−H

y=+H

∫ 4
3 ucwH

( )average
A

2Q d u Hw= × =òu A

real averageQ Q= ( )4
3 2cu wH u Hw=

2
3 cu u\ =

y H 

H 

u  

dy u(y) 

The velocity, u(y), is nearly constant 
over the small distance dy so we can 
write the volumetric flowrate over this 
small area as dQ = u(y)dA = u(y)(dyw). 
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An incompressible flow in a pipe has a velocity profile given by: 

 

where uc is the centerline velocity and R is the pipe radius.  Determine the average velocity in the pipe. 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
The volumetric flow rate using the average velocity profile must give the same volumetric flow rate using 
the real velocity profile. 

 
 
 
 
 
 
 
 
 
𝑄!"#$ = ∫ 𝑑𝑄% = ∫ 𝒖 ⋅ 𝑑𝑨% = ∫ 𝑢& )1 −

'!

(!
, (2𝜋𝑟𝑑𝑟)23435

)*%2333334333335
)*+

')(
'), = -

.
𝜋𝑢&𝑅. (1) 

  (There is no need to integrate since the velocity is uniform over r.) (2) 

  Þ   (3) 

 (4) 
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A

Q d u Rp= × =òu A

real averageQ Q= ( )2 21
2 cu R u Rp p=
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( )( )2 21
real 2 2

A A

1 2
dAy H

c c
y H

dQ

rQ d dQ u rdr u R
R

p p
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=-
=

= × = = - =ò ò òu A
!"#"$
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u r R 

The velocity, u(r), is nearly constant 
over the small annulus with radius dr so 
we can write the volumetric flow rate 
over this small area as dQ = u(r)dA = 
u(r)(2prdr). 

dr 

r 

dA = 2prdr 
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Calculate the mass flux through the control surface shown below.  Assume a unit depth into the page. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
The mass flux through the surface is given by: 

 

 
 

We could have also figured out the mass flux by noticing that any mass passing through the curved control 
surface must also pass through a vertical control surface as shown below. 
 
 
 
 
 
 
 
 
 
 

  (The same answer as before!) 
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Water enters a cylindrical tank through two pipes at volumetric flow rates of Q1 and Q2.  If the level in the 
tank remains constant, calculate the average velocity of the flow leaving the tank through a pipe with an 
area, A3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
Apply conservation of mass to the fixed control volume shown below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (1) 

where 

  (steady flow, the mass in the control volume isn’t changing with time) 

 

Substitute and re-arrange. 
 

 (2) 

rel
CV CS

0d dV d
dt

r r+ × =ò ò u A

CV

0d dV
dt

r =ò

rel 2 1 3 3
CS

d Q Q V Ar r r r× = - - +ò u A

2 1 3 3 0Q Q V Ar r r- - + =

1 2
3

3

Q QV
A
+

\ =

h=constant 

Q2 

Q1 

 
A3 

h=constant 
Q2 

Q1 

 
A3 
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Water enters a cylindrical tank with diameter, D, through two pipes at volumetric flow rates of Q1 and Q2 
and leaves through a pipe with area, A3, with an average velocity, .  The level in the tank, h, does not 
remain constant.  Determine the time rate of change of the level in the tank. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
Apply conservation of mass to a control volume that deforms to follow the free surface of the liquid. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (1) 

where 

 

 

Substitute and re-arrange. 

 

 (2) 

3V

rel
CV CS

0d dV d
dt

r r+ × =ò ò u A

CV

2 2

CV
4 4

M
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2

2 1 3 3 0
4
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4

Q Q V Adh
dt Dp
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=
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Q2 
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D 
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Q2 

Q1 

 A3 

D 
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We could have also chosen a fixed control volume through which the free surface moves.  Using this time 
of control volume, conservation of mass is given by: 

 (3) 

where 

  (the mass of fluid in the fixed control volume remains constant) 

 

Substitute and re-arrange. 

 

  (This is the same answer as before!) (4) 
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A spherical balloon is filled through an area, A1, with air flowing at velocity, V1, and constant density, r1.  
The radius of the balloon, R(t), can change with time, t.  The average density within the balloon at any 
given time is rb(t).  Determine the relationship between the rate of change of the density within the balloon 
and the rest of the variables.  
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
Apply conservation of mass to a control volume that deforms to follow the interior surface of the balloon. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (1) 

where 

 

 

Substitute and simplify. 

 

 (2) 
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A box with a hole of area, A, moves to the right with velocity, ubox, through an incompressible fluid as 
shown in the figure.  If the fluid has a velocity of ufluid which is at an angle, q, to the vertical, determine 
how long it will take to fill the box with fluid.  Assume the box volume is Vbox and that it is initially empty. 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
Apply conservation of mass to a control volume fixed to the interior of the box.  Change our frame of 
reference so the box appears stationary. 
 
 
 
 
 
 
 
 
 
 
 

 (1) 

where 

 

 

Substitute and simplify. 

 

 

  (Note that ubox, ufluid, q, and A don’t change with time.) 

 

 (2) 
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Determine the rate at which fluid mass collects inside the room shown below in terms of r, V1, A1, V2, A2, 
Vc, R, and q.  Assume the fluid moving through the system is incompressible. 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
Apply conservation of mass to a control volume fixed to the interior of the room. 
 
 
 
 
 
 
 
 
 
 
 

 
 

 (1) 

where 

 

 

Substitute and simplify. 

 

 (2) 
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Water enters a rigid, sealed, cylindrical tank at a steady rate of 100 L/hr and forces gasoline (with a specific 
gravity of 0.68) out as is indicated in the drawing.  The tank has a total volume of 1000 L.  What is the time 
rate of change of the mass of gasoline contained in the tank? 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
Apply conservation of mass to the control volume shown below. 
 
 
 
 
 
 
 
 
 
 

 (1) 

where 

   (Gas and water are incompressible.) 

 

Substitute and simplify. 

 

 (2) 

Note that the time rate of change of the water volume, dVH20/dt, is equal to the water’s volumetric flow rate, 
QH20.  Furthermore, since both liquids are incompressible and the total tank volume remains constant, Qgas 
= QH20.  Utilizing these facts to simply Eqn. (2) gives: 

 (3) 

 
Using the given parameters: 

SGgas = 0.68 
rH20 = 1000 kg/m3 
QH20 = 100 L/hr = 0.1 m3/hr 
Þ dMgas/dt = -68 kg/hr = 0.019 kg/s 
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Note that the interface between 
the gas and water is moving. 
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The (symmetric) V-shaped container shown in the figure has width, b, into the page and is filled from the 
inlet pipe at volume flow rate, Q.  Derive expressions for: 
a. the rate of change of the surface height, dh/dt 
b. the time required for the surface to rise from h1 to h2. 

 
 
 
 
 
 
 

 
 
SOLUTION: 
 
Apply conservation of mass to the deformable control volume shown in the figure below. 
 
 
 
 
 
 
 
 

 

where 

 

 

Substitute and simplify. 

 

 (1) 

 
Solve the differential equation to determine the time required for a specified change in the liquid level. 
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The motion of a hydraulic cylinder is cushioned at the end of its stroke by a piston that enters a hole as 
shown.  The cavity and cylinder are filled with hydraulic fluid of uniform density, r. 

 
a. Obtain an expression for the average velocity, Vout, at which hydraulic fluid escapes from the 

cylindrical hole assuming that the cylinder moves at a constant velocity, Vcyl. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
b. Determine the velocity, Vout, with relative uncertainty, for the following conditions. 

r = 900 ± 5 kg/m3 
L = 100 ± 0.1 mm 
R = 15 ± 0.1 mm 
r = 10 ± 0.1 mm 
Vcyl =  100 ± 1 mm/s 
 
 

SOLUTION: 
 
Apply conservation of mass to a control volume that deforms to follow the piston as shown below. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

R 

r 

Vcyl 

Vout 
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L 

hydraulic fluid of density, r 

R 

r 

Vcyl 

Vout 

x 

L 
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where 

 

 

Substitute and solve for Vout. 
 

 

 

 
The total relative uncertainty in Vout is given by: 

 

where 

 

 

 

Substitute and simplify. 
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Using the given data: 
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A hydraulic accumulator is designed to reduce pressure pulsations in a machine tool hydraulic system.  For 
the instant shown, determine the rate at which the accumulator gains or loses hydraulic oil (with a specific 
gravity of 0.88). 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
Apply conservation of mass to the control volume shown below. 
 
 
 
 
 
 
 
 
 

 (1) 

where 

 (2) 

 (3) 

Substitute and simplify. 

 (4) 

 (5) 

 
Using the given data, 

r = (0.88)(1.94 slug/ft3 ) = 1.71 slug/ft3 
Q1 = 5.75 gpm = 1.28*10-2 ft3/s 

 = 4.35 ft/s 
A2 = p(1.25 in.)2/4 = 8.52*10-3 ft2 
Þ  dMCV/dt = -4.15*10-2 slug/s   The accumulator is losing oil. 
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Construct from first principles an equation for the conservation of mass governing the planar flow (in the xy 
plane) of a compressible liquid lying on a flat horizontal plane.  The depth, h(x,t), is a function of position, 
x, and time, t.  Assume that the velocity of the fluid in the positive x-direction, u(x,t), is independent of y.  
Also assume that the wavelength of the wave is much greater than the wave amplitude so that the 
horizontal velocities are much greater than the vertical velocities.   
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
Apply conservation of mass to the fixed control volume shown below.  Assume a unit depth into the page. 
 
 
 
 
 
 
 
 

 (1) 

where 

 

 

Substitute and simplify. 

 

 (2) 

 
If the fluid is incompressible, then Eqn. (2) simplifies to: 

 (3) 
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Note that the mass flow 
rate at the center of the 
control volume is ruh. 
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In order to avoid getting wet, is it better to walk or run in the rain?  Assume that the rain falls at an angle q 
from the vertical.  Clearly state your assumptions and provide justification for your conclusion. 
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4.4. The Linear Momentum Equations (LMEs)

In this section we’ll consider Newton’s Second law applied to a control volume of fluid. Recall that linear
momentum is a vector quantity, it has both magnitude and direction, and is given by mass*velocity. In words
and in mathematical terms, Newton’s Second Law for a system is:

The rate of change of a system’s linear momentum is equal to the net force acting on the system.

=⇒ D

Dt

ˆ
Vsys

uXYZρdV︸ ︷︷ ︸
LM of system

= Fon sys. (4.37)

where D/Dt is the Lagrangian derivative (implying that we’re using the rate of change as we follow the
system), V is the volume, and ρ is the density. The quantity uXYZ represents the velocity of a small piece
of fluid in the system with respect to an inertial (aka non-accelerating) coordinate system XYZ (Figure 4.8).
Recall that Newton’s Second law holds strictly for inertial coordinate systems. Note that a coordinate system
moving at a constant velocity in a straight line is non-accelerating and, thus, is inertial.

Figure 4.8. A system of fluid illustrating the linear momentum associated with a small
piece of fluid.

The term, Fon sys, represents the net forces acting on the system. These forces can be of two different types.
The first are body forces, Fbody, and the second are surface forces, Fsurface. Body forces are those forces that
act on each piece of fluid in the system, including the interior system volume. Examples include gravitational
and electromagnetic forces. Surface forces are those forces acting only at the surface of the system. Examples
of surface forces include pressure and shear forces. Expanding the force term,

Fon sys = Fbody,on sys + Fsurface,on sys. (4.38)

Using the Reynolds Transport Theorem to convert the left-hand side of Eq. (4.37) from a system point of
view to an expression for a control volume gives,

D

Dt

ˆ
Vsys

uXYZρdV =
d

dt

ˆ
CV

uXYZρdV +

ˆ
CS

uXYZ (ρurel · dA) . (4.39)

Since the Reynolds Transport Theorem is applied to a coincident system and control volume, the forces acting
on the system will also act on the control volume. Thus,

d

dt

ˆ
CV

uXYZρdV︸ ︷︷ ︸
rate of increase
of LM in CV

+

ˆ
CS

uXYZ (ρurel · dA)︸ ︷︷ ︸
net rate at which LM

leaves the CV

= FB,on CV︸ ︷︷ ︸
net body force

on the CV

+ FS,on CV︸ ︷︷ ︸
net surface force

on the CV

(4.40)

This is the Linear Momentum Equation for a control volume!

Notes:
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(1) Recall that the LME is a vector expression. There are actually three equations built into Eq. (4.40).
For example, in a rectangular coordinate system (Cartesian coordinates) we have,

d

dt

ˆ
CV

uXρdV +

ˆ
CS

uX (ρurel · dA) = FB,X + FS,X (4.41)

d

dt

ˆ
CV

uY ρdV +

ˆ
CS

uY (ρurel · dA) = FB,Y + FS,Y (4.42)

d

dt

ˆ
CV

uZρdV +

ˆ
CS

uZ (ρurel · dA) = FB,Z + FS,Z (4.43)

(2) When applying the Linear Momentum Equations, Conservation of Mass is often used too. This
point is illustrated in the examples at the end of this section.

(3) Note that the velocity uXYZ in the CV term in Eq. (4.40) is the velocity of fluid within the CV using
inertial coordinate system XYZ. The velocity uXYZ in the CS term of Eq. (4.40) is the velocity of
fluid as it crosses the CS using inertial coordinate system XYZ. The subscript on the integral is
important!

(4) It is important to distinguish between the two velocities uXYZ and urel in the CS term in Eq. (4.40).
The velocity uXYZ represents the fluid velocity with respect to an inertial coordinate system XYZ,
e.g., a coordinate system fixed in space or moving at a constant velocity in a straight line. The
velocity urel is the velocity of the fluid as it crosses the control surface, e.g., urel = ufluid−uCS . The
velocity uXYZ must be measured using the inertial coordinate system XYZ; however, the relative
velocity urel can be measured using any coordinate system since it is a difference of two velocities.

(a) (b)

Figure 4.9. Sketches corresponding to the relative velocity example. (A) Using a coordi-
nate system fixed to the ground. (B) Using a coordinate system fixed to the moving control
surface.

To illustrate this point, consider a fluid flowing in a straight line with velocity uF,XYZ using
the fixed coordinate system XYZ shown in Figure 4.9. Also shown in the figure is a portion of a
control surface, which moves at a speed uCS,XYZ using the same fixed coordinate system. Now let’s
evaluate the linear momentum flow rate term in Eq. (4.40),ˆ

CS

uXYZ (ρurel · dA) . (4.44)

The velocity uXYZ is the velocity of the fluid at the control surface using our coordinate system.
Hence,

uXYZ = uF,XYZ . (4.45)

The velocity of the fluid at the control surface relative to the control surface is,

urel = ufluid − uCS = uF,XYZ − uCS,XYZ , (4.46)
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where both the fluid and control surface velocities are measured using the XYZ coordinate system,
for convenience. Substituting back into Eq. (4.44) gives,ˆ

CS

uXYZ (ρurel · dA) =

ˆ
CS

uF,XYZ [ρ(uF,XYZ − uCS,XYZ) · dA] . (4.47)

Now let’s re-evaluate the momentum flow rate term in Eq (4.40) using a coordinate system that
is fixed to the moving control surface, which we’ll call coordinate system xyz (Figure 4.9),ˆ

CS

uxyz (ρurel · dA) . (4.48)

Note that this coordinate system is still inertial since it’s moving in a straight line at a constant
speed. Using this new coordinate system, the fluid velocity is,

uF,xyz = uF,XYZ − uCS,XYZ , (4.49)

and the control surface velocity is,

uCS,xyz = uCS,XYZ − uCS,XYZ = 0. (4.50)

The control surface doesn’t appear to be moving using this coordinate system. The fluid velocity
relative to the control surface velocity using this new coordinate system is,

urel = ufluid − uCS = uF,xyz − uCS,xyz = (uF,XYZ − uCS,XYZ)− 0, (4.51)

urel = uF,XYZ − uCS,XYZ . (4.52)

Substituting Eqs. (4.49) and (4.52) into Eq. (4.48) gives,ˆ
CS

uxyz (ρurel · dA) =

ˆ
CS

uF,xyz [ρ(uF,XYZ − uCS,XYZ) · dA] . (4.53)

Note that the relative velocity urel is the same regardless of the coordinate system used (compare
Eqs. (4.46) and (4.52)). However, the value for the fluid velocity at the control surface, uF,XYZ
or uF,xyz does depend on the choice of coordinate system, i.e., uF,XYZ 6= uF,xyz. Furthermore,
this fluid velocity at the control surface can be different than the relative velocity, in general, i.e.,
uXYZ 6= urel. The only time the two will be the same is if the control surface velocity is zero in
the chosen frame of reference. With this in mind, it’s often most convenient to fix the coordinate
system to the control surface. Several examples are provided in which problems are worked using
a fixed coordinate system or one moving at a constant speed in a straight line. The same answer
is obtained regardless of the choice of coordinate system, but it is almost always easiest to use a
coordinate system fixed to the control surface.

(5) So far we’ve only discussed the LME for inertial (aka non-accelerating) coordinate systems. We
can also apply the LME to non-inertial (aka accelerating) coordinate systems, but we need to add
additional acceleration terms. We’ll consider accelerating coordinate systems later in this chapter.

(6) In order to avoid mistakes when analyzing problems with the LME, be sure to do the following:
(a) Unambiguously draw the control volume that the LME is being applied to.
(b) Clearly indicate the coordinate system that is being used. Identify if the coordinate system is

inertial or non-inertial.
(c) Draw a free body diagram (FBD) of the relevant forces. Include both body and surface forces.
(d) State any significant assumptions that may be used to simplify the LME, e.g., steady state,

incompressible fluid, etc.
(e) Write the significant components of the LME and then indicate the value of each term in the

equation.
(f) Carefully evaluate the velocity terms. This step is where many mistakes are made.
(g) You must integrate the terms in the linear momentum equation when the density or velocity

are not uniform.
(h) Don’t forget to include pressure and shear forces in the surface force term.
(i) Don’t forget to include the weight of everything inside the control volume when gravitational

body forces are significant.
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While these things may seem trivial and unnecessary, writing them down in a clear and concise
manner can greatly reduce the likelihood of mistakes and better communicate your analysis to
others.

(7) Note that the first term on the left-hand side of Eq. (4.40) is the rate of increase of linear momentum
in the CV, which can be re-written as,

d

dt

ˆ
CV

uXYZρdV =
d

dt
(LCV,XYZ) =

dLCV,XYZ
dt

, (4.54)

where LCV,XYZ is the linear momentum contained within the CV with respect to the inertial coor-
dinate system XYZ. Similarly, the second term on the left-hand side of Eq. (4.40), which is the net
rate at which linear momentum leaves the CV through the CS, may be written as,ˆ

CS

uXYZ (ρurel · dA) =
∑

all outlets

L̇XYZ −
∑

all inlets

L̇XYZ , (4.55)

where L̇XYZ is the rate at which linear momentum, evaluated using the inertial coordinate system
XYZ, passes through the control surface. Combining Eqs. (4.40), (4.54), and (4.55) gives,

dLCV,XYZ
dt

=
∑

all inlets

L̇XYZ −
∑

all outlets

L̇XYZ . (4.56)

Let’s consider a few examples to see how LME using an inertial coordinate system is applied.
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A jet of water is deflected by a vane mounted on a cart.  The water jet has an area, A, everywhere and is 
turned an angle q with respect to the horizontal.  The pressure everywhere within the jet is atmospheric.  
The incoming jet velocity with respect to the ground (axes XY) is Vjet.  The cart has mass M.  Determine: 
a. the force components, Fx and Fy, required to hold the cart stationary, 
b. the horizontal force component, Fx, if the cart moves to the right at the constant velocity, Vcart 

(Vcart<Vjet) 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
Part (a): 
 
Apply conservation of mass and the linear momentum equation to a control volume surrounding the cart.  
Use an inertial frame of reference fixed to the ground (XY). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
First apply conservation of mass to the control volume to determine Vout. 

  (1) rel
CV CS

0d dV d
dt

r r+ × =ò ò u A

q A 

Vjet 

Fx 

Vcart 

Y 
X 

Fy 

q A 

Vjet 

Fx 
Y 

X 

Fy 

Vout (this velocity is currently 
an unknown quantity) 
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where 

  (the mass within the control volume doesn’t change) 

 

(Note that the jet area remains constant.) 
Substitute and re-arrange. 

 

 (2) 
 

Now apply the linear momentum equation in the X-direction: 

 (3) 

where 

  (the momentum within the control volume doesn’t change with time)  

 

  (no body forces in the x-direction) 
   (all of the pressure forces cancel out) 

Substitute and re-arrange. 
 

 (4) 
 

CV

0d dV
dt

r =ò
! !

( ) ( )

( )

relrel

rel jet out
CS

left side right side

2 2
jet out

1

jet

ˆ ˆ ˆ ˆ ˆ ˆcos sin cos sin

cos sin

d V A V A

V A V A

V A

r r r q q q q

r r q q

r r

== ==

=

é ùæ ö
ê úç ÷× = × - + + × +ê úç ÷ç ÷ ê úè ø ë û

= - + +

= - +

ò
uu AA

u A i i i j i j
"###$###% "###$###%

&##'##( &########'########(

&##'##(

outV A

jet out 0V A V Ar r- + =

out jetV V=

rel , ,
CV CS

X X B X S X
d u dV u d F F
dt

r r+ × = +ò ò u A

CV

0X
d u dV
dt

r =ò

( ) ( )
! ! !

( ) ( ) ( )
relrel

rel jet jet jet jet
CS

left side right side

2
jet j

ˆ ˆ ˆ ˆ ˆ ˆcos cos sin cos sin
XX uu

Xu d V V A V V A

V A V

r r q r q q q q

r r

=== = == é ùæ ö
ê úç ÷× = × - + + × +ê úç ÷ç ÷ ê úè ø ë û

= - +

ò
uu AA

u A i i i j i j
"###$###% "###$###%"#$#%

&###'###( &##########'###########(

( )

( )

2 2 2
et

1
2
jet

cos cos sin

cos 1

A

V A

q q q

r q
=

+

= -

&##'##(

, 0B XF =

,S X xF F= -

( )2
jet cos 1 xV A Fr q - = -

( )2
jet 1 cosxF V Ar q= -
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Now look at the Y-direction: 

 (5) 

where 

  (the momentum within the control volume doesn’t change with time)  

 

  (assume that the fluid weight in the CV is negligible compared to the cart weight) 
   (all of the pressure forces cancel out) 

Substitute and re-arrange. 
 

 (6) 
 
  

rel , ,
CV CS

Y Y B Y S Y
d u dV u d F F
dt

r r+ × = +ò ò u A

CV

0Y
d u dV
dt

r =ò

( ) ( ) ( ) ( )

( )

rel

rel jet jet
CS

right side

2 2 2
jet

1
2
jet

ˆ ˆ ˆ ˆsin cos sin cos sin

sin cos sin

sin

Yu

Yu d V V A

V A

V A

r q r q q q q

r q q q

r q

== =

=

é ù
ê ú× = + × +ê ú
ê úë û

= +

=

ò
u A

u A i j i j
!"""#"""$ !"""#"""$!"#"$

%""""""""""&""""""""""'

%""&""'

,B YF Mg= -

,S Y yF F=

2
jet sin yV A Mg Fr q = - +

2
jet sinyF V A Mgr q= +
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Part (b): 
 
Apply the linear momentum equation to a control volume surrounding the cart.  Use a frame of reference 
fixed to the cart (xy).  Note that this is an inertial frame of reference since the cart moves in a straight line at 
a constant speed.  In addition, in this frame of reference, the cart appears stationary and the jet velocity at 
the left is equal to Vjet-Vcart.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
First apply conservation of mass to the control volume to determine Vout  

 (7) 

where 

  (the mass within the control volume doesn’t change) 

 

(Note that the jet area remains constant.) 
Substitute and re-arrange. 

 

 (8) 
 
Now apply the linear momentum equation in the x-direction: 

 (9) 

where, 

  (the momentum within the control volume doesn’t change with time)  

rel
CV CS

0d dV d
dt

r r+ × =ò ò u A

CV

0d dV
dt

r =ò

( )
!

( ) ( )

( )

relrel

rel jet cart out
CS

left side right side

2
jet cart out

ˆ ˆ ˆ ˆ ˆ ˆcos sin cos sin

cos s

d V V A V A

V V A V A

r r r q q q q

r r q

== == é ùé ù
ê úê ú× = - ×- + + × +ê úê ú
ê úê úë û ë û

= - - + +

ò
uu AA

u A i i i j i j
"###$###% "###$###%"##$##%

&####'####( &########'########(

( )

( )

2

1

jet cart out

in

V V A V A

q

r r
=

= - - +

&##'##(

( )jet cart out 0V V A V Ar r- - + =

out jet cartV V V= -

rel , ,
CV CS

x x B x S x
d u dV u d F F
dt

r r+ × = +ò ò u A

CV

0x
d u dV
dt

r =ò

q A 

Vjet - Vcart 

Fx 

Fy 

y 
x 

Vout (this velocity is currently 
an unknown quantity) 
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  (no body forces in the x-direction) 
   (all of the pressure forces cancel out) 

Substitute and re-arrange. 

 

 (10) 
 

Now solve the problem using an inertial frame of reference fixed to the ground (frame XY).  From Eqn. (8) 
we know that using a frame of reference fixed to the cart, the jet velocity on the right-hand side is: 

 (11) 

Hence, relative to the ground the jet velocity on the right-hand side is: 
  (12) 

Now consider conservation of linear momentum in the X direction. 

 (13) 

where, 

  (the momentum within the control volume doesn’t change with time)  

  (no body forces in the x-direction) 
   (all of the pressure forces cancel out) 

Substitute and re-arrange. 

 

   (Same answer as before!) (14) 
Note that using a frame of reference that is fixed to the control volume is easier than using one fixed to the 
ground.  This is often the case. 

( ) ( ) ( )
!

( ) ( )( ) ( )
relrel

rel jet cart jet cart jet cart jet cart

CS

left side

ˆ ˆ ˆ ˆ ˆ ˆcos cos sin cos sin
x Xu u

xu d V V V V A V V V V Ar r q r q q q q

== = = == éé ù
ê ú

× = - - ×- + - - + × +ê ú
ê ú
ê úë û
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uu AA

u A i i i j i j
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&#######'#######(
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( ) ( )

right side
2 2 2 2

jet cart jet cart

1
2

jet cart

cos cos sin

cos 1

V V A V V A

V V A

r r q q q

r q
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ù
ê ú
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ê ú
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= - - + - +

= - -
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, 0B xF =

,S x xF F= -

( ) ( )2
jet cart cos 1 xV V A Fr q- - = -

( ) ( )2
jet cart 1 cosxF V V Ar q= - -

( )( )out, jet cart
relative to cart

ˆ ˆcos sinV V q q= - +V i j

( )( )out, out, cart jet cart cart
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CV CS
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dt

r r+ × = +ò ò u A

CV

0X
d u dV
dt

r =ò

( )
!

( )
!

( ) ( )( ) ( )
relrel

rel jet jet cart jet cart cart jet cart

CS

left side

ˆ ˆ ˆ ˆ ˆ ˆcos cos sin cos sin

X
X

uu

Xu d V V V A V V V V V Ar r q r q q q q

= == == = éé ù
êê ú é ù× = - ×- + - + - + × +êê ú ë ûê ú

ê úë û ë
ò

uu AA

u A i i i j i j
"#####$#####% "#####$#####% "###$###%"##$##%

&#####'#####(

( ) ( ) ( ) ( )

( )

right side
2 2 2

jet jet cart jet cart cart jet cart

1
22 2

jet jet cart jet cart cart jet cart

jet

cos cos sin

cos

V V V A V V V V V A

V V V V V V V V A

V

r r q q q

r q

r

=

ù
ú
ú

ê ú
ê úû

é ù= - - + - + - +ê úë û

é ù= - + + - + -ê úë û

= -

&#################'#################(

&###'###(

( ) ( )

( ) ( )

2 2
cart jet cart
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A fluid enters a horizontal, circular cross-sectioned, sudden contraction nozzle.  At section 1, which has 
diameter D1, the velocity is uniformly distributed and equal to V1.  The gage pressure at 1 is p1.  The fluid 
exits into the atmosphere at section 2, with diameter D2.  Determine the force in the bolts required to hold 
the contraction in place.  Neglect gravitational effects and assume that the fluid is inviscid. 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
Apply the linear momentum equation in the X-direction to the fixed control volume shown below. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (1) 

where 

  (steady flow) 

 

(Note that V2 is unknown for now.) 
 

 

(Note that p2,gage = 0 since p2,abs = patm.  We could have also worked the problem using absolute 
pressures everywhere.  The pressure force on the left hand side would be p1,abspD12/4 and the pressure 
force on the right hand side would be patmpD12/4  (note that the diameter is D1 and not D2).) 

( )rel , ,
CV Cs

X X B X S X
d u dV u d F F
dt

r r+ × = +ò ò u A

CV

0X
d u dV
dt

r =ò

( )
! ! ! !

rel rel2 2 2 2
2 21 2 1 2

rel 1 1 2 2 1 2
Cs

ˆ ˆ ˆ ˆ
4 4 4 4

X Xu u

X
D D D Du d V V V V V Vp p p p

r r r r r

= =
= == =
æ ö æ ö
ç ÷ ç ÷
ç ÷ ç ÷× = × - + × = - +
ç ÷ ç ÷
ç ÷ ç ÷
è ø è ø

ò
A A

u u

u A i i i i

"#$#% "$%

, 0B XF =
2
1

, 1,gage bolts4S X
DF p Fp

= +

atmosphere 

D1 

V1 

D2 

p1 

bolts 

atmosphere 

D1 

V1 

D2 

p1 

bolts 

X 

Fbolts 

The CS cuts through the bolts.  So that Fbolts is the 
force one side of the bolts applies to the other side. 
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Substitute and re-arrange. 

 

 (2) 

 
To determine V2, apply conservation of mass to the same control volume. 

 (3) 

where 

 

 

Substitute and simplify. 

 

 (4) 

 
Substitute Eqn. (4) into Eqn. (2) and simplify. 

 

   (5) 

Note that Fbolts was assumed to be positive when acting in the +X direction (causing compression in the 
bolts).  If Fbolts < 0 then the bolts will be in tension. 
 

 
 
 
 
 
 
 
 
 
 
 

2 2 2
2 21 2 1
1 2 1,gage bolts4 4 4

D D DV V p Fp p p
r r- + = +

2 2 2
2 21 2 1

bolts 1 2 1,gage4 4 4
D D DF V V pp p p

r r= - + -

rel
CV Cs

0d dV d
dt

r r+ × =ò ò u A

CV

0d dV
dt

r =ò
2 2
1 2

rel 1 2
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4 4
D Dd V Vp p

r r r× = - +ò u A

2 2
1 2

1 2 0
4 4
D DV Vp p
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2
1

2 1
2

DV V
D

æ ö
= ç ÷

è ø

42 2 2
2 21 1 2 1

bolts 1 1 1,gage
24 4 4

D D D DF V V p
D

p p p
r r

æ ö
= - + -ç ÷

è ø
22 2

2 1 1 1
bolts 1 1,gage

2
1

4 4
D D DF V p

D
p p

r
é ùæ ö
ê ú= - -ç ÷
ê úè øë û
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Water is sprayed radially outward through 180° as shown in the figure.  The jet sheet is in the horizontal 
plane and has thickness, H.  If the jet volumetric flow rate is Q, determine the resultant horizontal 
anchoring force required to hold the nozzle stationary. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
Apply the linear momentum equation in the X direction to the fixed control volume shown below. 
 
 
 
 
 
 
 
 
 
 
 
 

 (1) 

where 

  (steady flow) 

 

(Note that there is no X-momentum at the control volume inlet.  Also, V is an unknown quantity at the 
moment.) 

 
   (All of the pressure forces cancel and only the anchoring force remains.) 

( )rel , ,
CV CS

X X B X S X
d u dV u d F F
dt

r r+ × = +ò ò u A
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0X
d u dV
dt

r =ò
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1 1
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Substitute. 
 (2) 

 
To determine V, apply conservation of mass to the same control volume. 

 (3) 

where 

  (steady flow) 

 

Substitute and simplify. 
 

 (4) 

 
Substitute Eqn. (4) into Eqn. (2). 

 (5) 

 
Note that Fy = 0 due to symmetry. 
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A variable mesh screen produces a linear and axi-symmetric velocity profile as shown in the figure.  The 
static pressure upstream and downstream of the screen are p1 and p2 respectively (and are uniformly 
distributed).  If the flow upstream of the mesh is uniformly distributed and equal to V1, determine the force 
the mesh screen exerts on the fluid.  Assume that the pipe wall does not exert any force on the fluid. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
First, note that the linear velocity profile at the outlet may be written as, 

, (1) 

where Vmax is the flow velocity at r = R.  Now apply Conservation of Mass to the fixed control volume 
shown in the figure to find Vmax in terms of the upstream properties, 

, (2) 

where, 

  (steady state), (3) 

 (4) 

Substitute and simplify, 
 (5) 

 (6) 
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Now apply the Linear Momentum Equation in the X-direction to the fixed control volume shown in the 
figure, 

, (7) 

where, 

    (steady state), (8) 

∫ 𝑢!(𝜌𝒖"#$ ⋅ 𝑑𝑨)%& = 𝑉'(−𝜌𝑉'𝜋𝑅()/00010002
)*+,	./0*

+ ∫ 41
(
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2
5 6𝜌 41

(
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:
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𝜌𝑉'(𝜋𝑅( =
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>
𝜌𝑉'(𝜋𝑅(  , (11) 

, (12) 

. (13) 
Substitute and simplify, 

'
>
𝜌𝑉'(𝜋𝑅( = −𝐹 + 𝑝'𝜋𝑅( − 𝑝(𝜋𝑅(, (14) 

𝐹 = (𝑝' − 𝑝()𝜋𝑅( −
'
>
𝜌𝑉'(𝜋𝑅( , (15) 

This is the force the mesh applies to the control volume (i.e., the fluid).  The fluid applies an equal and 
opposite force to the mesh. 
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Incompressible fluid of negligible viscosity is pumped, at total volume flow rate Q, through a porous 
surface into the small gap between closely spaced parallel plates as shown.  The fluid has only horizontal 
motion in the gap.  Assume uniform flow across any vertical section.  Obtain an expression for the pressure 
variation as a function of x. 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
Apply conservation of mass to the following differential control volume. 
 
 
 
 
 
 
 
 
 
 

 

where 

  (steady flow) 

 

Substituting and simplifying gives: 

 

 (1) 

 

  or   (2) 
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Now apply the linear momentum equation in the X-direction to the same control volume. 

 

where 

  (steady flow) 

 

(Assume unit depth into the page.  Note that the flux of mass from the porous surface has no X-
momentum.) 

 

 

Substituting and simplifying gives: 

 

   

Substituting Eqns. (1) and (2) gives: 

 

 

 

 

 (3) 
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An incompressible, viscous fluid with density, r, flows past a solid flat plate which has a depth, b, into the 
page.  The flow initially has a uniform velocity U¥, before contacting the plate.  After contact with the plate 
at a distance x downstream from the leading edge, the flow velocity profile is altered due to the no-slip 
condition.  The velocity profile at location x is estimated to have a parabolic shape, u=U¥((2y/d)-(y/d)2), for 
y £ d and u=U¥ for y³d where d is termed the “boundary layer thickness.” 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1. Determine the upstream height from the plate, h, of a streamline which has a height, d, at the 

downstream distance x.  Express your answer in terms of d. 
2. Determine the force the plate exerts on the fluid over the distance x.  Express your answer in terms of 

r, U¥, b, and d.  You may assume that the pressure everywhere is p¥.  The force the drag exerts on the 
plate is called the “skin friction” drag.  

 
 
BRIEF SOLUTION: 
 
1. Apply conservation of mass to a control volume that is adjacent to the plate, crosses perpendicularly 

to the stream at the leading edge of the plate, follows a streamline, and crosses perpendicularly to the 
stream at the location where the boundary layer has thickness, d.  Note that there is no flow across a 
streamline. 

2. Apply the linear momentum equation to the same control volume used in Step 1.  Be sure to include 
the force the plate exerts on the control volume.  

x 
u=U¥ 

u=U¥, y³d 

u=U¥((2y/d)-(y/d)2), y£d 
h d 

streamline 

plate has depth, b, 
into the page 

y 
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DETAILED SOLUTION: 
 
Apply conservation of mass to the fixed control volume shown below. 
 
 
 
 
 
 
 
 
 
 

 

where 

  (steady flow) 

 

(Note that there is no flow across the streamline.) 
Substitute into conservation of mass and solve for h. 

 (1) 
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Now apply the linear momentum equation in the x-direction on the same control volume. 

 

where 

  (steady flow) 

 

 
  (the pressure everywhere is p∞) 

Substitute and simplify, making use of Eqn. (1). 
 

 (2) 
 

We could have also determined the force using a different control volume as shown below. 
 
 
 
 
 
 
 
 
 
 
Determine the mass flow rate out of the control volume through the top using conservation of mass. 

 

where 

  (steady flow) 

 

Substitute and solve for the mass flow rate. 
 (3) 
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Now apply the linear momentum equation in the x-direction to the same control volume. 

 

where 

  (steady flow) 

 

(Note that the horizontal component of the velocity at the top is U∞ since it’s outside of the boundary 
layer.) 

 
  (the pressure everywhere is p∞) 

Substitute and simplify making use of Eqn. (3). 
 

  (This is the same answer as before!)  
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Wake surveys are made in the two-dimensional wake behind a cylindrical body which is externally 
supported in a uniform stream of incompressible fluid approaching the cylinder with velocity, U. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The surveys are made at x locations sufficiently far downstream of the body so that the pressure across the 
wake is the same as the ambient pressure in the fluid far from the body.  The surveys indicate that, to a first 
approximation, the velocity in the wake varies with lateral position, y, according to:  

  where   

The quantities A(x) and b(x) are the centerline velocity defect and wake width, respectively, both of which 
vary with position, x.  If the drag on the body per unit distance normal to the plane of the sketch is denoted 
by D and the density of the fluid by r, find the relation for b(x) in terms of A(x), U, r, and D. 
 
 
BRIEF SOLUTION: 
 
1. First apply the linear momentum equation to determine a relation between the various quantities.  

Use a control volume that surrounds the cylinder, crosses the flow perpendicularly far upstream of 
the cylinder where the velocity is uniform (call this cross stream distance, h), crosses the flow 
perpendicularly downstream of the cylinder where the wake width is b(x), and follows streamlines 
between the upstream to downstream locations along the sides of the control volume.  Note that 
there is no flow across a streamline.  Be sure to include the force the cylinder exerts on the control 
volume. 

2. Apply conservation of mass to the same control volume described above to relate the upstream cross 
flow width, h, to the downstream cross flow width, b(x). 
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DETAILED SOLUTION: 
 
Apply linear momentum equation in the x-direction to the control volume shown below.  Use the fixed 
frame of reference indicated in the figure.  Note that there is no flow across a streamline. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (1) 

where 

  (steady flow) 

 

  (no body forces in the x direction) 
  (no pressure forces in the x direction) 
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Substitute and simplify. 

 (2) 

 
Now apply conservation of mass to the same control volume. 

 (3) 

where 

  (steady flow) 

 

Substitute and simplify. 

 

 (4) 

 
Substitute Eqn. (4) into Eqn. (2) and solve for b(x). 
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The rectangular control volume shown below could also have used.  Note that there will be some mass flow 
rate through the sides as indicated in the figure below (since the upstream mass flux is larger than the 
downstream mass flux).  The horizontal velocity through the sides will be U everywhere since the 
boundaries are outside the wake. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The linear momentum equation in the x-direction is: 

 (6) 

where 

  (steady flow) 

  

  (no body forces in the x direction) 
  (no pressure forces in the x direction) 

Substitute and simplify. 

 (7) 

 
Now apply conservation of mass to the same control volume. 

 (8) 
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  (steady flow) 
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Substitute and simplify. 

 

 (9) 

 
Substitute Eqn. (9) into Eqn. (7)and solve for b(x). 

  (This is the same result as before!) (10) 
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A hydraulic jump is a sudden increase in the depth of a liquid stream (which in this case we assume is 
flowing over a horizontal stream bed with atmospheric pressure air everywhere above the liquid): 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The depth increases suddenly from h1 to h2 downstream of the jump.  The jump itself is often turbulent and 
involves viscous losses so that the total pressure downstream is less than that of the upstream flow.   
a. Find the ratio of the depths, h2/h1, in terms of the upstream velocity, U1, the depth, h1, and g, the 

acceleration due to gravity.  Assume the flows upstream and downstream have uniform velocity 
parallel to the stream bed and that the shear stress between the liquid and the stream bed is zero.  The 
liquid is incompressible. 

b. What inequality on the value of U12/(gh1) must hold for a hydraulic jump like this to occur? 
 
 
BRIEF SOLUTION: 
 
1. Apply conservation of mass to relate the upstream and downstream depths, h1 and h2, to the 

upstream and downstream velocities, U1 and U2.  Use a control volume that perpendicularly crosses 
the upstream and downstream flows where the velocities are uniform, follows the free surface, and is 
adjacent to the floor. 

2. Apply the linear momentum equation to the same control volume as in Step 2.  Be sure to include the 
pressure forces acting on the upstream and downstream faces.  Note that the pressure increases 
linearly with depth in the fluid. 

 

U1 

U2 h1 

h2 

g 

free surface 
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DETAILED SOLUTION: 
 
First apply conservation of mass to the fixed control volume shown below. 
 
 
 
 
 
 
 
 
 
 
 
 

 

where 

  (steady flow) 

 

Substitute and simplify. 
 (1) 

rel
CV CS

0d dV d
dt

r r+ × =ò ò u A

CV

0d dV
dt

r =ò

rel 1 1 2 2
CS

d U h b U h br r r× = - +ò u A

2 2 1 1h U hU=

U1 

U2 h1 

h2 
g 

free surface 

y 
x 

Note:  Since the 
streamlines are parallel at 
the inlet and outlet of the 
CV, the pressure gradient 
normal to the streamlines 
will be hydrostatic. 
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Now apply conservation of linear momentum in the x-direction to the same control volume. 

 

where 

  (steady flow) 

 

 

   

(hydrostatic pressure forces on left and right sides) 
 

Substitute and simplify making use of Eqn. (1).  Solve for the ratio h2/h1. 
 

 

  (using Eqn. (1)) 

  (using Eqn. (1)) 

 

  Þ   

  Þ   

 

We can neglect the negative sign in front of the second term since it is unrealistic. 

 (2) 

 
For the hydraulic jump to occur, we need h2/h1 > 1. 

  Þ   (3) 

The dimensionless parameter in Eqn. (3) is the square of the flow’s Froude number, Fr. 

 (4) 

where Fr < 1 is referred to as subcritical flow, Fr = 1 is critical flow, and Fr > 1 is supercritical flow.  For 
the hydraulic jump to occur, we must have supercritical flow, i.e. Fr > 1. 
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In an attempt to model the speed of a tsunami wave in the deep ocean, consider the propagation of a small 
amplitude, solitary wave front moving with speed, c, from right to left as shown in the figure below.  
Neglect the effects of surface tension.  The liquid is initially at rest but after the wave passes by, the fluid 
behind the wave has a small velocity, dV, in the same direction as the wave.   
 
Derive an expression for the wave speed, c.  You may neglect the shear forces the channel bed and the 
atmosphere exert on the liquid.  Hint:  Consider choosing a steady frame of reference when analyzing the 
problem. 
 
 
 
 
 
 
 
 
 
 
 
 
 
BRIEF SOLUTION: 
 
1. Use a frame of reference fixed to the wave so that the flow appears steady. 
2. Apply the linear momentum equation using a control volume that is perpendicular to the upstream 

and downstream flows where the velocities are uniform, along the bottom of the channel, and along 
the free surface.  Be sure to include the pressure forces on the upstream and downstream boundaries.  
Note that the pressure increases linearly with depth from the free surface. 

3. Apply conservation of mass to the same control volume. 

c 

g 
dV 

h 
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DETAILED SOLUTION: 
 
Apply the linear momentum equation in the x-direction to the control volume shown below.  Use a frame of 
reference that is fixed to the wave.  Since a constant wave velocity is assumed, the frame of reference will 
be inertial. 
 
 
 
 
 
 
 
 
 

 

where 

  (steady flow) 

  where   

 

 

Substitute and simplify. 
 

 (1) 
 
Apply conservation of mass to the same control volume. 

 

where 

  (steady flow) 

   

Substitute and simplify. 
 

 (2) 

 
Substitute Eqn. (2) into Eqn. (1) and simplify. 

 

 (3) 
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As an example, consider the speed of a traveling wave in the deep ocean resulting from an undersea 
earthquake for example (the wave amplitude is small compared to its wavelength).  Assuming an ocean 
depth of 1610 m (1 mile), the speed of the wave will be 126 m/s (280 mph)! 
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Two parallel plates of width, 2a, (and unit depth) are separated by a gap of height, h, which changes with 
time.  The upper plate approaches the lower plate at a constant speed, V.  The space between the plates is 
filled with a frictionless, incompressible gas of density, r.  Assume that the velocity is uniform across the 
gap width (y direction) so that u=u(x, t). 

 
Obtain algebraic expressions for: 
a. the velocity distribution, u(x, t). 
b. the pressure distribution in the gap, p(x, t).  The pressure outside of the gap is atmospheric pressure.  

Note:  You do not need to use Bernoulli’s equation to solve this problem. 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
Apply conservation of mass to the control volume shown below. 
 
 
 
 
 
 
 
 

 
 

  

where 

 (1) 

 (2) 

Substitute and simplify. 

 

 

  where f(t) is an unknown function of time (Note:  u = u(x, t).) 

Since the velocity at the center line of the plate is always zero, i.e. u(x = 0, t) = 0, then f(t) = 0. 

  (Note:  h = h(t) Þ u = u(x, t).) (3) 
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Now apply the linear momentum equation in the x-direction to the same control volume using the given 
fixed frame of reference. 

 

where 

 (4) 

 (5) 

 (6) 

 (7) 

 
Substitute and simplify. 

 (8) 

Substitute for u using the expression derived from conservation of mass. 

 (9) 

 

 

 (10) 

The pressure at x = a is patm for all times, i.e.  p(x = a, t) = patm: 

 (11) 

 
Substituting and simplifying gives: 

 

  (Note:  h = h(t) Þ p = p(x, t).) (12) 
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Now let’s work the problem using the control volume shown below. 
 
 
 
 
 
 
 
 
 
Conservation of Mass: 

  

where 

 (13) 

  (Mass flux only through right side due to symmetry.) (14) 

Substitute and simplify. 
 

  This is the same result as before! (15) 

 
Linear Momentum Equation in the x-direction: 

 

where 

 (16) 

(The result from conservation of mass has been used in simplifying the previous expression.) 

  (Momentum flux only through right side due to symmetry.) (17) 

(The result from conservation of mass has been used in simplifying the previous expression.) 
 (18) 

 (19) 
Substitute and simplify. 

 

 (20) 

Since the pressure at x = a is patm, i.e. p(x = a, t) = patm: 

 (21) 

 

  This is the same result as before! (22) 
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Note that since a > x, (p – patm) > 0.  Thus, a downward force must be applied to move the top plate 
downward.  Furthermore, as h decreases, this force increases since (p – patm) increases.  
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A weir discharges into a channel of constant breadth as shown in the figure.  It is observed that a region of 
still water backs up behind the jet to a height a.  The velocity and height of the flow in the channel are 
given as V and h, respectively, and the density of the water is r.  You may assume that friction and the 
horizontal momentum of the fluid falling over the weir are negligible.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
What is the height a in terms of the other parameters? 
 
 
SOLUTION: 
 
Apply the linear momentum equation in the x-direction to the control volume shown below.  Use the fixed 
frame of reference shown in the figure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

where 

  (steady flow) 

  (assume incoming flow has negligible horizontal velocity) 

 

    (net horizontal pressure forces) 
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Assume unit depth into the page. 

Gage pressures are shown acting 
on the control volume. 
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Substitute and simplify. 
 (1) 

 

 

 (2) 

where Fr = V/(gh)1/2 is a dimensionless parameter known as the Froude number. 
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4.4.1. The LME using a Non-inertial Coordinate System

Recall that Newton’s Second law holds strictly for inertial (non-accelerating) coordinate systems. Now let’s
consider coordinate systems that are non-inertial (accelerating). First examine how we can describe the
motion of a particle in an accelerating coordinate system, call it frame xyz, in terms of a non-accelerating
coordinate system, call it frame XYZ (Figure 4.10).

Figure 4.10. A schematic illustrating a particle’s movement in two coordinate systems.

The position of a particle in XYZ is given by rXYZ and in xyz the particle’s position is given by rxyz. The
two position vectors are related by the position vector of the origin of xyz in XYZ, rxyz/XYZ ,

rXYZ = rxyz/XYZ + rxyz. (4.57)

The velocity of the particle in XYZ can be found by taking the time derivative of the position vector, rXYZ ,
with respect to XYZ (as indicated by the subscript XYZ in the following equation),

drXYZ
dt

∣∣∣∣
XYZ

=
drxyz/XYZ

dt

∣∣∣∣
XYZ

+
drxyz
dt

∣∣∣∣
XYZ

. (4.58)

The time derivative of rxyz/XYZ is simply the velocity of the origin of xyz with respect to XYZ, uxyz/XYZ ,

drxyz/XYZ

dt

∣∣∣∣
XYZ

= uxyz/XYZ . (4.59)

We must be careful, however, when evaluating the time derivative of rxyz in XYZ since both the magnitude
of rxyz and the basis vectors of xyz can change with time (the basis vectors of xyz can change due to rotation
of the xyz with respect to XYZ). To calculate the time derivative of rxyz in XYZ, let’s first write rxyz as a
magnitude, rxyz, multiplied by the basis vectors of xyz, êxyz, then use the product rule to evaluate the time
derivative,

drxyz
dt

∣∣∣∣
XYZ

=
d(rxyzêxyz)

dt

∣∣∣∣
XYZ

=
drxyz
dt

∣∣∣∣
XYZ

êxyz + rxyz
dêxyz
dt

∣∣∣∣
XYZ

. (4.60)

Note that,

drxyz
dt

∣∣∣∣
XYZ

êxyz = uxyz, (4.61)

is the velocity of the particle in xyz.

The time derivative of the xyz basis vectors is found from geometric considerations. Consider the drawing
shown in Figure 4.11 illustrating the change in the x-basis vector as a function of time. For simplicity, we’ll
assume that the rotation only occurs in the xy plane, i.e., ∆θx = ∆θy = 0. The time derivative of the basis
vector is,

dêx
dt

= lim
∆t→0

êx(t+ ∆t)− êx(t)

∆t
. (4.62)
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Figure 4.11. A schematic showing how the êx basis vector changes due to rotation in the
xy plane.

Note from the figure that,

êx(t+ ∆t)− êx(t) = [êx(t) cos ∆θz + êy(t) sin ∆θz]− êx(t), (4.63)

= êx(t)(cos ∆θz − 1) + êy(t) sin ∆θz. (4.64)

In addition, as ∆t→ 0, ∆θz → 0 and,

(cos ∆θz − 1) ≈ [1− (∆θz)
2/2]− 1 = −1

2
(∆θz)

2 and sin ∆θz ≈ ∆θz, (4.65)

so that,

dêx
dt

= lim
∆t→0

êx(t+ ∆t)− êx(t)

∆t
= lim

∆t→0

− 1
2 (∆θz)

2êx(t) + ∆θzêy

∆t
, (4.66)

=
dθz
dt

êy (since ∆θz � 1), (4.67)

∴
dêx
dt

= ωzêy where ωz =
dθz
dt
. (4.68)

In general, it can be shown that,

dêxyz
dt

∣∣∣∣
XY Z

= ωxyz/XYZ × êxyz, (4.69)

so that,

rxyz
dêxyz
dt

∣∣∣∣
XYZ

= rxyz(ωxyz/XYZ × êxyz) = ωxyz/XYZ × rxyz. (4.70)

Combining Eqs. (4.58) - (4.61) and (4.70), we find that the velocity of a fluid particle in the inertial coordinate
system XYZ is,

uXYZ︸ ︷︷ ︸
velocity of particle

in XYZ

= uxyz/XYZ︸ ︷︷ ︸
velocity of xyz

w/r/t XYZ

+ uxyz︸︷︷︸
velocity of particle

in xyz

+ ωxyz/XYZ × rxyz︸ ︷︷ ︸
velocity of particle in XYZ

due to rotation of xyz
w/r/t XYZ

, (4.71)

where uxyz is the particle velocity in non-inertial coordinate system xyz, ωxyz/XYZ is the angular velocity of
xyz with respect to XYZ, and rxyz is the position vector of the particle from the origin of xyz.

The acceleration of a particle in XYZ in terms of xyz quantities can be found in a similar manner,

duXYZ
dt

∣∣∣∣
XYZ︸ ︷︷ ︸

=aXYZ

=
duxyz/XYZ

dt

∣∣∣∣
XYZ︸ ︷︷ ︸

=axyz/XYZ

+
duxyz
dt

∣∣∣∣
XYZ︸ ︷︷ ︸

= d
dt (uxyz êxyz)

∣∣
XYZ

+
d

dt
(ωxyz/XYZ × rxyz)

∣∣∣∣
XYZ︸ ︷︷ ︸

=ω̇xyz/XYZ×rxyz+ωxyz/XYZ×
d(rxyz êxyz)

dt

∣∣
XYZ

, (4.72)
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where the results from Eqs. (4.60), (4.61), (4.69), and (4.70) are used to simplify the last two expressions in
Eq. (4.72),

d

dt
(uxyzêxyz)

∣∣∣∣
XYZ

=
duxyz
dt

êxyz + uxyz
dêxyz
dt

, (4.73)

= axyz + ωxyz/XYZ × uxyz. (4.74)

and,

ωxyz/XYZ ×
d(rxyzêxyz)

dt

∣∣∣∣
XYZ

= ωxyz/XYZ × (uxyz + ωxyz/XYZ × rxyz), (4.75)

= ωxyz/XYZ × uxyz + ωxyz/XYZ × (ωxyz/XYZ × rxyz). (4.76)

Substituting Eqs. (4.74) and (4.76) into Eq. (4.72) and simplifying gives,

aXYZ︸ ︷︷ ︸
rectilinear acceleration

of particle in XYZ

= axyz/XYZ︸ ︷︷ ︸
rectilinear acceleration

of xyz w/r/t XYZ

+ axyz︸︷︷︸
rectilinear acceleration

of particle in xyz

+ (ω̇xyz/XYZ × rxyz)︸ ︷︷ ︸
tangential acceleration of
particle in XYZ due to

rotational acceleration of xyz

+ (2ωxyz/XYZ × uxyz)︸ ︷︷ ︸
Coriolis acceleration of
particle in XYZ due to

rectilinear motion of particle
in xyz

+ [ωxyz/XYZ × (ωxyz/XYZ × rxyz)]︸ ︷︷ ︸
centripetal acceleration of particle

in XYZ due to rotation of xyz

. (4.77)

Now let’s use these relations to determine an expression for the LME using a non-inertial coordinate system.
Recall that the Lagrangian statement for the LME is (refer to Eq. (4.37)),

D

Dt

ˆ
Vsys

uXYZρdV = Fon sys. (4.78)

Substitute Eq. (4.71) into Eq. (4.78) and re-arrange,

Fon sys =
D

Dt

ˆ
Vsys

(uxyz/XYZ + uxyz + ωxyz/XYZ × rxyz)ρdV, (4.79)

=
D

Dt

ˆ
Vsys

uxyzρdV +
D

Dt

ˆ
Vsys

(uxyz/XYZ + ωxyz/XYZ × rxyz)ρdV. (4.80)

Now use the Reynolds Transport Theorem to convert the first term on the right-hand side to a control volume
and re-arrange,

FB,CV + FS,CV−
D

Dt

ˆ
Vsys

(uxyz/XYZ + ωxyz/XYZ × rxyz)ρdV

=
d

dt

ˆ
CV

uxyzρdV +

ˆ
CS

uxyz (ρurel · dA) . (4.81)

The remaining Lagrangian term can be simplified by changing the volume integral to a mass integral and
noting that the mass of the system doesn’t change with time,

D

Dt

ˆ
Vsys

(uxyz/XYZ + ωxyz/XYZ × rxyz)ρdV =
D

Dt

ˆ
Msys

(uxyz/XYZ + ωxyz/XYZ × rxyz)dm, (4.82)

=

ˆ
Msys

D

Dt
(uxyz/XYZ + ωxyz/XYZ × rxyz)dm, (4.83)

=

ˆ
Vsys

D

Dt
(uxyz/XYZ + ωxyz/XYZ × rxyz)ρdV. (4.84)
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Since uxyz/XYZ and ωxyz/XYZ are functions only of time (these variables describe the motion of the coordinate

system xyz and not the fluid), and because Drxyz/Dt = uxyz
1, we can replace the Lagrangian time derivative

with an Eulerian time derivative and substitute in our result from Eq. (4.77),ˆ
Vsys

D

Dt
(uxyz/XYZ + ωxyz/XYZ × rxyz)ρdV =

ˆ
Vsys

d

dt
(uxyz/XYZ + ωxyz/XYZ × rxyz)ρdV, (4.85)

=

ˆ
Vsys

[axyz/XYZ + ω̇xyz/XYZ × rxyz + 2ωxyz/XYZ × uxyz + ωxyz/XYZ × (ωxyz/XYZ × rxyz)]ρdV. (4.86)

Substituting Eq. (4.86) back into Eq. (4.81) and noting that when we apply the Reynolds Transport Theorem
the control volume and system volume are coincident (so that the system volume integral in Eq. (4.86) can be
replaced by a control volume integral), we find that the LME can be applied using a non-inertial coordinate,
xyz, if the following form is used,

FB,CV + FS,CV

−
ˆ
CV

{axyz/XYZ + (ω̇xyz/XYZ × rxyz) + (2ωxyz/XYZ × uxyz) + [ωxyz/XYZ × (ωxyz/XYZ × rxyz)]}ρdV

=
d

dt

ˆ
CV

uxyzρdV +

ˆ
CS

uxyz (ρurel · dA) .

(4.87)

This is the Linear Momentum Equation using a non-inertial (aka accelerating) coordinate system!

Let’s consider a few examples to see how this form of the LME is applied.

1Drxyz
Dt

=
∂rxyz

∂t︸ ︷︷ ︸
=0

+ux
∂rxyz

∂x︸ ︷︷ ︸
=êx

+uy
∂rxyz

∂y︸ ︷︷ ︸
=êy

+uz
∂rxyz

∂z︸ ︷︷ ︸
=êz

= uxyz where rxyz = xêx + yêy + zêz
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A jet of water is deflected by a vane mounted on a cart.  The water jet has an area, A, everywhere and is 
turned an angle q with respect to the horizontal.  The pressure everywhere within the jet is atmospheric.  
The incoming jet velocity with respect to the ground (axes XY) is Vjet.  The cart has mass M.  Determine the 
horizontal acceleration of the cart at the instant when the cart moves with velocity Vcart (Vcart<Vjet) if no 
horizontal forces are applied 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
Apply the linear momentum equation to a control volume surrounding the cart.  Use a frame of reference 
fixed to the cart (xy).  Note that this is not an inertial frame of reference since the cart is accelerating.  As 
before, in this frame of reference the cart appears stationary and the jet velocity at the left is equal to Vjet-
Vcart.  From conservation of mass, the velocity on the right of the control volume is Vjet – Vcart. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Apply the linear momentum equation in the x-direction: 

 (1) 

where, 

   

(The cart has zero velocity in this frame of reference.  The fluid in the control volume does accelerate 
in this frame of reference; however, its mass is assumed to be much smaller than the cart mass.  Hence, 
the rate of change of the control volume momentum in this frame of reference is assumed to be zero.)  

rel , , /
CV CS CV

x x B x S x x X
d u dV u d F F a dV
dt

r r r+ × = + -ò ò òu A

CV

0x
d u dV
dt

r »ò

q A 

Vjet 

Vcart 

Y 
X 

Fy 

q A 

Vjet - Vcart 

Fy 

y 
x 

Vjet - Vcart 

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics
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  (no body forces in the x-direction) 
   (all of the pressure forces cancel out) 

 (the mass within the CV is approximately equal to the cart mass) 

Substitute and re-arrange. 

 

 (2) 

 
Now solve the problem using an inertial frame of reference fixed to the ground (frame XY).  The linear 
momentum equation in the X direction gives: 

 (3) 

where, 

 

(The mass within the control volume is approximately equal to the cart mass since the fluid mass is 
assumed to be negligible.)  

  (no body forces in the x-direction) 
   (all of the pressure forces cancel out) 

Substitute and re-arrange. 

 

   (Same answer as before!) (4) 

Using a frame of reference that is fixed to the control volume is easier than using one fixed to the ground. 

( ) ( ) ( )
!

( ) ( )( ) ( )
relrel

rel jet cart jet cart jet cart jet cart

CS

left side

ˆ ˆ ˆ ˆ ˆ ˆcos cos sin cos sin
x Xu u

xu d V V V V A V V V V Ar r q r q q q q

== = = == éé ù
ê ú

× = - - ×- + - - + × +ê ú
ê ú
ê úë û

ò
uu AA

u A i i i j i j
"#####$#####% "###$###%"##$##% "##$##% "###$###%

&#######'#######(

( ) ( ) ( )

( ) ( )

right side
2 2 2 2

jet cart jet cart

1
2

jet cart

cos cos sin

cos 1

V V A V V A

V V A

r r q q q

r q

=

ù
ê ú
ê ú
ê ú
ê úë û

= - - + - +

= - -

&###############'###############(

&###'###(

, 0B xF =

, 0S xF =

/
CV

x Xa dV Mar =ò

( ) ( )2
jet cart cos 1V V A Mar q- - = -

( ) ( )2
jet cart 1 cosV V A

a
M

r q- -
=

rel , ,
CV CS

X X B X S X
d u dV u d F F
dt

r r+ × = +ò ò u A

CV
X

d u dV Ma
dt

r »ò

( )
!

( )
!

( ) ( )( ) ( )
relrel

rel jet jet cart jet cart cart jet cart

CS

left side

ˆ ˆ ˆ ˆ ˆ ˆcos cos sin cos sin

X
X

uu

Xu d V V V A V V V V V Ar r q r q q q q

= == == = éé ù
êê ú é ù× = - ×- + - + - + × +êê ú ë ûê ú

ê úë û ë
ò

uu AA

u A i i i j i j
"#####$#####% "#####$#####% "###$###%"##$##%

&#####'#####(

( ) ( ) ( ) ( )

( )

right side
2 2 2

jet jet cart jet cart cart jet cart

1
22 2

jet jet cart jet cart cart jet cart

jet

cos cos sin

cos

V V V A V V V V V A

V V V V V V V V A

V

r r q q q

r q

r

=

ù
ú
ú

ê ú
ê úû

é ù= - - + - + - +ê úë û

é ù= - + + - + -ê úë û

= -

&#################'#################(

&###'###(

( ) ( )

( ) ( )

2 2
cart jet cart

2
jet cart

cos

cos 1

V V V A

V V A

q

r q

é ù- -ê úë û

= - -

, 0B XF =

, 0S XF =

( ) ( )2
jet cart cos 1 0Ma V V Ar q+ - - =

( ) ( )2
jet cart 1 cosV V A

a
M

r q- -
=
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The tank shown rolls along a level track.  Water received from a jet is retained in the tank.  The tank is to 
accelerate from rest toward the right with constant acceleration, a.  Neglect wind and rolling resistance.  
Find an algebraic expression for the force (as a function of time) required to maintain the tank acceleration 
at constant a. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
First apply conservation of mass to a control volume surrounding the cart (shown below) in order to 
determine how the cart mass changes with time. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 (1) 

where 

 

 

Substitute and re-arrange. 

 

 (2) 

rel
CV CS

0d dV d
dt

r r+ × =ò ò u A

CV

CV

dMd dV
dt dt

r =ò
( )rel

CS

d V U Ar r× = - -ò u A

( )CV 0
dM

V U A
dt

r- - =

( )CVdM
V U A

dt
r= -

A 
 

y 
x 

The frame of reference 
xy is fixed to the cart. 

initial mass of cart and water, 
M0 

U 

A 

V 
F 

F 

jet velocity relative to 
the cart = (V – U) 

 

X 
Y 
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Since the cart acceleration is constant (= a), we may write: 
    (Note that U(t = 0) = 0 since the cart starts from rest.) (3) 

Note that Eqn. (3) is only true when a = constant.  Otherwise, if a = a(t) one must write the velocity as: 

 (4) 

Substitute Eqn. (3) into Eqn. (2) and solve the resulting differential equation. 

 (5) 

 

 

 (6) 

 
Now apply the linear momentum equation in the x direction to the same control volume.  Note that the 
frame of reference xy is not inertial since the cart is accelerating. 

 (7) 

where 

  (most of the mass inside the CV has zero velocity in the given frame of reference) 

 

 
 

 

Substitute and re-arrange. 
 

 (8) 
Now substitute Eqns. (3) and (6) into Eqn. (8). 

 (9) 

 

U at=

0
0

t

U U adt= + ò

( )CVdM
V at A

dt
r= -

( )
CV CV

CV 0

CV
0

M M t t

M M t

dM V at Adtr
= =

= =

= -ò ò

( )21
CV 0 2M M Vt at Ar- = -

( )21
CV 0 2M M Vt at Ar= + -

( )rel , , /
CV CS CV

x x B x S x x X
d u dV u d F F a dV
dt

r r r+ × = + -ò ò òu A

CV

0x
d u dV
dt

r »ò
( ) ( )2rel

CS
xu d V U Ar r× = - -ò u A

, 0B xF =

,S xF F= -

/ CV
CV

x Xa dV aMr =ò

( )2 CVV U A F aMr- - = - -

( )2 CVF V U A aMr= - -

( ) ( )2 21
0 2F V at A a M Vt at Ar ré ù= - - + -ë û
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Now let’s solve the problem using a frame of reference fixed to the ground (XYZ - inertial). 

 

where 

 

 

 
 

Substitute and utilize Eqn. (5) to simplify. 

 

 

 

 (10) 
Eqn. (10) is identical to Eqn. (8) as expected! 

 

( )rel , ,
CV CS

X X B X S X
d u dV u d F F
dt

r r+ × = +ò ò u A

( ) CV
CV CV

CV
X

dMd d dUu dV M U M U
dt dt dt dt

r = = +ò
( ) ( ) ( ) ( )rel

CS
Xu d V V U A V V U Ar r r× = - - = - -é ùë ûò u A

, 0B XF =

,S XF F= -

( )CV
CV

dMdUM U V V U A F
dt dt

r+ - - = -

( ) ( )CV
dUM U V U A V V U A F
dt

r r+ - - - = -

( ) ( )CVF aM U V U A V V U Ar r= - - - + -

( )2 CVF V U A aMr= - -
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A model solid propellant rocket has a mass of 69.6 gm, of which 12.5 gm is fuel.  The rocket produces 1.3 
lbf of thrust for a duration of 1.7 sec.  For these conditions, calculate the maximum speed and height 
attainable in the absence of air resistance.  Plot the rocket speed and the distance traveled as functions of 
time. 
 
 
SOLUTION: 
 
Assume that the mass flow rate from the rocket is constant.  Also assume that the thrust remains constant 
over the burn duration. 
 
Apply the linear momentum equation in the y-direction to the CV shown using a frame of reference 
attached to the rocket. 
 
 
 
 
 
 
 
 
 
 
 
 

 

where, 

  (Most of the fluid has zero velocity in this frame of reference.) 

 

  (weight) 

  (The exit pressure may be different from atmospheric pressure.) 

  (We’re using an accelerating frame of reference.) 

 
Substituting and simplifying: 

 

 (1) 

 

( ) , , /
CV CS CV

y y rel B y S y y Y
d u dV u d F F a dV
dt

r r r+ × = + -ò ò òu A

CV

0y
d u dV
dt

r »ò
( ) ( ) 2

CS
y rel e e e e e e eu d V V A V Ar r r× = - = -ò u A

,B y CVF M g= -

( ),S y e atm eF p p A= -

/
CV

y Y CVa dV aMr =ò

( )2
e e e CV e atm e CVV A M g p p A M ar- = - + - -

( )2
e e e e atm e

CV

V A p p A
a g

M
r + -

= - +

MCVg 

Ve (pe – patm)Ae 

y 

x 

g 
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Note that the thrust, T, is the force required to hold the rocket stationary (neglecting gravity). 
 
 
 
 
 
 
 

 

where, 

  (Most of the fluid has zero x-velocity.) 

 

 

 
 

Substituting and simplifying: 
 

 (2) 
 
Substitute Eqn. (2) into Eqn. (1): 

 (3) 

 
Apply COM to the same CV:  

 

where 

 

  

Substituting and simplifying: 

 (4) 

Assuming the mass flow rate is a constant, solve Eqn. (4) subject to initial conditions: 

 

 (5) 
where M0 is the initial mass of the CV.   
 

( ) , ,
CV CS

x x rel B x S x
d u dV u d F F
dt

r r+ × = +ò ò u A

CV

0x
d u dV
dt

r »ò
( ) ( ) 2

CS
x rel e e e e e e eu d V V A V Ar r r× = =ò u A

, 0B xF =

( ),S x e atm eF p p A T= - - +

( )2
e e e e atm eV A p p A Tr = - - +

( )2
e e e e atm eT V A p p Ar= + -

CV

Ta g
M

= - +

( )
CV CS

0rel
d dV d
dt

r r+ × =ò ò u A

CV

CVdMd dV
dt dt

r =ò
( )

CS
rel e e ed V A mr r× = =ò u A !

0CVdM
m

dt
+ =!

0 0

CVM t

CV
M

dM m dt= -ò ò!

0CVM M mt= - !

Ve 

(pe – patm)Ae 

x 

T 
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Substitute Eqn. (5) into Eqn. (3) and solve the differential equation for the velocity: 

 

 (6) 

 
Solve the differential equation given in Eqn. (6) for the height of the rocket. 

 

 (7) 

 
Note that Eqns. (3), (5), (6), and (7) are written specifically for when the fuel is burning.  When the fuel has 
been expended, the rocket equations of motion are: 

 (8) 
 (9) 

 (10) 
where t’ is the time at which the fuel has been expended. 
 
For the given problem we’re told: 

M0 = 69.6 g 
Mfuel = 12.5 g 
T = 1.3 lbf = 5.79 N 
t’ = 1.7 sec 

giving a mass flow rate of: 

7.35 g/sec = 7.35*10-3 kg/sec 

 
The maximum velocity will occur at the moment the fuel has been expended (neglecting the velocities as 
the rocket falls back to the ground).  The maximum height will occur when the velocity is zero. 
 

Umax = U(t = t’ = 1.7 sec) = 139.2 m/s    (h(t = t’) = 114 m) 
hmax = h(t = tm = 15.9 sec) = 1100 m 
 
The maximum height occurs when: 

 

0

00 0 0

0

0

ln

U t t

dU Ta g
dt M mt

TdtdU gdt
M mt

M mtTU gt
m M

= = - +
-

= - +
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!
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!
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ln 1T mtU gt
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æ ö
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è ø
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!
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00 0 0
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dh T mtU gt
dt m M
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æ ö
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( )t tU U g t t¢= ¢= - -

( ) ( )21
2 t t t th g t t U t t h¢ ¢= =¢ ¢= - - + - +
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m
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= =
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The rocket speed and height are plotted below: 
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A cart with frictionless wheels holds a water tank, motor, pump, and nozzle.  The cart is on horizontal 
ground and initially still.  At time zero the cart has a mass M0 and the pump is started to produce a jet of 
water with constant area Aj, velocity Vj at an angle q with respect to the horizontal.  Find and solve the 
equations governing the mass and velocity of the cart as a function of time. 
 
 
SOLUTION: 
 
Apply the linear momentum equation in the x-direction to a control volume surrounding the cart.  Use a 
frame of reference fixed to the control volume (non-inertial). 
 
 
 
 
 
 
 
 

 

where 

  

(Using the given FOR, the rate of change of the CV linear momentum is nearly zero since most of the 
mass in the CV has a constant (=0) horizontal velocity.) 

 

 
 

  (Note that the CV mass changes with time.) 

 
Substitute and solve for the cart acceleration. 

 (1) 

 
Determine the mass inside the control volume using conservation of mass applied to the same control 
volume. 

 

where 

  

 

 

( )rel , , /
CV CS CV

x x B x S x x X
d u dV u d F F a dV
dt

r r r+ × = + -ò ò òu A

CV

0x
d u dV
dt

r »ò

( ) ( )( ) 2
rel

CS

cos cosx j j j j ju d V V A V Ar q r r q× = - = -ò u A

, 0B xF =

, 0S xF =

/ CV
CV

x X
dUa dV M
dt

r =ò

2

CV

cosj jV AdU
dt M

r q
=

rel
CV CS

0d dV d
dt

r r+ × =ò ò u A

CV

CV

dMd dV
dt dt

r =ò

rel
CS

j jd V Ar r× =ò u A

q r, Vj, Aj 

U 
x 

y 
The frame of reference is fixed to 
the (accelerating) control volume 
and, hence, is non-inertial. 
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Substitute and solve for MCV. 

 

  (Note that rVjAj is constant with respect to time.) 

 (2) 
 

Substitute Eqn. (2) into Eqn. (1) and solve for U. 

 

 

 

 (3) 

 

CV
j j

dM
V A

dt
r= -

CV

0

CV
0

M t

j j
M

dM V A dtr= -ò ò

CV 0 j jM M V A tr= -

2

0

cosj j

j j

V AdU
dt M V A t

r q
r
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2

00 0

cosU t
j j
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V A dt
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r q
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V A M
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A flat plate of mass, M, is located between two equal and opposite jets of liquid as shown in the figure.  At 
time t=0, the plate is set into motion.  Its initial speed is U0 to the right; subsequently its speed is a function 
of time, U(t).  The motion is without friction and parallel to the jet axes.  The mass of liquid that adheres to 
the plate is negligible compared to M. 

 
Obtain algebraic expressions (as functions of time for t>0) for: 
a. the velocity of the plate and 
b. the acceleration of the plate. 
c. What is the maximum displacement of the plate from its original position? 
Express all of your answers in terms of (a subset of) U0, V, A, r, M, and t. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
Apply the linear momentum equation in the x-direction to a control volume that surrounds the plate as 
shown in the figure below.  Use a frame of reference (FOR) that is fixed to the control volume (non-
inertial). 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (1) 

where 

  (The CV’s x-linear momentum is approximately zero in the given FOR.) (2) 

( )rel , ,
CV CS CV

x x B x S x x X
d u dV u d F F a dV
dt

r r r+ × = + -ò ò òu A

CV

0x
d u dV
dt

r »ò

U(t) 

A A 

r,V r,V 

plate with mass, M 

U(t) 

A A 

r,V r,V 

plate with mass, M 

x 
y 
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 (3) 

  (No body or surface forces in the x-direction.  The pressure everywhere is patm.) (4) 
 

  (Assume the plate mass is much larger than the water mass in the CV.) (5) 

 
Substitute and simplify. 

 (6) 

 (7) 

 (8) 

 (9) 

 (10) 

The acceleration is found by differentiating the velocity. 

 (11) 

 
The displacement of the plate is found by integrating the velocity in time. 

 (12) 

 (13) 

 (14) 

The maximum displacement occurs as t ® ¥. 

 (15) 
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The pressure waves created by a rapid change of flow in a water line are referred to as water-hammers.  To 
analyze the behavior of this phenomenon, consider a fluid flowing at speed U in a rigid pipe.  The flow is 
stopped by a sudden closure of a valve.  The pressure and the density of the fluid near the valve are 
suddenly increased by an amount Dp and Dr, respectively, and a pressure wave propagates upstream of the 
valve with speed, a.   
 
a. Show that the increase in pressure, Dp, and the wave speed, a, are related by: 

 

b. The bulk modulus K = r (dp/dr) is 43x106 lbf/ft2 for water.  Compute the wave speed a in a rigid 
pipe and Dp due to a sudden stoppage of water flowing with a speed of 1ft/s.  You may assume that 
the pressure change across the wave is sufficiently weak to be considered an acoustic wave for the 
given conditions.  

 

 
 
SOLUTION: 
 
Apply conservation of mass and the linear momentum equation to a control volume surrounding the 
pressure wave. 
 
 
 
 
 
 
 
Change the frame of reference so that wave appears stationary. 
 
 
 
 
 
 
Apply conservation of mass to the control volume. 

 (1) 

where 

  (steady in the given frame of reference) (2) 

Δp = ρU U + a( )

a U + a( ) = Δp
Δρ

d
dt

ρ dV
CV
∫ + ρurel ⋅dA

CS
∫ = 0

d
dt

ρ dV
CV
∫ = 0

u = a 
r + Dr 
p + Dp 

u = U + a 
r  
p  

u = 0 
r + Dr 
p + Dp 

u = U 
r  
p  

a closed 
valve 

X 

A 
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 (3) 

Combine and simplify. 
  (4) 

  (5) 
 
Apply the linear momentum in the x-direction using an inertial frame of reference. 

  (6) 

where 

  (steady in the given frame of reference) (7) 

 (8) 

 (9) 

 (10) 
Combine and simplify. 

  (11) 

  (12) 

  (making use of Eq. (5)) (13) 

  (14) 

  (15) 
Note that if U ≪ a, which is typically the case, then Eq. (15) becomes, 

  (16) 
 

Re-arranging Eq. (15) to solve for r gives, 

   (17) 

Substitute this relation into Eq. (5) and simplify. 

  (18) 

  (19) 

 (20) 

  (21) 

 (22) 

 (23) 

Again, if U ≪ a, then this relation becomes, 

ρurel ⋅dA
CS
∫ = −ρ U + a( )A + ρ + Δρ( )aA

−ρ U + a( )A + ρ + Δρ( )aA = 0

ρ U + a( ) = ρ + Δρ( )a

d
dt

uXρ dV
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CS
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d
dt

uXρ dV
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CS
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−ρ U + a( )2 A + ρ + Δρ( )a2A = pA − p + Δp( )A
−ρ U + a( )2 + ρ + Δρ( )a2 = −Δp

−ρ U + a( )2 + ρ U + a( )a = −Δp

ρ U + a( ) U + a( )− a⎡⎣ ⎤⎦ = Δp
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Δp = ρUa

ρ = Δp
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⎞
⎠⎟
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⎥
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  (24) 

In addition, if the wave is weak, meaning that the change in pressure and density across the wave are 
infinitesimally small, i.e., a sound wave, then Eq. (24) becomes, 

  (25) 

 
The bulk modulus is defined as, 

, (26) 

Since the wave is assumed to be an acoustic wave for the given conditions (refer to Eq. (25)), 

   Þ      (27) 

 
The pressure change across the wave is found from Eq. (15).  Using the given data, 

K = 43*106 lbf/ft2 
r = 1.94 slug/ft3 
U = 1 ft/s 
Þ  a = 4710 ft/s  and Dp = 9.14*103 psf = 63.4 psi 

Note that U ≪ a and dr/r ≪ 1, consistent with the assumption of an acoustic wave. 

Δp
Δρ

= a2

dp
dρ

= a2

K ≡ ρ dp
dρ

a2 = dp
dρ

a = K
ρ
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A block of mass, M=10 kg, with rectangular cross-section is arranged to slide with negligible friction along 
a horizontal plane.  As shown in the sketch, the block is fastened to a spring that has stiffness such that 
F=kx where k=500 N/m.  The block is initially stationary.  At time, t=0, a liquid jet begins to impinge on 
the block (the jet properties are also shown in the sketch).  For t>0, the block moves laterally with speed, 
U(t). 

a. Obtain a differential equation valid for t>0 that could be solved for U(t) and X(t).  Do not solve. 
b. State appropriate boundary conditions for the differential equation of part (a). 
c. Evaluate the final displacement of the block. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

SOLUTION: 
 
Apply the linear momentum equation in the x-direction to a control volume surrounding the block.  Use a 
frame of reference that is fixed to the control volume (non-inertial). 
 
 
 
 
 
 
 
 
 
 

 

 

where 

   

(Although the fluid mass in the CV will change its velocity with time (the block mass using the given 
FOR is always zero), this time rate of change of momentum within the CV will be very small 
compared to the other terms in COLM and can be reasonably neglected.) 

 

 
 

   

(Assume the block mass is much greater than the water mass in the CV.) 

( )rel , , /
CV CS CV

x x B x S x x X
d u dV u d F F a dV
dt

r r r+ × = + -ò ò òu A

CV

0x
d u dV
dt

r »ò

( ) ( ) ( ) ( )2rel
CS

xu d V U V U A V U Ar r r× = - - - = - -é ùë ûò u A

, 0B xF =

,S xF kX= -

/ CV
CV

x X
dU dUa dV M M
dt dt

r = »ò

r=1000 kg/m3 
V=30 m/s 
A=100 mm2 

M 

k 

X 

r=1000 kg/m3 
V=30 m/s 
A=100 mm2 

M 
F 

X 

x 
y 

U 
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Substitute and simplify. 

 (1) 

Note that: 

 and   

so that Eqn. (1) becomes: 

 

 (2) 

Note that this is a non-linear 2nd order ODE. 
 

The initial conditions for Eqn. (2) are: 
 (3) 

 (4) 

 
The final position of the block occurs when the acceleration and velocity of the block are zero.  From Eqn. 
(2) we have: 

 

 (5) 

 
Note that we could have also worked this problem using an inertial frame of reference.  Choose one that is 
fixed to the ground.  Linear momentum in the X-direction using this new frame of reference gives: 

 

where 

  (Assume the block mass is much greater than the water mass in the CV.) 

 

 
 

   
Substitute and simplify. 

 

  (This is the same as Eqn. (2)!) 
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A cart hangs from a wire as shown in the figure below.  Attached to the cart is a scoop of width W (into the 
page) which is submerged into the water a depth, h, from the free surface.  The scoop is used to fill the cart 
tank with water of density, r. 
    
 
 
 
 
 
 
 
 
 
 
 
 
 
a. Show that at any instant V=V0M0/M where M is the mass of the cart and the fluid within the cart. 
b. Determine the velocity, V, as a function of time. 
 
SOLUTION: 
 
Apply the linear momentum equation in the x-direction to the control volume shown using the indicated 
frame of reference. 
 
 
 
 
 
 
 
 
 
 
 
 

 

where 

   

(The x-linear momentum within the CV is approximately zero in the given frame of reference.) 
 

   (The pressure forces on the front and rear portions of the scoop cancel each other out.) 
 

 

( )rel , , /
CV CS CV

x x S x B x x X
d u dV u d F F a dV
dt

r r r+ × = + -ò ò òu A

CV

0x
d u dV
dt

r »ò

( ) ( ) 2
rel

CS
xu d V V hW V hWr r r× = - - =ò u A

, 0S xF =

, 0B xF =

/
CV

x X
dVa dV M
dt

r =ò

V 

stagnant water 

h 

scoop has width, W, into the page 

cart has initial mass, M0 
and initial velocity, V0 

V 

h 

x 

y 
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Substitute and simplify: 

 (1) 

Apply conservation of mass to the same control volume in order to determine the mass as a function of 
time. 

 

where 

 

 

Substitute and simplify: 

 

 (2) 

Substitute Eqn. (2) into Eqn. (1): 

 

 

 

 

 (3) 

 
 

To determine the cart velocity as a function of time, combine Eqns. (1) and (3): 

 

 

 

 (4) 
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 A cart travels at velocity, U, toward a liquid jet that has a velocity, V, relative to the ground, a density, r, 
and a constant area, A.  The mass of the cart and its contents at time t = 0 is M0 and the cart’s initial velocity 
is U0 toward the jet.  The resistance between the cart’s wheels and the surface is negligible. 
 
 
 
 
 
 
 
 
 
 
 
 
a. Determine the mass flow rate into the cart in terms of (a subset of) r, A, V, U, g, and q. 
b. Determine the acceleration of the cart, dU/dt, in terms of (a subset of) r, A, V, U, g, q, and M(t) 

where M(t) is the mass of the cart and water at time t.  You needn’t solve any integrals or differential 
equations that appear in your answer. 

 
 
SOLUTION: 
 
Apply conservation of mass to a control volume surrounding the cart. 
 
 
 
 
 
 
 
 
 
 

 (1) 

where 

 (2) 

 (3) 

Note that the rate at which liquid mass enters the CV is  (4) 

 
Substitute and simplify. 

 (5) 

 (6) 

Note that U = U(t). 

rel
CV CS

0d dV d
dt

r r+ × =ò ò u A

CV

d dMdV
dt dt

r =ò
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d U V Ar r× = - +ò u A
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V, A, r 

U 

q 
g 

V, A, r 

U 

q 
g x 

y 

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

C. Wassgren 442 2024-02-01



  COLM_51 

Page 2 of 2 

Now apply the linear momentum equation in the x-direction to the same control volume.  Use a frame of 
reference fixed to the cart (non-inertial). 

 (7) 

where 

  (Most of the material in the CV has zero horz. velocity in this FOR.) (8) 

 (9) 

 (10) 
 (11) 

 (12) 

 
Substitute and simplify. 

 (13) 

 (14) 

Note that M = M(t) and U = U(t).  To solve for the motion of the cart, one would need to solve Eqns. (6) 
and (14) simultaneously subject to the initial conditions M(t = 0) = M0 and U(t = 0) = U0. 
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dt
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The axi-symmetric object shown below is placed in the end of a vertical circular pipe of inner diameter, D.  
A liquid with density, r, is pumped upward through the pipe and discharges to the atmosphere.  Neglecting 
viscous effects, determine the volume flow rate, Q, of the liquid needed to support the object in the position 
shown in terms of d, D, g, r, and M. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
Apply conservation of mass to the control volume shown below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (1) 

where 

  (steady flow) 

 

rel
CV CS

0d dV d
dt

r r+ × =ò ò u A

CV

0d dV
dt

r =ò

rel out out
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d Q V Ar r r× = - +ò u A
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the size of the object (Þ VCV » AinH). z 

streamline H 
Mg 

pinAin 

patmAout 

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

C. Wassgren 444 2024-02-01



  COLM_BE_09 

Page 2 of 3 

Substituting and simplifying gives: 
 

 (2) 

 
Apply the linear momentum equation in the z-direction to the same control volume.  Use the fixed frame of 
reference shown in the figure. 

 (3) 

where 

  (steady flow) 

   

(Note that Eqn. (2) was used in simplifying the momentum flux term.) 
  (H is chosen to be much larger than the object size.) 

  (use gage pressures so pout = patm = 0) 
 

Substitute and simplify. 

 (4) 

 
To determine pin, apply Bernoulli’s equation along a streamline from the inlet to the outlet. 

 (5) 

where 
   (gage pressure) 

   (from Eqn. (2)) 

  
 

Substitute and simplify. 

 (6) 
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Substitute Eqn. (6) into Eqn. (4) and simplify. 

 

 

  where   and   (7) 
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Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

4.5. Angular Momentum Equation (AME)

In words and in mathematical terms, the angular momentum principle for a system is,

The rate of change of a system’s angular momentum (AM) (4.88)

is equal to the net moment (aka torque) acting on the system.

=⇒ D

Dt

ˆ
Vsys

(hXYZ + rXYZ × uXYZ)ρdV = Mon sys, (4.89)

where D/Dt is the Lagrangian derivative (implying that we’re using the rate of change as we follow the
system), V is the volume, and ρ is the density. The quantity hXYZ is the intrinsic specific angular momentum
of a small piece of fluid resulting from the spin of fluid molecules contained within that small piece of fluid
(Figure 4.12). In typical fluids (e.g., non-polar, non-magnetic fluids), the angular momentum vectors of the
individual molecules are randomly oriented so that the sum of the intrinsic angular momentum vectors in a
region containing many molecules is zero. Hence, we will neglect this contribution to the angular momentum
of the fluid in the remainder of these notes. The quantity, uXYZ , represents the velocity of a small piece
of fluid in the system with respect to an inertial (aka non-accelerating) coordinate system XYZ (recall that
Newton’s Second law holds strictly for inertial coordinate systems) and rXYZ is the distance from the inertial
coordinate system origin to the fluid element. Note that a coordinate system moving at a constant velocity
in a straight line is non-accelerating and, thus, is inertial.

Figure 4.12. A schematic showing the angular momentum of a small fluid particle in a system.

The term, Mon sys, represents the net moments (or torques) acting on the system. These moments can be
due to both body and surface forces, i.e.,

MB = rxyz × FB , (4.90)

MS = rxyz × FS . (4.91)

Note that if the fluid is magnetic, it is also possible to have an additional body moment that would induce
the fluid molecules to change their intrinsic angular momentum (h). As stated before, we won’t consider
such fluids in these notes. The study of magnetic fluids is known as magnetohydrodynamics.

Using the Reynolds Transport Theorem to convert the left-hand side of Eq. (4.89) from a system point of
view to an expression for a control volume gives,

D

Dt

ˆ
Vsys

(rXYZ × uXYZ)ρdV =
d

dt

ˆ
CV

(rXYZ × uXYZ)ρdV +

ˆ
CS

(rXYZ × uXYZ) (ρurel · dA) . (4.92)

Since the Reynolds Transport Theorem is applied to a coincident system and control volume, the moments
acting on the system will also act on the control volume. Thus,

d

dt

ˆ
CV

(rXYZ × uXYZ)ρdV︸ ︷︷ ︸
rate of increase of
AM inside of CV

+

ˆ
CS

(rXYZ × uXYZ) (ρurel · dA)︸ ︷︷ ︸
net rate at which the CV AM changes

due to fluid leaving through the CS

= MB,CV︸ ︷︷ ︸
net moment due
to body forces
acting on CV

+ MS,CV︸ ︷︷ ︸
net moment due
to surface forces

acting on CV

. (4.93)
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This is the Angular Momentum Equation (also known as the Moment of Momentum Equation) using an
inertial coordinate system!

Notes:

(1) Recall that the AME is a vector expression. There are actually three equations built into Eq. (4.93).

4.5.1. AME for a Rotating (but not accelerating in translation) Coordinate System

Recall that Newton’s Second law holds strictly for inertial (non-accelerating) coordinate systems. Often it is
more convenient to use a rotating (non-inertial) coordinate system when applying the AME.

Figure 4.13. A schematic for deriving the kinematics of a particle using a rotating coordi-
nate system.

The Lagrangian statement for the AME is (refer to Eq. (4.89)),

D

Dt

ˆ
Vsys

(rXYZ × uXYZ)ρdV = Mon sys. (4.94)

The mass of the system remains constant so the Lagrangian derivative can be brought inside the integral,

D

Dt

ˆ
Vsys

(rXYZ × uXYZ)ρdV =

ˆ
Vsys

D

Dt
(rXYZ × uXYZ)ρdV. (4.95)

Since we’re considering a coordinate system that is only rotating and not accelerating in translation (Fig-
ure 4.13), the position and velocity vectors may be written as (refer to Eqs. (4.57) and (4.71)),

rXYZ = rxyz, (4.96)

uXYZ = uxyz + ωxyz/XYZ × rxyz. (4.97)

Substituting into Eq. (4.95) gives,ˆ
Vsys

D

Dt
[rxyz × (uxyz + ωxyz/XYZ × rxyz)]ρdV

=

ˆ
Vsys

{
D

Dt
(rxyz × uxyz) +

D

Dt
[rxyz × (ωxyz/XYZ × rxyz)]

}
ρdV (4.98)

=

ˆ
Vsys

D

Dt
(rxyz × uxyz)ρdV

+

ˆ
Vsys

[
Drxyz
Dt

× (ωxyz/XYZ × rxyz) + rxyz ×
D

Dt
(ωxyz/XYZ × rxyz)

]
ρdV. (4.99)

Again, since the mass of the system is constant, the Lagrangian derivative can be brought outside of the first
integral. In addition, we know from previous work that Drxyz/Dt = uxyz and,

D

Dt

(
ωxyz/XYZ × rxyz

)
= ω̇xyz/XYZ × rxyz + ωxyz/XYZ × uxyz + ωxyz/XYZ ×

(
ωxyz/XYZ × rxyz

)
. (4.100)
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Substituting and simplifying,ˆ
Vsys

D

Dt
(rxyz × uxyz)ρdV

+

ˆ
Vsys

[
Drxyz
Dt

× (ωxyz/XYZ × rxyz) + rxyz ×
D

Dt
(ωxyz/XYZ × rxyz)

]
ρdV,

=
D

Dt

ˆ
Vsys

(rxyz × uxyz)ρdV

+

ˆ
Vsys

{
uxyz × (ωxyz/XYZ × rxyz)

+ rxyz ×
[
ω̇xyz/XYZ × rxyz + ωxyz/XYZ × uxyz + ωxyz/XYZ × (ωxyz/XYZ × rxyz)

]
ρdV

}
. (4.101)

To simplify things further, we can re-arrange the first term in the second integral and incorporate it into the
second term,

uxyz × (ωxyz/XYZ × rxyz)+

rxyz ×
[
ω̇xyz/XYZ × rxyz + ωxyz/XYZ × uxyz + ωxyz/XYZ × (ωxyz/XYZ × rxyz)

]
= rxyz ×

[
ω̇xyz/XYZ × rxyz + 2ωxyz/XYZ × uxyz + ωxyz/XYZ × (ωxyz/XYZ × rxyz)

]
. (4.102)

Now use the Reynolds Transport Theorem to convert the first term on the right-hand side to a control volume
perspective and re-arrange. Also note that since the CV and system are coincident, the moments acting on
the CV will be the same as the moments acting on the system and the CV mass will be the same as the
system mass,

MB,CV + MS,CV

−
ˆ
CV

{
rxyz ×

[
ω̇xyz/XYZ × rxyz + 2ωxyz/XYZ × uxyz + ωxyz/XYZ × (ωxyz/XYZ × rxyz)

]}
ρdV

=
d

dt

ˆ
CV

(rxyz × uxyz)ρdV +

ˆ
CS

(rxyz × uxyz) (ρurel · dA) . (4.103)

This is the Angular Momentum Equation using a rotating coordinate system!

Let’s consider some examples to see how this form of the AME is applied.
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A lawn sprinkler is constructed from pipe with an inner diameter of d with each arm having a length of R.  
Water flows through the sprinkler at a volumetric flow rate of Q.  A force, F, is applied a distance, l, from 
the sprinkler hub on one of the sprinkler arms.  If the water stream leaving the sprinkler arm is at an angle q 
with respect to the tangent of the circle traced out by the sprinkler arms, determine: 
a. the force, F, required to hold the sprinkler stationary, 
b. the force, F, required to have the sprinkler rotate at a constant angular velocity, W, 
c. the angular acceleration of the sprinkler if the sprinkler’s moment of inertia (including the fluid inside 

the sprinkler) is I and it is rotating with angular velocity W, and 
d. the maximum angular velocity, Wmax, of the sprinkler if no force is applied 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

q 

R 

l 

V 

W 

V 
q 

F 

pipe diameter, d 

Q 

TOP VIEW 

SIDE VIEW 
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SOLUTION: 
First consider the case where the sprinkler does not rotate (W = 0).  For the fixed frame of reference and 
control volume shown, the moment of momentum equation is: 

 (1) 

where, 

  (steady flow) 

 

 
 

Substitute and simplify: 

 

 (2) 

 
Note that from conservation of mass on the same control volume: 

  Þ   (3) 

 

( ) ( )( )rel
CV CS

S B
d dV d
dt

r r´ + ´ × = +ò òr u r u u A M M

( )
CV

d dV
dt

r´ =ò r u 0

( )( ) ! ( )
2

rel
twoCS arms

2
2

ˆ ˆ ˆ2 sin cos
4

ˆ2 cos
4

r r

z

dd R V V

dRV

q
pr q q r

pr q

æ ö
é ù´ × = ´ - ç ÷ë û ç ÷

è ø

= -

ò r u u A e e e

e

ˆ ˆ ˆS r zl F Flq= ´- = -M e e e

B =M 0

2
2 ˆ ˆ2 cos

4 z z
dRV Flpr q- = -e e

2
22 cos
4
d RF V

l
pr q æ ö\ = ç ÷

è ø

2
2

4
dQ V p= 2

2QV
dp

=
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If the sprinkler is rotating, then use the same control volume (attached to and surrounding the sprinkler 
arms) but use a coordinate system that rotates with the control volume.  The moment of momentum 
equation for a rotating coordinate system is, 

 

where, 
  (the flow is steady in the rotating frame of reference) 

 

 
 

 

 

 

where I is the sprinkler’s moment of inertia.  Substitute and simplify, 

 

 (4) 

 
From Eqn. (4) the force required to maintain the sprinkler at a constant angular velocity is, 

  (Note that if W = 0 this simplifies to Eqn. (2).) (5) 

 
If the force, F, is removed, the angular acceleration is, 

 (6) 

 
The maximum angular velocity of the sprinkler if no force is applied is, 

 (7) 

 
 
 

( ) ( ) ( )

( )

rel

CV CS

/ / / /

CV

2

S Bxyz xyz

xyz xyz XYZ xyz xyz XYZ xyz xyz XYZ xyz XYZ xyz

d dV d
dt

dV

r r

r

´ + ´ × = + -

´ ´ + ´ + ´ ´

ò ò

ò

r u r u u A M M

r θ r θ u θ θ r!! ! ! !

( )
CV

xyz
d dV
dt

r´ =ò r u 0

( ) ( ) ( )
2 2

2
rel

CS

ˆ ˆ ˆ ˆ2 sin cos 2 cos
4 4r r zxyz
d dd R V V V Rq

p pr q q r r q
æ ö

é ù´ × = ´ - = -ç ÷ë û ç ÷
è ø

ò r u u A e e e e

ˆ ˆ ˆS r zl F Flq= ´- = -M e e e

B =M 0

( )

2

/ / / /
CV

2

ˆ ˆ ˆ0 2

ˆ

2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ          2 2
4

r

xyz xyz XYZ xyz xyz XYZ xyz xyz XYZ xyz XYZ xyz

r R

r z r z r z z r
r r V r

r

dV

dr r V r dr
q q q

r

pr
=

= =W = W =W

=-W

´ ´ + ´ + ´ ´ =

æ ö
ç ÷
ç ÷

´ W ´ + W ´ +W ´W ´ç ÷
ç ÷
ç ÷ç ÷
è ø

ò

ò
e e e

e

r θ r θ u θ θ r

e e e e e e e e

!! ! ! !

!
"#$#% "#$#% "#$#%

"##$##%

( )
2 2 2

2 2

0 0 0

ˆ ˆ ˆ ˆ2 2 2 4
4 4 4

R R R

z z z z

I

d d dr Vr dr r dr V rdrp p pr r r

=

= W + W = W + Wò ò òe e e e! !

"##$##%

2
2ˆ ˆ2

4z z
dI V Rpr= W + We e!

2 2
2 2ˆ ˆ ˆ ˆ2 cos 2
4 4z z z z
d dV R I R V Flp pr q r- = - W - W -e e e e!

( )
2

2 cos
4
dI Fl V R V Rpr qW = - + -W!

( )
2

2 cos
4
d RF V V R
l

pr q= -W

( )
2

2 cos
4
d RV V R
I

pr qW = -W!

max
cosV
R
q

W =
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A pipe branches symmetrically into two legs of length, L, and the whole system rotates with angular speed, 
w, around its axis.  Each branch is inclined at angle, a, to the axis of rotation.  Liquid enters the pipe 
steadily, with zero angular momentum, at the volume flow rate Q.  The pipe diameter, D, is much smaller 
than L.   
a. Obtain an expression for the external torque required to turn the pipe.   
b. What additional torque would be required to impart angular acceleration ? 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
SOLUTION: 
Apply the angular momentum equation to the CV shown above using a frame of reference rotating with the 
arms (this is an accelerating frame of reference).  Let V be the velocity of the fluid in the pipe arms (V 
pD2/4= 1/2Q). 
 

 

where 

  (steady problem in the given frame of reference) 

 

  (neglect gravity) 
  (this is the torque we must apply to the rotating arm) 

  

w!

( ) ( )( )

( )
rel

CV CS

/ / / /
CV

2

xyz xyz xyz xyz

B S xyz xyz XYZ xyz xyz XYZ xyz xyz XYZ xyz XYZ xyz

d dV d
dt

dV

r r

r

´ + ´ ×

= + - ´ ´ + ´ + ´ ´

ò ò

ò

r u r u u A

M M r θ r θ u θ θ r!! ! ! !

( )
CV

xyz xyz
d dV
dt

r´ =ò r u 0

( )( ) ! ( ) ( ) ( )

( ) ( ) ( )

1
rel 2

incoming flowCS top arm

1
2

bottom arm

ˆ ˆ ˆ ˆcos sin cos sin

ˆ ˆ ˆ ˆcos sin cos sin

xyz xyz z r z r

z r z r

d L V Q

L V Q

r a a a a r

a a a a r

´ × = + + ´ +é ùë û

+ - ´ -é ùë û

=

ò r u u A 0 e e e e

e e e e

0

"##########$##########%

"##########$##########%

B =M 0

S =M T

Q 
D 

L 

a 

 w

z 

r 

frame of reference 
rotates with the arms 

V 

V 
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Combining together all of the terms in the angular momentum equation, 

 

 

or, since V pD2/4= 1/2Q, 

 

 
 

The torque required to turn the pipe at a constant angular velocity, w, is, 
 

 
The additional torque required to impart an angular acceleration  is, 

 

( )

( )
( )
( )

( )

/ / / /
CV

2

0

top arm

2

ˆ ˆ ˆcos sin
ˆ ˆ ˆ ˆ ˆ     cos sin 2 cos sin

4
ˆ ˆ ˆ ˆcos sin
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e e e

e e e e e

e e e e
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2

0
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2
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4
ˆ ˆ ˆ ˆcos sin
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4
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z r z z r
s

z z z r

z

s
Ds V ds

s

s
D

w a a
pa a w a a r
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=

=

+

´ - +é ù
ê ú
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ê ú´ ´ -ë û

+

=

ò
e e e

e e e e e

e e e e

e
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!
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A single tube, with diameter of d and length of R rotates at constant angular speed, w as shown in the 
figure.  Water is pumped through the tube at volume flow rate, Q.  Find the torque, T, that must be applied 
to maintain the steady rotation of the tube. 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
Apply the angular momentum equation to the control volume shown below.  Use a coordinate system that 
rotates with the rotating tube. 
 
 
 
 
 
 
 
 
 
 

 

where, 

  (steady flow) 

   

(There is no contribution from the incoming flow since its moment arm is zero.  The quantity A is 
the cross-sectional area of the tube.) 

 
 

 

Substitute and simplify. 
 (1) 

 (2) 

    

d
dt

rxyz × uxyz( )ρ dV
CV
∫ + rxyz × uxyz( ) ρurel ⋅dA( )

CS
∫

= MB + MS − rxyz × !ω xyz/ XYZ × rxyz + 2ω xyz/ XYZ × uxyz +ω xyz/ XYZ × ω xyz/ XYZ × rxyz( )ρ dV
CV
∫

( )
CV

xyz xyz
d dV
dt

r´ =ò r u 0

( )( ) ( )rel
CS

ˆ ˆxyz xyz r r
Qd R Q
A

r ræ ö´ × = ´ =ç ÷
è øò r u u A e e 0

0B =M

   MS = Têz

    

rxyz × !ω xyz/ XYZ × rxyz + 2ω xyz/ XYZ × uxyz +ω xyz/ XYZ × ω xyz/ XYZ × rxyz( )ρ dV
CV
∫ = rêr × 0+ 2ω êz ×

Q
A

êr +ω êz ×ω êz × rêr

⎛
⎝⎜

⎞
⎠⎟
ρ Adr

=dV
"

r=0

r=R

∫

= rêr × 2ω Q
A

êθ −ω
2rêr

⎛
⎝⎜

⎞
⎠⎟
ρAdr

r=0

r=R

∫

= 2ρωQêz r dr
r=0

r=R

∫
= ρωQR2êz

   0 = Têz − ρωQR2êz

2T QRrw\ =

Q 

R 
w 

d Q 

 
 

T 

T 
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 The centrifugal pump shown in the figure below has a flow rate, Q.  The flow exits the impeller at an angle 
q2, measured from the tangent of the impeller, with a velocity V2,w/r/t blade, relative to the rotating blades.  
The thickness of the discharge stream at the impeller perimeter is b2.  The fluid, with density r, enters 
axially at section 1.   
 
Assuming steady, incompressible flow at constant shaft angular velocity, w, derive a formula for the power, 
P, required to drive the impeller in terms of r, w, Q, q2, R2, and b2. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

q2 
V2, w/r/t blade 

blade 

R2 

R1 

Q 

T, P, w 

b2 

front view side view 
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SOLUTION: 
 
Apply the moment of momentum equation to a control volume surrounding the impeller as shown in the 
figure below.  Use a coordinate system fixed to the ground.  Consider only the Z direction. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 (1) 

where, 

  (steady flow) (2) 

 (3) 

 (4) 
 (5) 

 
Substitute and simplify, 

 (6) 

 
The power is the P = T∙ω	so, 

 (7) 

 

( ) ( ) ( )rel , ,
CV CV

XYZ XYZ XYZ XYZ B Z S ZZ Z

d dV d M M
dt

r r´ + ´ × = +ò òr u r u u A

( )
CV

0XYZ XYZ Z

d dV
dt

r´ =ò r u

    
rXYZ × uXYZ( )Z

ρurel ⋅dA( )
CV
∫ = R2V2,tangential

w/r/t ground

!m

, 0B ZM =

,S ZM T=

   
T = !mR2V2,tangential

w/r/t ground

   
P =ωT = !mωR2V2,tangential

w/r/t ground

q2 
V2, w/r/t blade 

 

blade 

R2 

R1 

Q 

T, P, w 

b2 

front view side view 

Z 

X 

Y 
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The velocity of the water at the point of discharge relative to the ground may be found by considering a 
velocity vector diagram as shown below. 
 
 
 
 
 
 
 
 
 
 
 

 (8) 

 (9) 

 
The velocity component Vn2 may be found by applying conservation of mass to the same control volume, 

 (10) 

where, 

  (steady flow) (11) 

 (12) 

Substitute and simplify, 

 (13) 

 
Combine Eqs. (7), (9), and (13) to get, 

 (14) 

 (15) 

 
 

2 2
2 2,

w/r/t blade,2, 2tangentialw/r/t blade,
tangential

tan
tan

n nV V
V

V
q

q
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2
2, 2 2, 2
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tan
nVV R V Rw w
q

= - = -

rel
CV CV

0d dV d
dt

r r+ × =ò ò u A

CV

0d dV
dt
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CV

2nd Q V R br r r p× = - +ò u A

2
2 22n
QV
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=

   
P = !mωR2V2,tangential

w/r/t ground
= ρQωR2 ωR2 −

Vn2

tanθ2
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V2,w/r/t blade 

Vn2 

blade 

V2,w/r/t blade, tang. 
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Crude oil (SG=0.95) from a tanker dock flows through a pipe of 0.4 m diameter in the configuration shown 
below.  The pipe is oriented horizontally so gravity may be neglected.  The flow rate is 0.58 m3/sec, and the 
gage pressures are shown in the diagram.  Determine the force and torque that are exerted by the supports 
on the pipe assembly.   
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
Apply the linear momentum equation in the x-direction to the control volume shown below.  Use the fixed 
frame of reference indicated in the diagram. 
 
 
 
 
 
 
 
 
 
 

 

where, 

  (steady flow) 

  (same momentum flux coming in as going out) 

 

 

Substitute and simplify, 

 (1) 

 

( )rel , ,
CV CS

x x B x S x
d u dV u d F F
dt

r r+ × = +ò ò u A

CV

0x
d u dV
dt

r =ò
( )rel

CS

0xu dr × =ò u A

, 0B xF =

( )
2 2 2

, 1 2 1 2 1 2 1 24 4 4S x x x x x
D D DF p p F F p p F Fp p p

= - + + = - + +

( )
2

2 1 2 1 4x x
DF F p p p

+ = -

D 

p1 
Q 

L 

p2 

D = 0.4 m 
L = 20 m 
Q = 0.58 m3/sec 
p1 = 345 kPa (gage) 
p2 = 332 kPa (gage) 

D 

p1 
Q 

L 

p2 

x y 

Fx2 

Fx1 

Fx1 and Fx2 are the horizontal reaction forces that the 
supports exert on the pipe assembly.  Since there is 
no momentum flux in the y-direction, gravity is not a 
factor, and assuming that there is no “pre-load” on 
the assembly in the y-direction, the vertical reaction 
forces, i.e., Fy1 and Fy2, will be zero. 
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Now apply the moment of momentum equation to the same control volume using the same coordinate 
system, 

 

where, 

  (steady flow) 

 

 

 (2) 

Substitute and simplify, 

 

  

 (3) 

 
The other reaction force is determined by combining Eqs. (1) and (3), 

 (4) 

 
The torque exerted on the pipe assembly is given by Eq. (2) (copied below for convenience), 

 (5) 

 
Substitute the given parameters, 

L = 20 m 
r = 950 kg/m3 
p1 = 345 kPa (gage) 
p2 = 332 kPa (gage) 
D = 0.4 m 
Q = 0.58 m3/s 
Þ Fx1  =  -46 kN, Fx2  =  44 N, and Mz = -866 kN×m 
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A Pelton wheel is a form of water turbine well adapted to situations of high head and low flow rate.  The 
wheel consists of a series of vanes mounted on a rotor, as shown.  One or more jets are arranged to strike 
the buckets tangentially.  In practice it is possible to deflect the jet stream through angles, q, of up to 165°.  
Consider the Pelton wheel and single jet arrangement shown below.   
a. Obtain an expression for the torque exerted by the water stream on the wheel and the corresponding 

power output.   
b. Determine the value of U/V, where U is the bucket speed and V is the water jet speed, required to 

maximize the power produced by the wheel. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
SOLUTION: 
Apply the moment of momentum equation to the control volume shown below.  Use a coordinate system 
that rotates with the wheel. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

    

d
dt

rxyz × uxyz( )ρ dV
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T is the torque required to maintain the 
wheel at a steady angular velocity. 
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where, 

 

 
(Note that the change in the incident and reflected jet angles as the wheel rotates is being 
neglected.  We are assuming that there is always a bucket deflecting the jet at the given angle.) 

 
 

 
Substitute and simplify, 

 

 (1) 

From the problem statement, U º wR, so that Eq. (1) becomes, 

    (Note:  T £ 0.) (2) 

 
The power added to the wheel (since the torque is acting on the wheel) is, 

 

  (Note:    Þ  power extracted from the wheel) (3) 

 
To maximize the power with respect to U/V, differentiate Eq. (3) with respect to U/V and set equal to zero.  
Re-writing Eq. (3) in dimensionless form gives, 

 (4) 

Let  equal the left hand side of Eq. (4) and U’ = U/V so that Eq. (4) is, 
 (5) 

Differentiate Eq. (5) with respect to U’ and set equal to zero to find the inflection points, 

 (6) 

 (7) 
 

Substituting Eq. (7) into Eq. (5) shows that the maximum power occurs when, 

  Þ   (8) 

The minimum power occurs when U’ = 1. 
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A single-arm water distribution tube is shown in the diagram.  The arm consists of a uniform diameter, L-
shaped tube with horizontal and vertical sections.  Water is pumped through the tube at a constant 
volumetric flow rate and the tube’s speed of rotation is constant.  Neglecting friction and aerodynamic drag, 
estimate the torque required to rotate the tube.  Solve the problem twice using: 
a. a fixed coordinate system, and 
b. a coordinate system that rotates with the tube. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
Apply the momentum of momentum equation in the Z-direction on the control volume shown in the figures 
below.  Use the fixed coordinate system XYZ (this is an inertial frame of reference). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (1) 

where, 

  (steady flow – angular momentum in Z-direction doesn’t change) (2) 

 (3) 

 (4) 
 (5) 
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Substitute and simplify, 
 (6) 

 (7) 

 

 
 

Now use a coordinate system that rotates with the control volume as shown in the figures below (this is a 
non-inertial frame of reference). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (8) 

where, 

  (steady flow) (9) 
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Substitute and simplify, 

 (14) 

 (15) 

  (This is the same answer as before!) (16) 
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A sprinkler arm with two jets is shown below.  Water flows steadily from each jet (with area Aj) with speed 
Vj relative to the arm.  One jet leaves vertically at a distance of R/2 from the center of the sprinkler; the 
other leaves in the plane of rotation at R.  The inside area of the arm is A.  Gravity acts in the vertical 
direction.  Estimate the components of the torque (all components) that must be applied at the pivot to 
make the arm turn at a constant rotational speed w. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
Apply the moment of momentum equation to a control volume surrounding the sprinkler arm as shown in 
the figure below.  The control volume rotates with the sprinkler arm.  Use a (polar) coordinate system fixed 
to the control volume. 
 
 
 
 
 
 
 
 
 
 
 

 (1) 

where, 

  (steady flow) (2) 

   (3) 

(Note that there is no contribution at the inlet of the arm since the position vector rxyz and the flow 
velocity uxyz are both in the z direction.  Hence, the resulting cross product is zero.) 
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 (5) 

 

( ) ( )( )

( )
rel

CV CS

/ / / /
CV

   2

xyz xyz xyz xyz

B S xyz xyz XYZ xyz xyz XYZ xyz xyz XYZ xyz XYZ xyz

d dV d
dt

dV

r r

r

´ + ´ ×

= + - ´ ´ + ´ + ´ ´

ò ò

ò

r u r u u A

M M r θ r θ u θ θ r!! ! ! !

( )
CV

xyz xyz
d dV
dt

r´ =ò r u 0

( )( ) ( )( ) ( )( )

( )( )

1
rel 2

CS

1
2

ˆ ˆ ˆ ˆ

ˆ ˆ

xyz xyz r j z j j r j j j

j z j j

d R V V A R V V A

RV V A

q

q

r r r

r

´ × = ´ + ´-

= - +

ò r u u A e e e e

e e

21 1
2 2ˆ ˆ ˆB r zR RAg R Ag qr r= ´- =M e e e

S =M T

g 

Vj 
Vj 

A 

R/2 

R 

w 
Aj 

Aj 

Vj 
Vj 

w 

 ˆ ze
 ˆ re

Q = 2VjAj (from COM) 

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

C. Wassgren 466 2024-02-01



  COAM_09 

Page 2 of 3 

 (6) 

 
Substitute and simplify, 

 (7) 

 (8) 
 
 

Now try solving the problem using an inertial coordinate system as shown in the figure below (looking 
down from the top of the sprinkler). 
 
 
 
 
 
 
 
 
 
 

 (9) 

where, 

  (The sprinkler is rotating at a constant speed.) (10) 
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Substitute and simplify, 

 (15) 

 (16) 
 

If we compare the fixed coordinate system to one that rotates with the sprinkler as used in the first part of 
this problem, we find, 

 (17) 
 

 
 
Thus, Eq. (16) may be written as, 

 (18) 
which is exactly the same as Eq. (8). 
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4.6. The First Law of Thermodynamics for a Control Volume

The reader should review the Introductory Thermodynamics chapter (Chapter 3) before continuing with this
section.

To write the First Law for a control volume, we utilize the Reynolds Transport Theorem (RTT) to convert
our system expression to a control volume expression. Let’s first rewrite Eq. (3.32) using the Lagrangian
derivative notation (we’re interested in how things change with respect to time as we follow a particular
system of fluid) and write the total energy of a system in terms of an integral,

D

Dt

ˆ
Vsys

eρdV︸ ︷︷ ︸
=Esys

= Q̇into sys + Ẇon sys. (4.104)

Applying the Reynolds Transport Theorem and noting that the system and control volume are coincident at
the time we apply the theorem gives,

d

dt

ˆ
CV

eρdV +

ˆ
CS

e (ρurel · dA) = Q̇into CV + Ẇon CV . (4.105)

This is the First Law of Thermodynamics for a control volume!

Notes:

(1) The specific total energy is e = u + 1
2V

2 + G where G is a conservative potential energy function
with the specific gravitational force given by fgravity = −∇G. For the remainder of these notes, G
will be assumed to be G = gz ( =⇒ fgravity = −gêz) where g is the acceleration due to gravity.

Now let’s expand the rate of work (power) term into rate of pressure work (pdV power) and the power due
to other effects such as shaft work, viscous work, electric work, etc.,

Ẇon CV = Ẇp,on CV + Ẇother,on CV. (4.106)

In particular, we can write the rate of pressure work term for fluid crossing the boundary in the following

Figure 4.14. A schematic illustrating the rate of pressure work at the control surface.

way (Figure 4.14),

dẆp,on CV = dFp,on CV · urel, (4.107)

= (−pdA) · urel, (4.108)

= −p(urel · dA), (4.109)

= −p
ρ

(ρurel · dA) . (4.110)

The rate of pressure work as fluid crosses the boundary over the entire CS is,

Ẇp,on CV =

ˆ
CS

−p
ρ

(ρurel · dA) . (4.111)
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Equation (4.111) is the rate at which pressure work is performed on the fluid flowing through the control
surface.

Substituting Eqs. (4.111) and (4.106) into Eq. (4.105), expanding the specific total energy term in the surface
integral, and bringing the rate of pressure work term to the left-hand side gives,

d

dt

ˆ
CV

eρdV +

ˆ
CS

(
u+

p

ρ
+

1

2
V 2 + gz

)
(ρurel · dA) = Q̇into CV + Ẇother,on CV. (4.112)

The quantity (u + p/ρ) appears often in thermal-fluid systems and is given the special name of specific
enthalpy, h,

h := u+
p

ρ
= u+ pv, (4.113)

where v = 1/ρ is the specific volume. Note that just as with internal energy, tables of thermodynamic
properties typically list the value of the specific enthalpy for various substances at various conditions.

Substituting Eq. (4.113) into Eq. (4.112) gives,

d

dt

ˆ
CV

eρdV +

ˆ
CS

(
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1

2
V 2 + gz

)
(ρurel · dA) = Q̇into CV + Ẇother,on CV . (4.114)

Notes:

(1) An alternate way to write Eq. (4.114) is,

dECV
dt

=
∑

all inlets

ṁ

(
h+

1

2
V 2 + gz

)
−

∑
all outlets

ṁ

(
h+

1

2
V 2 + gz

)
+ Q̇into CV + Ẇother,on CV. (4.115)

The previous equation can be integrated in time,

∆ECV =
∑

all inlets

m

(
h+

1

2
V 2 + gz

)
−

∑
all outlets

m

(
h+

1

2
V 2 + gz

)
+Qinto CV +Wother,on CV, (4.116)

where m is the total mass entering/leaving the control volume. It has been assumed that the specific
enthalpies, kinetic energy, and potential energies at the inlets and outlets don’t change with time.
This form of the First Law is useful for evaluating conditions at the end of an unsteady process.
Note that if there are no inlets and outlets, then Eq. (4.116) simplifies to the system form of the
First Law (Eq. (3.32)).

(2) The specific enthalpy term in Eq. (4.114) accounts for the rate of pressure work as fluid crosses the
control surface, e.g., at inlets and outlets of the control volume. If there is pressure work caused by
a moving, solid boundary through which no fluid flows, e.g., a moving piston, then that work would
be included in the Ẇother,on CV term.

(3) During problem solving, we often must estimate the relative magnitudes of the terms in the total
specific enthalpy term, i.e., hT = h + 1

2V
2 + gz. For example, consider a simple system operating

at steady state with a single inlet and a single outlet. The inlet and outlet mass flow rates will be
the same. The change in the total enthalpy between the inlet and outlet is (refer to Eq. (4.115)),

ṁ∆hT = ṁ

[
∆h+ ∆

(
1

2
V 2

)
+ g∆z

]
. (4.117)

Let’s assume that ∆h ∼ 1 kJ kg−1. To have an equivalent change in the kinetic energy, we would
need ∆V ∼ 45 m s−1. An equivalent change in the potential energy would require ∆z ∼ 100 m.
Thus, it is often reasonable to neglect changes in kinetic and potential energies if the change in
specific enthalpy is large and the changes in velocity and elevation are small.

(4) Let’s examine the “other” work term more closely. This term includes work due to anything other
than pressure work, such as work due to viscous forces, shaft work, electrical work, etc. In this
note, let’s examine the work done by viscous stresses. Consider the rate of viscous work done on
the CV shown in Figure 4.15,
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Figure 4.15. A schematic illustrating the rate of viscous work at the control surface.

dẆviscous,on CV = dFviscous,on CV · urel, (4.118)

so that the total rate of viscous work acting on the CS is,

Ẇviscous,on CV =

ˆ
CS

dFviscous,on CV · urel. (4.119)

(a) Note that at a solid boundary, urel = 0 due to the no-slip condition so that the rate of viscous
work is zero at solid surfaces. If the flow is inviscid, then urel 6= 0, but dFviscous,on CV = 0 and
so the rate of viscous work is zero for that case too.

(b) If the control volume is oriented such that the velocity vectors are perpendicular to the normal
vectors of the CS, then the rate of viscous work done on the CV will be zero,

dFviscous,on CV · urel = 0, (4.120)

since the viscous force will be perpendicular to the velocity vector. Thus, orienting the control
surface so that it cuts perpendicularly across streamlines eliminates viscous work on the control
volume.

(c) The rate of viscous work may not be negligible if the control volume is chosen as shown in
Figure 4.16. Viscous forces along streamline surfaces may be significant if the shear stress there
isn’t negligible.

Figure 4.16. A schematic illustrating the viscous forces at the control surface if the control
surface is tangential to the streamlines.

For the remainder of these notes, it will be assumed that the work on the CV due to viscous stresses
is zero since our control surfaces will be chosen such that the surfaces are along solid boundaries or
boundaries where viscous stresses are negligible (e.g., negligible velocity gradients), or with normal
vectors perpendicular to the flow velocities.

(5) For a flow where the total energy within the CV does not change with time (steady state), Eq. (4.114)
simplifies to, ˆ

CS

(
h+

1

2
V 2 + gz

)
(ρurel · dA) = Q̇into CV + Ẇother,on CV. (4.121)
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Note that flows may be unsteady at the local level, e.g., the localized flow within a pump, but may
be steady at a larger scale, e.g., the average conditions within the pump housing.

(6) For a steady state, steady flow (meaning that the mass flow rate remains constant) with a single
inlet (call it state 1) and outlet (call it state 2), we can write Eq. (4.121) as,(

h+ α
1

2
V̄ 2 + gz

)
2

−
(
h+ α

1

2
V̄ 2 + gz

)
1

= q̇into CV + ẇother,on CV. (4.122)

where q = Q̇/ṁ and w = Ẇ/ṁ are the specific heat, i.e., the heat transfer per unit mass, and the
specific work, i.e., the work per unit mass, respectively. Note that from COM the mass flow rate
into the CV equals the mass flow rate out of the CV, i.e., ṁin = ṁout = ṁ.
(a) The average velocity through an area is,

V̄ :=
1

A

ˆ
A

(V · dA). (4.123)

(b) The quantity, α, is known as the kinetic energy correction factor. It is a correction factor

accounting for the fact that an average velocity profile, V̄ , may not contain the same kinetic
energy as a non-uniform velocity profile. For example, consider the kinetic energy contained in
the two flow profiles shown in Figure 4.17. The average flow rate of specific kinetic energy is,

ke =

ˆ
A

1

2
V 2 (ρurel · dA) 6= 1

2
ṁV̄ 2, (4.124)

in general. We define the kinetic energy correction factor, α, as,

α :=

´
A

1
2V

2 (ρurel · dA)
1
2ṁV̄

2
. (4.125)

so that,

ke = α
1

2
ṁV̄ 2. (4.126)

For a laminar flow in a circular pipe, the velocity profile is parabolic (discussed in a different
chapter) resulting in α = 2. For a turbulent flow, α→ 1 as increasing turbulent mixing causes
the velocity profile to become more uniform.

Figure 4.17. A schematic of a pipe flow with two different velocity profiles.

(c) The quantity,

hT = h0 := h+ α
1

2
V̄ 2 + gz, (4.127)

is referred to as the total specific enthalpy, hT or the stagnation specific enthalpy, h0. Note
that for gases, the gz term is much smaller than the other terms and, thus, is often neglected.

(d) If the flow is adiabatic (q = 0) and the rate of work by forces other than pressure can be
neglected (wother = 0), then,

hT = h0 = constant. (4.128)
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(7) Now let’s re-write Eq. (4.122) but expand the specific enthalpy terms,(
u+

p

ρ
+ α

1

2
V̄ 2 + gz

)
2

−
(
u+

p

ρ
+ α

1

2
V̄ 2 + gz

)
1

= qinto CV + wother,on CV. (4.129)

Re-arranging terms and dividing through by the gravitational acceleration gives,(
p

ρg
+ α

V̄ 2

2g
+ z

)
2

=

(
p

ρg
+ α

V̄ 2

2g
+ z

)
1

− u2 − u1 − qinto CV

g
+
Ẇother,on CV

ṁg
. (4.130)

Each term in this equation is referred to as a head quantity and has the dimensions of length:

p

ρg
:= pressure head (4.131)

V̄ 2

2g
:= velocity head (4.132)

z := elevation head (4.133)

u2 − u1 − qinto CV

g
= HL := head loss (4.134)

Ẇshaft,on CV

ṁg
= HS := shaft head (4.135)

The head loss is the head lost due to mechanical energy being converted to thermal energy and
energy lost via heat transfer to the surroundings. The “other” work term frequently only includes
shaft work, particularly in pipe flow systems, and so the shaft head is a convenient definition. It is
the head added to the flow due to shaft work.
The equation in this form is known as the Extended Bernoulli Equation,(

p

ρg
+ α

V̄ 2

2g
+ z

)
2

=

(
p

ρg
+ α

V̄ 2

2g
+ z

)
1

−HL +HS , (4.136)

where it has been assumed that the only form of “other” work is shaft work.

Let’s consider some examples to see how the First Law is applied to control volumes.
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Consider a large classroom on a hot summer day with 150 students, each dissipating 60 W of sensible heat.  
All the lights, with 4.0 kW of rated power, are kept on.  The room has no external walls, and thus heat gain 
through the walls and the roof is negligible.  Chilled air is available at 15 °C and the temperature of the 
return air is not to exceed 25 °C.  Determine the required flow rate of air, in kg/s, that needs to be supplied 
to the room to keep the average temperature of the room constant. 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
Apply the First Law to the CV shown.  Assume the conditions in the CV are steady and uniform and that 
the inlet and outlet flows are also steady and uniform, 

 (1) 

where, 

  (steady state in the CV) (2) 

   (3) 

The differences in the inlet and outlet kinetic and potential energies are assumed negligible and, 
since the flow is steady, the inlet and outlet mass flow rates are identical. 

    (The influx of heat is due to the lights and the students.) (4) 

  (There is no work performed on the CV.) (5) 

 
Substitute and simplify, 

 (6) 

Given that, 
 = 4.0 kW (7) 

 = (150 students)(60 W/student) = 9.0 kW (8) 
hout = 298.18 kJ/kg  (thermodynamics tables for air at Tout = 25 °C = 298 K) (9) 
hin = 288.15 kJ/kg  (thermodynamics tables for air at Tin = 15 °C = 288 K) (10) 

 (11) 

( )( )21
rel into other,2

CV on CVCV CS

d e dV h V gz d Q W
dt

r r+ + + × = +ò ò u A ! !

CV

0d e dV
dt

r =ò
( )( ) ( )21

rel out in2
CS

h V gz d m h hr+ + × = -ò u A !

into L S
CV
Q Q Q= +! ! !

other,
on CV

0W =!

( ) L S
out in L S

out in

Q Q
m h h Q Q m

h h
+

- = + Þ =
-

! !
! !! !

LQ!

SQ!

kg1.30 sm\ =!

 air in,m T  air out,m T

 LQ! SQ!
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Determine the maximum pressure increase across the 10 hp pump shown in the figure. 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
Apply the First Law to a control volume surrounding the pump, 

, (1) 

where, 

   (steady flow), (2) 

  (neglecting elevation differences), (3) 

, (4) 
 = given (5) 

 
Assuming the water is an incompressible fluid, re-write the change in specific enthalpy as, 

. (6) 

Substitute into Eq. (1) and simplify, 

 (7) 

In this particular case we’re asked to find the maximum pressure rise across the pump, which would 
correspond to no temperature change, i.e., Tout = Tin.  Thus, 

. (8) 

The velocity at the outlet may be found by applying conservation of mass to the same control volume, 

. (9)  

Substitute and simplify Eq. (8), 

, (10) 

. (11) 

 

d
dt

eρ dV
CV
∫ + h + 1

2V
2 + gz( )ρurel ⋅dA

CS
∫ = ⇥Qinto CV + ⇥Won CV,

other

d
dt

eρ dV
CV
∫ = 0

 
h + 1

2V
2 + gz( )ρurel ⋅dA

CS
∫ = ⇥m hout − hin( ) + 1

2 Vout
2 −Vin

2( )⎡⎣ ⎤⎦

 
⇥Qinto CV = 0

 
⇥Won CV,

other

hout − hin = c Tout −Tin( ) + 1
ρ

pout − pin( )

 
⇥m c Tout −Tin( ) + 1

ρ
pout − pin( ) + 1

2 Vout
2 −Vin

2( )⎡

⎣
⎢

⎤

⎦
⎥ = ⇥Won CV,

other

 
⇥m 1

ρ
pout − pin( ) + 1

2 Vout
2 −Vin

2( )⎡

⎣
⎢

⎤

⎦
⎥ = ⇥Won CV,

other

Vout =Vin
din
dout

⎛
⎝⎜

⎞
⎠⎟

2

 

⇥m 1
ρ

pout − pin( ) + 1
2Vin

2 din

dout

⎛
⎝⎜

⎞
⎠⎟

4

−1
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= ⇥Won CV,

other

 
pout − pin =

ρ ⇥Won CV,
other

⇥m
+ 1

2
ρVin

2 1− din

dout

⎛
⎝⎜

⎞
⎠⎟

4⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

pump 
10 hp 

water 
Vin=30 ft/s 
din = 1 in 

dout = 1.5 in 
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Using the given parameters, 
r = 62.4 lbm/ft3  (approximate density of liquid water at standard conditions) 
Vin = 30 ft/s 
din = 1 in. = (1/12) ft 
dout = 1.5 in. 

 = 10 hp = 5500 ft.lbf/s 

 = rVin(pdin2/4) = 10.2 lbm/s 
Þ pout – pin = 34300 lbf/ft2 = 238 lbf/in2 
 
 
 

 
⇥Won CV,

other

 ⇥m
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The velocity profile for a particular pipe flow is linear from zero at the wall to a maximum of uc at the 
centerline.  Determine the average velocity and the kinetic energy correction factor. 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
The average velocity is found by setting the volumetric flow rate using the average velocity profile equal to 
the volumetric flow rate using the real profile, 

 (1) 

 

 (2) 
 

The kinetic energy correction factor, a, is found by equating the kinetic energy flow rate using the average 
velocity with the kinetic energy flow rate using the actual velocity profile, 

 (3) 

where .  Solving the previous equation for a gives, 

 (4) 

avg real
profile profile
Q Q=
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2

0

3
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Air at 10 °C and 80 kPa (abs) enters the diffuser of a jet engine steadily with a velocity of 200 m/s.  The 
inlet area of the diffuser is 0.4 m2.  The air leaves the diffuser with a velocity that is very small compared 
with the inlet velocity.  Determine  
a.  the mass flow rate of the air and 
b.  the temperature of the air leaving the diffuser. 
You may assume adiabatic flow through the diffuser. 
 
SOLUTION: 
 
The mass flow rate of the air may be found from, 

  Þ   (1) 

Using the given data, 
p1 = 80 kPa (abs) 
R = 287 J/(kg×K) 
T1 = 10 ºC = 283 K 
V1 = 200 m/s 
A1 = 0.4 m2 
Þ  = 78.8 kg/s 

 
Now apply the First Law to the control volume shown below. 
 
 
 
 

 (2) 

where, 

  (steady flow) (3) 

   (4) 

  (Flow through diffusers is usually assumed to occur adiabatically.) (5) 

 (6) 

Note that from conservation of mass for the same control volume, 
 (7) 

Substitute into the First Law and simplify, 
  (Note:  V2 << V1.) (8) 

 (9) 
 

From a thermodynamics table for air, h1 = 283.14 kJ/kg @ 283 K giving, 
h2 = 303.14 kJ/kg  Þ  T2 = 302.9 K » 30 ºC  (from a thermodynamics table for air) 
 

Alternately, if air is assumed to behave as a perfect gas so that Dh = cpDT with cp = 1000 J/(kg×K), then, 

  Þ  T2 = 303 K  (Same as before!) (10) 

   m = ρ1V1A1
   
m =

p1
RT1

⎛

⎝⎜
⎞

⎠⎟
V1A1

  m

    

d
dt

eρ dV
CV
∫ + h+ 1

2V 2 + gz( ) ρurel ⋅dA( )
CS
∫ = Qinto

CV
+ Wother,

on CV

CV

0d e dV
dt

r =ò

    
h+ 1

2V 2 + gz( ) ρurel ⋅dA( )
CS
∫ = m2 h2 +

1
2V2

2( )− m1 h1 +
1
2V1

2( )

   
Qinto

CV
= 0

   
Wother,
on CV

= 0

   m2 = m1 = m

   
m h2 +

1
2V2

2( )− m h1 +
1
2V1

2( ) = 0

21
2 1 12h h V= +

2
1

2 1 2 p

VT T
c

= +

1 2 
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A well-insulated valve is used to throttle steam from 8 MPa (abs) and 500 °C to 6 MPa (abs).  Determine 
the final temperature of the steam. 
 
 
SOLUTION: 
 
 
 
 
Apply the First Law to the CV shown assuming 1D, steady flow, no heat transfer (the valve is well-
insulated), and no “other” work done on the CV besides pressure work. 

 (1) 

where, 

  (steady flow) (2) 

   (3) 

(The changes in kinetic and potential energies are assumed negligible and, since the flow is steady 
and 1D, the mass flow rate is the same at the inlet and outlet.) 

  (The valve is well-insulated.) (4) 

  (No work is performed other than pressure work.) (5) 

 
Substitute and simplify, 

  Þ   (6) 
 
From steam tables at pi = 8 MPa = 800 bars, Ti = 500 °C, hi = 3398.05 kJ/kg.  Again, using the steam tables 
for ho = 3398.05 kJ/kg and po = 6 MPa = 600 bars, To = 490 °C.  Hence, the temperature drops by 10 °C 
across the valve. 

    

d
dt

eρ dV
CV
∫ + h+ 1

2 V 2 + gz( ) ρurel ⋅dA( )
CS
∫ = !Qinto

CV
+ !Wother,

on CV

CV

0d e dV
dt

r =ò

    
h+ 1

2 V 2 + gz( ) ρurel ⋅dA( )
CS
∫ = !m ho − hi( )

   
!Qinto

CV
= 0

   
!Wother,

on CV
= 0

   
!m ho − hi( ) = 0 o ih h=

pi = 8 MPa 
Ti = 500 °C 

po = 6 MPa 
To = ? 
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Air flows through a nozzle with an inlet diameter of 200 mm, velocity of 400 m/s, pressure of 7 kPa (abs), 
and temperature of 420 °C.  The nozzle exit diameter is adjusted such that the exiting velocity is 700 m/s.  
Determine: 
a. the exit temperature, and  
b. the mass flow rate through the nozzle 
 
SOLUTION: 
 
 
 
 
 
 
 
 
Apply the First Law to the CV shown assuming 1D, steady flow, no heat transfer, and no “other” work 
done on the CV besides pressure work, 

 (1) 

where, 

  (steady state) (2) 

   (3) 

(The change in potential energies is assumed negligible and, since the flow is steady and 1D, the 
mass flow rate is the same at the inlet and outlet.) 

  (Assume little heat transfer occurs over the nozzle surface area.) (4) 

  (No work is performed other than pressure work.) (5) 

 
Substitute and simplify, 

  Þ   (6) 
 
For the given conditions, 

hi = 705.75 kJ/kg (from thermodynamics tables for air, assumed to be an ideal gas, at Ti = 420 °C) 
Vi = 400 m/s 
Vo = 700 m/s 
Þ  ho = 540.75 kJ/kg Þ To = 264 °C (from thermo tables assuming air is an ideal gas) 
 

The mass flow rate is, 

 (7) 

 
Using the given parameters: 

pi = 7 kPa 
R = 287 J/(kg×K) 
Ti = 420 °C = 673 K 
Vi = 400 m/s 
di = 0.2 m 
Þ   = 0.44 kg/s 

 

    

d
dt

eρ dV
CV
∫ + h+ 1

2 V 2 + gz( ) ρurel ⋅dA( )
CS
∫ = !Qinto

CV
+ !Wother,

on CV

CV

0d e dV
dt

r =ò

    
h+ 1

2 V 2 + gz( ) ρurel ⋅dA( )
CS
∫ = !m ho +

1
2 Vo

2 − hi −
1
2 Vi

2( )

   
!Qinto

CV
= 0

   
!Wother,

on CV
= 0

   
!m ho +

1
2 Vo

2 − hi −
1
2 Vi

2( ) = 0 ( )2 21
2o i i oh h V V= + -

   
!m = ρiVi Ai =

pi

RTi

Vi
π
4 di

2

  !m

Vi = 400 m/s 
di = 200 mm 
pi = 7 kPa 
Ti = 420 °C 

Vo = 700 m/s 
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Air at 100 kPa and 280 K is compressed steadily to 600 kPa and 400 K.  The mass flow rate of the air is 
0.02 kg/s and a heat loss per unit of flowing mass of 16 kJ/kg occurs during the process.  Assuming the 
changes in kinetic and potential energies are negligible, determine the necessary power input to the 
compressor. 
 
 
SOLUTION: 
 
 
 
 
 
 
Apply the First Law to a control volume (CV) surrounding the compressor, 

 (1) 

where, 

  (steady state) (2) 

   (3) 

(Changes in KE and PE are negligible; the mass flow rate at the inlet and outlet are the same since 
the flow is steady and 1D.) 

  (conduction through the sides of the can) (4) 

   (5) 

 
Substitute and simplify, 

 (6) 

 (7) 

 
For the given conditions, 

ho  =  400.98 kJ/kg (thermodynamic tables for air at po = 100 kPa, To = 280 K) 
hi = 280.13 kJ/kg (thermodynamic tables for air at pi = 600 kPa, Ti = 400 K) 

 = -16 kJ/kg 

 = 0.02 kg/s 
Þ   = 2.74 kW 

 
Thus, 2.74 kW must be supplied to the air.  The power supplied to the compressor would, in fact, be larger 
than this due to inefficiencies in the compressor.   

    

d
dt

eρ dV
CV
∫ + h+ 1

2 V 2 + gz( ) ρurel ⋅dA( )
CS
∫ = !Qinto

CV
+ !Wother,

on CV

CV

0d e dV
dt

r =ò

    
h+ 1

2 V 2 + gz( ) ρurel ⋅dA( )
CS
∫ = !m ho − hi( )

   
!Qinto

CV

!m = −16 kJ kg

   
!Wother,

on CV
= !Wshaft,

on CV

   
!m ho − hi( ) = !Qinto

CV
+ !Wshaft,

on CV

   
!Wshaft,

on CV
= !m ho − hi( )− !Qinto

CV

   
!Qinto

CV

!m

  !m

   
!Wshaft,

on CV

pi = 100 kPa 
Ti = 280 K 
 = 0.02 kg/s   !m

C 
po = 600 kPa 
Ti = 400 K 

 

16 kJ/kg 
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Consider an ordinary shower where hot water at 140 °F is mixed with cold water at 50 °F.  If it is desired 
that a steady stream of warm water at 110 °F be supplied, determine the ratio of the mass flow rates of the 
hot to cold water.  Assume the heat losses from the mixing chamber to be negligible and the mixing to take 
place at a pressure of 20 psia. 
 
 
SOLUTION: 
 
Apply the First Law to the control volume shown below, 
 
 
 
 

 (1) 

where, 

  (steady flow) 

   

(Neglect changes in potential and kinetic energies since they won’t be significant for flow through 
a shower head.) 

  (negligible heat transfer to the surroundings Þ assume adiabatic) 

  (no work besides pressure work is being done on the CV) 

 
Substitute, 

 (2) 
 

Apply conservation of mass to the same control volume to find, 
 (3) 

 
Combine Eqs. (2) and (3) and simplify, 

 

 

 

 (4) 

 
Look up the specific enthalpies for water in a thermodynamics reference (note that since the water is a pure 
liquid, the mixing pressure is irrelevant): 

hC = h50 °F = 18.06 Btu/lbm   
hH = h140 °F = 107.96 Btu/lbm   
hM = h110 °F = 78.02 Btu/lbm    
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The figure below shows a solar collector panel with a surface area of 32 ft2.  The panel receives energy 
from the sun at a rate of 150 Btu/hr per ft2 of collector surface.  Forty percent of the incoming energy is lost 
to the surroundings.  The remainder is used to warm liquid water from 130 to 160 °F.  The water passes 
through the solar collector with a negligible pressure drop.  Neglecting kinetic and potential energy effects, 
determine at steady state the mass flow rate of the water in lbm/min.  How many solar collectors would be 
needed to provide a total of 40 gal of 160 °F water in 30 min? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
Apply the First Law to the control volume shown below. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

where, 

  (steady state) 

  (Neglect changes in kinetic and potential energies.) 

  (where a is the fraction of heat lost from the panel) 
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Substitute and simplify, 
 (1) 

 
Applying conservation of mass to the same control volume gives, 

 (2) 
 

Combine Eqs. (1) and (2) and simplify, 

 (3) 

 
Using the given data: 

a = 0.40 
 = [150 Btu/(hr×ft2)][32 ft2] = 4800 Btu/hr 

hout = 127.96 Btu/lbm (water @ 160 °F, from thermodynamics tables) 
hin = 97.98 Btu/lbm (water @ 130 °F, from thermodynamics tables) 
Þ  = 96.1 lbm/hr = 1.60 lbm/min 
 

To get 40 gal of 160 °F water in 30 min, 
 (4) 

where Vol is the total volume, n is the number of solar collectors, Q is the volumetric flow rate, and Dt is 
the duration.  Using the given data: 

Vol = 40 gal = 5.35 ft3 
Q = (1.60 lbm/min)/(62.4 lbm/ft3) =  2.56*10-2 ft3/min 
Dt = 30 min 
Þ n = 6.95  Þ  Seven solar collectors would be required. 
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Carbon dioxide flows through a constant area duct.  At the inlet to the duct, the velocity is 120 m/s and the 
temperature and pressure are 200 °C and 700 kPa (abs), respectively.  Heat is added to the flow in the duct 
and at the exit of the duct the velocity is 240 m/s and the temperature is 450 °C.  Find the amount of heat 
being added to the carbon dioxide per unit mass of gas and the mass flow rate through the duct per unit 
cross-sectional area of the duct.  Assume that the specific heat ratio for carbon dioxide is 1.3 and the gas 
constant is 189 J/(kg·K). 
 
SOLUTION: 
Apply the First Law to the control volume shown below, 
 
 
 
 
 

 (1) 

where, 

  (steady flow) (2) 

 (3) 

 (4) 

 (5) 

Note that from conservation of mass for the same control volume, 
 (6) 

Substitute into the First Law and simplify, 
 (7) 

 (8) 

Assume that CO2 behaves as a perfect gas so that Dh = cpDT and Eq. (8) becomes, 

 (9) 

Note that a more accurate solution would not use the perfect gas assumption, but would instead evaluate the 
specific enthalpies directly using thermodynamic property tables. 

 
Using the given data: 

g = 1.3 R = 189 J/(kg×K) cp =  = 819 J/(kg×K) 

T2 = 450 ºC = 723 K T1 = 200 ºC = 473 K 
V2 = 240 m/s V1 = 120 m/s 
Þ qinto CV = 226 kJ/kg 
 

The mass flow rate per unit area is simply, 

  Þ    Þ   (10) 

where p1 = 700 kPa (abs). 
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If the water in a well-insulated, 50 gal electric water heater initially has the same temperature as the inlet water 
temperature (55 °F), determine how long it will take for the water at the outlet to reach a comfortable shower 
temperature of 105 °F if the water flows continuously in the shower at a rate of 2 gal/min (a typical flow rate for a 
shower).  What will be the steady state temperature in the water heater for these conditions?  This particular 
water heater can provide 4500 W of power to the heating element.  The inlet supply line has a pressure of 50 psi 
and the pressure in the tank is 70 psi. 
 
 
SOLUTION: 
 
Apply the First Law to a control volume surrounding the water heater tank. 
 
 
 
 
 
 
 
 
 
 
 

 (1) 

where, 

  (only the internal energy changes in the CV) (2) 

  (same velocity in and out, same elevation) (3) 

Note that the water leaving the control volume is assumed to have the same properties as the water in the CV. 
   (the tank is well insulated) (4) 

  (the input electrical power) (5) 

 
Substitute and simplify, 

 (6) 

Model water as an incompressible substance with constant specific heat, 

  and   (7) 

 
Substitute into Eq. (6), 

 (8) 

 (9) 
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 (10) 

 (11) 

where, 

  and   (12) 

and, 
 (13) 

where T0 is the initial water temperature in the tank. 
 
Also note that, 

 (14) 

 
The solution to the ODE given in Eq. (11) subject to the initial condition given in Eq. (13) is, 

 (15) 

 (16) 

 (17) 

 
The time to reach a particular temperature may be found by re-arranging Eq. (17), 

 (18) 

 
The steady state temperature is found by letting t → ¥, 

 (19) 

 
 
Using the given parameters, it is not possible to reach the desired shower temperature.  In fact, the steady state 
temperature is only 70 °F.  In order to reach the desired temperature, one would need to decrease the flow rate.  
A flow rate of approximately 0.6 gpm will give a steady state temperature of 105 °F, but it will take a long time to 
get there and you’ll waste a lot of water! 
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A steady flow of viscous air at 20 °C and 1 atm enters a perfectly insulated, horizontal, circular duct at a velocity of 
3 m/s.  The duct diameter increases in the direction of flow as shown in the figure.  There are no electrical lines or 
rotating shafts within the duct. 
 
 
 
 
 
 
 
 
 
As the air flows through the duct, the temperature 
 
A. increases 
 
B. decreases 
 
C. remains the same 
 
D. there is insufficient information to determine the trend 
 
 
SOLUTION: 
 
Apply the First Law to the control volume shown below. 
 
 
 
 
 
 
 
 

 (1) 

where 

  (steady flow) (2) 

  (no elevation changes) (3) 

   (perfectly insulated duct) (4) 

  (the only work is pressure work) (5) 

Substitute and simplify. 
  Þ  (6) 

Since D(V2) < 0 (from conservation of mass on the same CV), Dh > 0.  Treating air as a perfect gas, Dh = cpDT (note 
that if the air is assumed incompressible, then Dh = cDT).  Hence, the temperature must be increasing. 

    

d
dt

eρ dV
CV
∫ + h+ 1

2V 2 + gz( ) ρurel ⋅dA( )
CS
∫ = !Qinto

CV
+ !Wother

on CV

CV

0d e dV
dt

r =ò

    
h+ 1

2V 2 + gz( ) ρurel ⋅dA( )
CS
∫ = !m Δh+ 1

2 Δ V 2( )⎡
⎣⎢

⎤
⎦⎥

   
!Qinto

CV
= 0

   
!Wother
on CV

= 0

( )21
2 0m h Vé ùD + D =ë û

! ( )21
2h VD = - D

perfectly 
insulated duct 

perfectly 
insulated duct 

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

C. Wassgren 488 2024-02-01



  COE_cv18 

 Page 1 of 3 

Steady-state operating data for a simple steam power plant are provided in the figure.  Stray heat transfer 
and kinetic and potential energy effects can be ignored.  Determine the: 
a. thermal efficiency and 
b. the ratio of the cooling water mass flow rate to the steam mass flow rate. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
Consider the following control volume. 
 
 
 
 
 
 
 
 
 
 
 
 
 
The efficiency of the system is the ratio of the rate at which work is produced by the system divided by the 
rate at which heat is put into the system, 

, (1) 

or, since the rate at which heat enters the system is given in terms of heat rate per mass flow rate of steam, 

. (2) 

Note that the steam mass flow rates along connections 1 – 4 are the same since the system operates at 
steady conditions, 

. (3) 
The rate at which work is done by the system is the power produced by the turbine minus the power 
entering the system into the pump, 

. (4) 
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The power produced by the turbine may be found by applying the 1st Law to a control volume surrounding 
just the turbine, 

, (5) 

where,  

  (steady operation), (6) 

, (7)   

(kinetic and potential energy changes are negligible; mass flow rate is the same at 1 and 2 due to 
conservation of mass), 

  (adiabatic operation assumed). (8) 

Substitute and simplify, 

. (9) 

The specific enthalpies at the inlet may be found using the thermodynamic property tables for water (e.g., 
Table A-4 in Moran et al., 7th ed.), 

h1 = 3674.4 kJ/kg  (superheated vapor, e.g., Table A-4 in Moran et al., 7th ed.) 
h2 = 2609.7 kJ/kg  (saturated vapor, e.g., Table A-3 in Moran et al., 7th ed.) 

Þ   = 1064.7 kJ/kg (10) 

 
Substituting this result into Eqs. (4) and (2) gives, 

 = 1060.7 kJ/kg, (11) 

h = 0.312 (12) 
where  

 = 3400 kJ/kg and  = 4 kJ/kg. 
 

To find the ratio of the cooling water mass flow rate to the steam mass flow rate, apply conservation of 
energy to a control volume surrounding the entire system.  

 , (13) 

where,  

  (steady operation), (14) 

  (cooling water), (15)   

(kinetic and potential energy changes are negligible; mass flow rate is the same at 5 and 6 due to 
conservation of mass), 
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 = 3400 kJ/kg  (given), (16) 

 = 1060.7 kJ/kg  (given). (17) 

Substitute and simplify, 

, (18) 

. (19) 

Using the given and calculated parameters, 

   = 3400 kJ/kg  (given), 

 = 1060.7 kJ/kg (calculated, Eq. (10)) 

h5 = 62.99 kJ/kg (20) 
(subcooled water at T5 = 15 °C, use h5 » hl(T5), e.g., Table A.2 in Moran et al., 7th ed.) 

h6 = 146.68 kJ/kg (21) 
(subcooled water at T6 = 35 °C, use h6 » hl(T6), e.g., Table A.2 in Moran et al., 7th ed.) 

Þ    = 28.0 (22)  
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A residential air-conditioning system operates at steady state.  Refrigerant 22 circulates through the 
components of the system.  If the evaporator removes energy by heat transfer from the room air at a rate of 
600 Btu/min, determine: 
a. the rate of heat transfer between the compressor and the surroundings, in Btu/min, and 
b. the coefficient of performance. 
 
 
 
 
 
 

 
 
 
 
 
 

Location Properties 
A outside air at 90 °F 
B air at a temperature greater than 90 °F 
C return room air at 75 °F 
D supply air to residence at a temperature less than 75 °F 
1 Refrigerant 22, 120 psia, saturated vapor 
2 Refrigerant 22, 225 psia, specific enthalpy of 130 Btu/lbm 
3 Refrigerant 22, 225 psia, 100 °F 
4 Refrigerant 22, 62 °F 

 
 
SOLUTION: 
The rate of heat transfer between the compressor and the surroundings may be found by applied the 1st Law 
to a control volume surrounding the compressor, 

, (1) 

where,  

  (assuming steady conditions), (2) 

, (3) 

(assuming negligible differences in kinetic energy and potential energy across the compressor; the 
mass flow rate remains the same due to conservation of mass and the assumption of steady flow) 

 = given (200 Btu/min) (4) 

Substitute and simplify, 
  (Note the change in the subscript for the heat transfer rate.) (5) 

 
The specific enthalpy at state 2 is given in the problem statement (h2 = 130 Btu/lbm).  The specific enthalpy 
at state 1 is found using a thermodynamic table (e.g., Table A.8E in Moran et al., 8th ed.) for Refrigerant 22 
for saturated vapor at a pressure of 120 psia:  h1 = 109.88 Btu/lbm. 
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The mass flow rate is not yet known, but can be determined by applying the 1st Law to the refrigerant in the 
evaporator where the energy transfer to the refrigerant via heat transfer is known, 

, (6) 

where,  

  (assuming steady conditions),  (7) 

, (8) 

(assuming negligible differences in kinetic energy and potential energy across the evaporator; the 
mass flow rate remains the same due to conservation of mass and the assumption of steady flow) 

 = given (600 Btu/min) (9) 

 = 0  (no work other than pressure work is done on the evaporator) (10) 

Substitute and simplify, 
, (11) 

. (12) 

 
The specific enthalpy of the Refrigerant 22 at state 1 was determined previously to be h1 = 109.88 Btu/lbm.  
The specific enthalpy at state 4 is not yet known, but it can be found by applying the 1st Law to a control 
volume surrounding the expansion valve,  

, (13) 

where, 

  (assuming steady conditions), (14) 

, (15) 

(assuming negligible differences in kinetic energy and potential energy across the valve; the mass 
flow rate remains the same due to conservation of mass and the assumption of steady flow) 

 = 0  (assumed adiabatic) (16) 

 = 0  (no work other than pressure work) (17) 

Substitute and simplify, 
  =>  h4 = h3. (18) 

 
The specific enthalpy at state 3 may be found using the thermodynamic tables given the pressure and 
temperature at that state.  Using Table A-8E, we observe that at p3 = 225 psia, T3,sat = 104.82 °F.  Since T3 = 
100 °F < T3,sat, the refrigerant must be in a compressed liquid phase at state 3.  The specific enthalpy for a 
compressed liquid may be approximated as, 

h3(T3, p3) ≈ hl(T3) + v(T3)[p3 – psat(T3)], (19) 
where, from Table A-7E in Moran et al., 8th ed., 

hl(T3) = 39.41 Btu/lbm, 
vl(T3) = 0.01407 ft3/lbm, 
psat(T3) = 210.69 psia, 
=>  h3(T3, p3) ≈ 39.41 Btu/lbm +  
                         (0.01407 ft3/lbm)[225 psia – 210.69 psia](1 Btu/778.2 lbf.ft)(144 in.2/ft2), (20) 
=>  h3(T3, p3) ≈ 39.45 Btu/lbm 
=>  h4 = h3 = 39.45 Btu/lbm (from Eq. (18)) (21) 
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2 + gz( ) !m

in
∑ − h + 1

2V
2 + gz( ) !m

out
∑ + !Qinto

sys
+ !Wother,

on sys

dEsys
dt

= 0

 
h + 1

2V
2 + gz( ) !m

in
∑ − h + 1

2V
2 + gz( ) !m

out
∑ = h3 − h4( ) !m

 
!Qinto sys

 
!Wother,

on sys

 0 = h3 − h4( ) !m

evaporator 
1 4 

4 

3 
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Substitute values into Eq. (12), 
 = 8.52 lbm/min. (22) 

 
Substitute values into Eq. (5), 

=  28.58 Btu/min. (23) 

 
The coefficient of performance for this system, which is a type of refrigeration cycle since we’re interested 
in removing energy via heat transfer from the room, is given by, 

   =>  COPref = 3. (24) 

where the system here is the refrigerant. 

 !m

 
!Qout of

compressor

 
COPref =

!Qinto sys

!Won sys

= 600 Btu min
200 Btu min
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Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

4.7. The Second Law of Thermodynamics for a Control Volume

As with COM, the LME, the AME, and the First Law, we will convert our system form of the Second Law
to a control volume form using the Reynolds Transport Theorem. To do so, we should first write the Second
Law in terms of time rates of change (refer to Eq. (3.149)),

DS

Dt︸︷︷︸
rate of increase

of entropy in system

=

ˆ
b

δQ̇into sys

T︸ ︷︷ ︸
rate at which entropy
enters the system via
heat transfer through

the boundary

+ σ̇︸︷︷︸
rate at which

entropy is produced
in the system due to

internal irreversibilities

, (4.137)

where the Lagrangian derivative notation has been used to remind us that we’re following a system. Recall
that σ̇ ≥ 0 with the equality holding only for internally reversible processes. Now let’s write the left-hand
side of the equation in terms of an integral so that we can have variations in the system specific entropy,

D

Dt

ˆ
Vsys

sρdV =

ˆ
b

δQ̇into sys

T
+ σ̇. (4.138)

where s is the specific entropy. After applying the Reynolds Transport Theorem to convert to a control
volume perspective,

d

dt

ˆ
CV

sρdV︸ ︷︷ ︸
rate of entropy
increase in CV

+

ˆ
CS

s (ρurel · dA)︸ ︷︷ ︸
net rate at which entropy

leaves the CV through the CS

=

ˆ
CS

δQ̇into CV

T︸ ︷︷ ︸
rate at which entropy

enters the CV via heat transfer

+ σ̇︸︷︷︸
rate at which entropy
is produced in the CV

due to internal irreversibilities

(4.139)

Note that the subscript on the heat transfer integral was changed from “b” for “boundary” to “CS” for
control surface. This is the control volume form of the Second Law of Thermodynamics (aka the Entropy
Equation)!

Notes:

(1) The rate of entropy increase within the control volume (the first term on the left-hand side of
Eq. (4.139)) may also be written as,

dSCV
dt

=
d

dt

ˆ
CV

sρdV. (4.140)

The net flow rate of entropy out of the control volume due to mass flowing out of and into the
control volume may be written as,∑

all outlets

sṁ−
∑

all inlets

sṁ =

ˆ
CS

s (ρurel · dA) . (4.141)

Combined together, the Second Law for a control volume may then be written as,

dSCV
dt

=
∑

all inlets

ṁs−
∑

all outlets

ṁs+

ˆ
CS

δQ̇into CV

T
+ σ̇. (4.142)

(2) Recall that entropy production is related to the degree of irreversibility in a system/control volume.
The larger the change in entropy, the further the system/control volume is from being reversible or
ideal. Hence, Eq. (4.139) can be used to determine situations that result in inefficiencies.

Let’s consider some examples to see how the Second Law is applied to CVs.
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Steam enters a turbine operating at steady state at 1 MPa (abs) and 200 °C and exits at 40 °C with a quality 
of 83%.   Stray heat transfer and changes in kinetic and potential energy are negligible.  Determine: 
a. the power developed by the turbine per unit mass of steam, and 
b. the change in the specific entropy from the inlet to the exit per unit mass of steam. 
 
 
SOLUTION: 
To determine the power developed by the turbine, apply the 1st Law to a control volume surrounding the 
turbine. 
 
 
 
 
 
 
 

, (1) 

where, 
dECV/dt = 0  (steady flow) 
D(1/2V2) and D(gz) are assumed to be negligibly small compared to the specific enthalpy 

  = 0 (adiabatic flow) 
   (from conservation of mass) 

Þ  . (2) 

The specific enthalpies are, 
h1 = 2827.9 kJ/kg (@ 200 °C and 1 MPa = 10 bar Þ superheated vapor; from Table A-4 in Moran 

et al., 7th ed.) 
h2 = x2hv + (1 – x2)hl   (3) 

x2 = 0.83, hv = 2574.3 kJ/kg, hl = 167.57 kJ/kg   
(@ 40 °C, two-phase, liquid-vapor state; from Table A-2 in Moran et al., 7th ed.) 

Þ h2 = 2165.1 kJ/kg. 

Þ   = -662.8 kJ/kg (work is being done by the system). 

 
The rate of entropy production per unit mass of steam may be found using, 

, (4) 

where, 

  (steady flow assumed), (5) 

  (mass flow rate constant from Cons. of Mass), (6) 

  (adiabatic process), (7) 

=>  . (8) 

 
 

  

 

dECV
dt

+ h + 1
2V

2 + gz( ) ⇥m
out
∑ − h + 1

2V
2 + gz( ) ⇥m

in
∑ = ⇥Qinto + ⇥Won,other

 
⇥Qinto

 ⇥mout = ⇥min = ⇥m

 

⇥Won,other

⇥m
= h2 − h1

 

⇥Won,other

⇥m

 

dSCV
dt

= s !m
in
∑ − s !m

out
∑ +

!Qinto

Tb
∫ + !σ ⇒ !σ = dSCV

dt
+ s !m

out
∑ − s !m

in
∑ −

!Qinto

Tb
∫

dSCV
dt

= 0

 
s !m

out
∑ − s !m

in
∑ = !m s2 − s1( )

 

!Qinto

Tb
∫ = 0

 
!σ = !m s2 − s1( )⇒ !σ

!m
= s2 − s1

1 

2 
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The change in specific entropy is, 
s1 = 6.6940 kJ/(kg.K) (@ 200 °C and 1 MPa = 10 bar Þ superheated vapor; from Table A-4 in Moran 

et al., 7th ed.) 
s2 = x2sv + (1 – x2)sl   (9) 

x2 = 0.83, sv = 8.2570 kJ/kg, sl = 0.5725 kJ/kg   
(@ 40 °C, two-phase, liquid-vapor state; from Table A-2 in Moran et al., 7th ed.) 

Þ s2 = 6.9506 kJ/(kg.K). 
Þ s2 – s1 = 0.2566 kJ/(kg.K). 
Þ  = 0.2566 kJ/(kg.K). 

Note that the process is not internally reversible since . 
 
A plot of the process on a T-s diagram is shown in the following figure. 
 
 
 
 
 
 
 
 

 !σ !m

 !σ > 0

s 

T 

1 

2 

200 °C 

10 bar 

0.07 bar 

40 °C 
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Page 1 of 1 

Consider a steel rod steadily conducting heat from thermal reservoir 1 into thermal reservoir 2.  Using the entropy 
rate balance equation, show that T1 > T2.  Note that T1 and T2 are absolute temperatures.  
 
 
 
 
 
 
 
SOLUTION: 
 
 
 
 
 
 
 
Apply the entropy rate balance equation to a control volume surrounding the steel rod, 

, (1) 

where, 

   (steady), (2) 

  (no flow in or out of the CV), (3) 

,   (4) 

where, from the 1st Law applied to the same CV, the rate of heat transfer through the rod remains 
constant.  In addition, the temperature at the left boundary, where the heat enters the CV, i.e., 

, is T1 and the temperature at the right boundary, where heat leaves the CV, i.e., 

, is T2. 
Substitute and simplify, 

, (5) 

. (6) 

Since , T1 ≥ T2.  The equality, T1 = T2, results in an internally reversible process whereas a finite temperature 
difference, T1 > T2, results in an internally irreversible process. 
 
This result also demonstrates the equivalence between entropy generation via heat transfer and the Clausius 
statement of the 2nd Law.  

 

dSCV
dt

= s !m
in
∑ − s !m

out
∑ + δ !Qinto CV

Tb
∫ + !σ

dSCV
dt

= 0

 
s !m

in
∑ − s !m

out
∑ = 0

 

δ !Qinto CV

Tb
∫ =

!Q
T1

−
!Q
T2

 
!Qinto CV,1 = !Q

 
!Qinto CV,2 = − !Q

 
0 =
!Q
T1

−
!Q
T2

+ !σ

 
!σ = !Q T1 −T2

T1T2

⎛
⎝⎜

⎞
⎠⎟

 !σ ≥ 0

thermal 
reservoir 1, T1 

thermal 
reservoir 2, T2 

thermal 
reservoir 1, T1 

thermal 
reservoir 2, T2 

 
QQ 
 
!Q
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Electronic components are mounted on the inner surface of a horizontal cylindrical duct with an inner 
diameter of 0.2 m.  To prevent overheating of the electronics, the cylinder is cooled by a stream of air 
flowing through the cylinder and by convection from its outer surface.  Air enters the duct at 25 °C, 1 bar 
(abs), and a speed of 0.3 m/s, and exits at 40 °C with negligible changes in kinetic energy and pressure.  
Convective cooling occurs on the cylinder’s outer surface to the surroundings, which are at 25 °C, in accord 
with hA = 3.4 W/K, where h is the heat transfer coefficient and A is the cylinder’s surface area.  The 
electronic components require 0.20 kW of electric power.  For steady state conditions, determine: 
a. the mass flow rate of air through the cylinder, in kg/s,  
b. the temperature on the outer surface of the duct, and 
c. the rate of entropy production in the air passing through the duct. 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
The mass flow rate through the cylinder is, 

,  (1) 

where the ideal gas law has been used.  Using the given data, 
p1 = 1 bar (abs) = 1*105 Pa 
Rair = 287 J/(kg.K) 
T1 = 25 °C = 298 K 
V1 = 0.3 m/s 
D1 = 0.2 m 
=>   = 0.011 kg/s. 
 

Now apply the 1st Law the control volume shown in the figure, 

, (2) 

where, 

  (steady conditions), (3) 

, (4) 

(assuming changes in kinetic energy and potential energy are negligible; the mass flow at the inlet 
and outlet are the same from conservation of mass; the air behaves as a perfect gas), 

  (Newton’s Law of Convection), (5) 

  (given power for electronics). (6) 
 

  

 
!m = ρ1V1A1 =

p1
RT1

⎛
⎝⎜

⎞
⎠⎟
V1

πD1
2

4
⎛
⎝⎜

⎞
⎠⎟

 !m

 

dECV

dt
= h + 1

2V
2 + gz( ) !m

in
∑ − h + 1

2V
2 + gz( ) !m

out
∑ + !Qinto,CV + !Wother,on CV

dECV

dt
= 0

 
h + 1

2V
2 + gz( ) !m

in
∑ − h + 1

2V
2 + gz( ) !m

out
∑ = !m h1 − h2( ) = !mcp T1 −T2( )

 
!Qinto,CV = −hA Tsurface −Tsurr( )

 
!Wother,on CV = 0.20 kW

air 

convection cooling 

power cord for electronics 
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Substitute and simplify, 
, (7) 

, 

where, 
Tsurr = 25 °C = 298 K (given), 

  = 0.011 kg/s (found previously), 
cp = 1.005 kJ/(kg.K)  (Table A-20 in Moran et al., 8th ed.) 
T1 = 25 °C = 298 K (given), 
T2 = 40 °C = 313 K (given), 

 (given), 
hA = 3.4 W/K  (given), 
=>  Tsurface = 308 K = 35.1 °C. 
 
 

The rate at which entropy is produced in the air passing through the duct is found by applying the entropy 
equation to the same control volume, 

, (8) 

where 

   (steady), (9) 

, (10) 

(where a perfect gas assumption has been used to determine the change in specific entropy), 

, (11) 

(Note that the absolute temperature in the denominator is the temperature where the heat transfer 
occurs on the control surface boundary.) 
 

Substitute and simplify, 

, (12) 

. (13) 

 
Using the given data, 

Tsurr = 25 °C = 298 K (given), 
  = 0.011 kg/s (found previously), 

cp = 1.005 kJ/(kg.K)  (Table A-20 in Moran et al., 8th ed.)  
T1 = 25 °C = 298 K (given), 
T2 = 40 °C = 313 K (given), 
p2 = p1  (given),  
Tsurface = 308 K  (found previously), 

 (given), 
hA = 3.4 W/K  (given),  
=>  = 0.653 W/K. 
 

 0 = !mcp T1 −T2( )− hA Tsurface −Tsurr( ) + !Wother,on CV

 
Tsurface = Tsurr +

!mcp T1 −T2( ) + !Wother,on CV

hA

 !m

 
!Wother,on CV = 0.20 kW

 

dSCV
dt

= s !m
in
∑ − s !m

out
∑ +

!Qinto

Tb
∫ + !σ

dSCV
dt

= 0

 
s !m

in
∑ − s !m

out
∑ = !m s1 − s2( ) = !m cp ln

T1
T2

⎛
⎝⎜

⎞
⎠⎟
− R ln p1

p2

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

 

!Qinto

Tb
∫ =

−hA Tsurface −Tsurr( )
Tsurface

 
0 = !m cp ln

T1
T2

⎛
⎝⎜

⎞
⎠⎟
− R ln p1

p2

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ +

−hA Tsurface −Tsurr( )
Tsurface

+ !σ

 
!σ = !m cp ln

T2
T1

⎛
⎝⎜

⎞
⎠⎟
− R ln p2

p1

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ +

hA Tsurface −Tsurr( )
Tsurface

 !m

 
!Wother,on CV = 0.20 kW

 !σ

T 
p2 = p1 

T2 

T1 

s1 s2 s 
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Air enters a diffuser operating at steady state at 4 bar (abs) and 290 K with a speed of 512 m/s.  The exit 
speed is 110 m/s.  For adiabatic operation with no internal irreversibilities, determine: 
a. the exit temperature, in K, and  
b. the exit pressure, in bar (abs).  
 
 
SOLUTION: 
Apply the 1st Law to the control volume shown in the figure, 

, (1) 

where,  

 (steady), (2) 

, (3) 

(Changes in potential energy are assumed negligible since we’re dealing with a gas.) 
  (adiabatic process), (4) 

  (no “other” work), (5) 

=>  . (6) 
 

Treating air as an ideal gas, 
h1(T1 = 290 K) = 290.16 kJ/kg  (from Table A-22 in Moran et al., 8th ed.), 
V1 = 512 m/s, 
V2 = 110 m/s, 
=>  h2 = 415.18 kJ/kg  =>  T2 = 414 K   (interpolating in Table A-22). (7) 
 

The exit pressure may be found using the change in entropy relation for an ideal gas, 

 , (8)  

where, 
s2 – s1 = 0 since the process is adiabatic and internally reversible => isentropic (given), 
s02(T2 = 414 K) =  2.02676 kJ/(kg.K)  (interpolating in Table A-22), 
s01(T1 = 290 K) =  1.66802 kJ/(kg.K)  (Table A-22), 
Rair = 0.287 kJ/(kg.K), 
p1 = 4 bar (abs), 
=>  p2 = 14.0 bar (abs). 
  

 
If we assumed the air behaves as a perfect gas with cp = 1.005 kJ/(kg.K)  (Table A-20 in Moran et al., 8th 
ed.), then Eq. (6) may be written as, 

  =>  T2 = 414 K  (Same answer as before!) (9) 
 

In addition, for a perfect gas undergoing an isentropic process, 

   =>   p2 = 13.9 bar (abs)  (within 1% of the answer found previously) (10)  

  

 

dECV

dt
= h + 1

2V
2 + gz( ) !m

in
∑ − h + 1

2V
2 + gz( ) !m

out
∑ + !Qinto CV + !Wother,on CV

dECV

dt
= 0

 
h + 1

2V
2 + gz( ) !m

in
∑ − h + 1

2V
2 + gz( ) !m

out
∑ = !m h1 + 1

2V1
2( )− h2 + 1

2V2
2( )⎡⎣ ⎤⎦

 
!Qinto CV

 
!Wother,on CV = 0

h2 = h1 + 1
2 V1

2 −V2
2( )

s2 − s1 = s2
0 T2( )− s10 T1( )− R ln p2

p1

⎛
⎝⎜

⎞
⎠⎟

T2 = T1 + 1
2cp V1

2 −V2
2( )

p2
p1

= T2
T1

⎛
⎝⎜

⎞
⎠⎟

k
k−1

2 1 

p2 > p1 T 

p1 T2 

T1 

s2 = s1 
s 
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Note that if the flow had internal irreversibilities, then the entropy equation applied to the control volume 
gives, 

, (11) 

where, 

  (steady flow), (12) 

  (adiabatic flow), (13) 

=>    where  if the flow is internally irreversible (= 0 if internally reversible) (14) 

Substituting into Eq. (8) and solving for p2 gives, 

, (15) 

. (16) 

Thus, with internal irreversibilities, the exit pressure is smaller than if the flow was internally reversible. 
 

 

dSCV
dt

= s !m( )
in
∑ − s !m( )

out
∑ +

!Qinto

Tb
∫ + !σ

dSCV
dt

= 0

 

!Qinto

Tb
∫ = 0

 
s2 − s1 =

!σ
!m  !σ !m > 0

 

!σ
!m
= s2

0 T2( )− s10 T1( )− R ln p2
p1

⎛
⎝⎜

⎞
⎠⎟

 
p2 = p1 exp

s2
0 T2( )− s10 T1( )− !σ !m

R
⎡

⎣
⎢

⎤

⎦
⎥

p2 > p1 T 

p1 T2 

T1 

s1 
s 

p2 > p2,irreversible > p1 

s2,irreversible 
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Nitrogen (N2) enters a well-insulated diffuser operating at steady state at 0.656 bar (abs), 300 K with a 
velocity of 282 m/s.  The inlet area is 4.8*10-3 m2.  At the diffuser exit, the pressure is 0.9 bar (abs) and the 
velocity is 130 m/s.  The nitrogen behaves as an ideal gas with a specific heat ratio of 1.4.  Determine: 
a.  the exit temperature, in K,  
b. the exit area, in m2, and  
c. the rate of entropy production, in kJ/K per kg of flowing nitrogen. 
 
 
SOLUTION: 
 
 
 
 
 
 
Apply the 1st Law to a control volume surrounding the interior of the diffuser,  

, (1) 

where, 

  (assuming steady flow), (2) 

, (3) 

(changes in PE are assumed negligible compared to changes in the other terms, especially since 
we’re dealing with a gas; from conservation of mass, )   

 (the diffuser is well-insulated) (4) 

  (no other work acting on the control volume) (5) 
 

Substituting and simplifying, 
. (6) 

 
Assuming ideal gas behavior, 

(T1 = 300 K) = 8723 kJ/kmol   (Table A-23 in Moran et al., 8th ed.) 
=>    =>  h1 = 311.42 kJ/kg, (7) 

where the molecular weight of nitrogen gas (N2) is 28.01 kg/kmol has been used. 
 
Given V1 = 282 m/s, V2 = 130 m/s, and making use of Eqs. (7) and (6), 

h2 = 342.73 kJ/kg  =>   = 9600. kJ/kmol  =>  T2 = 330 K. (8) 
Interpolation in Table A-23 was used to determine this outlet temperature. 
 
Alternately, if a perfect gas model is assumed, we can write Eq. (6) as, 

, (9) 

where, 

, (10) 

=>  cp = 1.0389 kJ/(kg.K)  with k = 1.4,   = 8.314 kJ/(kmol.K),  and M = 28.01 kg/kmol  
 

=>  T2 = 330 K, which is the same result found previously 
 

 

dECV

dt
= h + 1

2V
2 + gz( ) !m

in
∑ − h + 1

2V
2 + gz( ) !m

out
∑ + !Qinto,CV + !Wother,on CV

dECV

dt
= 0

 
h + 1

2V
2 + gz( ) !m

in
∑ − h + 1

2V
2 + gz( ) !m

out
∑ = !m h2 − h1( ) + 1

2 V2
2 −V1

2( )⎡⎣ ⎤⎦

 !m = !m2 = !m1

 
!Qinto,CV = 0

 
!Wother, on CV = 0

h2 = h1 + 1
2 V1

2 −V2
2( )

h1
h1 = h1 M

h2

cpT2 = cpT1 + 1
2 V1

2 −V2
2( )⇒ T2 = T1 +

V1
2 −V2

2

2cp

cp =
kR
k −1

=
k Ru M( )
k −1

Ru

2 1 
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The exit area may be found by applying conservation of mass to the same control volume, 

, (11) 

Note that the process is assumed to be steady.  The density ratio may be found by making use of the ideal 
gas law, 

. (12) 

Substituting and simplifying, 

 . (13) 

Using the given data 
A1 = 4.8*10-3 m2, 
p1 = 0.656 bar (abs), 
p2 = 0.9 bar (abs), 
T2 = 330 K  (calculated for part (a)), 
T1 = 300 K, 
V1 = 282 m/s, 
V2 = 130 m/s, 
=>  A2 = 8.35*10-3 m2. 
 

The rate of entropy production may be found by applying the entropy equation to the same control volume, 

, (14) 

where, 

  (assuming steady flow), (15) 

, (16) 

  (assuming adiabatic operation), (17) 

=>    =>   (18) 

 
The change in entropy for an ideal gas is, 

, (19) 

where, 
 kJ/(kmol.K),  (Table A-23 in Moran et al., 8th ed.)

 kJ/(kmol.K),  (Table A-23 in Moran et al., 8th ed.) 

 8.314 kJ/(kmol.K), 
p2/p1 = (0.9 bar (abs))/(0.656 bar (abs)) = 1.372, 
M = 28.01 kg/kmol, 
=>  s2 – s1 = 5.28*10-3 kJ/(kg.K). 
 

Thus, making use of Eq. (18), 

 5.28*10-3 kJ/(kg.K) 

 

dMCV

dt
= !m1 − !m2 ⇒ !m2 = !m1 ⇒ ρ2V2A2 = ρ1V1A1 ⇒ A2 = A1

ρ1
ρ2

⎛
⎝⎜

⎞
⎠⎟
V1
V2

⎛
⎝⎜

⎞
⎠⎟

ρ1
ρ2

= p1 RT1
p2 RT2

= p1
p2

⎛
⎝⎜

⎞
⎠⎟
T2
T1

⎛
⎝⎜

⎞
⎠⎟

A2 = A1
p1
p2

⎛
⎝⎜

⎞
⎠⎟
T2
T1

⎛
⎝⎜

⎞
⎠⎟
V1
V2

⎛
⎝⎜

⎞
⎠⎟

 

dSCV

dt
= s !m

in
∑ − s !m

out
∑ +

!Qinto CV

Tb
∫ + !σ CV

dSCV
dt

= 0

 
s !m

in
∑ − s !m

out
∑ = !m s1 − s2( )

 

!Qinto CV

Tb
∫ = 0

 
!σ CV = !m s2 − s1( )

 

!σ CV

!m
= s2 − s1

s2 − s1 =
s2
0 T2( )− s10 T1( )− Ru ln p2

p1
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

M

s2
0 T2 = 330 K( ) = 194.459

s1
0 T1 = 300 K( ) = 191.682

Ru =

 

!σ CV

!m
=
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If we assume the nitrogen behaves as an ideal gas, then we could find the change in entropy using, 

, (20) 

=> s2 – s1 = 5.15*10-3 kJ/(kg.K), which is within 2.5% of the previous result. 
 

 

s2 − s1 = cp ln
T2
T1

⎛
⎝⎜

⎞
⎠⎟
− R ln p2

p1

⎛
⎝⎜

⎞
⎠⎟
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An inventor claims to have developed a device requiring no work input or heat transfer, yet able to produce 
steady state hot and cold air streams as shown in the figure.  Evaluate this claim assuming the ideal gas 
model for air and ignoring kinetic and potential energy effects. 
 
 
 
 
 
 
 
 
SOLUTION: 
 
Apply conservation of mass, the First Law, and the Second Law to the control volume shown below. 
 
 
 
 
 
 
 
 
 
Conservation of Mass, 

 (1) 

where, 

  (steady flow) 

 

Substitute and re-arrange, 
 

 (2) 

 

rel
CV CS

0d dV d
dt

r r+ × =ò ò u A

CV

0d dV
dt

r =ò

    
ρurel ⋅dA

CS
∫ = !m3 + !m2 − !m1

   !m3 + !m2 − !m1 = 0

   

!m3

!m1

= 1−
!m2

!m1

air at 20 °C, 3 bars 

air at 60 °C, 2.7 bars 

air at 0 °C, 2.7 bars 
no heat or work addition 

air at 20 °C, 3 bars 

air at 60 °C, 2.7 bars 

air at 0 °C, 2.7 bars 
no heat or work addition 

1 2 

3 

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

C. Wassgren 506 2024-02-01



  entropy_02 

Page 2 of 3 

First Law of Thermodynamics, 

 (3) 

where, 

  (steady flow 

 

  (no heat or work addition) 

Substitute and re-arrange, 
 

 (4) 

Substitute Eq. (2) into Eq. (4) and simplify, 

 

 (5) 

 
From thermodynamics tables for air at the given inlet and outlet temperatures, 

h1 = 293.2 kJ/kg  (T1 = 20 °C = 293 K) 
h2 = 333.3 kJ/kg  (T2 = 60 °C = 333 K) 
h3 = 273.1 kJ/kg  (T3 = 0 °C = 273 K) 
 

Hence,  

   and    (6) 

Note that the outgoing mass flow rates are both positive, consistent with the problem description. 
 

    

d
dt

eρ dV
CV
∫ + h+ 1

2 V 2 + gz( ) ρurel ⋅dA( )
CS
∫ = !Qinto

CV
+ !Won

CV

CV

0d e dV
dt

r =ò

    
h+ 1

2 V 2 + gz( ) ρurel ⋅dA( )
CS
∫ = !m3h3 + !m2h2 − !m1h1

   
!Qinto

CV
= !Won

CV
= 0

   !m3h3 + !m2h2 − !m1h1 = 0

   

!m3

!m1

h3 = h1 −
!m2

!m1

h2

   
1−
!m2

!m1

⎛

⎝⎜
⎞

⎠⎟
h3 = h1 −

!m2

!m1

h2

   

!m2

!m1

=
h1 − h3

h2 − h3

   

!m2

!m1

= 0.334
   

!m3

!m1

= 0.666

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

C. Wassgren 507 2024-02-01



  entropy_02 

Page 3 of 3 

 Entropy Equation, 
!
!" ∫ 𝑠𝜌𝑑𝑉#$ + ∫ 𝑠(𝜌𝒖%&' ⋅ 𝑑𝑨) = 	∫

()̇!"#$
+#,#, + �̇�,  (7) 

where, 

   (steady state) 

 

  ∫ ()̇!"#$
+#, = 0 (no heat added to the control volume) 

Substitute and re-arrange, 
�̇�-𝑠- + �̇�.𝑠. − �̇�/𝑠/ = �̇�, 
0̇%
0̇&
𝑠- +

0̇'
0̇&
𝑠. − 𝑠/ =

1̇
0̇&

, 

31 − 0̇'
0̇&
5 𝑠- +

0̇'
0̇&
𝑠. − 𝑠/ =

1̇
0̇&

, 

(𝑠- − 𝑠/) +
0̇'
0̇&
(𝑠. − 𝑠-) =

1̇
0̇&

. (8) 
 

Note that for an ideal gas, the specific entropy at a given temperature and pressure can be determined by, 

 (9) 

Substituting Eq. (9) into Eq. (8) gives, 
3𝑠-2 − 𝑠/2 − 𝑅 ln

3%
3&
5 + 0̇'

0̇&
3𝑠.2 − 𝑠-2 − 𝑅 ln

3'
3%
5 = 1̇

0̇&
.  (10) 

 
From thermodynamics tables for air at the given conditions, 

s01 = 1.6783 kJ/(kg×K)  (T1 = 20 °C = 293 K) 
s02 = 1.8069 kJ/(kg×K)  (T2 = 60 °C = 333 K) 
s03 = 1.6073 kJ/(kg×K)  (T3 = 0 °C = 273 K) 

and from the given conditions, 
p1  = 3.0 bar 
p2  = 2.7 bar 
p3  = 2.7 bar 
 

Thus, Eq. (10) simplifies to, 
1̇
0̇&
= 0.0259 kJ/(kg.K). (11) 

Thus, the Second Law of Thermodynamics is satisfied. 
 
 
Since conservation of mass, the First Law, and the Second Law are all satisfied, the claim of the inventor is 
not unreasonable. 

 
 
 
 
 

CV

0d s dV
dt

r =ò

    
s ρurel ⋅dA( )

CS
∫ = !m3s3 + !m2s2 − !m1s1

( ) ( ) ( ) ( )0 0, , ln B
B B A A B A

A

ps T p s T p s T s T R
p

- = - -
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Two alternate systems are under consideration for bringing a stream of air from 17 °C to 52 °C at an 
essentially constant pressure of 1 bar. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Both systems operate at steady state.  All kinetic and potential energy effects can be ignored and no 
significant heat transfer with the surroundings occurs.  For each of the two systems, calculate the rate of 
entropy production in kJ/K per kg of air passing through the system. 
 
 
SOLUTION: 
 
First analyze METHOD 1.  
  
Apply the 2nd Law to the control volume shown below. 
 
 
 
 
 
 

!
!" ∫ 𝑠𝜌𝑑𝑉#$ + ∫ 𝑠(𝜌𝒖%&' ⋅ 𝑑𝑨)#( = ∫ )*̇!"#$	&'

,#( + �̇�, (1) 
where, 

   (steady state) 

∫ 𝑠(𝜌𝒖%&' ⋅ 𝑑𝑨)#( = �̇�-.%(𝑠/0" − 𝑠.1)  

∫ )*̇!"#$	&'
,#( = 0  (since adiabatic) 

Substitute and simplify, 
𝑠/0" − 𝑠.1 =

2̇
3̇(!)

 (2) 
where σ is the entropy produced per unit mass flow rate. 
 
From thermodynamics tables for air at the given temperatures (note that the air, treated as an ideal gas, is at 
the same pressure at the inlet and outlet so that:   s(TB, pB) - s(TA, pA) = s0(TB) – s0(TA)): 

sout,air = 1.7825 kJ/(kg×K)  (Tout = 52 °C = 325 K) 
sin,air = 1.6680 kJ/(kg×K)  (Tout = 17 °C = 290 K) 

The entropy generation is, 
2̇

3̇(!)
= 0.1145 kJ/(kg.K)  for Method 1 (3) 

Since the entropy production is positive, the process satisfies the Second Law. 
  

CV

0d s dV
dt

r =ò

Air temperature increases as a 
consequence of the stirring of a 
liquid surrounding the line carrying 
the air. 
 

METHOD 1 

Air temperature increases by passing it through one 
side of a counterflow heat exchanger.  On the other 
side, steam condenses at a pressure of 1 bar from 
saturated vapor to saturated liquid. 
 

METHOD 2 

17 °C 
1 bar 

52 °C 
1 bar 
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Now consider METHOD 2. 
 
Apply the 2nd Law to the control volume shown below. 
 
 
 
 
 
 
 
 
 

!
!" ∫ 𝑠𝜌𝑑𝑉#$ + ∫ 𝑠(𝜌𝒖%&' ⋅ 𝑑𝑨)#( = ∫ )*̇!"#$	&'

,#( + �̇� (4) 
where, 

  (steady state) 

 

∫ )*̇!"#$	&'
,#( = 0  (no heat transfer into or out of the control volume) 

Substitute and simplify, 
�̇�456(𝑠/0" − 𝑠.1)456 + �̇�-.%(𝑠/0" − 𝑠.1)-.% = �̇�, 
3̇*+,
3̇(!)

(𝑠/0" − 𝑠.1)456 + �̇�-.%(𝑠/0" − 𝑠.1)-.% =
2̇

3̇(!)
, (5) 

The specific entropies of the outgoing and incoming air were calculated previously.  The specific entropies 
of the saturated liquid and vapor water (both at 1 bar) are found from thermodynamics tables: 

sout,H20 = 1.3026 kJ/(kg×K)  (saturated liquid water at 1 bar) 
sin,H20 = 7.3594 kJ/(kg×K)  (saturated water vapor at 1 bar) 

 
Now apply the First Law to the same control volume to determine the mass flow rate ratio, 

 (6) 

where, 

   (steady state) 

 

  (adiabatic and no work) 

Substitute and simplify, 
 

 (7) 

  

CV

0d s dV
dt

r =ò

    
s ρurel ⋅dA( )

CS
∫ = !m sout − sin( )⎡⎣ ⎤⎦H2O

+ !m sout − sin( )⎡⎣ ⎤⎦air

    

d
dt

eρ dV
CV
∫ + h+ 1

2 ρV 2 + gz( ) ρurel ⋅dA( )
CS
∫ = !Qinto

CV
+ !Won

CV

CV

0d e dV
dt

r =ò

    
h+ 1

2 ρV 2 + gz( ) ρurel ⋅dA( )
CS
∫ = !m hout − hin( )⎡⎣ ⎤⎦H2O

+ !m hout − hin( )⎡⎣ ⎤⎦air

   
!Qinto

CV
= !Won

CV
= 0

   
!mH2O hout − hin( )H2O

+ !mair hout − hin( )air
= 0

   

!mH2O

!mair

=
hout − hin( )air

hin − hout( )H2O

17 °C 
1 bar 

52 °C 
1 bar 

saturated water 
vapor at 1 bar 

saturated water 
liquid at 1 bar 
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Using the given data, 
hout,air = 325.31 kJ/kg (Tout = 52 °C = 325 K) 
hin,air = 290.16 kJ/kg (Tout = 17 °C = 290 K) 
hout,H20 = 417.46 kJ/(kg×K)  (saturated liquid water at 1 bar) 
hin,H20 = 2675.5 kJ/(kg×K)  (saturated water vapor at 1 bar) 

Þ   (8) 

 
Substituting the previous result into Eq. (5) gives, 

2̇
3̇(!)

= 0.020 kJ/(kg.K)  (9) 
Since the entropy production is positive, the data are consistent with the Second Law.   Furthermore, the 
total entropy production per unit mass flow rate of air is 0.020 kJ/(kg×K). 
 
The given results indicate that METHOD 2 is a better approach, thermodynamically speaking, i.e., there is 
less irreversibility per unit mass flow rate of air, than METHOD 1. 

 
 

 
 

   

!mH2O

!mair

= 0.0156
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Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

4.7.1. Component Efficiencies

The Entropy Equation can be used to determine the entropy change expected during a given process. In
particular, it can be used to calculate the entropy change expected for a system undergoing a process that is
internally reversible, i.e., a process that is ideal and, thus, having the largest efficiency. For example, we can
apply the Entropy Equation and the First Law together to calculate the efficiencies for various thermo-fuid
components, such as compressors, turbines, and nozzles.

4.7.1.1. Compressor Efficiency

The efficiency of a compressor is defined as,

ηcomp :=
(Ẇon comp)rev

(Ẇon comp)actual

, (4.143)

where the subscripts ”rev” and ”actual” indicate internally reversible and the actual processes, respectively.
Note that the actual power required to operate a compressor will always be larger than or equal to the power
required to operate the compressor if the process is internally reversible and, thus, the efficiency will be
ηcomp ≤ 1.

4.7.1.2. Turbine Efficiency

The efficiency of a turbine is defined as,

ηturb :=
(Ẇby turb)actual

(Ẇby turb)rev

. (4.144)

Note that the actual power generated by a turbine will always be less than or equal to the power generated
by an internally reversible turbine and, thus, ηturb ≤ 1.

4.7.1.3. Nozzle Efficiency

Since the purpose of a nozzle is to speed up a flow, it is reasonable to define the nozzle efficiency as the ratio
of the specific kinetic energy actually produced by the nozzle to the specific kinetic energy that would be
produced under internally reversible conditions,

ηnozzle :=
( 1

2V
2
exit)actual

( 1
2V

2
exit)rev

. (4.145)

Nozzle efficiencies of 95% or more are common in practice.
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Nitrogen (N2) enters an insulated compressor operating at steady state at 1 bar (abs) and 37 °C with a mass 
flow rate of 1000 kg/h and exits at10 bar (abs).  Kinetic and potential energy changes through the 
compressor are negligible.  The nitrogen can be modeled as an ideal gas with a specific heat ratio of 1.391 
and a specific heat at constant pressure of 1.056 kJ/(kg.K).   
a. Determine the minimum theoretical power input required to operate the compressor and the 

corresponding exit temperature. 
b. If the exit temperature is 397 °C, determine the power input and the compressor efficiency. 
 
 
SOLUTION: 
 
To find the power required to operate the compressor, apply the First Law to a control volume surrounding 
the compressor as shown in the following figure. 
 
 
 
 
 
 
 
 

, (1) 

where, 

   (steady flow assumed), (2) 

, (3) 

(changes in KE and PE neglected; from COM, the mass flow rates are the same) 
  (adiabatic operation since insulated). (4) 

Solving for the power added into the compressor, 
. (5) 

If we further assume that the nitrogen behaves as a perfect gas, i.e., it has constant specific heats, which is a 
reasonable assumption if the temperature change is only a few hundred degrees, then, 

. (6) 

 
To calculate the minimum power required to operate the compressor, assume reversible operation.  Since 
the flow is then adiabatic and reversible, it will also be isentropic.  For isentropic operation of a perfect gas, 

, (7) 

where the subscript “s” has been added to the temperature at state 2 to indicate isentropic conditions.  Using 
the given parameters, 

T1 = 37 °C = 310 K, 
p2 = 10 bar (abs), 
p1 = 1 bar (abs), 
k = 1.391, 
Þ T2s = 592 K (= 319 °C) 
 

  

 

dECV

dt
= h + 1

2V
2 + gz( ) !m

in
∑ − h + 1

2V
2 + gz( ) !m

out
∑ + !Qinto

CV
+ !Wother,on

CV

dECV

dt
= 0

 
h + 1

2V
2 + gz( ) !m

in
∑ − h + 1

2V
2 + gz( ) !m

out
∑ = !m1h1 − !m2h2 = !m h1 − h2( )

 
⇥Qinto
CV

= 0

 
!Wother,on
CV

= !m h2 − h1( )

 
!Wother,on
CV

= !mcp T2 −T1( )

p2
p1

= T2s
T1

⎛
⎝⎜

⎞
⎠⎟

k
k−1

⇒T2s = T1
p2
p1

⎛
⎝⎜

⎞
⎠⎟

k−1
k

1 

2 

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

C. Wassgren 513 2024-02-01



  SecondLaw_10 

 Page 2 of 2 

Substituting into Eq. (6) gives, 

  = 82.8 kW, 

with cp = 1.056 kJ/(kg.K). 
 

Using the actual measured temperature of T2 = 397 °C = 670 K, 
 = 106 kW. 

 
The efficiency of the compressor is given by, 

 = 0.78. 

 
 

If we assume ideal, rather than perfect, gas behavior, then outlet temperature corresponding to an isentropic 
process is found using, 

, (8) 

with, 
 (T1 = 310 K) =  192.638 kJ/(kmol.K)  (Table A-23 in Moran et al., 8th ed.), 

p2/p1 = (10 bar)/(1 bar) = 10, 
 = 8.314 kJ/(kmol.K), 

=>   = 211.78 kJ/(kmol.K) =>  T2s = 594 K (interpolating in Table A-23).   
This result is less than 1% different from the one found earlier assuming perfect gas behavior.  

 

⇥Wother,into
CV

⎛
⎝⎜

⎞
⎠⎟ min

 
⇥Wother,into
CV

 

η =

⇥Wother,into
CV

⎛
⎝⎜

⎞
⎠⎟ min

⇥Wother,into
CV

s2 − s1 = 0 = s2
0 T2s( )− s10 T1( )− R ln p2

p1

⎛
⎝⎜

⎞
⎠⎟
⇒ s2

0 T2s( ) = s10 T1( ) + Ru ln p2
p1

⎛
⎝⎜

⎞
⎠⎟

s1
0

Ru
s2
0
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Water vapor at 10 MPa (abs) and 600 °C enters a turbine operating at steady state with a volumetric flow 
rate of 0.36 m3/s and exits at 0.1 bar (abs) and a quality of 92%.  Stray heat transfer and kinetic and 
potential energy changes across the turbine are negligible.  Determine for the turbine: 
a. the mass flow rate, 
b. the power developed by the turbine, 
c. the rate at which entropy is produced, and 
d. the isentropic turbine efficiency. 
 
 
SOLUTION: 
 
The mass flow rate through the turbine is given by, 

, (1)  
where r is the density of the water vapor and Q is the given volumetric flow rate.  The water vapor density 
may be found from the inlet conditions, 

r = 1/v = 26.1 kg/m3,  (2) 
where v = 0.03837 m3/kg @ 10 MPa (abs), 600 °C Þ superheated vapor (using Table A-4 in Moran et al., 
7th ed., for example).  Hence, the mass flow rate is, 

 = 9.38 kg/s. 
 
The power generated by the turbine may be found by applying the First Law to a control volume 
surrounding the turbine as shown in the following figure. 
 
 
 
 
 
 
 
 

, (3) 

where, 

   (steady flow assumed), (4) 

, (5) 

(changes in KE and PE neglected; from COM, the mass flow rates are the same) 
  (adiabatic operation since insulated). (6) 

Solving for the power generated by the turbine, 
. (7) 

The specific enthalpies may be found using thermodynamic property tables, 
h1 = 3625.3 kJ/kg (@ 10 MPa (abs), 600 °C Þ superheated vapor; using Table A-4 in Moran et al., 7th 
ed.) 
h2 = x2h2v + (1 – x2)h2l  = 2393.3 kJ/kg with h2v = 2584.7 kJ/kg and h2l = 191.83 kJ/kg 

 (@ 0.1 bar (abs), x2 = 0.92 Þ two-phase, liquid-vapor state; using Table A-3 in Moran et al., 7th 
ed.) 
 

Using the given parameters, 
  = -11.6 MW  (work is being done by the turbine). 

 

 ⇥m = ρQ

 ⇥m

 

dECV

dt
= h + 1

2V
2 + gz( ) !m

in
∑ − h + 1

2V
2 + gz( ) !m

out
∑ + !Qinto

CV
+ !Wother,on

CV

dECV

dt
= 0

 
h + 1

2V
2 + gz( ) !m

in
∑ − h + 1

2V
2 + gz( ) !m

out
∑ = !m1h1 − !m2h2 = !m h1 − h2( )

 
⇥Qinto
CV

= 0

 
!Wother,on
CV

= !m h2 − h1( )

 
!Wother,on
CV

1 

2 
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The rate at which entropy is produced is found by applying the entropy equation to the same control 
volume, 

, (8) 

where, 

  (steady flow), (9) 

  (the mass flow rate is constant from COM), (10) 

  (adiabatic operation), (11) 

Þ  .  (12) 
 
The specific entropies may be found using thermodynamic property tables, 

s1 = 6.9029 kJ/(kg.K) (@ 10 MPa (abs), 600 °C Þ superheated vapor; using Table A-4 in Moran et al., 
7th ed.) 
s2 = x2s2v + (1 – x2)s2l  = 7.5501 kJ/(kg.K) with s2v =  8.1502 kJ/(kg.K) and s2l = 0.6493 kJ/(kg.K) 

 (@ 0.1 bar (abs), x2 = 0.92 Þ two-phase, liquid-vapor state; using Table A-4 in Moran et al., 7th 
ed.) 

Using the given parameters, 
 = 6.07 kW/K.  Note that the positive value indicates that the process is internally irreversible. 

 
The isentropic efficiency of the turbine is defined as, 

, (13) 

where the maximum power generated by the turbine may be found assuming isentropic operation,  
s2 = s1 = 6.9029 kJ/(kg.K). (14) 

Since this specific entropy falls between s2l = 0.6493 kJ/(kg.K) and s2v = 8.1502 kJ/(kg.K) at p2 = 0.1 bar 
(abs), state 2 for the isentropic case is in the two-phase, liquid-vapor region with a quality given by, 

, (15) 

 Þ x2s = 0.833, 
where the subscript “s” indicates the conditions for the isentropic case. 
 
The specific enthalpy for this case is, 

, (16) 
Þ h2s = 2186.8 kJ/kg, 

Þ  = -13.5 MW,  (from Eq. (7)) 

 
Þ h = 0.86. 

 
 

 

dSCV
dt

= s !m
in
∑ − s !m

out
∑ +

!Qinto

Tb
∫ + !σ

dSCV
dt

= 0

 
s !m

in
∑ − s !m

out
∑ = !m s1 − s2( )

 

!Qinto

Tb
∫ = 0

 
⇥σ = ⇥m s2 − s1( )

 ⇥σ

 

η ≡
⇥Wother,into
CV

⇥Wother,into
CV

⎛
⎝⎜

⎞
⎠⎟ max

s2s = x2ss2v + 1− x2s( )s2l ⇒ x2s =
s2s − s2l
s2v − s2l

h2s = x2sh2v + 1− x2s( )h2l

 

⇥Wother,into
CV

⎛
⎝⎜

⎞
⎠⎟ max
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Helium gas at 810 °R, 45 psia, and a speed of 10 ft/s enters an insulated nozzle operating at steady state and exits 
at 670 °R, 25 psia.  Modeling helium as an ideal gas with a specific heat ratio of 1.67, determine: 
a. the speed at the nozzle exit, in ft/s, 
b. the isentropic nozzle efficiency, and 
c. the rate of entropy production within the nozzle, in Btu/(lbm.°R). 

 
SOLUTION:  
Apply the First Law to a control volume surrounding the nozzle, 

, (1) 

where,  

  (assumed steady flow), (2) 

, (3) 

(since the flow is steady, conservation of mass states that the mass flow rate will remain constant; also 
assuming that the change in potential energy for the gas is negligible when compared to the change in 
specific enthalpy and specific kinetic energy) 

  (assumed adiabatic), (4) 

  (no work other than pressure work). (5) 
Thus, 

. (6) 

Since helium is a noble gas, its specific heat won’t change with temperature.  Hence, a perfect gas assumption can 
be used and Eq. (6) becomes, 

. (7) 

Using the given data, 
V1 = 10 ft/s, 
T1 = 810 °R, 
T2 = 670 °R, 

 with k = 1.67,  = 1545.4 ft.lbf/(lbmol.°R), M = 4.003 lbm/lbmol  

  => R = 386.1 ft.lbf/(lbm.°R), cp = 962.3 ft.lbf/(lbm.°R)    (Note:  1 lbf = 32.2 lbm.ft/s2) (8) 
=>  V2 = 2950 ft/s. 
 

The isentropic nozzle efficiency is defined as, 

. (9) 

The ideal specific kinetic energy may be found by assuming an internally reversible process.  Since the flow is both 
internally reversible and adiabatic, it is also isentropic so s2 = s1.  Since helium is a perfect gas, 

, (10)  

=>  T2s = 640 °R, 
=>  V2s = 3250 ft/s, 
=>  hnozzle = 0.823. 
 

  

 

dECV

dt
= h + 1

2V
2 + gz( ) !m

in
∑ − h + 1

2V
2 + gz( ) !m

out
∑ + !Qinto,CV + !Wother,on CV

dECV

dt
= 0

 
h + 1

2V
2 + gz( ) !m

in
∑ − h + 1

2V
2 + gz( ) !m

out
∑ = !m h1 − h2( ) + 1

2 V1
2 −V2

2( )⎡⎣ ⎤⎦

 
!Qinto,CV = 0

 
!Wother,on CV = 0

 
!m h1 − h2( ) + 1

2 V1
2 −V2

2( )⎡⎣ ⎤⎦ = 0⇒V2 = V1
2 + 2 h1 − h2( )

V2 = V1
2 + 2cp T1 −T2( )

cp =
kR
k −1

= k
k −1

Ru
M

⎛
⎝⎜

⎞
⎠⎟

Ru

ηnozzle =
1
2V

2( )actual
1
2V

2( )ideal

 
Δs
=0
! = cp ln

T2s
T1

⎛
⎝⎜

⎞
⎠⎟
− R ln p2

p1

⎛
⎝⎜

⎞
⎠⎟
⇒ T2s

T1
= p2

p1

⎛
⎝⎜

⎞
⎠⎟

R
cp

1 2 
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The rate of entropy production is found from, 

, (11) 

where, again, because helium is a perfect gas, 

, (12) 

=>   = 44.3 ft2/(s2.°R). 
  
 
 

 

 

!mΔs =
!Qinto

Tb
∫

=0 adiabatic( )
"

+ !σ ⇒
!σ
!m
= Δs

Δs = cp ln
T2
T1

⎛
⎝⎜

⎞
⎠⎟
− R ln p2

p1

⎛
⎝⎜

⎞
⎠⎟

 !σ !m = Δs
T 

s 

1 

2 
2s 

T2 

T1 

T2s 

s1 s2 

p1 

p2 < p1 
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4.7.2. Heat Transfer and Work in Internally Reversible, State State, Steady Flow Processes

From the First Law, assuming one inlet and one outlet, steady state, and steady flow,

Ẇother,on CV

ṁ
= − Q̇into CV

ṁ
+ (h2 − h1) +

1

2
(V 2

2 − V 2
1 ) + g(z2 − z1). (4.146)

Making use of the Tds equation to re-write the specific enthalpy term,

Tds = dh− vdp =⇒
ˆ 2

1

Tds = h2 − h1 −
ˆ 2

1

vdp =⇒ h2 − h1 =

ˆ 2

1

Tds+

ˆ 2

1

vdp. (4.147)

Substitute Eq. (4.147) into Eq. (4.146) and simplify to get,

Ẇother,on CV

ṁ
= − Q̇into CV

ṁ
+

ˆ 2

1

Tds+

ˆ 2

1

vdp+
1

2
(V 2

2 − V 2
1 ) + g(z2 − z1). (4.148)

If we further assume that the process is internally reversible, then,

dṠ =
δQ̇into CV

T

∣∣∣∣
int. rev.

=⇒ ṁds =
δQ̇into CV

T

∣∣∣∣
int. rev.

=⇒ Q̇into CV,int. rev.

ṁ
=

ˆ 2

1

Tds. (4.149)

Substituting into Eq. (4.148),

Ẇother,on CV

ṁ
= − Q̇into CV,int. rev.

ṁ
+

(
Q̇into CV,int. rev.

ṁ

)
+

ˆ 2

1

vdp+
1

2
(V 2

2 − V 2
1 ) + g(z2 − z1), (4.150)

Ẇother,on CV

ṁ
=

ˆ 2

1

vdp+
1

2
(V 2

2 − V 2
1 ) + g(z2 − z1) , (4.151)

or, alternatively,

Ẇother,by CV

ṁ
= −

ˆ 2

1

vdp+
1

2
(V 2

1 − V 2
2 ) + g(z1 − z2) . (4.152)

This is the First Law for an internally reversible, steady state, steady flow with one inlet and one outlet.

Notes:

(1) For an isothermal process (T = constant), we can integrate Eq. (4.149) to get,

ṁ(s2 − s1) =
Q̇into CV

∣∣
int. rev.

T
=⇒

Q̇into CV

∣∣
int. rev.

ṁ
= T (s2 − s1). (4.153)

(2) For the case where there is no “other” work, e.g., there is no shaft or electrical work, Eq. (4.152)
becomes, ˆ 2

1

vdp+
1

2
(V 2

2 − V 2
1 ) + g(z2 − z1) = 0 , (4.154)

which is known as Bernoulli’s Equation. Bernoulli’s equation is arguably the most frequently used
relation in fluid mechanics. It’s also frequently used incorrectly since the assumptions (steady state,
steady flow, one inlet and one outlet, internally reversible, and no “other” work) must be satisfied.
For an incompressible fluid, v = constant and Bernoulli’s equation becomes,

v(p2 − p1) +
1

2
(V 2

2 − V 2
1 ) + g(z2 − z1) = 0 . (4.155)

Recall that v = 1/ρ so the previous equation may also be written as,

p2 − p1

ρ
+

1

2
(V 2

2 − V 2
1 ) + g(z2 − z1) = 0 . (4.156)
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For an ideal gas,

v =
RT

p
=⇒

ˆ 2

1

RT

p
dp+

1

2
(V 2

2 − V 2
1 ) + g(z2 − z1) = 0. (4.157)

For an isothermal process involving an ideal gas,

RT ln

(
p2

p1

)
+

1

2
(V 2

2 − V 2
1 ) + g(z2 − z1) = 0. (4.158)

For an isentropic process involving an ideal gas,

0 = cp
dT

T
−Rdp

p
=⇒ dp

p
=
cp
R

dT

T
, (4.159)

=⇒
ˆ 2

1

RT
cp
R

dT

T
+

1

2
(V 2

2 − V 2
1 ) + g(z2 − z1) = 0, (4.160)

∴
ˆ 2

1

cpdT︸ ︷︷ ︸
=h(T2)−h(T1)

+
1

2
(V 2

2 − V 2
1 ) + g(z2 − z1) = 0. (4.161)

If isentropic flow of a perfect gas is considered (cp = constant), then the previous equation becomes,

cp(T2 − T1) +
1

2
(V 2

2 − V 2
1 ) + g(z2 − z1) = 0, (4.162)

(h2 − h1) +
1

2
(V 2

2 − V 2
1 ) + g(z2 − z1) = 0, (4.163)

∆hT = 0 . (4.164)

Note that when gases are considered, the potential energy changes are usually very small when
compared to the other terms in Bernoulli’s equation and can be neglected.
Bernoulli’s equation (in the forms given here; there are other forms in which some of the assumptions
are relaxed) can be viewed as a statement of the First Law with the assumptions of steady state and
steady flow, one inlet and one outlet, internally reversible flow, and a flow with no “other” work.
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Image:  https://www.bobvila.com/articles/some-
advice-about-sump-pumps/ 
 

A 3 hp pump operating at steady state draws in liquid water at 1 
atm (abs), 60 °F and delivers it at 5 atm (abs) at an elevation 20 
ft above the inlet.  There is no significant change in velocity 
between the inlet and exit.  Is it possible to pump 1000 gal in 10 
min or less?  Explain.  
 
 
 
 
 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
The mass flow rate required to pump 1000 gal of liquid water in 10 min is, 

,  (1) 
where r is the density of liquid water, assumed here to be 62.4 lbm/ft3, and Q is the volumetric flow rate, 

Q = (1000 gal)/(10 min) = 100 gal/min = 13.37 ft3/min = 0.223 ft3/s (2) 
=>   = 13.9 lbm/s. 
 

Since we’re interested in knowing if the pump is capable of pumping at the given flow rate, consider the 
ideal case, i.e., assume internally reversible, adiabatic flow.  Note that the flow is at steady state and has 
one inlet and outlet.  For these conditions, the 1st Law may be written as, 

. (3)  

For the current situation, assume the liquid water is incompressible (also re-write the specific volume as v = 
1/r).  Furthermore, we’re told that there’s no significant change in the velocity between the inlet and outlet, 
so the change in kinetic energy may be neglected.  Re-writing Eq. (3) for these conditions gives, 

, (4) 

. (5) 

 
Using the given parameters, 

 = 3 hp = 1650 ft.lbf/s, 
p1 = 1 atm (abs) = 2117 lbf/ft2,      p2 = 5 atm (abs) = 10580 lbf/in2, 
r = 62.4 lbm/ft3, 
g = 32.2 ft/s2,      z2 – z1 = 20 ft, 
=>   = 10.6 lbm/s. 
 

Since the ideal mass flow rate is smaller than what is required, it’s not possible to pump the water at the 
desired flow rate. 

 !m = ρQ

 !m

 

!Wother,on CV

!m
= vdp

p1

p2

∫ + 1
2
V2

2 −V1
2( ) + g z2 − z1( )

 

!Wother,on CV

!m
= p2 − p1

ρ
+ g z2 − z1( )

 

!m =
!Wother,on CV

p2 − p1

ρ
+ g z2 − z1( )

 
!Wother,on CV

 !m

1 

2 

z2 – z1 

z 

g 

�̇�!" 
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4.8. Review Questions

(1) What is meant by the Eulerian and Lagrangian perspectives?
(2) Describe the Reynolds Transport Theorem in words? Why is it used?
(3) State, both in words and in mathematics, the Lagrangian forms of Conservation of Mass, Newton’s

Second Law, the First Law of Thermodynamics, and the Second Law of Thermodynamics.
(4) Why is it important to draw a well-defined control volume when applying conservation of mass, the

linear momentum equations, the First Law of Thermodynamics, or the Second Law of Thermody-
namics?

(5) What do each of the terms represent in the Lagrangian and Eulerian statements of Conservation of
Mass?

(6) Does Conservation of Mass depend upon the coordinate system?
(7) Why is it important to draw a well-defined coordinate system when applying the linear momentum

equations?
(8) What does each of the terms represent in the Eulerian form of the Linear Momentum Equation?
(9) What restrictions are placed on the coordinate system when applying the LMEs?

(10) In order to change the momentum of a flow, what must act on the flow?
(11) Give examples of body and surface forces.
(12) Explain what urel is. For what circumstances will urel and uXYZ be the same?
(13) Why is the dot product used (urel · dA) in determining the flow rate out of a control volume?
(14) Can one apply the non-inertial form of the LME to an inertial frame of reference? How about

applying the inertial form of the LME to a non-inertial frame of reference?
(15) What types of frames of reference can be considered inertial? Give examples of frames of reference

that are not inertial.
(16) Given the following where MCV is the mass in a control volume, ṁ is a mass flow rate, and t is

time,
dMCV

dt
= −ṁ, (4.165)

will the following always be true (where M0 is the control volume mass at t = 0)? Explain your
answer.

MCV = M0 − ṁt (4.166)

(17) Describe what each term represents in the Eulerian form of the angular momentum equation.
(18) Why isn’t the intrinsic angular momentum of the fluid included in the angular momentum equation?
(19) Consider a precessing, spinning top. Is its angular momentum conserved?
(20) Describe what each term represents in the Eulerian form of the First Law.
(21) What is meant by the term “adiabatic”?
(22) Why are shear work terms often (but not always!) neglected in conservation of energy?
(23) What is the definition of enthalpy?
(24) In the following form of the First Law, where are the terms involving the work due to movement in

a gravity field and the work due to pressure forces?

d

dt

ˆ
CV

eρdV +

ˆ
CS

(h+
1

2
V 2 + gz) (ρurel · dA) = Q̇into CV + Ẇon CV. (4.167)

(25) Describe what each term represents in the Eulerian form of the Second Law of Thermodynamics.
(26) What is the definition of entropy in terms of heat and temperature?
(27) What is meant by the term “internally reversible”? Give some examples of physical processes that

result in irreversibility.
(28) How are adiabatic, internally reversible processes related to isentropic ones?
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CHAPTER 5

Differential Analysis

5.1. Introduction to Index Notation (aka Tensor Notation, aka Einstein Notation)

Index notation is a compact way of writing equations and is often used in writing the equations used in fluid
mechanics, solid mechanics, and many other fields.

Examples:

(1) The three numbers a1, a2, a3 can be written as ai, where i = 1, 2, 3

(2) A matrix of nine numbers can be written as: aij =

a11 a12 a13

a21 a22 a23

a31 a32 a33


(3) ai + bi represents three numbers: a1 + b1, a2 + b2, a3 + b3
(4) Aij = Bij represents nine equations: A11 = B11, A12 = B12, A13 = B13, A21 = B21, · · · , A33 = B33

(5) Aijk = Bijk represents 27 equations: A111 = B111, A112 = B112, A113 = B113, A211 = B211, · · · , A333 =
B333

5.1.1. Free Indices

A free index is an index that appears exactly once in a term. Each term in an equation must have the same
free indices. A repeated index is one that appears twice in a term. No index may appear more than twice in
a term.

Examples:

(1) aijkbj = cik is a correct equation. There are two free indices: i and k, and one repeated index: j.
(2) aijbjk = clm is an incorrect equation. There are two free indices on each side of the equation: i, j

and l, m, but they’re not the same.
(3) aijbj = cij is an incorrect equation. The only free index on the left-hand side is i while i and j are

free indices on the right-hand side.

5.1.2. Summation Convention

If a subscript appears exactly twice in a term, i.e., it’s a repeated index, then summation over that subscript
from 1 to 3 is implied.

Examples:

(1) aii =
∑3
i=1 aii = a11 + a22 + a33 (This is a single number.)

(2) aijbj =
∑3
j=1 aijbj = ai1b1 + ai2b2 + ai3b3 (Since i can vary from 1 to 3, aijbj is three separate

numbers.)

(3) AijBij =
∑3
i=1

∑3
j=1AijBij = (A11B11 + A12B12 + A13B13 + · · · + A31B31 + A32B32 + A33B33)

(This is a single number.)

Notes:

(1) Repeated indices are dummy indices: aii = ajj = akk
(2) No index may appear more than twice in a term: aibici and Aiii are incorrect.
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(3) The summation convention is suspended by writing “no sum” or by underlining one of the repeated
subscripts, e.g., σii (no sum) = σii = σ11, σ22, σ33 (three separate numbers).

5.1.3. Kronecker’s Delta

Kronecker’s Delta, δij is the two-index symbol defined by,

δij =

{
0 i 6= j

1 i = j
(5.1)

Notes:

(1) δ12 = δ13 = δ21 = δ23 = δ31 = δ32 = 0 and δ11 = δ22 = δ33 = 1.

(2) The Kronecker Delta is the identity matrix: δij =

1 0 0
0 1 0
0 0 1


Examples:

(1) Show that δijaj = ai.

i = 1 : δ1jaj = δ11︸︷︷︸
=1

a1 + δ12︸︷︷︸
=0

a2 + δ13︸︷︷︸
=0

a3 = a1 (5.2)

i = 2 : δ2jaj = δ21︸︷︷︸
=0

a1 + δ22︸︷︷︸
=1

a2 + δ23︸︷︷︸
=0

a3 = a2 (5.3)

i = 3 : δ3jaj = δ31︸︷︷︸
=0

a1 + δ32︸︷︷︸
=0

a2 + δ33︸︷︷︸
=1

a3 = a3 (5.4)

(2) Show that δii = 3.

δii = δ11︸︷︷︸
=1

+ δ22︸︷︷︸
=1

+ δ33︸︷︷︸
=1

= 3 (5.5)

5.1.4. Permutation (aka Alternating) Unit Tensor

The permutation tensor, εijk, is a three-index symbol defined as,

εijk =


+1 for ε123, ε231, ε312

−1 for ε321, ε213, ε132

0 for all other permutations

(5.6)

Notes:

(1) It’s convenient to remember the pictures in Figure 5.1 for determining the proper sign of the
permutation tensor.

Figure 5.1. Figures to help determine the sign of the permutation tensor.

(2) Switching any two indices changes the sign of the permutation tensor, e.g., εijk = −εikj .
(3) A convenient identity is:

εijkεilm = δjlδkm − δjmδkl (5.7)
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Example:

Show that εijkεijk = 6.

εijkεijk = δjj︸︷︷︸
=3

δkk︸︷︷︸
=3

−δjkδkj = 9−

δ1kδk1︸ ︷︷ ︸
=1

+ δ2kδk2︸ ︷︷ ︸
=1

+ δ3kδk3︸ ︷︷ ︸
=1

 (5.8)

= 9− 3 (5.9)

= 6 (5.10)

5.1.5. Tensors

A tensor of rank r is a quantity having nr components in n-dimensional space, e.g., a tensor of rank 2 in
3D has 32 = 9 components. The components of a tensor expressed in two different coordinate systems are
related by,

Tijk···m = λisλjtλku · · ·λmvTstu···v (5.11)

where λis are the direction cosines between the êi and ês axes.

Notes:

(1) A tensor of rank 2 is often called a dyad, e.g., Aij (two free subscripts).
(2) A tensor of rank 1 is called a vector, e.g., ai (one free subscript).
(3) A tensor of rank 0 is called a scalar, e.g., c (zero free subscripts).
(4) The vector notation for a dyad is often written as: A.

5.1.6. Basic Mathematical Operations

• Addition: Two tensors of equal rank can be added to yield a tensor of the same rank,

Cij···k = Aij···k +Bij···k (5.12)

• Multiplication: If a tensor, A, having rank, a, is multiplied by tensor, B, having rank, b, then a
tensor, C, of rank a+ b results,

Cij···krs···t = Aij···kBrs···t (5.13)

For example, Aij︸︷︷︸
r=2

Brs︸︷︷︸
r=2

= Cijrs︸ ︷︷ ︸
r=4

.

• Transpose: The transpose of a tensor is,

TTij···k = Tk···ji (5.14)

For example, ATij = Aji. If the components of a second-order tensor are presented in matrix form,
then the transpose is equivalent to swapping the off-diagonal components.

• Symmetric: A symmetric tensor is one that has the property,

Tij···k = Tk···ji (5.15)

A symmetric tensor is equal to its transpose.
• Anti-symmetric: An anti-symmetric tensor is one that has the property,

Tij···k = −Tk···ji (5.16)

Notes:

(1) A tensor, symmetric in ij · · · k, is often indicated using the notation: T(ij···k).
(2) A tensor, anti-symmetric in ij · · · k, is often indicated using the notation: T[ij···k].

(3) T(ij···k) = 1
2 (Tij···k + Tk···ji)

(4) T[ij···k] = 1
2 (Tij···k − Tk···ji)

(5) Tij···k = T(ij···k) + T[ij···k]

(6) Tii = T11 + T22 + T33 = trace(Tij)
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• Dot Products (aka Inner Products):

a · b = aibi (5.17)

a ·B = aiBij (5.18)

A · b = Aijbj (5.19)

A ·B = AijBjk (5.20)

A : B = AijBji (5.21)

A : BT = AijBij (5.22)

T = ab =⇒ Tij = aibj (Note: ab = (ba)T .) (5.23)

(5.24)

• Cross-Product:

c = a× b =⇒ ci = εijkajbk (5.25)

• Gradient:

(∇λ)i =
∂λ

∂xi
= λ,i (5.26)

• Divergence:

∇ · a =
∂ai
∂xi

= ai,i (5.27)

• Curl:

(∇× a)i = εijk
∂ak
∂xj

= εijkak,j (5.28)

• Laplacian (scalar):

∇2λ =
∂2λ

∂xi∂xi
= λ,ii (5.29)

• Gauss’s Theorem (aka Divergence Theorem):ˆ
S

(a · n̂) dS =

ˆ
V

(∇ · a) dV (5.30)

ˆ
S

ainidS =

ˆ
V

ai,idV (5.31)

where S is the surface enclosing the volume V and n̂ is the outward-pointing unit normal vector for
the surface area element dS (Figure 5.2).

Figure 5.2. Illustration corresponding to Gauss’ Theorem.

• Stokes’s Theorem: ‰
C

(a · dl) =

ˆ
S

(∇× a) · n̂dS (5.32)

‰
C

aidli =

ˆ
S

εijkak,jnidS (5.33)
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where the curve C defines the surface S and dl is a vector tangent to the curve C at a particular
point. Note that the shape of the surface on which Stokes’ Theorem is to be applied must be known
so that the relation between the surface area and contour is well defined.

Figure 5.3. Illustration corresponding to Stokes’ Theorem.
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Prove that the following are true using index notation: 

 

 
 
SOLUTION: 
 

 

 
 

 

 
 

 

( ) ( ) ( )
( ) ( ) ( )
´ × = × ´ = ´ ×
´ ´ = × - ×
´ = - ´

a b c a b c c a b
t u v u t v v t u
u v v u

( )
( )
( )

ijk j k i

jki k i j

kij i j k

a b c
b c a
c a b

e

e

e

´ × =

= = ´ ×

= = ´ ×

a b c
b c a
c a b

[ ]

( )

( ) ( )

( ) ijk j klm l mi

ijk klm j l m

kij klm j l m

il jm im jl j l m

j i j j j i

i

t u v

t u v
t u v

t u v

t u v t u v

e e

e e

e e

d d d d

´ ´ =

=

=

= -

= -

= × - ×é ùë û

t u v

u t v v t u

[ ]

[ ]

ijk j ki

ikj k j

i

u v

v u

e

e

´ =

= -

= - ´

u v

v u
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Show, using index notation, that: 
 

 
 
SOLUTION: 
 

  

 (1) 
 
 

   (the order of the differentiation doesn’t matter) (2) 
 

The only way for lines (1) and (2) to be equal is if they both equal zero, i.e.: 
 (3) 

 
Therefore: 

  Þ   
 
 
 
 
 

qÑ´Ñ = 0

( )iqÑ´Ñ ( ), ,ijk k j
e q=

,ijk kje q=

,ikj kje q= -

,ijk jke q= -

,ijk kje q= -

, ,0ijk kj ijk kje q e q= = -

( ) 0iqÑ´Ñ = qÑ´Ñ = 0

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

C. Wassgren 529 2024-02-01



  index_05 

Page 1 of 1 

Solve: 
 

for b[jk]. 
 
 
SOLUTION: 
 

 

 

 

i ijk jka be=

( )

( )
[ ]

1
22

2

imn i imn ijk jk

mj nk mk nj jk

mn nm

mn nm

mn

a b

b

b b
b b

b

e e e

d d d d

=

= -

= -

= × -

=

[ ]
1
2 ijk ijkb ae\ =
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Prove that the following is true using index notation: 
 

 
 
SOLUTION: 
 

 

 
 
 
 
 
 

( ) ( )( )Ñ× ´ = × Ñ´ - × Ñ´u v v u u v

( )

( )

( ) ( )

( ) ijk j k
i

ijk j k
i

jk
ijk j k

i i

jk
ijk j ijk k

i i

jk
j jki k kij

i i

j k
k kij j jik

i i

u v
x

u v
x

uv
u v

x x
uv

u v
x x

uv
u v

x x
u v

v u
x x

e

e

e

e e

e e

e e

¶
Ñ × ´ =

¶

¶
=

¶

¶æ ö¶
= +ç ÷¶ ¶è ø

¶¶
= +

¶ ¶

¶¶
= +

¶ ¶

¶ ¶
= -

¶ ¶

= × Ñ´ - × Ñ´

u v

v u u v
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Given the following: 

 

where “det” is the determinant operator, show that: 
 

 
 
SOLUTION: 
 
Using the given relation: 

    (Note:  ) 

 

 

 
 

[ ]det
ip iq ir

ijk pqr mn jp jq jr

kp kq kr

a a a
a a a a

a a a
e e =

ijk iqr jq kr jr kqe e d d d d= -

[ ]
1

det
ii iq ir

ijk iqr mn ji jq jr

ki kq kr

d d d
e e d d d d

d d d=

=
!"#"$

[ ]
11 12 13

21 22 23

31 32 33

1 0 0
det 0 1 0 1

0 0 1
mn

d d d
d d d d

d d d
= = =

3 3
ijk pqr ii jq kr iq jr ki ir ji kq ir jq ki jr kq ii kr iq ji

jq kr jr kq jr kq kr jq jr kq kr jq

e e d d d d d d d d d d d d d d d d d d

d d d d d d d d d d d d

= + + - - -

= + + - - -

ijk pqr jq kr jr kqe e d d d d\ = -
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Let   and  be second order tensors.  Show that if one of the tensors is symmetric and the other is anti-
symmetric, then . 
 
 
SOLUTION: 

 (1) 
Let  be the symmetric tensor and  be the anti-symmetric tensor so that: 

    and   (2) 
Substitute the previous expressions back into Eqn. (1): 

 (3) 
Note that the subscripts in the previous expression are dummy indices so that the right-hand side of the 
relation may be written as: 

 (4) 
The only way for the previous expression to be true is if both sides equal zero. Thus, 

  Þ   (5) 

 
 

A B
: 0=A B

: ij jiA B=A B
A B

ij jiA A= ji ijB B= -

( )ij ji ji ij ji ijA B A B A B= - = -

ij ji ji ij ij jiA B A B A B= - = -

0ij ji ij jiA B A B= - = : 0=A B
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Using index notation, show that: 
 

 
 
SOLUTION: 

 

 
 
 

( ) ( ) ( )( ) ( )( )´ × ´ = × × - × ×a b c d a c b d a d b c

( ) ( )

( )

( )( ) ( )( )

ijk j k ilm l m

ijk ilm j k l m

jl km jm kl j k l m

l m l m m l l m

a b c d
a b c d

a b c d

a b c d a b c d

e e

e e

d d d d

´ × ´ =

=

= -

= -

= × × - × ×

a b c d

a c b d a d b c
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Show that: 
 

 
 
SOLUTION: 
 
Expand the index notation side first. 

  (where all other e terms are zero, e.g. e122 = e112 = … = 0.) 

 (1) 

 
Now expand the vector notation side. 

 (2) 
 

Hence we see that the components of eijkajbk match up with components of (a´b), i.e. 
 (3) 

 
 
 

( ) ijk j ki a be´ =a b

! !

! !

! !

123 2 3 132 3 2
1 1

231 3 1 213 1 3
1 1

312 1 2 321 2 1
1 1

1

2

3

ijk j k

a b a b i

a b a b a b i

a b a b i

e e

e e e

e e

=+ =-

=+ =-

=+ =-

ì
+ =ï

ï
ï= + =í
ï
ï + =ï
î

2 3 3 2

3 1 1 3

1 2 2 1

1
2
3

ijk j k

a b a b i
a b a b a b i

a b a b i
e

- =ì
ï= - =í
ï - =î

( ) ( ) ( )2 3 3 2 1 3 1 1 3 2 1 2 2 1 3ˆ ˆ ˆa b a b a b a b a b a b´ = - + - + -a b e e e

( ) ijk j ki a be´ =a b
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Expand the following expression for i, j, and k = 1, 2, 3. 

 

 
 
SOLUTION: 

 
Expand the first term first. 

 (1) 

 
Expand the second term next. 

 (2) 

 
Thus: 

 (3) 

2
jk i i

k j i j

uu u u
x x x x

l µ
æ ö¶æ ö¶ ¶ ¶

+ +ç ÷ç ÷ ç ÷¶ ¶ ¶ ¶è ø è ø

2 2

31 2

1 2 3

k

k

u uu u
x x x x

l l
æ ö æ ö¶ ¶¶ ¶

= + +ç ÷ ç ÷¶ ¶ ¶ ¶è ø è ø

31 1 1 1 2 1 1 1

1 1 1 2 1 2 3 1 3

32 1 2 2 2 2 2 2

1 2 1 2 2 2 3 2 3

3 1

1 3

ji i

j i j

uu u u u u u u u
x x x x x x x x x

uu u uu u u u u u u u
x x x x x x x x x x x x

u u
x x

µ µ

æ öæ ö æ ö ¶¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶
+ + + + +ç ÷ç ÷ ç ÷¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶è ø è ø è ø

æ ö¶ æ öæ ö æ ö¶ ¶ ¶¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶
+ = + + + + + +ç ÷ ç ÷ç ÷ ç ÷ç ÷¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶è ø è ø è øè ø

æ ¶ ¶
+ +

¶ ¶
3 3 3 3 3 32

1 2 3 2 3 3 3

u u u u u uu
x x x x x x x

é ù
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú

ö æ ö æ ö¶ ¶ ¶ ¶ ¶ ¶ê ú¶
+ + + +ç ÷ ç ÷ ç ÷ê ú¶ ¶ ¶ ¶ ¶ ¶ ¶è ø è ø è øë û

2 2

31 2

1 2 3

31 1 1 1 2 1 1 1

1 1 1 2 1 2 3 1 3

2 1 2 2 2 2

1 2 1 2 2

jk i i

k j i j

uu u u uu u
x x x x x x x

uu u u u u u u u
x x x x x x x x x

u u u u u u
x x x x x

l µ l

µ

æ ö¶æ ö æ ö¶ ¶ ¶ ¶¶ ¶
+ + = + +ç ÷ç ÷ ç ÷ç ÷¶ ¶ ¶ ¶ ¶ ¶ ¶è ø è øè ø

æ öæ ö æ ö ¶¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶
+ + + + +ç ÷ç ÷ ç ÷¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶è ø è ø è ø

æ ö æ ö¶ ¶ ¶ ¶ ¶ ¶
+ + + + +ç ÷ ç ÷¶ ¶ ¶ ¶ ¶è ø è ø

32 2

2 3 2 3

3 3 3 3 3 3 31 2

1 3 1 2 3 2 3 3 3

uu u
x x x x

u u u u u u uu u
x x x x x x x x x

é ù
ê ú
ê ú
ê úæ ö¶¶ ¶ê ú+ +ç ÷ê ú¶ ¶ ¶ ¶è øê ú
æ ö æ ö æ ö¶ ¶ ¶ ¶ ¶ ¶ ¶ê ú¶ ¶

+ + + + + +ç ÷ ç ÷ ç ÷ê ú¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶è ø è ø è øë û
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5.2. The Continuity Equation (aka Conservation of Mass for a Differential Control Volume)

The Continuity Equation, which is Conservation of Mass for a differential fluid element or control volume,
can be derived several different ways. Two of these methods are given in this section.

Method 1: Apply the integral approach to the fixed differential control volume shown in Figure 5.4. Assume

Figure 5.4. The control volume used to derive the Continuity Equation.

that the density and velocity are ρ and u, respectively, at the control volume’s center. Using a Taylor series
approximation, the mass flow rate through the left side of the control volume is given by,

ṁin through left = ṁx,center +
∂ṁx,center

∂x

(
−1

2
dx

)
, (5.34)

= (ρuxdydz) +
∂

∂x
(ρuxdydz)

(
−1

2
dx

)
, (5.35)

=

[
ρux +

∂

∂x
(ρux)

(
−1

2
dx

)]
(dydz) , (5.36)

where ṁx,center is the mass flow rate in the x-direction at the center of the control volume. A similar approach
can be used to find the mass flow rates through the other sides of the control volume,

ṁout through right =

[
ρux +

∂

∂x
(ρux)

(
1

2
dx

)]
(dydz) , (5.37)

ṁin through bottom =

[
ρuy +

∂

∂y
(ρuy)

(
−1

2
dy

)]
(dxdz) , (5.38)

ṁout through top =

[
ρuy +

∂

∂y
(ρuy)

(
1

2
dy

)]
(dxdz) , (5.39)

ṁin through back =

[
ρuz +

∂

∂z
(ρuz)

(
−1

2
dz

)]
(dxdy) , (5.40)

ṁout through front =

[
ρuz +

∂

∂z
(ρuz)

(
1

2
dz

)]
(dxdy) . (5.41)

Thus, the net mass flow rate into the control volume is,

ṁnet, into CV = −
[
∂

∂x
(ρux) +

∂

∂y
(ρuy) +

∂

∂z
(ρuz)

]
(dxdydz) . (5.42)

The rate at which mass increases within the control volume is,

∂mCV

∂t
=

∂

∂t
(ρdxdydz) =

∂ρ

∂t
(dxdydz) , (5.43)

where ρ is the density at the center of the control volume. Note that since the density varies linearly within
the control volume (from the Taylor Series approximation), the average density in the control volume is ρ.
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Conservation of Mass states that the rate of increase of mass within the control volume must equal the net
rate at which mass enters the control volume,

∂mCV

∂t
= −ṁnet, into CV, (5.44)

∂ρ

∂t
(dxdydz) = −

[
∂

∂x
(ρux) +

∂

∂y
(ρuy) +

∂

∂z
(ρuz)

]
(dxdydz) , (5.45)

∂ρ

∂t
+

∂

∂x
(ρux) +

∂

∂y
(ρuy) +

∂

∂z
(ρuz) = 0 . (5.46)

Written in a more compact form,

∂ρ

∂t
+ ∇ · (ρu) = 0 , (5.47)

or, in index notation,

∂ρ

∂t
+

∂

∂xi
(ρui) = 0 . (5.48)

Method 2: Recall that the integral form of Conservation of Mass is given by,

d

dt

ˆ
CV

ρdV +

ˆ
CS

(ρurel · dA) = 0. (5.49)

Consider a fixed control volume so that,

d

dt

ˆ
CV

ρdV =

ˆ
CV

∂ρ

∂t
dV and urel = u. (5.50)

By utilizing Gauss’ Theorem (aka the Divergence Theorem), we can convert the area integral into a volume
integral, ˆ

CS

(ρurel · dA) =

ˆ
CV

∇ · (ρu) dV. (5.51)

Substitute these expressions back into Conservation of Mass to get,ˆ
CV

[
∂ρ

∂t
+ ∇ · (ρu)

]
dV = 0. (5.52)

Since the choice of control volume is arbitrary, the kernel of the integral must be zero, i.e.,

∂ρ

∂t
+ ∇ · (ρu) = 0 , (5.53)

which is the same result found previously.

Notes:

(1) For a fluid in which the density remains uniform and constant, i.e., ρ = constant, the Continuity
Equation simplifies to,

∇ · u = 0 or
∂ui
∂xi

= 0 . (5.54)

(2) An incompressible fluid is one in which the density of a particular piece of fluid remains constant,
i.e.,

Dρ

Dt
= 0 . (5.55)

Note that an incompressible fluid does not necessarily imply that the density is the same everywhere
in the flow, i.e. it’s not necessarily uniform. An example of such a flow would be a stratified flow in
the ocean where the density of various layers of ocean water varies due to salinity and temperature
variations (Figure 5.5). A fluid with a constant and uniform density, however, is an incompressible
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Figure 5.5. The density of fluid particles varies from layer to layer in this stratified flow,
but remains constant within a layer.

fluid.
The Continuity Equation for an incompressible fluid can be found by using Eq. (5.55),

Dρ

Dt
= 0 =

∂ρ

∂t
+ (u ·∇) ρ =⇒ ∂ρ

∂t
= − (u ·∇) ρ. (5.56)

Substituting into the Continuity Equation,

∂ρ

∂t
+ ∇ · (ρu) = 0, (5.57)

− (u ·∇) ρ+ ∇ · (ρu) = 0, (5.58)

− (u ·∇) ρ+ ρ (∇ · u) + (u ·∇) ρ = 0, (5.59)

∇ · u = 0 . (5.60)

Thus, an incompressible fluid has the same Continuity Equation as a fluid with constant and uniform
density.

(3) Another useful form of the Continuity Equation is,

∂ρ

∂t
+

∂

∂xi
(ρui) = 0 =⇒ ∂ρ

∂t
+ ui

∂ρ

∂xi︸ ︷︷ ︸
=Dρ
Dt

+ρ
∂ui
∂xi

, (5.61)

Dρ

Dt
= −ρ∂ui

∂xi
. (5.62)

(4) The Continuity Equation (Eq. (5.53)) is valid for any continuous substance, e.g., a solid as well as
a fluid.

(5) Equation (5.54) is referred to as the conservative form of the Continuity Equation while Eq. (5.62)
is the non-conservative form. The conservative form implies that the equation represents an Euler-
ian viewpoint of the Continuity Equation. The non-conservative form represents the Lagrangian
viewpoint.
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The y-velocity component of a steady, 2D, incompressible flow is given by: 
 

Determine the most general velocity component in the x-direction for this flow. 
 
 
SOLUTION: 
 
Consider the continuity equation: 

 (1) 

 

Integrate ux with respect to x. 
 (2) 

where f(y) is an unknown function of y. 
 

23yu xy x y= -

0yx uu
x y

¶¶
+ =

¶ ¶

( )2 23 3yx uu
xy x y x x

x y y
¶¶ ¶

= - = - - = - +
¶ ¶ ¶

( )2 33 1
2 3xu x x f y= - + +
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Video solution: https://www.youtube.com/watch?v=mkseNuP3pPg
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A piston compresses gas in a cylinder by moving at a constant speed, V.  The gas density and the piston 
length are initially r0 and L0, respectively.  Assume that the gas velocity varies linearly from velocity, V, at 
the piston face to zero velocity at the cylinder wall (at L).  If the gas density varies only with time, 
determine r(t). 
 
 
 
 
 
 
 
 
SOLUTION: 
 
As given in the problem statement, assume the gas velocity, u, varies linearly with distance x from the 
piston face with the boundary conditions:  u(x = 0) = V and u(x = L(t)) = 0. 

Þ   (1) 

However, the piston moves at a constant speed so that: 
 (2) 

Substituting Eqn. (2) into Eqn. (1) gives: 

 (3) 

 
Apply the continuity equation assuming 1D flow. 

 (4) 

    (Note that r = r(t).) 

 

 

 

 (5) 

 

( ) ( )
, 1 xu x t V

L t
æ ö

= -ç ÷ç ÷
è ø

( ) 0L t L Vt= -

( )
0

, 1 xu x t V
L Vt

æ ö
= -ç ÷-è ø

( ) 0u
t x
r r¶ ¶
+ =

¶ ¶
d u
dt x
r r ¶= -

¶

0

1d V dt
L Vt

r
r

æ ö
= ç ÷-è ø

0
00

t t

t

d dtV
L Vt

r r

r r

r
r

= =

= =

=
-ò ò

0

0 0
ln ln

L Vt
L

r
r

æ ö æ ö-
= -ç ÷ ç ÷

è ø è ø
1

0 0
1 Vt
L

r
r

-
æ ö

\ = -ç ÷
è ø

gas with 
density, r(t) 

L(t) 

V 
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A velocity field for an incompressible flow is given by 
 

Is this flow physically possible? 
 
 
SOLUTION: 
 
Does the given velocity field satisfy the continuity equation? 

 (1) 

Using the given velocity field: 

 

 

 

Substitute into Eqn. (1). 

 

Hence, the given flow field is not physically possible since it does not satisfy the continuity equation. 

2 2ˆ ˆ ˆ( 2 ) (2 ) ( 2 2 )xz xy z z xz yz= - + + + - -u i j k

0yx z
uu u

x y z
¶¶ ¶

+ + =
¶ ¶ ¶

( )2 2xu xz z
x x

¶ ¶
= - = -

¶ ¶

( )22 2yu xy z x
y y

¶ ¶
= + =

¶ ¶

( )2 2 2 2 2 2zu z xz yz z x y
z z

¶ ¶
= - - = - -

¶ ¶

2 2 2 2 2 2 0yx z
uu u z x z x y y

x y z
¶¶ ¶

+ + = - + + - - = - ¹
¶ ¶ ¶

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics
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Derive the continuity equation in cylindrical coordinates: 

 

 by considering the mass flux through an infinitesimal control volume which is fixed in space. 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
 
 
Let the density and velocity at the center of the control volume be r and u, respectively.  First determine 
the mass fluxes through each side of the control volume. 

 

 

 

 

 

 

 
The net mass flux out of the control volume is: 

 

 (1) 

( ) ( ) ( )1 1 0z
r

u u
r u

t r r r z
qr rr r

q
¶ ¶¶ ¶

+ + + =
¶ ¶ ¶ ¶

( ) ( )( ) ( )1
in,bottom 2z zm u u dz rdrd

z
r r q¶é ù= + -ê ú¶ë û

!

( ) ( )( ) ( )1
out,top 2z zm u u dz rdrd

z
r r q¶é ù= +ê ú¶ë û

!

( ) ( )( ) ( )1 1
in,front 2 2r rm u u dr r dr d dz

r
r r q¶é ù é ù= + - -ê ú ë û¶ë û

!

( ) ( )( ) ( )1 1
out,back 2 2r rm u u dr r dr d dz

r
r r q¶é ù é ù= + +ê ú ë û¶ë û

!

( ) ( )( ) ( )1
in,RHS 2m u u d drdzq qr r q

q
¶é ù= + -ê ú¶ë û

!

( ) ( )( ) ( )1
out,LHS 2m u u d drdzq qr r q

q
¶é ù= +ê ú¶ë û

!

( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( ) ( )( ) ( )

( )

out,net out,top in,bottom out,back in,front out,LHS in,RHS

1 1
2 2

1 1 1 1
2 2 2 2

z z z z

r r r r

m m m m m m m

u u dz rdrd u u dz rdrd
z z

u u dr r dr d dz u u dr r dr d dz
r r

uq

r r q r r q

r r q r r q

r

= - + - + -

¶ ¶é ù é ù= + - + -ê ú ê ú¶ ¶ë û ë û
¶ ¶é ù é ùé ù é ù+ + + - + - -ê ú ê úë û ë û¶ ¶ë û ë û

+

! ! ! ! ! ! !

( )( ) ( ) ( ) ( )( ) ( )

( )( ) ( ) ( ) ( ) ( ) ( )( ) ( )

1 1
2 2

z r r

u d drdz u u d drdz

u dz rdrd u dr u rdr d dz u d drdz
z r

q q q

q

r q r r q
q q

r q r r q r q
q

¶ ¶é ù é ù+ - + -ê ú ê ú¶ ¶ë û ë û
¶ ¶ ¶é ù é ù é ù= + + +ê ú ê ú ê ú¶ ¶ ¶ë û ë û ë û

( ) ( ) ( ) ( )out,net
1 r

r z
um u u u rdrd dz

r r z rq
r

r r r q
q

é ù¶ ¶ ¶ æ ö\ = + + +ê úç ÷¶ ¶ ¶ è øë û
!

dz 

dr dq 

r 
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The rate of increase of mass within the control volume is: 

 (2) 

 
From conservation of mass, the rate at which the mass inside the control volume increases plus the net rate 
at which mass leaves the control volume must be zero, i.e.: 

 

 

 
Hence: 

 (3) 

or, by combining the 2nd and last terms on the LHS: 

 (4) 

 
 

( ) ( )
within CV

dm rdrd dz rdrd dz
dt t t

rr q q¶ ¶
= =
¶ ¶

out,net
within CV

0dm m
dt

+ =!

( ) ( ) ( ) ( ) ( )1 0r
r z

urdrd dz u u u rdrd dz
t r r z rq

rr q r r r q
q

é ù¶ ¶ ¶ ¶ æ ö+ + + + =ê úç ÷¶ ¶ ¶ ¶ è øë û

( ) ( ) ( )1 0r
r z

uu u u
t r r z rq

rr r r r
q

¶ ¶ ¶ ¶ æ ö+ + + + =ç ÷¶ ¶ ¶ ¶ è ø

( ) ( ) ( )1 1 0r zr u u u
t r r r zq
r r r r

q
¶ ¶ ¶ ¶

+ + + =
¶ ¶ ¶ ¶
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The x-velocity component of a steady, 2D, incompressible flow is given by: 
 

Determine the most general velocity component in the y-direction for this flow. 
 
 
SOLUTION: 
 
Consider the continuity equation: 

 (1) 

 

Integrate uy with respect to y. 
 (2) 

where f(x) is an unknown function of x. 
 
Double check: 

 (3) 

 (4) 

   OK! (5) 

 

xu y x= -

0yx uu
x y

¶¶
+ =

¶ ¶

( ) 1y xu u
y x

y x x
¶ ¶ ¶

= - = - - =
¶ ¶ ¶

( )yu y f x= +

( ) 1xu y x
x x

¶ ¶
= - = -

¶ ¶

( ) 1yu y f x
y y

¶ ¶
= + =é ùë û¶ ¶

1 1 0yx uu
x y

¶¶
Þ + = - + =

¶ ¶
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Video solution: https://www.youtube.com/watch?v=fU0Ohc8_YcA
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5.3. A Review of Stress

5.3.1. Traction Vector (aka Stress Intensity, Stress Vector)

Consider a small area on or within a deformable body subject to both surface and body forces as shown in
Figure 5.6. The net force and moment acting on the area ∆Aν, where ∆A is the magnitude of the area and

Figure 5.6. The force and moment acting on a differential area within an object. The
differential area magnitude is ∆A and its unit normal vector is ν.

ν is its corresponding unit normal vector, are denoted by ∆F and ∆M , respectively. The traction vector
(aka stress intensity or stress vector) on the surface is defined as,

T ν := lim
∆A→0

∆F

∆A
, (5.63)

a vector with dimensions of force per unit area, and the couple stress vector on the surface is defined as,

Cν := lim
∆A→0

∆M

∆A
, (5.64)

a vector with dimensions of torque per unit area.

Notes:

(1) Usually Cν = 0 since body moments are rare. An example of a case in which body moments and,
thus the couple stress vector, is not zero is in a material comprised of polar or magnetic elements,
i.e., molecules or domains, subject to an external electric or magnetic field. In such a case, the
material elements will try to orient themselves in a preferred direction. The couple stress vector
may also be non-zero in powders in which the component particles have an aspect ratio greater than
one and, hence, tend to re-orient when under load.

(2) To completely describe the traction at a “point”, we need to know T ν for all orientations, ν, of the
differential surface area at that point.

(3) Let σij be the components of the traction vector T ν . Consider, for example, the tractions on
the faces of a differential cube as shown in Figure 5.7. The traction on each face in terms of its
components is,

T 1 = σ11ê1 + σ12ê2 + σ13ê3, (5.65)

T 2 = σ21ê1 + σ22ê2 + σ23ê3, (5.66)

T 3 = σ31ê1 + σ32ê2 + σ33ê3, (5.67)

(5.68)

where êi are the unit direction vectors of the axes. The quantity σij is known as the stress tensor.
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Figure 5.7. The traction vectors and stress components on the faces of a cube.

5.3.2. Stress Sign Convention

The sign convention for stresses are as follows:

(1) A positive face is a face that has a normal vector pointing in a positive direction.
(2) Positive stresses on positive faces point in the positive direction.
(3) Positive stresses on negative faces point in the negative direction.
(4) The first subscript on the stress refers to the face on which the stress acts. The second subscript

refers to the direction in which the stress acts.

Figure 5.8 shows positive stresses on all of the cube’s faces.

(a) Positive stresses on positive faces. (b) Positive stresses on negative faces.

Figure 5.8. Figures illustrating the stress sign convention.

Notes:

(1) σii (no sum) are referred to as normal stresses.
(2) σij (i 6= j) are referred to as shear stresses.
(3) negative normal stresses =⇒ compression
(4) positive normal stresses =⇒ tension

C. Wassgren 547 2024-02-01



Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

5.3.3. Cauchy’s Formula

Cauchy’s formula is used to determine the traction vector on an arbitrarily-oriented surface with an orientation
vector, ν, given the stress tensor. Consider the small tetrahedral element shown in Figure 5.9. The area of

Figure 5.9. The traction vector on the face of a tetrahedral element of material and the
stress components on the “back” faces of the element.

each face is,

dAν = dAν (ν1ê1 + ν2ê2 + ν3ê3) , (5.69)

|dAν | = dAν , (5.70)

|dAê1 | = dAν · ê1 = dAνν1, (5.71)

|dAê2 | = dAν · ê2 = dAνν2, (5.72)

|dAê3 | = dAν · ê3 = dAνν3. (5.73)

Apply Newton’s Second Law to the element in the x1 direction,

(ρdV )ẍ1 =
∑

F1 = (T ν · ê1) dAν − σ11|dAê1 | − σ21|dAê2 | − σ31|dAê3 |+ f1ρdV, (5.74)

=⇒ T ν1 dA
ν = σ11dA

νν1 + σ21dA
νν2 + σ31dA

νν3 + (ẍ1 − f1) ρdV, (5.75)

=⇒ T ν1 = σ11ν1 + σ21ν2 + σ31ν3 + (ẍ1 − f1) ρ
dV

dAν
, (5.76)

but,

lim
dV→0

(
dV

dAν

)
= 0 =⇒ T ν1 = σ11ν1 + σ21ν2 + σ31ν3, (5.77)

and, finally,

T ν1 = σj1νj . (5.78)

A similar approach may be followed to drive expressions for the x2 and x3 directions. In general,

T νi = σjiνj Cauchy’s Formula. (5.79)

Cauchy’s formula may be used to determine the traction, T ν , on a surface with an orientation, ν, given the
stress tensor, σji, at the point of interest. For example, consider the surface shown in Figure 5.10, which
shows how the traction on that surface is comprised of the stress components on the surface.
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Figure 5.10. An illustration showing how the traction vector on a surface is comprised of
the stress components on the surface.

5.3.4. Symmetry of the Stress Tensor

Consider the Angular Momentum Equation applied to the small element of material shown in Figure 5.11
(only the stresses acting on the positive faces and causing rotations about the x3 axis are shown for clarity).
Also note that no body couples are assumed to act on the element. Using Newton’s Second Law for rotational

Figure 5.11. An illustration showing the stress components (on positive faces) causing a
moment about the x3 axis.

moments in the x3-direction,

I3︸︷︷︸
∼[dx1dx2dx3(dx21+dx

2
2)]

ω̇3 =

[
σ12 +

∂σ12

∂x1

(
1

2
dx1

)]
dx2dx3

(
1

2
dx1

)
+

[
σ12 +

∂σ12

∂x1

(
−

1

2
dx1

)]
dx2dx3

(
1

2
dx1

)

−
[
σ21 +

∂σ21

∂x2

(
1

2
dx2

)]
dx1dx3

(
1

2
dx2

)
−
[
σ21 +

∂σ21

∂x2

(
−

1

2
dx2

)]
dx1dx3

(
1

2
dx2

) (5.80)

Dividing through by the volume (dx1dx2dx3) and taking the limit as dx1, dx2, dx3 → 0 gives,

σ21 = σ12. (5.81)

A similar approach can be taken about the x1 and x2 axes to arrive at the general result,

σij = σji . (5.82)

The stress tensor is symmetric when no couple stresses are present!
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Another approach to proving symmetry of the stress tensor is to write the Angular Momentum Equation
explicitly for the small element, again assuming no body couples,ˆ

Vsys

εijkrjfkρdV︸ ︷︷ ︸
torque due to
body forces

+

ˆ
Ssys

εijkrj σlknl︸ ︷︷ ︸
=Tk

dA

︸ ︷︷ ︸
torque due to
surface forces

=
D

Dt

ˆ
Vsys

εijkrjukρdV︸ ︷︷ ︸
rate at which the element’s
angular momentum changes

. (5.83)

Using the Divergence Theorem, the surface integral may be written as a volume integral,

ˆ
Ssys

εijkrjσlknldA =

ˆ
Vsys

εijk
∂

∂xi
(rjσlk) dV =

ˆ
Vsys

εijk

δjlσlk︸ ︷︷ ︸
=σjk

+rjσlk,l

 dV. (5.84)

Substituting this last equation into the previous one and simplifying (note that the element mass remains
constant), ˆ

Vsys

εijkrjfkρdV +

ˆ
Vsys

εijk (σjk + rjσlk,l) dV =
D

Dt

ˆ
Vsys

εijkrjukρdV, (5.85)

ˆ
Vsys

εijk

rjρfk + σjk + rjσlk,l − ρ
D

Dt
(rjuk)︸ ︷︷ ︸

=rj
Duk
Dt +

Drj
Dt uk

 dV = 0. (5.86)

Note that Drj/Dt = uj and εijkujuk = 0 (i.e., u× u = 0). Re-arranging the previous equation gives,ˆ
Vsys

εijk

[
rj

(
ρfk + σlk,l − ρ

Duk
Dt

)
+ σjk

]
dV = 0. (5.87)

As the volume of the cube becomes very small (dV → 0), the r vector also becomes very small. Hence,

lim
dV→0

{ˆ
Vsys

εijk

[
rj

(
ρfk + σlk,l − ρ

Duk
Dt

)
+ σjk

]
dV

}
=

ˆ
Vsys

εijkσjkdV = 0. (5.88)

Since the volume is arbitrary,
εijkσjk = 0. (5.89)

Now apply the permutation tensor to both sides of the equation and utilize an identity,

εilmεijkσjk = 0, (5.90)

(δljδmk − δlkδmj)σjk = 0, (5.91)

σlm − σml = 0, (5.92)

∴ σml = σlm . (5.93)

Thus, the stress tensor is symmetric (again, assuming no body couples).
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The material element shown below has the following stress tensor components: 
 
 
 

 

 
 
 
 

a. Find the components of the traction vector, T, on the plane described by the unit normal vector, n. 
b. Determine the component of T parallel to n. 
c. Determine the component of T perpendicular to n. 
d. Determine the angle between T and n. 
 
 
SOLUTION: 
First determine the components of the unit normal vector, n, by taking the cross product of the vector 
pointing from (1, 0, 0) to (0, 2, 0) with the vector pointing from (1, 0, 0) to (0, 0, 1) then normalizing. 

 (1) 

 (2) 
 

Next, use Cauchy’s formula to determine the traction vector, T. 
 (3) 

Þ   

 (4) 
 

The component of T parallel to n is found by taking the dot product T × n. 
 (5) 

 (6) 
 

The component of T perpendicular to n is found by taking the difference between T and T||n. 
 (7) 

 (8) 
 

The angle between T and n can be determined from the dot product between the two vectors. 

  Þ   (9) 

 

 (10) 
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The velocity profile in a two-dimensional flow is ux  = U[1-(y/h)2].  The stress tensor for the flow is: 

 

Find the stress normal and tangential to a plane located at y/h = ½ with its normal at a 30° angle to the flow 
direction. 
 
 
SOLUTION: 
 
The unit normal vector for the plane is: 

 (1) 

where q = 30°. 
 
The stress normal to the plane is: 

  where  is the traction vector for the plane (2) 

 (3) 

 (4) 

 (5) 

For y = ½h and q = 30°: 

 (6) 

 
The vector tangent to the plane is: 

   (Note:  .) (7) 
The stress tangent to the plane is: 

 (8) 

 (9) 

 (10) 

 (11) 

For y = ½h and q = 30°: 

 (12) 
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5.4. The Momentum Equations (aka the Linear Momentum Equations for a Differential Control
Volume)

The Momentum Equations, which are the Linear Momentum Equations for a differential fluid element or
control volume, can be derived several different ways. Three of these methods are given in this section.

Method 1: Apply the integral approach to the differential control volume shown in Figure 5.12. Assume that

Figure 5.12. The differential control volume on which the Linear Momentum Equations
are applied.

the density and velocity are ρ and u, respectively, at the control volume’s center. Consider the x-momentum
equation first. The x-momentum flow rate through each of the side of the control volume is,

(ṁxux)in through left = (ṁxux)center +
∂ (ṁxux)center

∂x

(
−1

2
dx

)
, (5.94)

= (ρuxdydzux) +
∂

∂x
(ρuxdydzux)

(
−1

2
dx

)
, (5.95)

=

[
ρuxux +

∂

∂x
(ρuxux)

(
−1

2
dx

)]
(dydz) , (5.96)

where ṁx,center is the mass flow rate in the x-direction at the center of the control volume. Similarly,

(ṁxux)out through right =

[
ρuxux +

∂

∂x
(ρuxux)

(
1

2
dx

)]
(dydz) , (5.97)

(ṁyux)in through bottom =

[
ρuyux +

∂

∂y
(ρuyux)

(
−1

2
dy

)]
(dxdz) , (5.98)

(ṁyux)out through top =

[
ρuyux +

∂

∂y
(ρuyux)

(
1

2
dy

)]
(dxdz) , (5.99)

(ṁzux)in through back =

[
ρuzux +

∂

∂z
(ρuzux)

(
−1

2
dz

)]
(dxdy) , (5.100)

(ṁzux)out through front =

[
ρuzux +

∂

∂z
(ρuzux)

(
1

2
dz

)]
(dxdy) . (5.101)

Thus, the net x-momentum flow rate out of the control volume is,

(ṁux)net, out of CV =

[
∂

∂x
(ρuxux) +

∂

∂y
(ρuyux) +

∂

∂z
(ρuzux)

]
(dxdydz) . (5.102)

The rate at which the x-momentum increases within the control volume is,

∂

∂t
(mux)within CV =

∂

∂t
(uxρdxdydz) =

∂

∂t
(uxρ) (dxdydz) , (5.103)
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where ρ and ux are the density and x-component of the velocity, respectively, at the center of the control
volume. Note that since these quantities vary linearly within the control volume (from the Taylor Series
approximation), the averages within the control volume are simply ρ and ux.

The forces acting on the control volume include both body and surface forces. The body force acting on the
control volume in the x-direction, FB,x, can be written as,

FB,x = fB,xρ (dxdydz) , (5.104)

where fB,x is the body force per unit mass acting in the x-direction. For example, for weight, the body force
per unit mass acting in the x-direction is simply gx.

The surface forces acting on the control volume include both normal and tangential forces. Writing the
surface force acting in the x-direction, FS,x, in terms of stresses,

FS,x =−
[
σxx +

∂σxx
∂x

(
−1

2
dx

)]
(dydz)︸ ︷︷ ︸

normal force on left face

+

[
σxx +

∂σxx
∂x

(
1

2
dx

)]
(dydz)︸ ︷︷ ︸

normal force on right face

−
[
σyx +

∂σyx
∂y

(
−1

2
dy

)]
(dxdz)︸ ︷︷ ︸

shear force on bottom face

+

[
σyx +

∂σyx
∂y

(
1

2
dy

)]
(dxdz)︸ ︷︷ ︸

shear force on top face

−
[
σzx +

∂σzx
∂z

(
−1

2
dz

)]
(dxdy)︸ ︷︷ ︸

shear force on back face

+

[
σzx +

∂σzx
∂z

(
1

2
dz

)]
(dxdy)︸ ︷︷ ︸

shear force on front face

,

(5.105)

∴ FS,x =

[
σxx
∂x

+
σyx
∂y

+
σzx
∂z

]
(dxdydz) . (5.106)

The Linear Momentum Equation in the x-direction states that the rate of increase of x linear momentum
within the control volume plus the net rate at which x linear momentum leaves the control volume must
equal the net force in the x direction acting on the control volume,

∂

∂t
(mux)within CV + (ṁux)net, out of CV = FB,x + FS,x. (5.107)

Substituting Eqs. (5.102), (5.103), (5.104), and (5.106) into Eq. (5.107) gives,

∂

∂t
(uxρ) (dxdydz) +

[
∂

∂x
(ρuxux) +

∂

∂y
(ρuyux) +

∂

∂z
(ρuzux)

]
(dxdydz) =

fB,xρ (dxdydz) +

[
∂σxx
∂x

+
∂σyx
∂y

+
∂σzx
∂z

]
(dxdydz) ,

(5.108)

∂

∂t
(uxρ) +

∂

∂x
(ρuxux) +

∂

∂y
(ρuyux) +

∂

∂z
(ρuzux) = ρfB,x +

∂σxx
∂x

+
∂σyx
∂y

+
∂σzx
∂z

. (5.109)

A similar approach can be taken to determine the y and z-components of the Momentum Equations. All
three components of the Momentum Equations can be written in the following compact (index notation)
form,

∂

∂t
(uiρ) +

∂

∂xj
(ρujui) = ρfB,i +

∂σji
∂xj

. (5.110)

In vector notation, the Momentum Equations can be written as,

∂

∂t
(uρ) + (u ·∇) (ρu) = ρfB + ∇ · σT . (5.111)

Note that σT = σ since the stress tensor is symmetric.
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Expanding the left-hand side of Eq. (5.110) and utilizing the Continuity Equation,

∂

∂t
(uiρ) +

∂

∂xj
(ρujui) = ui

∂ρ

∂t
+ ρ

∂ui
∂t

+ ui
∂

∂xj
(ρuj) + ρuj

∂ui
∂xj

= ui

[
∂ρ

∂t
+

∂

∂xj
(ρuj)

]
︸ ︷︷ ︸

=0 (Continuity Eq.)

+ρ

(
∂ui
∂t

+ uj
∂ui
∂xj

)
︸ ︷︷ ︸

=
Dui
Dt

. (5.112)

Substituting back into Eq. (5.110),

ρ
Dui
Dt

= ρfB,i +
∂σji
∂xj

. (5.113)

Method 2: Apply Newton’s Second Law directly to a small piece of fluid,

D

Dt
(uiρdxdydz) = fB,iρ (dxdydz) +

∂σji
∂xj

(dxdydz) , (5.114)

where the determination of the body and surface forces are described in Method 1. Expanding the Lagrangian
derivative gives,

D

Dt
(uiρdxdydz) =

Dui
Dt

(ρdxdydz) + ui
D

Dt
(ρdxdydz) , (5.115)

but the second term on the right-hand side of this equation is zero since the mass of the fluid element remains
constant. Thus, Eq. (5.114) can be simplified to,

ρ
Dui
Dt

= ρfB,i +
∂σji
∂xj

, (5.116)

which is the same result found using Method 1.

Method 3: Recall that the integral form of the Linear Momentum Equations is,

d

dt

ˆ
CV

uiρdV +

ˆ
CS

ui (ρurel · dA) = FB,i + FS,i. (5.117)

Consider a fixed control volume so that,

d

dt

ˆ
CV

uiρdV =

ˆ
CV

∂ (uiρ)

∂t
dV and urel = u. (5.118)

Note that the body force can be written as,

FB,i =

ˆ
CV

fB,iρdV, (5.119)

and the surface forces can be written as,

FS,i =

ˆ
CS

σjinjdA. (5.120)

Utilizing Gauss’ Theorem (aka the Divergence Theorem), we can convert the area integrals into volume
integrals, ˆ

CS

ui (ρu · dA) =

ˆ
CV

∇ · (uiρu) dV =

ˆ
CV

∂

∂xj
(ρujui) dV, (5.121)

ˆ
CS

σjinjdA =

ˆ
CV

∂σji
∂xj

dV. (5.122)

Substituting these expressions back into the Linear Momentum Equations,ˆ
CV

[
∂

∂t
(uiρ) +

∂

∂xj
(ρujui)− ρfB,i −

∂σji
∂xj

]
dV = 0. (5.123)
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Since the choice of control volume is arbitrary, the kernel of the integral must be zero, i.e.,

∂

∂t
(uiρ) +

∂

∂xj
(ρujui)− ρfB,i −

∂σji
∂xj

= 0. (5.124)

This is the same expression as Eq. (5.110) so we see that the final result will be the same,

ρ
Dui
Dt

= ρfB,i +
∂σji
∂xj

. (5.125)

Notes:

(1) In order to be more useful to us, we need to have some way of relating the stresses acting on the fluid
element (or control volume) to other properties of the flow, namely the velocities. This connection
is accomplished using a constitutive law, which in this case relates the stresses to the strain rates
for a particular fluid or class of fluids.

(2) Equation (5.113) is valid for any continuous substance.
(3) Equation (5.110) is the conservative form (i.e., Eulerian form) of the Linear Momentum Equations.

Equation (5.113) is the non-conservative form (i.e., Lagrangian form).
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Consider the flow of a mixture of liquid water and small water vapor bubbles.  The bubble diameters are 
very small in comparison to the length scales of interest in the flow so that the properties of the mixture can 
be considered point functions.  For example, the density of the mixture at a “point” can be written as: 

 
where rM is the mixture density, rL is the liquid density, rV is the vapor density, and a is the “void 
fraction” or the fraction of volume that is vapor in a unit volume of the mixture.  Assume that evaporation 
occurs at the bubble surface so that the liquid water turns to water vapor at a mass flow rate per unit volume 
denoted by s. 
 
a. What is the continuity equation for the mixture? 
b. What is the continuity equation for the liquid water phase? 
c. What are the momentum equations for the liquid water phase?   
 
 
SOLUTION: 
 
The continuity equation for the mixture will be the “normal” continuity equation: 

 (1) 

To show that this relation is true, consider the control volume shown below. 
 
 
 
 
 
 
 
 

The rate of change of mass within the control volume is: 

 (2) 

 
The net mass flux into the CV in the x-direction is: 

 (3) 

Following a similar approach in the y and z directions gives: 

 (4) 

 (5) 

 
Thus, from conservation of mass: 

 (6) 

 (7) 
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To determine the continuity equation for the liquid water phase, consider the control volume drawn below 
where the CV surrounds each vapor bubble.  
 
 
 
 
 
 
 
 
 
 
The rate of change of liquid mass within the control volume is: 

     (8) 

 
The net liquid mass flux into the CV in the x-direction is: 

 (9) 

Following a similar approach in the y and z directions gives: 

 (10) 

 (11) 

The rate at which liquid mass is being converted to vapor mass is: 
 (12) 

 
Thus, from conservation of mass: 

 (13) 

  (continuity eqn. for liquid phase) (14) 

 
To determine the momentum equations for the liquid phase, apply the momentum equation to the same 
control volume used to derive the liquid phase continuity equation.  The change in momentum of liquid 
within the CV is: 

 (15) 

 
The net flux of linear momentum out of the CV through the sides of the CV is: 

 (16) 

(Note that the term involving s is the rate at which momentum leaves the liquid phase due to the fact 
that the liquid is evaporating.) 
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The surface forces acting on the control surface are: 

 (17) 

Note that the stress terms are the surfaces forces acting on the sides of the CV.  The term fVonL,i is the force 
per unit mass that the vapor phase exerts on the liquid phase, and the last term in Eqn. (17) is the body 
force acting on the liquid phase where gi is the body force per unit mass. 
 
Substituting into the linear momentum equation and simplifying results in: 

 (18) 

 
The continuity equation derived previously for the liquid phase (Eqn. (14)) could be used to further 
simplify the momentum equation, if desired. 
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5.5. Fluid Element Deformations

In order to relate the stresses acting on a fluid element to the other variables in the Momentum Equations,
we need to determine a constitutive law. The constitutive law should relate the stresses to the rates of strain
(or deformation rates) of a fluid element. For a solid, the necessary constitutive law relates the stresses to
the strains (or deformations). In order to derive an appropriate constitutive law, we must first discuss the
general types of deformations that can occur for a fluid element and then describe, in mathematical terms,
the rates at which these deformations occur.

Any general deformation can be decomposed into a combination of translation, dilation (aka dilatation), rigid
body rotation, and angular deformation as shown in Figure 5.13.

Figure 5.13. Any general deformation can be divided into four fundamental deformations:
translation, dilation, angular deformation, and rigid body rotation.

Now let’s describe the rate at which each of these deformations occurs.

Translation: The rate of translation is described by the time rate of change of the position of the element
(Figure 5.14), i.e., the velocity,

rate of translation =
dx

dt
= u. (5.126)

Figure 5.14. Translation of a fluid element.

Dilation (aka Dilatation): The rate of dilation can be described by the rate at which the relative volume of
the element increases with time,

volumetric dilation rate, θ :=
1

V

dV

dt
. (5.127)

The velocity of point A relative to point O in the x1 direction is (Figure 5.15),

u1 =
∂u1

∂x1
dx1. (5.128)
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Figure 5.15. Dilation of a fluid element.

Thus, point A “stretches” the element in the x1 direction over time dt a distance of,

∂u1

∂x1
dx1dt. (5.129)

The increase in volume of the element due to the relative movement of point A is,

dVA =

(
∂u1

∂x1
dx1dt

)
dx2dx3. (5.130)

A similar approach can be followed for stretching in the x2 and x3 directions. The total increase in the
element volume is,

dV =

(
∂u1

∂x1
+
∂u2

∂x2
+
∂u3

∂x3

)
dx1dx2dx3dt. (5.131)

Note that higher order volume terms have been neglected in deriving the previous result (Figure 5.16).

Figure 5.16. Dilation of a fluid element showing the regions of increased volume, including
the part that is neglected since it’s a higher order term volume (H.O.T.).

The volumetric dilation rate is, thus,

θ :=
1

V

dV

dt
=

(
∂u1

∂x1
+ ∂u2

∂x2
+ ∂u3

∂x3

)
dx1dx2dx3dt

dx1dx2dx3dt
, (5.132)

θ =
∂u1

∂x1
+
∂u2

∂x2
+
∂u3

∂x3
=
∂ui
∂xi

= ∇ · u. (5.133)

Notes:

(1) For an incompressible fluid, the volumetric dilation rate is zero since, if the volume of the element
changes, the density must also change (from Conservation of Mass).

Angular Deformation: The rate of angular deformation in the 1-2 plane (Figure 5.17) can be described as
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Figure 5.17. Angular deformation of a fluid element.

the average rate at which the sides of the element approach one another, i.e., the average rate at which the
angles AOA’ and BOB’ increase. The angle AOA’ (dα) is,

tan(dα) =
∂u2

∂x1
dx1dt

dx1
. (5.134)

Since the angle dα is very small, tan(dα) ≈ dα and,

dα =
∂u2

∂x1
dt. (5.135)

Similarly, the angle BOB’ (dβ) is,

dβ =
∂u1

∂x2
dt. (5.136)

Define the rate of angular deformation, S12 (aka rate of shearing strain), in the 1-2 plane as the average time
rate of change of these two angles,

S12 :=
1

2

(
dα

dt
+
dβ

dt

)
=

1

2

(
du2

dx1
+
du1

dx2

)
. (5.137)

Similarly, we can determine the angular deformation rate in the 1-3 and 2-3 planes,

S13 =
1

2

(
du3

dx1
+
du1

dx3

)
and S23 =

1

2

(
du3

dx2
+
du2

dx3

)
. (5.138)

Combine the angular deformation rate and the dilation rate into one tensor quantity called the shearing
strain tensor, Sij ,

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (5.139)

Notes:

(1) Dilation rate is the trace of Sij ,

θ = trace(Sij) = Sii = S11 + S22 + S33 =
∂u1

∂x1
+
∂u2

∂x2
+
∂u3

∂x3
. (5.140)

(2) The shearing strain tensor is symmetric, i.e., Sij = Sji.

Rigid Body Rotation: The rate at which the fluid element, shown in Figure 5.18, rotates about the 3-axis in
rigid body motion can be described as the average rate at which the sides of the element rotate in the same
direction. The rotation rate about the 3-axis, Ω3, is,

Ω3 :=
1

2

(
dα

dt
+
dβ

dt

)
=

1

2

(
∂u2

∂x1
− ∂u1

∂x2

)
. (5.141)
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Figure 5.18. A fluid element undergoing rigid body rotation.

Note that the angle dβ in Figure 5.18 is different than the dβ in Figure 5.17. Rotations about the 1 and 2
axes can be found in a similar manner,

Ω1 =
1

2

(
∂u3

∂x2
− ∂u2

∂x3

)
and Ω2 =

1

2

(
∂u1

∂x3
− ∂u3

∂x1

)
. (5.142)

The rate of rotation of the element can be summarized using the rotation rate vector, Ω,

Ω =
1

2

(
∂u3

∂x2
− ∂u2

∂x3

)
ê1 +

1

2

(
∂u1

∂x3
− ∂u3

∂x1

)
ê2 +

1

2

(
∂u2

∂x1
− ∂u1

∂x2

)
ê3, (5.143)

=
1

2
(∇× u) . (5.144)

Notes:

(1) The rotation rate vector, Ω, is written in index notation form as,

Ωi =
1

2
εijk

∂uk
∂xj

. (5.145)

(2) The rotation rate vector can also be written as an anti-symmetric rotation rate tensor, Rij ,

Rij :=
1

2

(
∂ui
∂xj
− ∂uj
∂xi

)
= −εijkΩk (Note: Rij = −Rji), (5.146)

where Rij is the rotation rate in the i− j plane. Note that the diagonal elements of the tensor Rij
are zero.

(3) The vorticity, ω, of a fluid element (a vector quantity) is defined to be twice the rotation rate of
the element,

ω := 2Ω = ∇× u, (5.147)

or in index notation,

ωi = εijk
∂uk
∂xj

. (5.148)

An irrotational flow is one in which ω = 0. A rotational flow is one in which ω 6= 0.

Now that we have described the deformation rate components (e.g., dilation, angular deformation, and rigid
body rotation; translations are treated separately) of a fluid element, let’s combine these into a single tensor
quantity known as the deformation rate tensor, eij ,

eij :=
∂ui
∂xj

= Sij +Rij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
+

1

2

(
∂ui
∂xj
− ∂uj
∂xi

)
. (5.149)
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We will use the deformation rate tensor when deriving the constitutive relations between stress and strain
(deformation) rates in a fluid.
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A fluid has a velocity field given by 
 

At the location (x, y, z) = (-2, -1, 2), calculate: 
a. the normal and shearing strain rates at the location, and  
b. the rotational velocity of the fluid. 
 
 
SOLUTION: 
The strain rate tensor is given by, 

 

so that the normal strain rates are, 

 

 

and the shearing strain rates are, 

 

 

 
The rotational velocity of a fluid element is given by, 

  (Note that the vorticity is twice the rotation rate, i.e., w = 2W.) 

and, thus, for the given case, 

 

  (Fluid elements are not rotating anywhere!  The flow is irrotational.) 
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5.6. Stress-Strain Rate Relations for a Newtonian Fluid

The following assumptions are based on observation and intuition. The key assumptions in deriving the
stress-strain rate constitutive relations for a Newtonian fluid are:

(1) When the fluid is at rest, the pressure exerted on the fluid is the thermodynamic pressure, p.
(2) For a Newtonian fluid, the stress tensor, σij , is linearly related to the deformation rate tensor, ekl,

and depends only on that tensor.
(3) There are no preferred directions in the fluid so that the fluid properties are point functions. This

is the condition of isotropy.

Now let’s examine how these assumptions aid us in deriving the appropriate constitutive law.

Assumption 1: When the fluid is at rest, the pressure exerted by the fluid is the thermodynamic pressure, p.
This assumption implies the following,

σij = −pδij + τij , (5.150)

where τij is referred to as the viscous stress tensor (aka deviatoric stress tensor) and it is only a function of
the fluid motion, i.e., τij = 0 for a static fluid. Note that the pressure term is negative since compression of
the fluid element is indicated by a negative normal stress.

Assumption 2: For a Newtonian fluid, the stress tensor, σij , is linearly related to the deformation rate tensor,
ekl, and depends only on that tensor. The nine elements of τij can be written as a linear combination of the
nine elements of ekl,

τij = Aijklekl, (5.151)

where Aijkl is a tensor of rank 4 (81 elements) that depends only on the local state of the fluid.

Notes:

(1) Recall that the deformation rate tensor is given as,

ekl :=
∂uk
∂xl

= Skl +Rkl =
1

2

(
∂uk
∂xl

+
∂ul
∂xk

)
︸ ︷︷ ︸
symmetric, Skl=Slk

+
1

2

(
∂uk
∂xl
− ∂ul
∂xk

)
︸ ︷︷ ︸

anti-symmetric, Rkl=−Rlk

. (5.152)

(2) Air and water are common examples of Newtonian fluids.

Since the stress tensor, σij , is symmetric, τij must also be symmetric. In addition, since τij is symmetric,
the components of the Aijkl tensor multiplied by the anti-symmetric part of the deformation rate tensor, ekl,
must be zero. Thus,

τij =
1

2
Bijkl

(
∂uk
∂xl

+
∂ul
∂xk

)
, (5.153)

where Bijkl is the Aijkl tensor with the Aijkl components multiplied by the components of the anti-symmetric
part of ekl set equal to zero.

Assumption 3: There are no preferred directions in the fluid so the fluid properties are point functions. This
condition is known as the condition of isotropy. The condition of isotropy means that the fluid properties
are the same in all directions. Examples of non-isotropic materials include fluids comprised of long chain
molecules or oriented fibrous solids such as wood. It can be shown (out of the scope of these notes) that the
most general fourth-order isotropic tensor can be written as,

Bijkl = λδijδkl + µ (δikδjl + δilδjk) + γ (δikδjl − δilδjk) , (5.154)

where λ, µ, and γ are scalar properties.

Substitute Eq. (5.154) into Eq. (5.153) and simplify,

τij =
1

2
[λδijδkl + µ (δikδjl + δilδjk) + γ (δikδjl − δilδjk)]

(
∂uk
∂xl

+
∂ul
∂xk

)
, (5.155)
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where,

1

2
λδijδkl

(
∂uk
∂xl

+
∂ul
∂xk

)
=

1

2
λδij

(
2
∂uk
∂xk

)
= λδij

∂uk
∂xk

, (5.156)

1

2
µ (δikδjl + δilδjk)

(
∂uk
∂xl

+
∂ul
∂xk

)
=

1

2
µ

[(
∂ui
∂xj

+
∂uj
∂xi

)
+

(
∂uj
∂xi

+
∂ui
∂xj

)]
= µ

(
∂ui
∂xj

+
∂uj
∂xi

)
, (5.157)

1

2
γ (δikδjl − δilδjk)

(
∂uk
∂xl

+
∂ul
∂xk

)
=

1

2
γ

[(
∂ui
∂xj

+
∂uj
∂xi

)
−
(
∂uj
∂xi

+
∂ui
∂xj

)]
= 0, (5.158)

so that,

τij = λ
∂uk
∂xk

δij + µ

(
∂ui
∂xj

+
∂uj
∂xi

)
. (5.159)

Substituting Eq. (5.159) into Eq. (5.150) gives,

σij = −pδij + τij , (5.160)

= −pδij + λ
∂uk
∂xk

δij + µ

(
∂ui
∂xj

+
∂uj
∂xi

)
, (5.161)

∴ σij = −
(
p+ λ

∂uk
∂xk

)
δij + µ

(
∂ui
∂xj

+
∂uj
∂xi

)
. (5.162)

The boxed equation is the stress-strain rate constitutive relation for a Newtonian fluid.

Notes:

(1) The quantity, µ, is referred to as the dynamic viscosity.
(2) The quantity, λ, is referred to as the second coefficient of viscosity.
(3) How is the thermodynamic pressure related to the normal stresses? Define the mechanical pressure,

p̄, as the average of the normal stresses,

p̄ := −1

3
trace(σij) = −1

3
σii = −1

3
(σ11 + σ22 + σ33) . (5.163)

For a Newtonian fluid,

p̄ = −1

3
(σ11 + σ22 + σ33) , (5.164)

= −1

3

[(
−p+ λ

∂uk
∂xk

+ 2µ
∂u1

∂x1

)
+

(
−p+ λ

∂uk
∂xk

+ 2µ
∂u2

∂x2

)
+

(
−p+ λ

∂uk
∂xk

+ 2µ
∂u3

∂x3

)]
, (5.165)

= p− λ∂uk
∂xk
− 2

3
µ

(
∂u1

∂x1
+
∂u2

∂x2
+
∂u3

∂x3

)
, (5.166)

∴ p̄ = p−
(
λ+

2

3
µ

)
︸ ︷︷ ︸

=K

∂uk
∂xk

or p = p̄+

(
λ+

2

3
µ

)
︸ ︷︷ ︸

=K

∂uk
∂xk

, (5.167)

where K, bulk viscosity := λ+ 2
3µ. In general, the thermodynamic pressure is not the same as the mechanical

pressure. What then is the physical significance of the bulk viscosity, K, term? The mechanical pressure
is a measure of the translational energy only. The thermodynamic pressure, however, is a measure of the
total energy (translational, rotational, vibrational, etc.) The bulk viscosity, K, is a measure of the transfer
of energy from the translational mode to the other modes. For example, when fluid flows through a shock
wave, there is a considerable transfer of energy between the translational mode and the other modes; hence,
the bulk viscosity cannot be neglected for such a flow process.

For typical flows, however, the bulk viscosity is often neglected. For example,

(1) For monatomic gases the only energy mode is the translational mode so that,

K = 0 =⇒ p = p̄. (5.168)
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For polyatomic gases and liquids, the bulk viscosity is often small so we usually assume,

K ≈ 0 =⇒ p ≈ p̄. (5.169)

The assumption that the bulk viscosity is zero (or equivalently, λ = − 2
3µ) is known as Stokes’

Relation.
(2) For an incompressible fluid the velocity divergence term is zero (from the Continuity Equation) so

the bulk viscosity is irrelevant,

∂uk
∂xk

= 0 =⇒ p = p̄. (5.170)

(3) The bulk viscosity term is generally not negligible when there is a rapid expansion or contraction of
the fluid such as when fluid passes through a shock wave or when considering acoustic absorption.

(4) The stress tensor given in Eq. (5.162) can be substituted into the Momentum Equations to give the
Navier-Stokes Equations,

ρ
Dui
Dt

=
∂σji
∂xj

+ ρfi, (5.171)

ρ
Dui
Dt

= − ∂p

∂xi
+

∂

∂xi

(
λ
∂uk
∂xk

)
+

∂

∂xj

[
µ

(
∂ui
∂xj

+
∂uj
∂xi

)]
+ ρfi . (5.172)

For an incompressible fluid with constant dynamic viscosity,

ρ
Dui
Dt

= − ∂p

∂xi
+ µ

 ∂2ui
∂xi∂xj

+
∂

∂xi

∂uk
∂xk︸︷︷︸
=0

+ ρfi, (5.173)

ρ
Dui
Dt

= − ∂p

∂xi
+ µ

∂2ui
∂xi∂xj

+ ρfi or ρ
Du

Dt
= −∇p+ µ∇2u+ ρf . (5.174)

For an inviscid fluid (µ = 0) that follows Stokes’ Relation or is incompressible,

ρ
Dui
Dt

= − ∂p

∂xi
+ ρfi or ρ

Du

Dt
= −∇p+ ρf . (5.175)

These relations are known as Euler’s Equations. The Navier-Stokes Equations are the Momentum
Equations for a Newtonian fluid. Euler’s Equations are the Momentum Equations for an inviscid
fluid.
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Prove that a Newtonian fluid with constant viscosity in incompressible flow obeys the relation: 
 

where t is the viscous part of the stress tensor.   
 
 

 
SOLUTION: 
 
The viscous part of the stress tensor for an incompressible Newtonian fluid with constant viscosity is: 

 (1) 

Thus: 

 

 (2) 
 

 

2µÑ× = Ñτ u

ji
ij

j i

uu
x x

t µ
æ ö¶¶

= +ç ÷ç ÷¶ ¶è ø

( )

!

( )

22

2

0 (continuity)

2
2

ij ji
j

i i j i

ji

i j i i

ji

j i i i

j

j
i i

uu
x x x x

uu
x x x x

uu
x x x x

u
x x

t
µ

µ

µ µ

µ µ

=

æ ö¶ ¶¶¶
Ñ × = = +ç ÷ç ÷¶ ¶ ¶ ¶è ø

æ ö¶¶
= +ç ÷ç ÷¶ ¶ ¶ ¶è ø

¶æ ö¶¶
= +ç ÷¶ ¶ ¶ ¶è ø

¶
= = Ñ

¶ ¶

τ
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Consider a 3D steady flow of an incompressible, Newtonian liquid with a velocity field given by: 
 

There are no body forces acting on the flow and the pressure at the origin is p0. 
a. Show that the continuity equation is satisfied, 
b. Determine the pressure field. 
c. Determine the vorticity field. 
 
 
SOLUTION: 
The Continuity Equation is: 

    Continuity is satisfied! 

 
The pressure field may be found using the Navier-Stokes equations.  Note that the body forces are zero. 

   

  Þ   

Þ   

  Þ     

Þ   

  Þ     

Þ   
Combining the previous expressions and noting that p(0, 0, 0) = p0: 

 
 

The vorticity field is: 

 

 

 

 

  The flow is irrotational!  

Note that the viscous force terms in the Navier-Stokes equation are zero (µui,jj = 0 ). 
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5.7. Acceleration of a Fluid Particle in Streamline Coordinates

Often it’s helpful to use streamline coordinates (s, n) instead of Cartesian coordinates (x, y) when describing
the motion of a fluid particle. Let’s determine a fluid particle’s acceleration parallel (s-direction) and normal
(n-direction) to a streamline for a steady, 2D flow. Consider Figure 5.19.

Figure 5.19. An illustration of a streamline coordinate system.

Notes:

(1) The coordinates (s, n) are just like (x, y) coordinates. They specify the location of the fluid particle.
(2) Lines of constant s and n are perpendicular.
(3) The unit vector ŝ points in the direction tangent to the streamline.
(4) The unit vector n̂ points toward the center of curvature of the streamline.

The acceleration of the fluid particle is,

a =
Du

Dt
, (5.176)

where u = uŝ. Substituting and expanding gives,

a =
D(uŝ)

Dt
= ŝ

Du

Dt
+ u

Dŝ

Dt
. (5.177)

Now expand the Lagrangian derivative terms keeping in mind that u = u(s, n),

Du

Dt
=

∂u

∂t︸︷︷︸
=0,

(steady)

+ un︸︷︷︸
=0,

(flow tangent

to streamline)

∂u

∂n
+ us︸︷︷︸

=u,
(flow tangent

to streamline)

∂u

∂s
= u

∂u

∂s
, (5.178)

and,
Dŝ

Dt
=

∂ŝ

∂t︸︷︷︸
=0,

(steady)

+ un︸︷︷︸
=0,

(flow tangent

to streamline)

∂ŝ

∂n
+ us︸︷︷︸

=u,
(flow tangent

to streamline)

∂ŝ

∂s
= u

∂ŝ

∂s
. (5.179)

To determine how ŝ varies with the s-coordinate, consider Figure 5.20. Note that the triangles AOB and
A’O’B’ are similar. Hence,

ds

R
=
|dŝ|
|ŝ|︸︷︷︸
=1

= |dŝ| =⇒ |dŝ|
ds

=
1

R
. (5.180)
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Figure 5.20. Illustration showing how the change in the ŝ direction varies with the s coordinate.

Also, as ds→ 0, dŝ points in the n̂ direction so,

dŝ

ds
=

1

R
n̂. (5.181)

Substituting Eq. (5.181) into Eq. (5.179),
Dŝ

Dt
=
u

R
n̂. (5.182)

Substituting Eq. (5.182) and Eq. (5.178) into Eq. (5.177) gives the fluid particle acceleration in streamline
coordinates,

a =

(
u
∂u

∂s

)
︸ ︷︷ ︸
tangential

acceleration

ŝ+

(
u2

R

)
︸ ︷︷ ︸
normal

acceleration

n̂. (5.183)

C. Wassgren 572 2024-02-01



  accel_03 

Page 1 of 1 

Water flows through the curved hose shown below with an increasing speed of u = 10t ft/s, where t is in 
seconds.  For t = 2 s determine: 
a. the component of acceleration along the streamline, 
b. the component of acceleration normal to the streamline, and 
c. the net acceleration (magnitude and direction). 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
The acceleration component in the streamline direction is, 

, (1) 

where, 

  (The flow is unsteady.) 

  (The flow velocity doesn’t change with respect to position along the streamline.) 

 

 
The acceleration component normal to the streamline is, 

, (2) 

where, 

   (The velocity is evaluated at t = 2 s.) 

  (The acceleration is toward the center of curvature.) 

 
The net acceleration is, 

 (3) 

 

 

 

 
 

s
u ua u
t s
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¶ ¶
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¶
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¶
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2
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2

n
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=
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s20 ft
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2
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5.8. Euler’s Equations in Streamline Coordinates

Recall from previous analyses (Section 5.6) that the differential equations of motion for a fluid particle in an
inviscid flow in a gravitational field are,

ρ
Du

Dt
= −∇p+ ρg Euler’s Equations. (5.184)

For simplicity, further assume that we’re dealing with a 2D, steady flow. Now write Eq. (5.184) in streamline
coordinates (s, n) (Figure 5.21),

s− direction: ρas = −∂p
∂s

+ ρgs, (5.185)

n− direction: ρan = − ∂p
∂n

+ ρgn. (5.186)

Figure 5.21. A fluid particle in streamline coordinates.

Recall that in streamline coordinates (refer to the previous section),

as = u
∂u

∂s
and an =

u2

R
, (5.187)

so that Eqs. (5.185) and (5.186) become,

u
∂u

∂s
= −1

ρ

∂p

∂s
+ gs, (5.188)

u2

R
= −1

ρ

∂p

∂n
+ gn. (5.189)

These are the 2D, steady Euler’s Equations in streamline coordinates.

We can draw an important and very useful conclusion from Eq. (5.189). For a flow moving in a straight line
(R→∞) and neglecting gravity (gn = 0) we have,

∂p

∂n
= 0, (5.190)

i.e., the pressure does not change normal to the direction of the flow! This result is very helpful when
considering the pressure in a free jet (Figure 5.22). Since free jets typically have negligible curvature and
gravitational effects, the pressure everywhere normal to the free jet will be the same!

Similarly, for a flow with parallel streamlines adjacent to a flat boundary (Figure 5.23), the pressure gradient
normal to the flow is,

0 = −1

ρ

∂p

∂n
+ g =⇒ ∂p

∂n
= ρg. (5.191)

Thus, the pressure normal to the flow varies hydrostatically.

Now consider flow in a bend, as shown in Figure 5.24. Here, in the n̂ direction,

u2

R
= −1

ρ

∂p

∂n
=⇒ ∂p

∂n
= −ρu

2

R
. (5.192)
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Figure 5.22. Streamlines in a free jet with no gravity.

Figure 5.23. Streamlines for a flow parallel to a flat boundary.

Figure 5.24. Streamlines in a curved bend.

Thus, the pressure increases as one moves in the negative n direction. The largest pressure is on the outside
of the bend while the smallest pressure is on the inside part of the bend. If the fluid is a liquid and the inside
bend pressure reaches the vapor pressure of the liquid, cavitation will occur.
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In the curved inlet section of a wind tunnel the velocity distribution has a streamline radius of curvature 
given by: 

 

As a first approximation, assume the air speed along each streamline is 20 m/s.  Evaluate the pressure 
change from the center line of the tunnel to the wall (located at y = L/2) if L = 150 mm and R0 = 0.6 m. 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
Apply Euler’s equation across the streamlines. 

 (1) 

Note that in the channel: 
  Þ   (2) 

 
Substitute for the curvature radius and solve for the pressure difference. 

  Þ   (3) 

 (4) 

 (5) 

 
Using the given data: 

r = 1.23 kg/m3  
V = 20 m/s 
R0 = 0.6 m 
L = 150e-3 m 
Þ  py=L/2 – py=0 = -30.8 Pa 

0 2
Lr R
y

=

2dp V
dr r
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Ly R r= + - dy dr= -
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0 2
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Ldy R
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2
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2 Vdp ydy
R L
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2

0

22

0 0
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y
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p p y
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R L
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=

= =
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04y L y
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The velocity distribution in a horizontal, two-dimensional bend through which an ideal fluid flows can be 
approximated: 

 

where r is the radius of curvature and k is a constant.  Show that the volumetric flow rate through the bend, 
Q, is related to the pressure difference, Dp = pB – pA, and fluid density, r, via: 

 

where C is a constant that depends upon the bend geometry. 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
Apply Euler’s equation across the streamlines: 

 (1) 

Substitute for the given velocity profile and solve the differential equation. 

   (2) 

 (3) 

 (4) 

Relate k to the volumetric flow rate using the velocity profile. 

 (5) 

 (6) 

 
Substitute Eqn. (6) into Eqn. (4) and simplify. 

 (7) 

 (8) 
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=
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Consider the steady, inviscid flow through a smooth, constant diameter pipe bend as shown in the figure below.  
Gravity may be neglected in this problem.  The fluid velocity in the bend is inversely proportional to the radius, i.e., 

, 

where k is a constant. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
How does the pressure difference, pB – pA, change as the radius RB increases (RA remains constant)?   
 
A. increases 
 
B. decreases 
 
C. remains the same 
 
D. not enough information is given 
 
E. it’s twice the change in the momentum flux 
 
 
SOLUTION: 
 
Simplify the radial component of Euler’s equation. 

  Þ   (1) 

  Þ   (2) 

  Þ   (3) 

Thus, as RB increases, pB – pA increases. 

ku
rq =

2udp
dr r

qr=
( )2k rdp

dr r
r=

2
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B B

A A

p p r R

p p r R

drdp k
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1 1
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5.9. The Energy Equation (aka The First Law for a Differential Control Volume)

The Energy Equation, which is The First Law of Thermodynamics for a differential fluid element or control
volume, can be derived several different ways. Two of these methods are given in this section.

Method 1: Apply the integral approach to a differential control volume, as shown in Figure 5.25. Assume that

Figure 5.25. The differential control volume used in the derivation of the Energy Equation.

the density, specific total energy, and velocity are ρ, e, and u, respectively, at the control volume’s center.
The total energy flow rates through each of the sides of the control volume are,

(ṁxe)in through left = (ṁxe)center +
∂(ṁxe)center

∂x

(
−1

2
dx

)
, (5.193)

= (ρuxdydze) +
∂

∂x
(ρuxdydze)

(
−1

2
dx

)
, (5.194)

=

[
ρuxe+

∂

∂x
(ρuxe)

(
−1

2
dx

)]
(dydz), (5.195)

where ṁx,center is the mass flow rate in the x direction at the center of the control volume. Similarly through
the other faces,

(ṁxe)out through right =

[
ρuxe+

∂

∂x
(ρuxe)

(
1

2
dx

)]
(dydz), (5.196)

(ṁye)in through bottom =

[
ρuye+

∂

∂y
(ρuye)

(
−1

2
dy

)]
(dxdz), (5.197)

(ṁye)out through top =

[
ρuye+

∂

∂y
(ρuye)

(
1

2
dy

)]
(dxdz), (5.198)

(ṁze)in through back =

[
ρuze+

∂

∂z
(ρuze)

(
−1

2
dz

)]
(dxdy), (5.199)

(ṁze)out through front =

[
ρuze+

∂

∂z
(ρuze)

(
1

2
dz

)]
(dxdy). (5.200)

Note that in these previous equations the specific total energy (not including the potential energy), e, is given
by,

e = u+
1

2
u · u, (5.201)

where u is the specific internal energy. Thus, the net flow rate of total energy out of the control volume is,

(ṁe)net, out of CV =

[
∂

∂x
(ρuxe) +

∂

∂y
(ρuye) +

∂

∂z
(ρuze)

]
(dxdydz). (5.202)
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The rate at which the total energy increases within the control volume is,

∂

∂t
(me)within CV =

∂

∂t
(eρdxdydz) =

∂

∂t
(eρ)(dxdydz), (5.203)

where ρ and e are the density and specific internal energy, respectively, at the center of the control volume.
Note that since these quantities vary linearly within the control volume (from the Taylor Series approxima-
tion), the averages within the control volume are ρ and e.

The rate at which heat is added to the control volume is,

Q̇into CV = δq̇into CV(dxdydz), (5.204)

where δq̇into CV is the rate of heat transfer into the control volume per unit volume. Note that the mode of
heat transfer is not indicated at this point in the derivation.

The rate at which work is done on the control volume due to body forces is,

ẆB,on CV = (fB · u)(ρdxdydz) = (fB,iui)(ρdxdydz). (5.205)

Note that the potential energy is not included in Eq. (5.201) since that term is included in the rate of body
force work term in Eq. (5.205).

Figure 5.26. A sketch illustrating how the surface forces, in terms of stresses, do work on
the control volume.

The rate at which work is done on the control volume due to surface forces is (Figure 5.26),

ẆS,on CV = dFS · u,

=

{[
σxxux +

∂(σxxux)

∂x

(
1

2
dx

)]
−
[
σxxux +

∂(σxxux)

∂x

(
−1

2
dx

)]}
(dydz)

+

{[
σxyuy +

∂(σxyuy)

∂x

(
1

2
dx

)]
−
[
σxyuy +

∂(σxyuy)

∂x

(
−1

2
dx

)]}
(dydz)

+

{[
σxzuz +

∂(σxzuz)

∂x

(
1

2
dx

)]
−
[
σxzuz +

∂(σxzuz)

∂x

(
−1

2
dx

)]}
(dydz)

+ · · ·

=
∂

∂xj
(σjiui) (dxdydz).

(5.206)

The First Law of Thermodynamics states that the rate of increase of total energy within the control volume
plus the net rate at which total energy leaves the control volume must equal the rate at which heat is added
to the control volume plus the rate at which work is done on the control volume,

∂

∂t
(me)within CV + (ṁe)net, out of CV = Q̇into CV + ẆB,on CV + ẆS,on CV. (5.207)
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Substituting Eq. (5.202) – (5.206) into Eq. (5.207) gives,

∂

∂t
(eρ)(dxdydz) +

[
∂

∂x
(ρuxe) +

∂

∂y
(ρuye) +

∂

∂z
(ρuze)

]
(dxdydz) =

+ δq̇into(dxdydz) + fB,iui(ρdxdydz) +
∂

∂xj
(σjiui)(dxdydz),

(5.208)

∂

∂t
(eρ) +

∂

∂xj
(eρuj) = δq̇into CV + ρuifB,i +

∂

∂xj
(σjiui). (5.209)

Expand the left-hand side of the previous equation and utilize the Continuity Equation,

∂

∂t
(eρ) +

∂

∂xj
(eρuj) = e

∂ρ

∂t
+ ρ

∂e

∂t
+ e

∂

∂xj
(ρuj) + ρuj

∂e

∂xj
, (5.210)

= e

[
∂ρ

∂t
+

∂

∂xj
(ρuj)

]
︸ ︷︷ ︸
=0,(Continuity Eq.)

= ρ

(
∂e

∂t
+ uj

∂e

∂xj

)
︸ ︷︷ ︸

=De
Dt

. (5.211)

Substituting back into Eq. (5.209) results in the Energy Equation,

ρ
De

Dt
= δq̇into CV + ρuifB,i +

∂

∂xj
(σjiui) . (5.212)

Method 2: Recall the integral form of the First Law of Thermodynamics,

d

dt

ˆ
CV

eρdV +

ˆ
CS

e (ρurel · dA) = Q̇into CV + ẆB,on CV + ẆS,on CV. (5.213)

Consider a fixed control volume so that,

d

dt

ˆ
CV

eρdV =

ˆ
CV

∂(eρ)

∂t
dV and urel = u. (5.214)

Note that the heat transfer into the control volume can be written as,

Q̇into CV =

ˆ
CV

δq̇into CVdV. (5.215)

The work on the control volume due to body forces is,

ẆB,on CV =

ˆ
CV

(fB · u)ρdV =

ˆ
CV

(fB,iui)ρdV, (5.216)

and the work on the control volume due to surface forces is,

ẆS,on CV =

ˆ
CS

(fS · u)ρdA =

ˆ
CS

(fS,iui)ρdA =

ˆ
CS

σjinjuidA, (5.217)

where the surface forces have been written in terms of the stress tensor.

By utilizing Gauss’ Theorem (aka the Divergence Theorem), we can convert the area integrals into volume
integrals, ˆ

CS

eρ (u · dA) =

ˆ
CV

∇ · (eρu)dV =

ˆ
CV

∂

∂xj
(eρuj)dV, (5.218)

and, ˆ
CS

σjinjuidA =

ˆ
CV

∂(uiσji)

∂xj
dV. (5.219)

Substitute these expressions into the First Law of Thermodynamics to get,ˆ
CV

[
∂

∂t
(eρ) +

∂

∂xj
(eρuj)− δq̇into CV − ρfB,iui −

∂

∂xj
(σjiui)

]
dV = 0. (5.220)
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Since the choice of control volume is arbitrary, the kernel of the integral must be zero, i.e.,

∂

∂t
(eρ) +

∂

∂xj
(eρuj)− δq̇into CV − ρfB,iui −

∂

∂xj
(σjiui) = 0. (5.221)

This equation is the same one as Eq. (5.209) so we see that the final result will be the same,

ρ
De

Dt
= δq̇into CV + ρuifB,i +

∂

∂xj
(σjiui) . (5.222)

Notes:

Figure 5.27. A sketch illustrating the heat transfer into the control volume entering
through x faces.

(1) The rate of heat transfer may be re-written in terms of the rate of heat transfer per unit area out
of the control volume through the control surface, q. In terms of the Method 1 approach, the rate
of total heat transfer into the control volume may be written as (refer to Figure 5.27),

δQ̇into CV = −
{
−
[
qx +

∂qx
∂x

(
−1

2
dx

)]
+

[
qx +

∂qx
∂x

(
1

2
dx

)]}
(dydz)

−
{
−
[
qy +

∂qy
∂y

(
−1

2
dy

)]
+

[
qy +

∂qy
∂y

(
1

2
dy

)]}
(dxdz)

−
{
−
[
qz +

∂qz
∂z

(
−1

2
dz

)]
+

[
qz +

∂qz
∂z

(
1

2
dz

)]}
(dxdy)

(5.223)

Simplifying the previous relation gives,

δQ̇into CV = −
[
∂qx
∂x

+
∂qy
∂y

+
∂qz
∂z

]
(dxdydz) = − (∇ · q) (dxdydz) = − ∂qj

∂xj
(dxdydz). (5.224)

The rate of total heat transfer in terms of the rate of heat transfer per unit area may also be derived
using the Method 2 approach and the Divergence Theorem,

δQ̇into CV = −
ˆ
CS

(q · dA) = −
ˆ
CS

qjnjdA = −
ˆ
CV

∂qj
∂xj

dV. (5.225)

Substituting the previous expressions in to the Energy Equation (Eq. (5.212)),

ρ
De

Dt
= − ∂qi

∂xi
+ ρuifB,i +

∂

∂xj
(σjiui) . (5.226)

This is the Energy Equation in terms of the heat transfer per unit area.
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(2) The Energy Equation (either Eq. (5.212) or (5.226)) may be simplified further by noting that,

De

Dt
=

D

Dt

(
u+

1

2
u · u

)
=
∂u

∂t
+
∂

∂t

(
1

2
uiui

)
+ uj

∂u

∂xj
+ uj

∂

∂xj

(
1

2
uiui

)
(5.227)

=

(
∂u

∂t
+ uj

∂u

∂xj

)
︸ ︷︷ ︸

=Du
Dt

+ui
∂ui
∂t

+ ujui
∂ui
∂xj︸ ︷︷ ︸

=ui
Dui
Dt

, (5.228)

and,
∂

∂xj
(σjiui) = ui

∂σji
∂xj

+ σji
∂ui
∂xj

. (5.229)

Substituting these expressions into Eq. (5.212) gives,

ρ

(
Du

Dt
+ ui

Dui
Dt

)
= δq̇into CV + ρuifB,i + ui

∂σji
∂xj

+ σji
∂ui
∂xj

, (5.230)

ρ
Du

Dt
= δq̇into CV + σji

∂ui
∂xj

+ ui

(
ρfB,i +

∂σji
∂xj

− ρDui
Dt

)
︸ ︷︷ ︸

=0

, (5.231)

but the terms in the parentheses of this last equation are the Momentum Equations (Eq. (5.113))!
The dot product of the Momentum Equations with the velocity is known as the Mechanical Energy
Equation,

uiρ
Dui
Dt︸ ︷︷ ︸

rate of increase
of kinetic energy of

fluid element

= ρuifB,i︸ ︷︷ ︸
rate at which work is

done on the fluid element
due to body forces

+ ui
∂σji
∂xj︸ ︷︷ ︸

rate at which work is
done on the fluid element

due to stress gradients

. (5.232)

Note that,

D

Dt

(
1

2
uiui

)
= ui

Dui
Dt

. (5.233)

The Energy Equation without the Mechanical Energy Equation terms is known as the Thermal
Energy Equation and is given by,

ρ
Du

Dt
= δq̇into CV + σji

∂ui
∂xj

, (5.234)

or, in terms of the heat transfer per unit area,

ρ
Du

Dt︸ ︷︷ ︸
rate of increase

of internal energy

within the fluid element

= − ∂qi
∂xi︸ ︷︷ ︸

rate at which
heat is added

to the fluid element
through the surface area

+ σji
∂ui
∂xj︸ ︷︷ ︸

rate at which mechanical
energy is converted to thermal

energy due to deformations

of the fluid element

(5.235)

(3) The heat flux term, q, may be written in terms of a temperature gradient using Fourier’s Law of
Conduction, assuming that conduction is the dominant mode of heat transfer,

q = −k∇T or qi = −k ∂T
∂xi

, (5.236)

where k is the thermal conductivity (in its most general form, the thermal conductivity is a tensor
quantity) of the substance and T is the temperature. Note that the negative sign is included in the
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equation to account for the fact that heat flows from regions of high temperature to regions of low
temperature. Thus, the Thermal Energy Equation using Fourier’s Law of Conduction is,

ρ
Du

Dt
=

∂

∂xi

(
k
∂T

∂xi

)
+ σji

∂ui
∂xj

. (5.237)

(4) The rate of work term in the Thermal Energy Equation (Eq. (5.235)) includes both reversible and
irreversible work terms. Consider the rate of work term using the stress tensor for a Newtonian
fluid,

σji
∂ui
∂xj

=

[(
−p+ λ

∂uk
∂xk

)
δij + µ

(
∂uj
∂xi

+
∂ui
∂xj

)](
∂ui
∂xj

)
, (5.238)

= −p
(
∂uj
∂xj

)
︸ ︷︷ ︸

reversible
pressure work

+λ

(
∂uk
∂xk

)2

+ µ

(
∂uj
∂xi

+
∂ui
∂xj

)(
∂ui
∂xj

)
︸ ︷︷ ︸

irreversible viscous work

. (5.239)

The irreversible rate of work term (the rate at which mechanical energy is converted into thermal
energy) is referred to as the Energy Dissipation Function, Φ,

Φ = λ

(
∂uk
∂xk

)2

+ µ

(
∂uj
∂xi

+
∂ui
∂xj

)(
∂ui
∂xj

)
. (5.240)

Thus, the Thermal Energy Equation can be written as,

ρ
Du

Dt
= δq̇into CV − p

(
∂uj
∂xj

)
+ Φ, (5.241)

or, if conduction is the significant mode of heat transfer,

ρ
Du

Dt
=

∂

∂xj

(
k
∂T

∂xj

)
− p

(
∂uj
∂xj

)
+ Φ. (5.242)

(5) Note that for an incompressible fluid, the Continuity Equation,

∂ui
∂xi

= 0, (5.243)

can be used to simplify the Thermal Energy Equation to the following form,

ρ
Du

Dt
= δq̇into CV + Φ Thermal Energy Eq. for an incompressible fluid, (5.244)

where the Energy Dissipation Function is,

Φ = µ

(
∂uj
∂xi

+
∂ui
∂xj

)(
∂ui
∂xj

)
. (5.245)
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(6) The Energy Dissipation Function for a Newtonian fluid is a positive definite quantity, which means
that viscosity always acts to convert mechanical energy into thermal energy,

Φ = λ

(
∂uk
∂xk

)2

+ µ

(
∂uj
∂xi

+
∂ui
∂xj

)(
∂ui
∂xj

)
, (5.246)

= λ

(
∂uk
∂xk

)2

+ µ

(
∂uj
∂xi

+
∂ui
∂xj

)[
1

2

(
∂uj
∂xi

+
∂ui
∂xj

)
+

1

2

(
∂uj
∂xi
− ∂ui
∂xj

)]
, (5.247)

= λ

(
∂uk
∂xk

)2

+
1

2
µ

(
∂uj
∂xi

+
∂ui
∂xj

)2

+
1

2
µ

(
∂uj
∂xi

∂ui
∂xj
− ∂uj
∂xi

∂uj
∂xi

+
∂ui
∂xj

∂ui
∂xj
− ∂ui
∂xj

∂uj
∂xi

)
, (5.248)

= λ

(
∂uk
∂xk

)2

+
1

2
µ

(
∂uj
∂xi

+
∂ui
∂xj

)2

+
1

2
µ

(
−∂uj
∂xi

∂uj
∂xi

+
∂ui
∂xj

∂ui
∂xj

)
︸ ︷︷ ︸

=0, (since i and j

are dummy indices)

, (5.249)

∴ Φ = λ

(
∂uk
∂xk

)2

+
1

2
µ

(
∂uj
∂xi

+
∂ui
∂xj

)2

. (5.250)

Note that for an incompressible fluid,

∂uk
∂xk

= 0, (5.251)

so that,

Φ =
1

2
µ

(
∂uj
∂xi

+
∂ui
∂xj

)2

> 0, (5.252)

since µ > 0.
For a compressible, Newtonian fluid, Stokes’ Hypothesis states that,

λ = −2

3
µ. (5.253)

After simplify Eq. (5.250), it can also be shown that Φ > 0.
(7) The Thermal Energy Equation may also be written in a form using the specific enthalpy, h, which

is defined as,

h := u+
p

ρ
. (5.254)

Consider the Thermal Energy Equation (Eq. (5.241)) using the definition of the Energy Dissipation
Function (Eq. (5.240)),

ρ
Du

Dt
= δq̇into CV − p

(
∂uj
∂xj

)
+ Φ. (5.255)

Re-write the pressure term in the previous equation utilizing the Continuity Equation,

p

(
∂uj
∂xj

)
= p

(
−1

ρ

Dρ

Dt

)
= ρ

D

Dt

(
p

ρ

)
+
Dp

Dt
+ Φ, (5.256)

ρ
D

Dt

(
u+

p

ρ

)
= δq̇into CV +

Dp

Dt
+ Φ, (5.257)

∴ ρ
Dh

Dt
= δq̇into CV +

Dp

Dt
+ Φ . (5.258)

(8) For convenience, rewrite the Thermal Energy Equation for an incompressible fluid (Eq. (5.244)),

ρ
Du

Dt
= δq̇into CV + Φ. (5.259)

Recall that for an incompressible fluid, the internal energy is a function only of temperature, i.e.,
u =
´
c(T )dT where c(T ) is the fluid’s specific heat, which, in general, is a function of temperature.

Thus, we observe that the Energy Equation is uncoupled from the Continuity and Momentum
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Equations for an incompressible flow. In other words, the unknowns of velocity, ui, and pressure,
p, (four unknowns) can be solved using the Continuity and Momentum Equations (four equations).
Once these quantities have been determined, the internal energy, which is a function of temperature,
can be calculated using the Thermal Energy Equation.

(9) For an adiabatic, inviscid flow, Eq. (5.258) reduces to,

ρ
Dh

Dt
=
Dp

Dt
. (5.260)

The Mechanical Energy Equation (Eq. (5.232)) can be used to re-write the Lagrangian derivative
of the pressure,

ρui
Dui
Dt

= −ui
∂p

∂xi
+ ρuifB,i, (5.261)

ρui
Dui
Dt
− ∂p

∂t
= −

(
∂p

∂t
+ ui

∂p

∂xi

)
︸ ︷︷ ︸

=Dp
Dt

+ρuifB,i, (5.262)

∴
Dp

Dt
=
∂p

∂t
− ρui

Dui
Dt

+ ρuifB,i. (5.263)

Substituting this last equation into Eq. (5.260),

ρ
Dh

Dt
=
∂p

∂t
− ρui

Dui
Dt

+ ρuifB,i =
∂p

∂t
− ρ D

Dt

(
1

2
uiui

)
+ ρuifB,i, (5.264)

ρ
D

Dt

(
h+

1

2
uiui

)
=
∂p

∂t
+ ρuifB,i. (5.265)

If the body force is conservative, i.e., fB = −∇G, (weight is a conservative body force, for example)
then,

ρuifB,i = −ρui
∂G

∂xi
= −ρDG

Dt
+ ρ

∂G

∂t
. (5.266)

Furthermore, if the body force is also independent of time (obviously a good assumption if gravity
is the only body force considered), then Eq. (5.266) may be substituted into Eq. (5.265) and then
simplified to give,

ρ
D

Dt

(
h+

1

2
uiui

)
=
∂p

∂t
− ρDG

Dt
, (5.267)

D

Dt

(
h+

1

2
uiui +G

)
︸ ︷︷ ︸

=hT , total specific enthalpy

=
1

ρ

∂p

∂t
. (5.268)

With the additional assumption that the flow is steady, we observe that the total specific enthalpy
of a fluid particle will remain constant, i.e., DhTDt = 0. In particular, the total specific enthalpy will
remain constant along a streamline.
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For a Newtonian fluid show that the viscous dissipation is given by: 
 

where t is the viscous part of the stress tensor and S is the shearing strain tensor. 
 

 
SOLUTION: 

 

 (1) 

where Stokes’ hypothesis has been used (l + 2/3µ = 0).   
 
The last term in Eqn. (1) is most easily put in the required form by working backwards from the desired 
result. 

 

 (2) 

 
Thus, combining Eqns. (1) and (2) demonstrates that: 

 (3) 

( )22
3: 2 :µ µÑ = - Ñ × +τ u u S S

2

: ji k i i
ij ij

j k j i j

j jk i i

k j j i j

jk i i
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x x x x x
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x x x x x

uu u u
x x x x
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l µ

l µ

é ùæ ö¶¶ ¶ ¶ ¶
Ñ = = + +ê úç ÷ç ÷¶ ¶ ¶ ¶ ¶ê úè øë û
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= + +ç ÷ç ÷¶ ¶ ¶ ¶ ¶è ø

æ ö¶æ ö¶ ¶ ¶
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A scientist is interested in knowing the temperature distribution in a steadily rotating viscometer (shown 
below).   
 
 
 
 
 
 
 
 
 
For this geometry, the laminar velocity profile for a incompressible, constant viscosity fluid can be 
determined from the Navier-Stokes equations to be: 

 and  

 
If the temperature at the wall of the rotating outer cylinder is TO and the temperature at the inner stationary 
cylinder is TI, determine the resulting temperature distribution in the fluid.  You may assume that the 
variations in the fluid density, viscosity, and thermal conductivity with respect to temperature are negligible. 

 
 
SOLUTION: 
 
Substitute the given velocity profile into the thermal energy equation (assuming an incompressible, 
constant viscosity, constant thermal conductivity, Newtonian fluid and cylindrical coordinates): 

 

Noting that ur = uz = 0, assuming steady conditions (¶/¶t = 0), and that T = T(r), the previous equation 
simplifies to: 

 

 (1) 

where 

 (2) 

1

r R
R ru Rq

k
k

k
k

æ ö-ç ÷
è ø= W
æ ö-ç ÷
è ø

0r zu u= =

   

ρc
∂T
∂t

+ ur

∂T
∂r

+
uθ

r
∂T
∂θ

+ uz

∂T
∂z

⎛
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⎞
⎠⎟

=DT
Dt
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= k
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∂
∂r
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Substituting Eqn. (2) into Eqn. (1) gives: 

 (3) 

Solving this differential equation gives: 

 

 

 

 (4) 

 
Apply the given boundary conditions to determine the unknown constants c1 and c2. 

 (5) 

 (6) 
 

For simplicity, define the following dimensionless parameters: 

  (dimensionless radius) (7) 

  (dimensionless temperature) (8) 

   (9) 

(where Br is a Brinkman number which is the ratio of the rate of viscous heat generation to the 
heat flux by conduction) 

 (10) 
Substituting these dimensionless numbers into Eqn. (4) and boundary conditions (5) and (6) gives: 

    (d1 and d2 are new constants) 

 (11) 

 (12)  

 (13) 
 

Applying the boundary conditions gives: 
 (14) 

 (15) 
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Hence, the temperature distribution (in dimensionless form) is: 

 (16) 

 
 

Note that if N is large enough, the maximum temperature may be located at: 

 (17) 

 (18) 

with the temperature in the fluid being greater than the boundary temperatures.  (The boundary 
temperatures would also need to be checked to see if this value is the maximum.)   This occurs due to the 
viscous work done on the fluid. 
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5.10. The Entropy Equation (aka The Second Law for a Differential Control Volume)

The Entropy Equation, which is the Second Law of Thermodynamics for a differential fluid element or control
volume, can be derived several different ways. Two of these methods are given in this section.

Figure 5.28. The differential control volume used in deriving the Entropy Equation.

Method 1: Apply the integral approach to the differential control volume shown in Figure 5.28. Assume that
the density, specific entropy, and velocity are ρ, s, and u, respectively, at the control volume’s center. The
entropy fluxes through each of the side of the control volume are given by,

(ṁxs)in through left = (ṁxs)center +
∂(ṁxs)center

∂x

(
−1

2
dx

)
, (5.269)

= (ρuxdydzs) +
∂

∂x
(ρuxdydzs)

(
−1

2
dx

)
, (5.270)

=

[
ρuxs+

∂

∂x
(ρuxs)

(
−1

2
dx

)]
(dydz) , (5.271)

where ṁx,center is the mass flow rate in the x direction at the center of the control volume. Applying the
same approach through the other faces,

(ṁxs)out through right =

[
ρuxs+

∂

∂x
(ρuxs)

(
1

2
dx

)]
(dydz) , (5.272)

(ṁys)in through bottom =

[
ρuys+

∂

∂y
(ρuys)

(
−1

2
dy

)]
(dxdz) , (5.273)

(ṁys)out through top =

[
ρuys+

∂

∂y
(ρuys)

(
1

2
dy

)]
(dydz) , (5.274)

(ṁzs)in through back =

[
ρuzs+

∂

∂z
(ρuzs)

(
−1

2
dz

)]
(dxdy) , (5.275)

(ṁzs)out through front =

[
ρuzs+

∂

∂z
(ρuzs)

(
1

2
dz

)]
(dxdy) . (5.276)

Thus, the net entropy flow rate out of the control volume is,

(ṁs)net, out of CV =

[
∂

∂x
(ρuxs) +

∂

∂y
(ρuys) +

∂

∂z
(ρuzs)

]
(dxdydz). (5.277)

The rate at which the entropy increases within the control volume is,

∂

∂t
(ms)within CV =

∂

∂t
(sρdxdydz) =

∂

∂t
(sρ)(dxdydz), (5.278)
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where ρ and s are the density and specific entropy, respectively, at the center of the control volume. Note
that since these quantities vary linearly within the control volume (from the Taylor Series approximation),
the averages within the control volume are ρ and s.

The Second Law of Thermodynamics (applied to a control volume) states that the rate at which entropy
increases within the control volume plus the net rate at which entropy leaves the control volume is equal to
the rate of heat transfer into the control volume divided by the absolute temperature where the heat is added
plus the rate of entropy generation within the control volume,

∂

∂t
(ms)within CV + (ṁs)net, out of CV =

δq̇into CV(dxdydz)

T
+ σ̇(dxdydz). (5.279)

In this equation, δq̇into CV is the rate of heat transfer into the control volume per unit volume and σ̇ is the
rate of entropy production in the control volume per unit volume (σ̇ ≥ 0). Note that if the temperature at
the center of the control volume is T , then the temperature at one of the faces where the heat is added would
be differentially different. For example, at the right face the temperature would be T + ∂T

∂x

(
1
2dx

)
. However,

since the differential part is very small compared to T , the temperature at the face is just equal to T .

Substituting Eqs. (5.277) and (5.278) into Eq. (5.279) and simplifying gives,

∂

∂t
(sρ)(dxdydz) +

[
∂

∂x
(ρuxs) +

∂

∂y
(ρuys) +

∂

∂z
(ρuzs)

]
(dxdydz) =

δq̇into CV(dxdydz)

T
+ σ̇(dxdydz), (5.280)

∂

∂t
(sρ) +

[
∂

∂x
(ρuxs) +

∂

∂y
(ρuys) +

∂

∂z
(ρuzs)

]
=
δq̇into CV

T
+ σ̇. (5.281)

This equation can be written in the following, compact form,

∂

∂t
(sρ) + ∇ · (ρus) =

δq̇into CV

T
+ σ̇ or

∂

∂t
(sρ) +

∂

∂xj
(ρujs) =

δq̇into CV

T
+ σ̇ . (5.282)

Expand the left-hand side of this equation and utilize the Continuity Equation,

∂

∂t
(sρ) +

∂

∂xj
(ρujs) = s

∂ρ

∂t
+ ρ

∂s

∂t
+ s

∂

∂xj
(ρuj) + ρuj

∂s

∂xj
, (5.283)

= s

[
∂ρ

∂t
+

∂

∂xj
(ρuj)

]
︸ ︷︷ ︸
=0, (Continuity Eq.)

+ρ

(
∂s

∂t
+ uj

∂s

∂xj

)
︸ ︷︷ ︸

=Ds
Dt

. (5.284)

Substituting back into Eq. (5.282),

ρ
Ds

Dt
=
δq̇into CV

T
+ σ̇ The Entropy Equation (5.285)

Method 2: Apply the Second Law of Thermodynamics directly to a small piece of fluid,

D

Dt
(sρdxdydz) =

δq̇into CV

T
(dxdydz) + σ̇(dxdydz). (5.286)

Expand the Lagrangian derivative,

D

Dt
(sρdxdydz) =

Ds

Dt
(ρdxdydz) + s

D

Dt
(ρdxdydz). (5.287)

The second term on the right-hand side of this equation is zero since the mass of the fluid element remains
constant. Thus, Eq. (5.286) can be written as,

ρ
Ds

Dt
=
δq̇into CV

T
+ σ̇, (5.288)

which is the same Entropy Equation found using Method 1.

Notes:
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(1) For an internally reversible, adiabatic flow ( =⇒ an isentropic flow),

Ds

Dt
= 0. (5.289)

(2) Recall that for a simple, compressible system where the only surface forces are reversible pressure
forces (so that σ̇ = 0), the First and Second Laws of Thermodynamics may be combined to give,

De

Dt
=

1

ρ
δq̇into sys − p

Dv

Dt
, (5.290)

where v is the specific volume and for a simple, compressible system the total specific energy is
equal to the specific internal energy, i.e., e = u. Re-writing the specific volume in terms of the
density, utilizing Eq. (5.285), and simplifying gives,

Du

Dt
= T

Ds

Dt
− p D

Dt

(
1

ρ

)
, (5.291)

T
Ds

Dt
=
Du

Dt
− p

ρ2

Dρ

Dt
. (5.292)

This expression may also be written in terms of the specific enthalpy, h, by re-writing the second
term on the right-hand side of the equation,

− p D
Dt

(
1

ρ

)
=

1

ρ

Dp

Dt
− D

Dt

(
p

ρ

)
=⇒ T

Ds

Dt
=
Du

Dt
+
D

Dt

(
p

ρ

)
︸ ︷︷ ︸

=Dh
Dt

−1

ρ

Dp

Dt
, (5.293)

T
Ds

Dt
=
Dh

Dt
− 1

ρ

Dp

Dt
. (5.294)

5.11. Vorticity Dynamics

Recall that the vorticity ω of a fluid element is equal to twice the rotation rate of the element,

ω = ∇× u or ωi = εijk
∂uk
∂xj

. (5.295)

Notes:

(1) A rotational flow is defined as one in which the vorticity is not zero.
(2) An irrotational flow is defined as one in which there is no vorticity, i.e.,

ω = ∇× u = 0. (5.296)

A useful concept when discussing vorticity is the vortex line. A vortex line is a line that is everywhere tangent
to the flow’s vorticity vectors.

Notes:

(1) A vortex line is analogous to a streamline.
(2) A vortex tube is a tube made by all the vortex lines passing through a closed curve (Figure 5.29).

Figure 5.29. A sketch of a vortex tube.
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(3) A vortex filament is a vortex tube with infinitesimally-small cross-sectional area.
(4) There are no vortex lines in an irrotational flow.
(5) There can be no sources or sinks of vorticity in a flow. This fact follows from the following vector

identity,

∇ · (∇× u) = 0, (5.297)

∴ ∇ · ω = 0. (5.298)

Zero divergence of vorticity means that there are no sources or sinks of vorticity, which in turn
means that vorticity is neither created nor destroyed in a flow. So how then is vorticity generated
in a flow? It must be introduced at a fluid or solid boundary. According to Eq. (5.298), vortex lines
must either form closed curves or start and end at boundaries.

(6) Another useful quantity for the discussion of vorticity dynamics is the circulation, Γ (Figure 5.30),

Γ :=

‰
C

u · ds. (5.299)

The relationship between the vorticity and the circulation about a curve, C, enclosing an area, A,

Figure 5.30. A sketch illustrating the concept of circulation.

with unit normal, n̂, is found using Stokes’ Theorem,

Γ =

‰
C

u · ds =

ˆ
A

(∇× u) · n̂dA, (5.300)

∴ Γ =

ˆ
A

ω · n̂dA or
dΓ

dA
= ω · n̂. (5.301)

(7) The circulation around any cross-section of the same vortex tube remains constant. Recall that,

∇ · ω = 0, (5.302)

so that, ˆ
V

(∇ · ω)dV = 0 =⇒︸ ︷︷ ︸
div thm

ˆ
S

(ω · n̂)dA = 0, (5.303)

where V is the volume enclosed within the vortex tube and S is the surface area of this volume.

Figure 5.31. The vorticity entering and exiting a vortex tube.
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Breaking the total area into the area of the top, bottom, and sides (refer to Figure 5.31),ˆ
S

(ω · n̂)dA = 0 =

ˆ
A1

(ω · n̂)dA+

ˆ
A2

(ω · n̂)dA+

ˆ
Aside

(ω · n̂)dA. (5.304)

On the sides of the vortex tube, the normal vector for the area is perpendicular to the vorticity
vectors (from the definition of a vortex tube) so that,

(ω · n̂)sides = 0. (5.305)

Thus,

0 =

ˆ
A1

(ω · n̂)dA+

ˆ
A2

(ω · n̂)dA, (5.306)

−
ˆ
A1

(ω · n̂)dA =

ˆ
A2

(ω · n̂)dA. (5.307)

Using Eq. (5.301) and noting that the outward pointing normal vector on area A1 points in the
opposite direction as the vorticity vector there (Figure 5.31), we have,

Γ1 = Γ2. (5.308)

Hence, the circulation around any cross-section of the same vortex tube remains constant. This
observation is also known as Helmholtz’s Third Law.

5.12. Vorticity Transport Equations (aka Helmholtz Equations)

The Vorticity Transport Equations are an alternate expression of the Navier-Stokes Equations. Consider the
Navier-Stokes Equations for an incompressible fluid with constant dynamic viscosity,

ρ
Du

Dt
= −∇p+ µ∇2u+ ρf . (5.309)

Divide through by the density, ρ, (note that it is a constant here since we’re considering an incompressible
fluid) and also write the body force, f , as the gradient of a potential function, G (allowable if f is a
conservative body force, i.e., f = −∇G),

Du

Dt
= −∇

(
p

ρ

)
+
µ

ρ
∇2u−∇G. (5.310)

Note that the kinematic viscosity, ν = µ/ρ, is the ratio of the dynamic viscosity to the density. Now expand
the acceleration term on the left-hand side of the equation,

Du

Dt
=
∂u

∂t
+ (u ·∇)u. (5.311)

The second term in the previous equation can be expanded using the following vector identity,

(u ·∇)u =
1

2
∇(u · u)− u× (∇× u)︸ ︷︷ ︸

=ω

, (5.312)

where ω is the vorticity. Substituting these relations into Eq. (5.310) gives,

∂u

∂t
+

1

2
∇(u · u)− u× ω = −∇

(
p

ρ

)
+ ν∇2u−∇G. (5.313)

Now take the curl of this equation and simplify,

∇×
[
∂u

∂t
+

1

2
∇(u · u)− u× ω = −∇

(
p

ρ

)
+ ν∇2u−∇G

]
, (5.314)
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where,

∇× ∂u

∂t
=

∂

∂t
(∇× u) =

∂ω

∂t
, (5.315)

∇× 1

2
∇(u · u) = 0 (From the vector identity ∇×∇φ = 0.), (5.316)

∇× (u× ω) = u (∇ · ω)︸ ︷︷ ︸
=0, vorticity

is divergence free

−ω (∇ · u)︸ ︷︷ ︸
=0, Continuity

Equation

−(u ·∇)ω + (ω ·∇)u (using a vector identity),

(5.317)

∇×∇
(
p

ρ

)
= 0, (5.318)

∇× ν∇2u = ν∇2(∇× u) = ν∇2ω, (5.319)

∇×∇G = 0. (5.320)

Substituting and simplifying,

∂ω

∂t
+ (u ·∇)ω︸ ︷︷ ︸

=Dω
Dt

−(ω ·∇)u = ν∇2ω, (5.321)

∴
Dω

Dt
= (ω ·∇)u+ ν∇2ω . (5.322)

These are the Vorticity Transport Equations for an incompressible, Newtonian fluid (aka the Helmholtz
Equations).

Notes:

(1) Let’s interpret what each of the terms in the vorticity transport equation means,

Dω

Dt︸︷︷︸
rate of change

of fluid element
vorticity

= (ω ·∇)u︸ ︷︷ ︸
stretching and

turning of a

vortex line

+ ν∇2ω︸ ︷︷ ︸
diffusion of

vorticity

. (5.323)

(2) The Vorticity Transport Equations do not contain pressure or body force terms explicitly. Assuming
uniform density, the pressure and body forces act through the center of mass of the element and,
thus, cannot produce rotation. Only the shear stresses may produce vorticity. Note that in a
stratified flow where the density gradient results in a non-coincident geometric center and center of
mass, the pressure forces can produce rotation of the fluid element. Hence, Eq. (5.322) should not
be used for stratified flows.

(3) The Vorticity Transport Equations are sometimes used in numerical calculations in place of the
Navier-Stokes Equations.

(4) For a 2D flow, the Vorticity Transport Equations simplify to,

Dω

Dt
= ν∇2ω, (5.324)

since the vorticity points in a direction perpendicular to the streamlines. Hence, vorticity can only
diffuse (and not stretch) in a 2D flow. If the flow is inviscid, then,

Dω

Dt
= 0, (5.325)

and the vorticity remains constant for each fluid element. Hence, in a 2D inviscid flow, if the flow
starts off irrotational, then it must remain irrotational! This result is very important and will be
explored more fully when discussing Kelvin’s Theorem in Section 5.14.
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Consider the momentum equations for the planar flow of an incompressible, inviscid fluid under the action 
of conservative body forces.  By eliminating the pressure, p, and using the continuity equation show that: 

 

where w is the magnitude of the vorticity.  What can you conclude about the vorticity of a particular 
element of fluid in such a flow? 
 
 
SOLUTION: 
 
The momentum equations for a planar, incompressible, inviscid flow with conservative body forces are: 

 (1) 

 (2) 

where F is the potential function describing the force, i.e. .  To eliminate the pressure, take the 
partial derivative of Eqn. (1) with respect to y and subtract the partial derivative of Eqn. (2) with respect to 
x. 

 

 

 

 

  or   (3) 

 
Equation (3) implies that the vorticity of a fluid element in such a flow remains constant. 
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For a free vortex flow:  
a. Calculate the circulation, G, for any closed curve not including the origin. 
b. Now calculate the circulation for any closed curve that does include the origin. 
c. What can you conclude about the vorticity for a free vortex flow? 
d. Explain how the vorticity for this flow (at points not including the origin) can be zero yet the flow 

streamlines can be circles. 
 
 
SOLUTION: 
 
The stream function, y, for a free vortex flow is: 

 (1) 

Hence, the velocities are: 

 (2) 

 (3) 

 
First consider the circulation around a contour, C, that does not include the origin, as shown below. 
 
 
 
 
 
 
 
 

 

 (4) 

 
For a contour that does not include the origin, the starting angle and ending angle will be identical and, 
hence, 

  (circulation around a contour that does not include the origin) (5) 
 

For a contour that does include the origin, the starting angle and ending angle will be different by 2p. 
 
 
 
 
 
 
 
 
Hence, 

  (circulation around a contour that does include the origin) (6) 
 

A more formal proof of the concepts given above can be found in Churchill, R.V. and Brown, J.W., 
Complex Variables and Applications, McGraw-Hill. 
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From the results presented above, we can conclude that all of the vorticity in a free vortex is concentrated at 
the vortex’s origin.  The free vortex is irrotational everywhere except at the origin. 
 
A flow can have curved streamlines yet be irrotational since the vorticity is twice the rotation rate of a fluid 
element, not the rotation of the fluid flow as a whole.  If a small arrow is attached to a piece of fluid in the 
free vortex flow (the arrow indicates the fluid element’s orientation), the arrow would not rotate as the fluid 
element moved around the origin. 
 
 
 
 
 
 
 
 

Since the fluid element 
doesn’t rotate, the flow is 
irrotational. 
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Using index notation, prove that the divergence of the vorticity is zero, i.e., Ñ×w = 0.  What is the physical 
meaning of this statement? 
 
 
SOLUTION: 
 

 

However, eijk = ejik only when they are equal to zero so that we must have: 

  

 
 

Physically,  means that there can be no sources or sinks of vorticity in a flow.  Vorticity can only 
be generated or removed at a boundary.   

( )

2 2 2

k
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i j

k k k
ijk ijk jik
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x x

u u u
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Consider a two-dimensional flow with velocity components ux = cx and uy = -cy.  Find expressions for the 
vorticity and the deformation rate tensor. 
 
 
SOLUTION: 
 
The vorticity (in Cartesian coordinates) is given by: 

 (1)   

For the given velocity field: 
  The flow is irrotational! (2) 

 
The deformation rate tensor is given by: 

 (3) 

Using the given velocity field: 

 (4) 

 
Note that since the flow is irrotational, the rotation rate tensor, Rij, is zero and the deformation rate tensor is 
equal to the shearing strain tensor, Sij. 

ˆ ˆ ˆy yx xz z
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5.13. Bernoulli’s Equation

Euler’s Equations, i.e., the Momentum Equations for an inviscid fluid, can be simplified to an expression
known as Bernoulli’s Equation for the conditions given below.

• Steady flow of an inviscid fluid in a conservative force field along either a streamline or a vortex
line, ˆ

dp

ρ
+

1

2
(u · u) +G = constant. (5.326)

• Irrotational flow of an inviscid fluid in a conservative force field,

∂φ

∂t
+

ˆ
dp

ρ
+

1

2
(∇φ ·∇φ) +G = F (t), (5.327)

where u = ∇φ and F (t) is a function only of time.

Derivation of Bernoulli’s Equation: To begin, first consider Euler’s Equations (recall that Euler’s Equations
are the Momentum Equations for an inviscid fluid),

Du

Dt
= −1

ρ
∇p−∇G, (5.328)

where a conservative body force (fB = −∇G) has been assumed. Re-write the convective acceleration term
using the following vector identity,

(u ·∇)u = ∇
(

1

2
u · u

)
− u× (∇× u), (5.329)

=⇒ ∂u

∂t
+ ∇

(
1

2
u · u

)
− u× (∇× u) = −1

ρ
∇p−∇G. (5.330)

Collect gradient terms on the left-hand side of the equation,

1

ρ
∇p+ ∇

(
1

2
u · u

)
+ ∇G = −∂u

∂t
+ u× (∇× u). (5.331)

Note that the pressure gradient term can be re-written in a slightly different form,(
1

ρ
∇p

)
· dx =

dp

ρ
= d

(ˆ
dp

ρ

)
= ∇

(ˆ
dp

ρ

)
· dx, (5.332)

∴
1

ρ
∇p = ∇

(ˆ
dp

ρ

)
. (5.333)

Note that in the previous set of equations, the following relationship was used,

∇a · dx =

(
∂a

∂x
êx +

∂a

∂y
êy +

∂a

∂z
êz

)
, (5.334)

=
∂a

∂x
dx+

∂a

∂y
dy +

∂a

∂z
dz, (5.335)

= da. (5.336)

Substituting Eq. (5.333) into Eq. (5.331), simplifying, and noting that ω = ∇× u,

∇
(ˆ

dp

ρ
+

1

2
u · u+G

)
= −∂u

∂t
+ u× ω. (5.337)

Now consider two particular cases.

• Steady flow along a streamline or vortex line. A steady flow results in ∂u/∂t = 0. Taking the dot
product of Eq. (5.337) with a small length of line dx that is along either streamline or vortex line
gives,

∇
(ˆ

dp

ρ
+

1

2
u · u+G

)
· dx = (u× ω) · dx. (5.338)
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Since the vector (u × ω) is perpendicular to both the streamline and vortex line, the dot product
with dx will be zero,

(u× ω) · dx = 0. (5.339)

Furthermore, the dot product of the gradient on the left-hand side of Eq. (5.338) with dx results
in an ordinary differential,

∇
(ˆ

dp

ρ
+

1

2
u · u+G

)
· dx = d

(ˆ
dp

ρ
+

1

2
u · u+G

)
. (5.340)

Thus,

d

(ˆ
dp

ρ
+

1

2
u · u+G

)
= 0, (5.341)

ˆ
dp

ρ
+

1

2
u · u+G = constant. (5.342)

• Irrotational Flow. In an irrotational flow, the velocity can be written as the gradient of a velocity
potential function, φ, i.e., u = ∇φ, since in an irrotational flow, ω = ∇ × u = 0, and from the
vector identity, ∇×∇φ = 0. Thus u can be written as u = ∇φ. Substituting into Eq. (5.337) and
noting that the vorticity is zero in an irrotational flow,

∇
(ˆ

dp

ρ
+

1

2
∇φ ·∇φ+G

)
= −∂(∇φ)

∂t
= −∇

(
∂φ

∂t

)
. (5.343)

Combining gradient terms and simplifying,

∇
(
∂φ

∂t
+

ˆ
dp

ρ
+

1

2
∇φ ·∇φ+G

)
= 0. (5.344)

Now take the dot product of the previous equation with a short distance in any direction, dx, and
integrate the resulting expression along that path,

∇
(
∂φ

∂t
+

ˆ
dp

ρ
+

1

2
∇φ ·∇φ+G

)
· dx = 0, (5.345)

=⇒ d

(
∂φ

∂t
+

ˆ
dp

ρ
+

1

2
∇φ ·∇φ+G

)
= 0, (5.346)

∂φ

∂t
+

ˆ
dp

ρ
+

1

2
∇φ ·∇φ+G = F (t), (5.347)

where F (t) is a function only of time. This term is introduced in the integration step since the
terms in the equation may vary with both position and time.

Notes:

(1) For a fluid with constant density, i.e., ρ = constant,ˆ
dp

ρ
=

1

ρ

ˆ
dp, (5.348)

∴
ˆ
dp

ρ
=
p

ρ
. (5.349)

(2) For an ideal gas (p = ρRT ):
(a) Isothermal case: ˆ

dp

ρ
=

ˆ
d(ρRT0)

ρ
= RT0

ˆ
dρ

ρ
, (5.350)

∴
ˆ
dp

ρ
= RT0 ln

(
ρ

ρ0

)
, (5.351)

where ρ0 and T0 are a reference density and temperature, respectively.
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(b) Isentropic case: Recall that for an ideal gas undergoing an isentropic process,

0 = cp(T )
dT

T
−Rdp

p
, (5.352)

dp =
cp(T )

R
(ρRT )

dT

T
, (5.353)

dp = ρcp(T )dT. (5.354)

Thus, ˆ
dp

ρ
=

ˆ
cp(T )dT =

ˆ
dh = ∆h, (5.355)

where h is the specific enthalpy. If the ideal gas has constant specific heats, i.e., is a “perfect”
gas, then, ∆h = cp∆T and, ˆ

dp

ρ
= cp∆T. (5.356)

5.13.1. Another Approach to Deriving Bernoulli’s Equation

Figure 5.32. The differential control volume used to derive Bernoulli’s Equation.

We can also derive Bernoulli’s Equation using the Linear Momentum Equations and Conservation of Mass
applied to a differential control volume as shown in Figure 5.32. Note that the control volume shown in the
figure follows the streamlines. In the following analysis, we’ll make the following simplifying assumptions:

(1) steady flow,
(2) inviscid flow, and
(3) incompressible fluid.

First apply Conservation of Mass to the control volume,

d

dt

ˆ
CV

ρdV +

ˆ
CS

(ρurel · dA) = 0, (5.357)

where,
d

dt

ˆ
CV

ρdV = 0 (steady flow), (5.358)
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ˆ
CS

(ρurel · dA) = ρ

(
V +

1

2
dV

)(
A+

1

2
dA

)
− ρ

(
V − 1

2
dV

)(
A− 1

2
dA

)
, (5.359)

= ρV dA+ ρAdV + H.O.T.s (5.360)

Note that there’s no flow across the streamlines. Substituting these expressions into Conservation of Mass
gives,

V dA = −AdV. (5.361)

Now apply the Linear Momentum Equation to the same control volume in the streamline direction,

d

dt

ˆ
CV

usρdV +

ˆ
CS

us (ρurel · dA) = FB,s + FS,s, (5.362)

where,
d

dt

ˆ
CV

usρdV = 0 (steady flow), (5.363)

ˆ
CS

us (ρurel · dA) = −ρ
(
V − 1

2
dV

)2(
A− 1

2
dA

)
+ ρ

(
V +

1

2
dV

)2(
A+

1

2
dA

)
, (5.364)

= 2ρV AdV + ρV 2dA+ H.O.T.s, (5.365)

FB,s = ρdsA(−g sin θ) = −ρAg ds sin θ︸ ︷︷ ︸
=dz

= −ρAgdz, (5.366)

FS,s =

(
p− 1

2
dp

)(
A− 1

2
dA

)
−
(
p+

1

2
dp

)(
A+

1

2
dA

)
+ pdA, (5.367)

= −Adp+ H.O.T.s, (5.368)

Combining these terms together into the Linear Momentum Equation,

2ρV AdV + ρV 2dA = −ρAgdz −Adp. (5.369)

Now substitute the result from Conservation of Mass into the result from the Linear Momentum Equation
and simplify,

2ρV AdV + ρV 2dA︸ ︷︷ ︸
=−ρV AdV

= −ρAgdz −Adp, (5.370)

dp

ρ
+ V dV + gdz = 0. (5.371)

We can integrate this equation along the streamline to get,

p

ρ
+

1

2
V 2 + gz = constant (5.372)

Again, it’s important to review the assumptions builtin to the derivation of Eq. (5.372):

(1) steady flow,
(2) inviscid flow,
(3) incompressible fluid, and
(4) flow along a streamline.
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A water tank has an orifice in the bottom of the tank: 
 
 
 
 
 
 
 
 
 
 

 
The height, h, of water in the tank is kept constant by a supply of water which is not shown.  A jet of water 
emerges from the orifice; the cross-sectional area of the jet, A(y), is a function of the vertical distance, y.  
Neglecting viscous effects and surface tension, find an expression for A(y) in terms of A(0), h, and y.  
 
 
SOLUTION: 
 
Apply Conservation of Mass to the following CV: 
 
 
 
 
 
 
 
 
 
 
 

 

where, 

  (The flow is steady.) 

 

Substitute and simplify, 

 (1) 

 
Now apply Bernoulli’s Equation from point 1 to point 0 and from point 1 to point 2, 

 

where, 
  (These points are all at free surfaces.) 

 and V0 and V2 are related through Eq. (1). 
 

rel
CV CS

0d dV d
dt

r r+ × =ò ò u A

CV

0d dV
dt

r =ò

rel 0 0 2 2
CS

d V A V Ar r r× = - +ò u A

0
2 0

2

A
V V

A
=

( ) ( ) ( )2 2 21 1 1
2 2 21 0 2

p V gy p V gy p V gyr r r r r r+ - = + - = + -

1 0 2 atmp p p p= = =

1 0V =

1 0 2, 0,y h y y y= - = =

h 

cross-sectional 
area, A(y) 

y area of orifice, A(0) 

g 

y 

1 

2 

0 
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Video solution: https://www.youtube.com/watch?v=dzmDzfNoMdA
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Substitute and simplify, 
 

 

The first two equations in the previous expression state that, 
 (2) 

Equation (2) combined with the second two equations gives, 

 

 

 

2 21 1
0 22 2gh V V gyr r r r= = -

2
2 2 01 1
0 02 2

2

A
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A
r r r r

æ ö
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A person holds their hand out of a car window while driving through still air at a speed of 
Vcar.  What is the maximum pressure on the person’s hand? 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
Change the frame of reference so that the car is stationary and the air approaches the car 
at a velocity, Vcar.  Apply Bernoulli’s equation, neglecting elevation differences, along a 
streamline from a point far upstream of the car to the stagnation point on the person’s 
hand (this will be the point at which the pressure is the greatest). 
 
 
 
 
 
 
 
 

 

 (1) 
   
patm + 1

2 ρVcar
2 = p0 +

1
2 ρV0

2

=0
!

  p0 = pmax = patm + 1
2 ρVcar

2

Vcar 

Vcar, patm 

V=0, p0 
stagnation point 
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Video solution: https://www.youtube.com/watch?v=mrydjSSl1As
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Water is siphoned from a large tank through a constant diameter hose as shown in the figure.  Determine 
the maximum height of the hill, Hhill, over which the water can be siphoned without cavitation occurring.  
Assume that the vapor pressure of the water is pv, the height of the water free surface in the tank is Htank, 
and the vertical distance from the end of the hose to the base of the tank is Hend. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Hend 

Htank 

Hhill 

discharges into atmosphere 

constant diameter pipe 

Hend 

Htank 

Hhill 

discharges into atmosphere 

constant diameter pipe 

B 

C 

A 
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Video solution: https://www.youtube.com/watch?v=PDtuZK7C-60
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Apply Bernoulli’s equation along a streamline from the tank free surface (point A) to the end of the tube 
(point C). 

 (1) 

where 
 

  (free surface of a large tank) 
 

Solving Eqn. (1) for VC gives: 
 (2) 

 
Now apply Bernoulli’s equation along a streamline from the tank free surface (point A) to the top of the 
tube (point B).  Note that the velocity everywhere within the tube will be equal to VC (from conservation of 
mass). 

 (3) 

where 
 

  
(From Eqn. (3) we see that the pressure at point B will decrease as Hhill increases so we should use 
the smallest allowable pressure at point B to determine the maximum Hhill.) 

  (free surface of a large tank) 

  (from conservation of mass) 

 
 
Substituting into Eqn. (3) and solving for Hhill gives: 

 

 (4) 

 

2 2

2 2
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2 2
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You are to design Quonset huts for a military base.  The design wind speed is U¥ = 30 m/s and the free-
stream pressure and density are p¥ = 101 kPa and r¥ = 1.2 kg/m3, respectively.  The Quonset hut may be 
considered to be a closed (no leaks) semi-cylinder with a radius of R = 5 m which is mounted on tie-down 
blocks as shown in the figure. The flow is such that the velocity distribution over the top of the hut is 
approximated by: 

 

The air under the hut is at rest. 
 
 
 
 
 
 
 
 
 
a. What is the pressure distribution over the top surface of the Quonset hut? 
b. What is the net lift force acting on the Quonset hut due to the air?  Don’t forget to include the effect 

of the air under the hut. 
c. What is the net drag force acting on the hut?  (Hint:  A calculation may not be necessary here but 

some justification is required.)  
 
SOLUTION: 
 
Apply Bernoulli’s equation over a streamline adjacent to the upper surface of the hut to determine the 
pressure distribution.  Neglect elevation effects since the fluid is a gas and the elevation differences are 
small. 

 (1) 

where 
 

 
 

  ( ) 
 

Substitute and solve for the pressure on the hut’s upper surface. 
 

 

 (2) 

where Cp is known as a “pressure coefficient.” 
 
The pressure under the hut will be the stagnation pressure.  It can also be found by applying Bernoulli’s 
equation and noting that under the hut the velocity is zero. 

 (3) 

( )
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0
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The net lift force is determined by integrating the vertical component of the pressure forces over the entire 
surface of the hut. 
 
 
 
 
 
 
 
 

    (Note that positive lift is directed upwards.) (4) 

where p0 is the stagnation pressure.  

 

    

where CL is a “lift coefficient.” 

 

 (5) 

 
The net drag force is determined by integrating the horizontal component of the pressure forces over the 
entire surface of the hut. 

     (6) 

 

    (7) 
 

We could have also anticipated that the drag would be zero since the velocity field is symmetric between 
the upstream and downstream sides of the hut.  
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An air cushion vehicle is supported by forcing air into the chamber created by a skirt around the periphery 
of the vehicle as shown.  The air escapes through the 3 in. clearance between the lower end of the skirt and 
the ground (or water).  Assume the vehicle weighs 10,000 lbf and is essentially rectangular in shape, 30 by 
50 ft.  The volume of the chamber is large enough so that the kinetic energy of the air within the chamber is 
negligible.  Determine the flowrate, Q, needed to support the vehicle.   
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
The weight of the vehicle is supported by the increased pressure within the chamber.    
 
 
 
 
 
 
 
A simple force balance gives: 

 (1) 
Note that we have neglected the downward momentum flux of the air caused by the fan since it will be 
negligible when compared to the weight of the vehicle. 
 
The pressure within the chamber, p1, can be found using Bernoulli’s equation applied along the streamline 
shown in the previous figure. 

 (2) 

where 
  

   (large chamber) 

  (Elevation differences are negligible, especially since a gas is being considered.) 
Substitute and simplify. 

 (3) 

Substitute Eqn. (3) into Eqn. (1) and solve for the flow rate Q. 
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Substitute the given parameters. 
W = 10000 lbf = 322,000 lbmft/s2 
Askirt = (3 in.)(ft/12 in.)[2(30 ft + 50 ft)] = 40 ft2   (rectangular cross-section) 
r = 7.68e-2 lbm/ft3 
Aprojected = (30 ft)(50 ft) = 1500 ft2   (rectangular cross-section) 
Þ Q = 2990 ft3/s 
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Oil flows through a contraction with circular cross-section as shown in the figure below.  A manometer, 
using mercury as the gage fluid, is used to measure the pressure difference between sections 1 and 2 of the 
pipe.  Assuming frictionless flow, determine: 
 
a. the pressure difference, p1-p2, between sections 1 and 2, and 
b. the mass flow rate through the pipe. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
First determine the pressure difference using the manometer. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 (1) 

( )2 1 oil Hg oilp p g H x h gh gxr r r= + + + - -

( )2 1 oil H20 Hg H20p p SG g H h SG ghr r= + + -

( )1 2 H20 Hg oilp p g SG h SG H hr é ù- = - +ë û

section 1 (diameter, D1) 

section 2 (diameter, D2) 

oil (SG = 0.9) 

mercury (SG = 13.6) 

H  

h  

D1  = 300 mm 
D2  = 100 mm 
H  = 600 mm 
h  = 100 mm 

section 1 (diameter, D1) 

section 2 (diameter, D2) 

oil (SG = 0.9) 

mercury (SG = 13.6) 

H  

h  

x  

1  
 

2  
 

g 
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Use the given parameters. 
rH20 = 1000 kg/m3 
g = 9.81 m/s2 
SGHg = 13.6 
h = 100e-3 m 
SGoil = 0.9 
H = 600e-3 m 
Þ p1 - p2  = 7.2 kPa 
 

Now apply Bernoulli’s equation along a streamline from 1 to 2 to determine the mass flow rate. 

 

where 
  (found previously) 

  

 
Substitute and simplify. 

 

 (2) 

 
Use the given parameters. 

rH20 = 1000 kg/m3 
SGoil = 0.9 
g = 9.81 m/s2 
H = 600e-3 m 
D1 = 300e-3 m 
D2 = 100e-3 m 
p1 - p2  = 7200 N/m2 
Þ  = 37.5 kg/s 
 

2 2

oil oil2 1
2 2

p V p Vz z
g g g gr r

æ ö æ ö
+ + = + +ç ÷ ç ÷

è ø è ø

2
2 1 7200 N/mp p- =

2
2

2 2
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Q QV
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= = 2
1

1 2
14

4
D

Q QV
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= =

1 2z z H- =
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2 4 4
oil 1 2

8 1 1p p QH
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- = -ç ÷
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π 2g
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⎛

⎝⎜
⎞

⎠⎟
p2 − p1

ρoilg
− H

⎛
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⎞

⎠⎟
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If the approach velocity is not too large, a hump of height, H, in the bottom of a water channel will cause a 
dip of magnitude Dh in the water level.  This depression in the water can be used to determine the flow rate 
of the water.  Assuming no losses and that the incoming flow has a depth, D, determine the volumetric flow 
rate, Q, as a function of Dh, H, D, and g (the acceleration due to gravity). 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
Assume steady, incompressible, inviscid flow with uniform velocity profiles at the inlet and outlet of the 
control volume. 
 
 
 
 
 
 
 
 
 
 
Apply Bernoulli’s Equation along a streamline on the free surface from point A to point B. 

 (1) 

where 
 (2) 

  and   (3) 

  and   (4) 
Substitute and simplify. 

 (5) 

  

 (6) 

2 2

2 2B A

p V p Vz z
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In which of the following scenarios is applying the following form of Bernoulli’s equation: 

 

from point 1 to point 2 valid? 
 
 
a.  
 
 
 
 
 
 
 
 
 
b.  
 
 
 
 
 
 
c. 
 
 
 
 
 
 
 
d. 
 
 
 
 
 
e. 
 
 
 
 
 
 
 

2

constant
2

p V z
g gr
+ + =

1 

2 

stagnant column 
of water 

steady, inviscid, uniform 
stream of water 

2 
1 

Ma = 0.5 

aircraft 

pump 1 2 

1 2 

boundary 
layer 

oscillating U-tube manometer 
containing an incompressible, 
inviscid fluid 

2 

1 
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SOLUTION: 
 
Bernoulli’s equation, as written in the problem statement, can be used in NONE of the scenarios presented. 
 
a. The flow is rotational at the interface between the vertical and horizontal channels and, hence, 

Bernoulli’s equation cannot be applied across the flow streamlines. 
 
b. Since Ma > 0.3, the flow should be considered compressible.  The given form of Bernoulli’s equation 

is valid only for incompressible flows.  An alternate form of Bernoulli’s equation that takes 
compressibility effects into account could be used, however. 

 
c.   The pump between points 1 and 2 adds energy to the flow and, hence, the constant in Bernoulli’s 

equation changes across the pump.  The Extended Bernoulli’s Equation (aka energy equation) could be 
used in this scenario instead of the given form of Bernoulli’s equation. 

 
d. Bernoulli’s equation assumes inviscid flow.  Viscous effects are significant in boundary layers and 

thus Bernoulli’s equation may not be used. 
 
e. The given form of Bernoulli’s equation assumes steady flow.  The oscillating U-tube is unsteady and 

the given Bernoulli’s equation cannot be used.  Note that it is possible to derive an unsteady form of 
Bernoulli’s equation that could be used in the given situation.  
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The device shown in the figure below is proposed for measuring the exhalation pressure and volume flow 
rate of a person (the device is known as a “peak flow meter”).  A circular tube, with inside radius R, has a 
slit of width w running down the length of it (a cut-out in the cylinder).  Inside the tube is a lightweight, 
freely moving piston attached to a linear spring (with spring constant k).  The equilibrium position of the 
piston is at x = 0 where the slit begins. 
 
 
 
 
 
 
 
 
 
Derive equations for: 
a. the volumetric flow rate, Q, and  
b. the gage pressure in the tube, pgage, 
in terms of (a subset of) the piston displacement, x, as well as the tube radius, R, slit width, w, spring 
constant, k, and the properties of air.  Assume that the slit width, w, is so small that the outflow area is 
much smaller than the tube’s cross-sectional area, pR2, even at the piston’s full extension. 
 
 
SOLUTION: 
 
Apply conservation of mass to the control volume shown below. 
 
 
 
 
 
 
 
 
 
 
 

 (1) 

where 

  (at steady state) (2) 

 (3) 

Substitute and simply to get: 
 (4) 

 (5) 
where Vout is the speed of the air flowing out of the slit.  This speed may be found by applying Bernoulli’s 
equation from a point located within the tube (1) and a point just at the slit exit (2).  

 (6) 

where 
p1 = pgage (7) 
p2 = 0 (patm,gage = 0) (8) 
V1 = Q/(pR2)  (9) 

rel
CV CS

0d dV d
dt

r r+ × =ò ò u A

CV

0d dV
dt

r =ò

rel out
CS

d Q V wxr r r× = - +ò u A

out 0Q V wxr r- + =

outQ V wx=

( ) ( )2 21 1
2 21 2

p V p Vr r+ = +

w 

x 

Q, pgage 

patm 

2R 

w 

x 

Q, pgage 

patm 

2R 
1 

2 

Vout 

 

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

C. Wassgren 620 2024-02-01



  bernoulli_12 

Page 2 of 2 

V2 = Vout (10) 
Since the slit area is much smaller than the outlet area, V1 << V2 , Eqn. (6) becomes 

. (11) 

Substituting into Eqn. (5) gives: 

 (12) 

 
The pressure, pgage, may be found by balancing forces on the piston: 

 (13) 

 (14) 

Note that we could have used the linear momentum equation in the x-direction on the same control volume 
to arrive at this expression (see below).  

 
Combining Eqns. (12) and (14) gives: 

 (15) 

 
Thus, by measure the displacement of the piston on the simple device shown in the figure, lung functions 
such as pressure and volumetric flow rate can be easily determined. 
 
 
Note that we could have also worked out Eq. (14) of this problem using the linear momentum equation in 
the x-direction applied to the same control volume. 

 (16) 

where 

  (steady flow) (17) 

  (no x-momentum flux out through side) (18) 

 (19) 

  (20) 
Substitute and simplify. 

 (21) 

Substituting from Eq. (12) , 

  (22) 

 (23) 

But since wx ≪ pR2,  

  which is the same as Eq. (14)! (24) 

gage
out

2p
V

r
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Q wx
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2
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=
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Water 1 m deep is flowing steadily at 10 m/s in a channel 4 m wide.  The channel drops 3 m at 30 deg, and 
simultaneously narrows to 2.5 m as shown in the accompanying sketch.  
 
Determine the two possible water depths at downstream station B.  Neglect all losses. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
Apply conservation of mass to the control volume shown in the figure below. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (1) 

where 

   (steady flow) (2) 

 (3) 

Substitute and simplify noting that the water density remains constant. 

  Þ    Þ   (4) 

 
Now apply Bernoulli’s equation along the free surface of the stream from point A to point B. 

 (5) 

where 
pA = pB = patm (6) 

rel
CV CS

0d dV d
dt

r r+ × =ò ò u A

CV

0d dV
dt

r =ò
( ) ( )rel

CS
A B

d Vzw Vzwr r r× = - +ò u A

( ) ( ) 0A BVzw Vzwr r- + = ( ) ( )B AVzw Vzw= A A
B A

B B

z wV V
z w

æ öæ ö
= ç ÷ç ÷

è øè ø

2 2

2 2B A

p V p Vz z
g g g gr r

æ ö æ ö
+ + = + +ç ÷ ç ÷

è ø è ø

3 m 

1 m 
10 m/s 

30 deg width = 4 m 

width = 2.5 m B 

3 m 

1 m 
10 m/s 

30 deg width = 4 m 

width = 2.5 m B 

A 
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 (7) 

Substitute Eq. (4) and solve for zB. 

 (8) 

 (9) 

 (10) 

 (11) 

Using the given parameters: 
VA = 10 m/s 
g = 9.81 m/s2 
zA = 1 m 
wA = 4 m 
wB = 2.5 m 

Eq. (11) may be written as, 
 (12) 

 
Solve Eq. (12) numerically to get, 

zB = 1.728 m, 5.695 m, -1.326 m (13) 
 

Thus, the two possible depths at location B are:  1.7 m and 5.7 m.   (14) 

2 2
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A Venturi pump is used in the design of a carburetor, a device used to create a fuel-air mixture to be fed 
into the cylinder of an internal combustion engine.  Simplified schematics of a carburetor are shown in the 
following figures. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
The air, which may reasonably be assumed to be incompressible, has a density ρA and the liquid fuel has 
density ρF.   The fuel reservoir is located a distance H below the inlet port into the Venturi.  The inlet air is 
at atmospheric pressure as is the free surface of the fuel reservoir.  The air inlet cross-sectional area is A1 
and the Venturi throat area is A2.  The fuel line cross-sectional area is AF. 
 
If the desired air-to-fuel mass flow rate ratio at the outlet of the carburetor is R (= ), determine the 
required ratio A1/A2 in terms of (a subset of) the air-to-fuel ratio R, air density rA, the fuel density rF, the 
inlet air mass flow rate , the acceleration due to gravity g, the height from the fuel reservoir to the 
Venturi throat H, the fuel pipe area AF, and the air inlet area A1. 
 
 
  

  mA mF

  mA

Image from:  http://hdabob.com/wp-
content/uploads/2009/10/carburetor.jpg 

g 

AF 

rA,    mA

rF,    mF

air 

H 

A1 

A2 

fuel 

patm 

patm 
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SOLUTION: 
 
Apply Bernoulli’s equation from 1 to 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (1) 

where 
p1 = patm  and  p2 = ? (2) 

  and   (3) 

Dz is negligible compared to the other terms in B.E. since the fluid is a gas (4) 
 
Substitute and simplify. 

 (5) 

 
Apply Bernoulli’s equation from 3 to 4. 

 (6) 

where 
p3 = patm  and  p4 = p2 (7) 

  and   (8) 

Dz = z4 – z3 = H (9) 
 
Substitute and simplify. 

 (10) 

 
Combine Eqs. (5) and (10) and solve for A1/A2. 

 (11) 

 (12) 
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 (13) 

 (14) 

  or   (15) 

 
 
For a typical carburetor, 

rF = 770 kg/m3  (gasoline) 
rA = 1.23 kg/m3 (air) 
A1 = 1.34*10-3 m2  (D1 = 4.13cm = 1 5/8 in.) 
AF = 1.70*10-6 m2 (DF =  1.47 mm = 0.058 in.) 
R = 14.7  (ideal fuel to air ratio for gasoline) 
g = 9.81 m/s2 
H = 2.00*10-2 m (= 2 cm) 

 = 0.290 kg/s  (500 cfm @ 1.23 kg/m3) 
Þ  A1/A2 = 2.36  Þ  D2 = 2.69 cm 
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Consider a pipe of length L with variable cross-sectional area connected to a pump as shown in the figure.  
The cross-sectional area of the pipe varies linearly with position, x, from an initial area of A1 to a final area 
of A2.  Assume that just downstream of the pump the pressure remains constant at p1 (absolute) and that the 
flow from the pipe discharges into the atmosphere with pressure patm (absolute).  The pipe is horizontal so 
that the inlet and exit of the pipe are at the same elevation.  At t = 0, where t is time, the fluid in the pipe is 
at rest.   Assuming that the flow within the pipe is one-dimensional, incompressible, inviscid, and unsteady, 
derive an expression for the fluid velocity at the exit of the pipe (station 2) as a function of time. 
 
 
 
 
 
 
 
 
SOLUTION: 
 
Apply the unsteady form of Bernoulli’s equation from point 1 to point 2.  Note that a 1D flow  

 (1) 

where 
 (2) 

  
 (3)  
  (The points 1 and 2 are at the same elevation.) (4) 

 
Substitute and simplify. 

 (5) 

Note that from conservation of mass the velocity, V, at any position, x, at any instant in time, t, is: 

 (6) 

where A is the area at position x.  Note that V2 varies with time. 
 
The velocity at any cross-section within the pipe is related to the potential function: 

   (using Eqn. (6)) (7) 

The pipe area varies linearly with the position, x: 

 (8) 

so that: 

 (9) 

      (Note:  V2 = V2(t).) (10) 
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Taking the partial derivative of f with respect to time gives:  

 (11) 

Evaluating Eqn. (11) at points 1 and 2: 

 (12) 

 (13) 

Substitute Eqns. (12) and (13) into Eqn. (5) and simplify. 

 (14) 

  (using Eqn. (6)) (15) 

Let: 

  (Note:  a2 > 0 since A1/A2 > 1 and p1 > patm.) (16) 

  (Note:  b2 > 0 since A1/A2 > 1.) (17) 

so that Eqn. (15) becomes: 
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Another approach to solving the problem is to solve Euler’s equation in the x-direction. 

 (19) 

where 

 (20) 

so that 

 (21) 

 (22) 

Substitute and simplify. 

 (23) 

 (24) 

   (25) 

  (26) 

This is the same result as Eqn. (15)! 
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 (27) 

 (28) 

 (29) 

 (30) 
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Another approach to solving the problem is to solve Euler’s equation in the x-direction. 

 (32) 

where 

 (33) 

so that 

 (34) 

 (35) 

Substitute and simplify. 

 (36) 

 (37) 

   (38) 

  (39) 

This is the same result as Eqn. (15)! 
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a. Using an integral approach, write the differential equation governing the motion of an inviscid, 
incompressible fluid (with density r) oscillating within the U-tube manometer shown.  The 
manometer cross-sectional area is A.     

b. What is the natural frequency of the fluid motion? 
c. What are the implications of this result for making time-varying pressure measurements using a 

manometer? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
Apply COLM in the y-direction to the following two CVs.   
 
 
 
 
 
 
 
 
 
 
 
 

Assume this distance is negligible 
compared to h1+h2. 

h2 
h1 

g 

incompressible, inviscid fluid 
with density r 

tube ends are open to the 
atmosphere 

h2 
h1 

CV 1 
CV 2 Y 
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CV 1: 

 

where 

   

 

 
 

Substitute and simplify: 

 

 (1) 

 
CV 2: 

 

where 

 

 

 
 

Substitute and simplify: 

 

 (2) 

 

( )rel
CV CS

Y Y BY SY
d u dV u d F F
dt

r r+ × = +ò ò u A
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From conservation of mass considering both CVs combined together: 

   (3) 

(One side moves down at the same rate that the other side moves up.) 
 

Subtract Eqn. (2) from (1) and make use of Eqn. (3).  

 

 (4) 

 
Let: 

 

so that Eqn. (4) becomes: 

 (5) 

 
The general solution to this differential equation is: 

 (6) 

Specifying the following initial conditions: 

 (7) 

gives the solution: 

 (8) 

 
The natural (radian) frequency of the manometer, w, is: 

 (9) 

 
The practical implication of this result is that one must make sure that the manometer fluid length, L, is 
sufficiently small so that the manometer’s natural frequency is large enough to accurately capture the 
temporal variations in the pressure measurements.  In other words, a manometer with a large L will not be 
able to capture rapid pressure fluctuations. 
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This problem may also be solved using a accelerating frames of reference. 
 
 
 
 
 
 
 
 
 
 
 
 
 
COLM in the y-direction using the indicated accelerating FORs: 

 

where 

  

  

  
  

  

  

Subtract the two previous equations and simplify: 

 

Make use of the Eqn. (3) and re-arrange to get: 

 

This is the same equation as Eqn. (4)!
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These FORs are fixed to 
the free surfaces. 
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This problem may also be solved using the unsteady Bernoulli equation.  Assuming the flow is irrotational, 
inviscid, and incompressible, Bernoulli’s equation may be written at an instant in time as: 

 (10) 

where the point 1 is on the free surface of the left leg of the manometer and point 2 is on the free surface of 
the right leg of the manometer.  In addition: 

 

Substituting and simplifying gives: 

 

Making use of Eqn. (3) gives: 

 (11) 

Eqn. (11) is identical to Eqn. (4) so the solution will be the same as that derived previously. 
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5.14. Kelvin’s Theorem

In an inviscid flow of a fluid with constant density, or a fluid where the pressure is a function only of the
density, where the only body forces are conservative, the vorticity of each fluid element is preserved.

Notes:

(1) A conservative body force is one that can be written as the gradient of a potential function, i.e.,

f = −∇G. (5.373)

The force due to gravity is an example of a conservative body force,

f = −∇(gz) = −gêz. (5.374)

(2) A fluid in which the pressure is a function only of the density, i.e., p = p(ρ), is called a barotropic
fluid. An example of such a fluid would be an ideal gas undergoing an isentropic flow process,

p

p0
=

(
ρ

ρ0

)γ
, (5.375)

where γ is the specific heat ratio for the ideal gas.
(3) An important result of Kelvin’s Theorem is that if a flow starts off irrotational, viscous forces are

negligible, and the fluid has either constant density or is a barotropic fluid, then the flow will always
remain irrotational.

Proof of Kelvin’s Theorem: Consider the flow of an inviscid fluid where only conservative body forces are
considered. The time rate of change of the circulation about a specific collection of fluid particles is given by,

DΓ

Dt
=

D

Dt

‰
C

u · dl =
D

Dt

‰
C

uidxi, (5.376)

where Γ is the circulation, C is the contour about the fluid particles, u is the fluid velocity, and dl = dxiêi is
a small displacement along the contour. The Lagrangian time derivative can be brought inside the contour
integral (refer to Pneuli, D. and Gutfinger, C., Fluid Mechanics, pp. 310-312 for the proof) to give,

DΓ

Dt
=

‰
C

[
Dui
Dt

dxi + ui
D(dxi)

Dt

]
. (5.377)

Note that,

D(dxi)

Dt
= d

(
Dxi
Dt

)
= d

∂xi
∂t︸︷︷︸
=0

+uj
∂xi
∂xj︸︷︷︸
=δij

 = dui. (5.378)

We can also substitute in for the fluid particle acceleration using Euler’s Equations,

Dui
Dt

= −1

ρ

∂p

∂xi
− ∂G

∂xi
. (5.379)

Note that in the previous equation conservative body forces have been assumed where,

fi = − ∂G
∂xi

. (5.380)

Substituting Eqs. (5.379) and (5.378) into Eq. (5.377) gives,

DΓ

Dt
=

‰
C

[
−1

ρ

∂p

∂xi
dxi −

∂G

∂xi
dxi + uidui

]
. (5.381)
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Several of the terms in this equation may be simplified since,

∂p

∂xi
dxi = dp, (5.382)

∂G

∂xi
dxi = dG, (5.383)

uidui = d

(
1

2
uiui

)
. (5.384)

Substituting these equations into Eq. (5.381),

DΓ

Dt
=

‰
C

[
−dp
ρ
− dG+ d

(
1

2
uiui

)]
= −
‰
C

dp

ρ
−
‰
C

dG+

‰
C

d

(
1

2
uiui

)
. (5.385)

The second and third terms in this equation are zero since these functions are single-valued, i.e., at each
location the quantities have a unique value, and the contour C is a closed curve,‰

C

dG = 0, (5.386)

‰
C

d

(
1

2
uiui

)
= 0. (5.387)

Thus,
DΓ

Dt
= −
‰
C

dp

ρ
. (5.388)

If the density is a constant, then,
DΓ

Dt
= −1

ρ

‰
C

dp, (5.389)

and, since the pressure is a single-valued function,

DΓ

Dt
= 0. (5.390)

Since the circulation about the fluid particles remains unchanged, the vorticity of the fluid particles will also
remain unchanged.

Also, if the pressure is a function only of the density then,

p = p(ρ) =⇒ dp =
dp

dρ
dρ =⇒ dp = f(ρ)dρ, (5.391)

DΓ

Dt
= −

‰
C

dp

ρ
= −
‰
C

f(ρ)
dρ

ρ
, (5.392)

∴
DΓ

Dt
= 0, (5.393)

since the density is a single-valued function. Therefore, we see that for the flow of an inviscid fluid in a
conservative force field where either the density of the fluid is constant or where the pressure is a function
only of the density, the vorticity of a collection of fluid particles will remain unchanged.

Notes:

(1) When the pressure is a function of variables other than the density, the contour integral will not,
in general, be zero.

(2) As might be anticipated, the vorticity of a fluid element may be changed through the action of
viscosity, non-conservative forces, or density variations that are not a function solely of the pressure
variations.

(3) Kelvin’s Theorem applies strictly to a simply-connected region, i.e., a contour that does not intersect
itself and contains only fluid. A contour that surrounds some object, e.g., an airfoil, is not a simply-
connected region and, therefore, Kelvin’s Theorem does not hold for such a contour. This fact is
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significant when examining the lift on an airfoil since it is possible to have circulation around an
airfoil, i.e., around a non-simply connected region, in an otherwise irrotational flow.

5.15. Crocco’s Equation

Crocco’s Equation relates the vorticity of a flow field to the gradients in the entropy and stagnation enthalpy
of the fluid in a flow where viscosity and body forces are negligible. Crocco’s Equation is given as,

u× ω + T∇s = ∇
(
h+

1

2
u · u

)
+
∂u

∂t
. (5.394)

Derivation of Crocco’s Equation: Consider the Momentum Equations for an inviscid fluid (Euler’s Equations)
for a flow in which body forces are negligible,

Du

Dt
=
∂u

∂t
+ (u ·∇)u = −1

ρ
∇p. (5.395)

Re-write the convective derivative term using the following vector identity,

(u ·∇)u = ∇
(

1

2
u · u

)
− u× (∇× u) . (5.396)

Also make use of the definition of vorticity, ω,

ω = ∇× u, (5.397)

and substitute into Eq. (5.395) to get,

∂u

∂t
+ ∇

(
1

2
u · u

)
− u× ω = −1

ρ
∇p. (5.398)

Now consider the First Law of Thermodynamics for a fluid element (assumed to be a pure substance) where
only reversible pressure work is considered,

du =
1

ρ
δq − pd

(
1

ρ

)
. (5.399)

Note that δq is the amount of heat added to the fluid element per unit volume. Substituting the definition
of entropy for a reversible (zero viscosity has been assumed) process,

Tds =
1

ρ
δq, (5.400)

and enthalpy,

dh = du+ d

(
p

ρ

)
= du+ pd

(
1

ρ

)
+
dp

ρ
, (5.401)

into Eq. (5.399) and simplifying gives,

dh = Tds+
dp

ρ
. (5.402)

Note that we can write Eq. (5.402) in a slightly different form by utilizing the following,

dh = ∇h · dx, (5.403)

ds = ∇s · dx, (5.404)

dp = ∇p · dx, (5.405)

where dx is a small length in any direction. Substituting these relations into Eq. (5.402) and simplifying,

− ∇p

ρ
= T∇s−∇h. (5.406)

Substituting Eq. (5.406) into Eq. (5.398),

∂u

∂t
+ ∇

(
1

2
u · u

)
− u× ω = T∇s−∇h. (5.407)

C. Wassgren 639 2024-02-01



Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

Re-arranging this equation results in Crocco’s Equation,

u× ω + T∇s = ∇
(
h+

1

2
u · u

)
+
∂u

∂t
. (5.408)

Recall that this equation holds for a flow in which viscous and body forces are negligible.

Notes:

(1) Consider a steady, inviscid flow in which body forces are negligible so that Eq. (5.394) becomes,

u× ω = T∇s = ∇h0 where h0 = h+
1

2
u · u. (5.409)

Let’s restrict our investigation to flow along a streamline by taking the dot product of the previous
equation with u,

u · (u× ω)︸ ︷︷ ︸
=0 (vector identity)

= T (u ·∇)s = (u ·∇)h0. (5.410)

Note that since we’re concerned here with steady flows,

Ds

Dt
= (u ·∇)s and

Dh0

Dt
= (u ·∇)h0, (5.411)

and Eq. (5.410) becomes,

T
Ds

Dt
=
Dh0

Dt
. (5.412)

Hence, if the flow remains isentropic along a streamline (i.e., Ds/Dt = 0), then the stagnation
enthalpy, h0, must remain constant along the streamline since Dh0/Dt = 0.

(2) Now consider the case where the stagnation enthalpy in a steady flow is uniform along the streamlines
so that ∇h0 = 0. For this case, Eq. (5.394) becomes,

u× ω = −T∇s. (5.413)

For such a flow, we can conclude the following important statement: For the steady flow of an
inviscid fluid in which body forces are negligible and where the stagnation enthalpy is constant, an
irrotational flow will be isentropic and an isentropic flow will be irrotational.

(3) Consider the uniform, supersonic flow in front of a blunt-nosed object. The incoming flow will have
a constant stagnation enthalpy and will also be irrotational (and, thus, isentropic). A curved shock
wave will stand in front of the object. Across the shock wave the stagnation enthalpy will remain
constant but the entropy will change (flow across a shock wave is a non-isentropic process). Since the
shock wave is curved, there will be a gradient in the entropy normal to the downstream streamlines.
Thus, from Crocco’s Equation we observe that vorticity will also be generated downstream of the
curved shock wave and the flow will, by definition, be rotational.
Although there’s a change in entropy across a normal shock wave and an oblique shock wave, there’s
no entropy gradient in the normal direction (the entropy change across the shock is uniform along
the length of the shock) and, thus, the flow will remain irrotational downstream of normal and
oblique shocks if the upstream flow is irrotational. Note that Crocco’s Equation does not strictly
apply across a shock wave since the large velocity gradient within the shock means that viscous
effects are also significant there. However, Crocco’s Equation can be applied just upstream and
downstream of the shock wave.

5.16. Review Questions

(1) Describe what each term represents in the Lagrangian derivative.
(2) What is the formal definition of an incompressible fluid? Give an example of an incompressible flow

where the fluid density is not uniform.
(3) Write the Continuity Equation for an incompressible fluid.
(4) Write the Continuity Equation for a fluid with constant and uniform density.
(5) Describe the naming and sign convention for stresses, σij .
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(6) Is the stress tensor always symmetric?
(7) Describe the various ways in which a fluid element can deform.
(8) What is the vorticity of a fluid element (in words and in mathematical form)?
(9) What is the deformation rate tensor (in words and in mathematical form)?

(10) What is meant by an “irrotational” flow?
(11) What three key assumptions are made in deriving the stress-strain rate constitutive relation for a

Newtonian fluid?
(12) How is the mechanical pressure related to the thermodynamic pressure?
(13) Why doesn’t the bulk viscosity enter into incompressible fluid flow problems?
(14) Describe what each term represents in the Navier-Stokes Equations.
(15) What are Euler’s Equations?
(16) Describe the various ways in which a fluid element can deform.
(17) What does each term represent in the Energy Equation?
(18) What does each term represent in the Mechanical Energy Equation?
(19) What does each term represent in the Thermal Energy Equation?
(20) What is Fourier’s Law of Conduction (in mathematical terms)?
(21) What does the Energy Dissipation Function represent?
(22) Is the Energy Dissipation Function always positive?
(23) Is the Thermal Energy Equation required to solve for the flow velocity and pressure in incompressible

flows? How about for compressible flows?
(24) Under what conditions can vorticity be generated within a flow?
(25) How are vorticity and circulation related?
(26) What are the assumptions that go into the following form of Bernoulli’s Equation?

p

ρg
+
V 2

2g
+ z = c (5.414)

(27) What are the assumptions that go into the following form of Bernoulli’s Equation?

∂φ

∂t
+
p

ρ
+
V 2

2
+ gz = F (t) (5.415)

(28) What does Bernoulli’s Equation look like for an ideal gas flowing isentropically?
(29) What is Kelvin’s Theorem? What is its significance?
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1. Stream Functions 
 
A stream function is a special scalar function that is useful when analyzing 2D flows.  As will be shown, a 
stream function has the following properties: 

1. A stream function satisfies the continuity equation. 
2. A stream function is a constant along a streamline. 
3. The flow rate between two streamlines is equal to the difference in the streamlines’ stream 

functions. 
 

First, let’s define the stream function. 
 
Define a scalar function, ψ, called a stream function, such that the continuity equation is automatically 
satisfied for 2D (planar and axi-symmetric) flows. 
 

For a 2D incompressible flow in rectangular coordinates, define ψ=ψ(x, y) such that: 

   and   x yu u
y x
ψ ψ∂ ∂= = −
∂ ∂

 (1) 

If the stream function is defined in this manner, then the continuity equation will automatically be 
satisfied: 

2 2

0yx
uu

x y x y y x
ψ ψ∂∂ ∂ ∂∇⋅ = + = − =

∂ ∂ ∂ ∂ ∂ ∂
u  

 
For a 2D incompressible flow in polar coordinates, ψ=ψ(r, θ): 

1    and   ru u
r rθ

ψ ψ
θ

∂ ∂= = −
∂ ∂

 (2) 

The continuity equation for a 2D, incompressible flow in polar coordinates is: 

( )
2 21 1 1 1 0r

u
ru

r r r r r r r
θ ψ ψ
θ θ θ

∂∂ ∂ ∂+ = − =
∂ ∂ ∂ ∂ ∂ ∂

 

 
 
Now let’s consider some of the additional properties of the stream function. 
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The Stream Function is Constant Along a Streamline 
 
Let’s determine the curve along which the stream function remains constant.  We’ll only consider an 
incompressible flow in rectangular coordinates here for simplicity (the same result holds for polar 
coordinates and compressible flows). 
 
The total change in the stream function, dψ, where ψ=ψ(x, y), over some displacement (dx, dy) is given by: 

( ),       y xx y d dx dy u dx u dy
x y
ψ ψψ ψ ψ ∂ ∂= ⇒ = + = − +
∂ ∂

 

where the definition of the stream function has been used to write dψ  in terms of the velocities.  To find 
the slope of the curve along which ψ=constant, we let dψ=0. 

constant

0

  

y x

y

x

d u dx u dy

udy
dx uψ

ψ

=

= = − +

⇒ =
 

Notice that the slope of the curve along which the stream function is constant is exactly the same as the 
slope of a streamline.  Thus, we conclude that the stream function is constant along a streamline! 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

streamlines 

ψ=ψ1 
ψ=ψ2 

ψ=ψ3 

where ψ1, ψ2, and ψ3 are constants. 
 
Note that these constants may vary 
from streamline to streamline. 
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Example: 
 
A particular planar, incompressible flow can be described with the following stream function: 

Axyψ =  
where A is a constant. 

a. Sketch the streamlines for the flow.  
b. Determine the velocity components for the flow. 
 
 

SOLUTION: 
 
The stream function is a constant along a streamline so the equation of the streamlines will be: 

1
y

A x
ψ=    (hyperbolas!) 

A plot of the streamlines is shown below.  Note that A has been assumed to be a positive constant (i.e., A > 
0) in determining the direction of the flow. 
 
 
 
 
 
 
 
 
 
 
 
 
The velocities are determined from the definition of the stream function. 

xu Ax
y
ψ∂= =
∂

  and  yu Ay
x
ψ∂= − = −
∂

 
 

y 

x 

A > 0 
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The Flow Rate Between Two Streamlines is Equal to the Difference in their Stream Functions 
 
Now let’s examine how the flow rate between two streamlines is related to the stream function.  Consider 
the sketch below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The volumetric flow rate passing between the two streamlines, and thus crossing through a line drawn 
between the two streamlines can be found by calculating the volumetric flow rate through a small piece of 
the line and then integrating from one streamline to the other. 

( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆcos sinx x y y x y x x y y x y

x y

dy dx
dQ d u u dA u u dA

dA dA

u dy u dx dy dx
y x

θ θ

ψ ψ

⎛ ⎞= ⋅ = + ⋅ − = + ⋅ −⎜ ⎟⎝ ⎠
∂ ∂= − = +
∂ ∂

u A e e e e e e e e
 

dQ dψ∴ =  
Integrating from streamline A to streamline B gives: 

AB B AQ ψ ψ= −  
The volumetric flow rate between two streamlines is equal to the difference in the streamline stream 
functions! 
 
Note that if ψB>ψA then the flow is from left to right.  If ψB<ψA then the flow is from right to left. 
 
 

Q 

ψA 

ψB 

dy 

dx 

dA 

 

θ 

θ 

dx=dA sin θ 
dy=dA cos θ 
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Example: 
 
The velocity field for a planar, incompressible flow is given by: 

2 2 ˆ ˆ2( ) 4x yx y xy= − −u e e  
a. Determine the stream function for this flow field if ψ(0,0)=0. 
b. Determine the volumetric flow rate across the line AB shown in the figure. 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
Recall that the velocities are determined from the stream function in the following manner. 

( )2 22xu x y
y
ψ∂= = −
∂

 ⇒ ( ) ( )2 31
32 x y y f xψ = − +  (3) 

4yu xy
x
ψ∂= − =
∂

 ⇒ ( )22x y g yψ = − +  (4) 

where f and g are, at this point, unknown functions of x and y, respectively.  Comparing Eqs. (3) and (4) 
indicates that: 

( )f x c=   and ( ) 32
3g y y c= − +  

where c is a constant.  Hence, the stream function is: 
( )2 31

32 x y y cψ = − +  (5) 

Knowing that ψ(0, 0) = 0 we can conclude that c = 0 and: 
( )2 31

32 x y yψ = −  (6) 

 
Recall that the volumetric flow rate between two streamlines is equal to the difference in the streamline 
stream functions. 

AB B AQ ψ ψ= −  (7) 
where 

( ) 2
30,1Bψ ψ= = −  

( )1,0 0Aψ ψ= =  
so that 

2
3ABQ = −  (8) 

 
 

  

B:  (0,1) 

A:  (1,0) 

y 

x 
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 “Building Block” Stream Functions 
 
The properties of stream functions described previously are enough to justify their use.  There are 
additional reasons to use stream functions, however.  Models of real flows can be produced by combining 
“building block” stream functions.  The significance of this topic will be discussed in greater detail when 
examining the potential function (especially the complex potential); a topic covered later in the notes.  For 
now, however, it is sufficient to present some “building block” stream functions and discuss how they can 
be combined to produce models of actual flows.  First, let’s examine a few basic “building block” stream 
functions. 
 

uniform stream 
 
 
 
 
 

0 0

0 0;x y

V x U y
u U u V
ψ = − +

= =
 

 

line source (m>0) or sink (m<0) 
 
 
 
 
 

( )    0 2
2

1 ; 0
2r

m

mu u
r θ

ψ θ θ π
π

π

= ≤ <

= =
 

 

free line vortex 
 
 
 
 
 
 

ln
2

10;
2r

r

u u
rθ

ψ
π

π

−Γ=

Γ= =
 

 

forced line vortex 
 
 
 
 
 
 

2

2
0;r

Kr

u u Krθ

ψ −=

= =
 

shear flow 
 
 
 
 
 

2

2 ; 0x y

Ay
u Ay u
ψ =

= =
 

extensional flow 
 
 
 
 
 
 
 

;x y

Axy
u Ax u Ay
ψ =

= = −
 

 

y 

x U0 

V0 

shown for U0,V0> 0 

θ 
r 

y shown for m> 0 
 
m is referred to as the 
source (sink) strength. x 

shown for Γ> 0 
 
Γ is referred to as the 
circulation. 

r 

shown for Κ > 0 

x 
θ  

y 

x 
θ  

y r 

uθ 

r 

uθ 

r 

y 

x 

y 

x 

shown for Α > 0 

shown for Α > 0 
 
Can also be used to 
model flow in a corner 
and stagnation point 
flow. 
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Superposition of Stream Functions 
 
Because the continuity equation is a linear PDE, the “building block” stream functions just presented can 
be combined together to produce new stream function flows. 
 
Proof: 

Let ψT=ψ1+ψ2 where ψ1 and ψ2 are stream functions that satisfy the continuity equation.  The 
velocities determined from the new stream function are given by: 

( )

( )

1 2 1 2

1 2 1 2

T
x

T
y

u
y y y y

u
x x x x

ψ ψψ ψ ψ

ψ ψψ ψ ψ

∂ +∂ ∂ ∂
= = = +

∂ ∂ ∂ ∂
∂ +∂ ∂ ∂

= − = − = − −
∂ ∂ ∂ ∂

 

Substitute these velocities into the continuity equation: 
1 2 1 2

1 2 1 2

0

yx
uu

x y x y y y x x

x y x y y x y x

ψ ψ ψ ψ

ψ ψ ψ ψ

∂∂ ⎛ ⎞∂ ∂ ∂ ∂∂ ∂ ⎛ ⎞∇ ⋅ = + = + − +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠
∂ ∂ ∂ ∂

= + − −
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

=

u

 

Thus, the new stream function, ψT, formed by the superposition of the original stream functions also 
satisfies the continuity equation. 
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Example: 
 
The doublet is formed by superposing a source and sink of equal strength separated by an infinitesimal 
distance.   
 
 
 
 
 
 
 
 
 
 
 
 
The stream function for the source/sink pair is given by (m > 0): 

( )2 1 2 12 2 2
m m mψ θ θ θ θ
π π π

= − = −  

Re-arrange and take the tangent of both sides: 

( ) 2 1
2 1

2 1

tan tan2tan tan
1 tanm
θ θπψ θ θ

θ θ
−⎛ ⎞ = − =⎜ ⎟ +⎝ ⎠

 (9) 

Note that a trig identity has been used in deriving the previous expression.  From the figure we observe 
that: 

1
sin

tan
cos
r
r a

θθ
θ

=
−

   and   2
sin

tan
cos
r
r a

θθ
θ

=
+

 

Substitute these expressions into Eq. (9) and simplify: 

2 2

2 2 2

2 2

2 2 2

2 2 2

2 2 2 2 2

2 2

sin sin
2 cos costan

sin sin1
cos cos

sin cos sin sin cos sin
cos

sin1
cos

2 sin
cos

cos sin
cos

r r
r a r a

r rm
r a r a

r ar r ar
r a

r
r a

ar
r a

r a r
r a

θ θ
πψ θ θ

θ θ
θ θ

θ θ θ θ θ θ
θ

θ
θ

θ
θ

θ θ
θ

⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟+ −⎛ ⎞ ⎝ ⎠ ⎝ ⎠=⎜ ⎟ ⎛ ⎞⎛ ⎞⎝ ⎠ + ⎜ ⎟⎜ ⎟+ −⎝ ⎠⎝ ⎠
− − −

−=
+

−
−

−=
− +

− 2

2 2

2 sinar
r a

θ−=
−

 

1
2 2

2 sintan
2
m ar

r a
θψ

π
− −⎛ ⎞∴ = ⎜ ⎟−⎝ ⎠

 (10) 

Stream function for a source/sink pair of equal strength each located a distance a from the origin 
along the x-axis.  

a a 

y 

x 

r1 
r2 

r 

θ1 θ2 θ 
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The streamlines for the stream function given in Eq. (10) are shown in the following figure. 
 
 
 
 
 
 
 
 
 
 
 
 
Note that as a→0, Eq. (10) becomes: 

2 20

2 sinlim
2a

m ar
r a

θψ
π→

−⎛ ⎞= ⎜ ⎟−⎝ ⎠
 

since the tangent of a very small angle approaches the value of the angle.  If we let the source and sink 
approach each other (a→0) while we let the source/sink strength approach infinity (m→∞) such that the 
ratio ma/π=K=constant, then the stream function becomes: 

doublet oriented
along -axis

sin
x

K
r

θψ −=  Note:  0≤θ<2π 

The streamlines for the doublet are circles passing through the origin as shown in the figure below. 
 
 
 
 
 
 
 

 
 

  
 
 
 
 
 
 
 
 
Note: 
1. Doublets have an orientation.  The stream function for a doublet oriented in the y-direction is given by: 

doublet oriented
along y-axis

cosK
r

θψ =   

x 

y 

a a 

x 

y 

x 

y 

shown for K>0 

shown for K>0 
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Example: 
 

The flow of a frictionless fluid (there can be slip at solid surfaces) around a non-rotating cylinder can be 
modeled as a uniform stream superimposed with a doublet: 

flow around uniform doublet
cylinder stream

ψ ψ ψ= +  

If the cylinder radius is R, determine the velocity of the fluid on the surface of the cylinder as a function of 
angular position, θ. 
 
 

x 

y 

doublet with strength k 

uniform stream with velocity, U 

θ 
R 

U∞ 

Note that inside the cylinder the 
streamlines look like: 
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SOLUTION: 
 
The stream function for flow around a non-rotating cylinder is given by combining the stream function for 
a uniform stream with the stream function for a (horizontally-oriented) doublet. 

flow around uniform doublet
cylinder stream

sinKUy
r

ψ ψ ψ

θ

= +

= −
 

flow around
cylinder

sin
sin

KUr
r
θψ θ∴ = −  

At the moment, K is an unknown constant.  It can be determined by noting that there is no flow through the 
cylinder surface.  Hence, the radial velocity, ur, at r = R should be zero. 

2

1 cos
cosr

Ku U
r r

ψ θθ
θ

∂= = −
∂

 

2

sinsin Ku U
r rθ
ψ θθ∂= − = − −
∂

 

No flow through the cylinder surface at r = R: 

2

cos
0 cosr r R

Ku U
R

θθ
=

= = −  

2K UR∴ =  
Hence, the stream function and flow velocities for flow around a non-rotating cylinder are: 

2

flow around
cylinder

sin 1
RUr
r

ψ θ
⎡ ⎤⎛ ⎞= −⎢ ⎥⎜ ⎟⎝ ⎠⎢ ⎥⎣ ⎦

 

21
cos 1r

Ru Ur
r r

ψ θ
θ

⎡ ⎤∂ ⎛ ⎞= = −⎢ ⎥⎜ ⎟∂ ⎝ ⎠⎢ ⎥⎣ ⎦
 

2

sin 1 Ru U
r rθ
ψ θ

⎡ ⎤∂ ⎛ ⎞= − = − +⎢ ⎥⎜ ⎟∂ ⎝ ⎠⎢ ⎥⎣ ⎦
 

On the cylinder surface (r = R): 
0r r R

u
=

=   and   2 sin
r R

u Uθ θ
=

= −  
 

Note that there are stagnation points at θ = 0, π.  A maximum speed of 2U occurs at θ = π/2, -π/2. 
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Notes: 
1. Stream functions can also be defined for steady, compressible, 2D flows.  For example, in rectangular 

coordinates: 
0 0   and   x yu u
y x

ρ ρψ ψ
ρ ρ

∂ ∂= = −
∂ ∂

 where ρ0 is a reference density 

The continuity equation for these conditions is: 

( ) ( ) ( ) 0 0 0yx
uu

x y x y y x

ρρ ρ ρψ ψρ ρ ρ
ρ ρ

∂∂ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂∇⋅ = + = + − =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠
u  

 
2. Stream functions also exist for axi-symmetric, incompressible flows (referred to as Stokes’ stream 

functions):  ψ=ψ(r, z) 
1 1   and   r zu u
r z r r

ψ ψ∂ ∂= − = −
∂ ∂

 
The continuity equation for these conditions is: 

( )1 0r zru u
r r z
∂ ∂

+ =
∂ ∂

 

 
3. Stream functions cannot be defined for arbitrary 3D flows. 
 
 

 622 

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

C. Wassgren 654 2024-02-01



  stream_fcn_01 

Page 1 of 2 

The following stream function is an exact solution to the Navier-Stokes equations and represents the 
steady, planar flow of a viscous, Newtonian, incompressible fluid of dynamic viscosity, µ, approaching a 
flat plate: 

2 3Ax y Bx yψ = − −  
where A and B are known constants.  The following is a sketch of the flow: 
 
 
 
 
 
 
 
 
 
 
Neglecting gravity, evaluate: 
a. the velocity of the flow in terms of A, B, x, and y, 
b. the vorticity in the flow in terms of A, B, x, and y, 
c. the shear stress on the plate as a function of y (also indicate the direction), and 
d. the shear force on that portion of the plate between y=0 and y=1 per unit depth into the page (also 

indicate the direction). 
e. Can we write a potential function for this flow?  Explain your answer. 
f. Determine the normal force acting on the wall between y = 0 and y = 1 per unit depth into the page.  

You may assume that the pressure at the origin, p0, is known. 
 
SOLUTION: 
 
Determine the velocities from the stream function. 

2 3
xu Ax Bx

y
ψ∂= = − −
∂

  and  22 3yu Axy Bx y
x
ψ∂= − = +
∂

 (1) 

 
The vorticity is given by: 

=∇×ξ u  

2 6y x
z

u u
Ay Bxy

x y
ξ

∂ ∂
= − = +

∂ ∂
 (2) 

 
The shear stress on the fluid element adjacent to the wall is: 

( ) 00
0

2 6y
xy xx

x

u
Ay Bxy

x
τ µ µ

==
=

∂
= = +

∂
 

0
2xy x
Ayτ µ

=
∴ =  (3) 

Thus, the shear stress acting on the wall is equal in magnitude but in the opposite direction.  A positive 
stress acting on the wall is shown in the figure above.  

 
The shear force acting on the wall is found by integrating the shear stress over the given area. 

1 1

0 0
0 0

2
y y

S xyx x
y y

F dy Aydyτ µ
= =

= =
= =

= =∫ ∫  

0S xF Aµ=∴ =    (The force is directed in the +y-direction.) (4) 

x 

y 

y=0 

y=1 

plate 

x 

τxy 

y 
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  stream_fcn_01 

Page 2 of 2 

 
We cannot write a potential function for the given flow since the flow is not irrotational (refer to Eqn. (2)). 
 
The normal force acting on the wall is found by integrating the pressure acting on the wall.  The pressure is 
determined by solving the Navier-Stokes equation in the y-direction. 

2 2

2 2
y y y y y

x y y
u u u u up

u u g
t x y y x y

ρ µ ρ
⎛ ⎞∂ ∂ ∂ ∂ ∂⎛ ⎞ ∂ ⎜ ⎟+ + = − + + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

 

( )( ) ( )( ) ( ) ( )2 3 2 22 6 2 3 2 3 6 0p
Ax Bx A Bxy Axy Bx y Ax Bx By

y
ρ µ∂⎡ ⎤− − + + + + = − + +⎡ ⎤⎣ ⎦⎣ ⎦ ∂

 

2 2 3 3 2 4 2 2 3 3 2 42 6 2 6 4 6 6 9 6p
A x ABx y ABx B x y A x y ABx y ABx y B x y By

y
ρ µ∂⎡ ⎤− − − − + + + + = − +⎣ ⎦ ∂

 

2 2 3 2 2 3 2 42 2 4 6 3 6p
A x ABx A x y ABx y B x y By

y
ρ µ∂⎡ ⎤− − + + + = − +⎣ ⎦ ∂

 

0

6
x

p
By

y
µ

=

∂ =
∂

 

2
0 3xp By cµ= = +   
 (Note that in general the pressure will include an unknown function of x upon integrating with 
respect to y.  However, since the pressure is being evaluated at x = 0 the function can be, at most, a 
constant.) 

Evaluating the pressure at y = 0 gives the constant to be c = p0.  Hence, 
2

00 3xp By pµ= = +  
 

The force is found by integrating the pressure over the area from y = 0 to y = 1. 

( )
1 1

2
00

0 0

3
y y

N x
y y

F p dy By p dyµ
= =

=
= =

= − = − +∫ ∫  

( )0NF B pµ∴ = − +   (i.e., The force acts in the –x-direction.) (5) 
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Page 1 of 2 

The velocity in the y-direction in a 2D, incompressible flow is given by   v=Ay where A is a constant. 
 
a. Find the velocity in the x-direction, u, if u(1,y) = -A. 
b. Determine the stream function for the flow if Ψ(0,0) = 0. 
c. Determine the location of any stagnation points in the flow. 
d. Sketch the streamlines (and their directions) for the flow.  Assume A<0. 
e. What might this flow represent? 
f. Determine the pressure gradient in the x-direction at any point along the x-axis.  Assume the fluid is 

inviscid and neglect gravity. 
 
 
SOLUTION: 
 
Determine the x-velocity using the continuity equation. 

0u v
x y

∂ ∂+ =
∂ ∂

 (1) 

u v
A

x y
∂ ∂= − = −
∂ ∂

 

( )u Ax f y= − +   where f(y) is an unknown function of y (2) 
Since we’re given that u(1,y) = -A, then f(y) must be identically zero.  Hence, 

u Ax= −  (3) 
 

The stream function may be determined from the velocities. 

u Ax
y
ψ∂ = = −
∂

 ⇒ ( )Axy g xψ = − +   where g(x) is an unknown function of x (4) 

v Ay
x
ψ∂− = =
∂

 ⇒ ( )Axy f yψ = − +   where f(y) is an unknown function of y (5) 

Comparing Eqns. (4) and (5) and noting that ψ(0,0) = 0 indicates that the unknown functions are identically 
zero.  Hence: 

Axyψ = −  (6) 
 

Stagnation points occur where the velocity is zero. 
0u Ax= = −  ⇒ 0x =  
0v Ay= =  ⇒ 0y =  

( ) ( ), 0,0x y∴ =   location of the only stagnation point in the flow (7) 
 

The flow streamlines and directions are shown in the following plot. 
 
 
 
 
 
 
 
 
 
 

x 

y 

shown for A < 0 

1
y

A x
ψ= −   (hyperbolas!) 
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The flow could represent friction flow against a horizontal wall (known as “stagnation point flow”).  Or it 
could represent frictionless flow in a 90° corner. 
 
 
 
 
 
 
 
 
 
 
 
 
The pressure gradient can be determined using Bernoulli’s equation along the x-axis.  

21
2 constantp Vρ+ =  

p V
V

x x
ρ∂ ∂= −

∂ ∂
 

On the x-axis the velocity component is V = u = -Ax so that: 
2p
A x

x
ρ∂ = −

∂
 (8) 

 

x 

y 

x 

y 
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A particular planar, incompressible flow can be described with the following stream function: 
Axyψ =  

where A is a constant. 
a. Sketch the streamlines for the flow.  
b. Determine the velocity components for the flow. 
 
 

SOLUTION: 
 
The stream function is a constant along a streamline so the equation of the streamlines will be: 

1
y

A x
ψ=    (hyperbolas!) 

A plot of the streamlines is shown below.  Note that A has been assumed to be a positive constant (i.e., A > 
0) in determining the direction of the flow. 
 
 
 
 
 
 
 
 
 
 
 
 
The velocities are determined from the definition of the stream function. 

xu Ax
y
ψ∂= =
∂

  and  yu Ay
x
ψ∂= − = −
∂

 

y 

x 

A > 0 
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The velocity field for a planar, incompressible flow is given by: 
2 2 ˆ ˆ2( ) 4x yx y xy= − −u e e  

a. Determine the stream function for this flow field if ψ(0,0)=0. 
b. Determine the volumetric flow rate across the line AB shown in the figure. 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
Recall that the velocities are determined from the stream function in the following manner. 

( )2 22xu x y
y
ψ∂= = −
∂

 ⇒ ( ) ( )2 31
32 x y y f xψ = − +  (1) 

4xu xy
x
ψ∂= − =
∂

 ⇒ ( )22x y g yψ = − +  (2) 

where f and g are, at this point, unknown functions of x and y, respectively.  Comparing Eqs. (1) and (2) 
indicates that: 

( )f x c=   and ( ) 32
3g y y c= − +  

where c is a constant.  Hence, the stream function is: 
( )2 31

32 x y y cψ = − +  (3) 

Knowing that ψ(0, 0) = 0 we can conclude that c = 0 and: 
( )2 31

32 x y yψ = −  (4) 
 

Recall that the volumetric flow rate between two streamlines is equal to the difference in the streamline 
stream functions. 

AB B AQ ψ ψ= −  (5) 
where 

( ) 2
30,1Bψ ψ= = −  

( )1,0 0Aψ ψ= =  
so that 

2
3ABQ = −  (6) 

 
 
 

B:  (0,1) 

A:  (1,0) 

y 

x 

 628 

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

C. Wassgren 660 2024-02-01



  stream_fcn_07 

Page 1 of 2 

The flow of a frictionless fluid (there can be slip at solid surfaces) around a non-rotating cylinder can be 
modeled as a uniform stream superimposed with a doublet: 

flow around uniform doublet
cylinder stream

ψ ψ ψ= +  

If the cylinder radius is R, determine the velocity of the fluid on the surface of the cylinder as a function of 
angular position, θ. 
 
 

x 

y 

doublet with strength k 

uniform stream with velocity, U 

θ 
R 

U∞ 

Note that inside the cylinder the 
streamlines look like: 

 629 

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

C. Wassgren 661 2024-02-01



  stream_fcn_07 

Page 2 of 2 

SOLUTION: 
 
The stream function for flow around a non-rotating cylinder is given by combining the stream function for 
a uniform stream with the stream function for a (horizontally-oriented) doublet. 

flow around uniform doublet
cylinder stream

sinKUy
r

ψ ψ ψ

θ

= +

= −
 

flow around
cylinder

sin
sin

KUr
r
θψ θ∴ = −  

At the moment, K is an unknown constant.  It can be determined by noting that there is no flow through the 
cylinder surface.  Hence, the radial velocity, ur, at r = R should be zero. 

2

1 cos
cosr

Ku U
r r

ψ θθ
θ

∂= = −
∂

 

2

sinsin Ku U
r rθ
ψ θθ∂= − = − −
∂

 

No flow through the cylinder surface at r = R: 

2

cos
0 cosr r R

Ku U
R

θθ
=

= = −  

2K UR∴ =  
Hence, the stream function and flow velocities for flow around a non-rotating cylinder is: 

2

flow around
cylinder

sin 1
RUr
r

ψ θ
⎡ ⎤⎛ ⎞= −⎢ ⎥⎜ ⎟⎝ ⎠⎢ ⎥⎣ ⎦

 

21
cos 1r

Ru Ur
r r

ψ θ
θ

⎡ ⎤∂ ⎛ ⎞= = −⎢ ⎥⎜ ⎟∂ ⎝ ⎠⎢ ⎥⎣ ⎦
 

2

sin 1 Ru U
r rθ
ψ θ

⎡ ⎤∂ ⎛ ⎞= − = − +⎢ ⎥⎜ ⎟∂ ⎝ ⎠⎢ ⎥⎣ ⎦
 

On the cylinder surface (r = R): 
0r r R

u
=

=   and   2 sin
r R

u Uθ θ
=

= −  
 

Note that there are stagnation points at θ = 0, π.  A maximum speed of 2U occurs at θ = π/2, -π/2. 
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The planar flow of an incompressible fluid around a finite body is simulated by the superposition of two 
free vortices of opposite rotation and a uniform stream of velocity, U (such a body is called a Kelvin oval).  
The vortices have the same magnitude of circulation, Γ, and are located a distance 2a apart as shown in the 
figure. 
 
 
 
 
 
 
 
 
 
 
 
Find the axial length, L, of the body in terms of a, U, and Γ.  

 
 
 

SOLUTION: 
 

Form the stream function by superposing a uniform stream with a clockwise free vortex centered at (0, a) 
and a counter-clockwise free vortex centered at (0, -a). 

uniform clockwise counter-clockwise
stream in free vortex free vortex

-direction centered at (0, ) centered at (0,- )x a a

ψ ψ ψ ψ= + +  

where 

uniform
stream in

-direction

clockwise 1
free vortex
centered at (0, )

counter-clockwise 2
free vortex
centered at (0,- )

ln
2

ln
2

x

a

a

Uy

r

r

ψ

ψ
π

ψ
π

=

Γ=

−Γ=

 

 
 

 
Convert the r1 and r2 coordinates into common coordinates: 

( )

( )

22
1

22
2

r x y a

r x y a

= + −

= + +
 

 
Re-write the stream function: 

( ) ( )2 22 2ln ln
2 2

Uy x y a x y aψ
π π
Γ Γ= + + − − + +  

 

a 

a 

L 

U 

x 

y r1 
r 

a 

x 

y 

r2 
r 

a 
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Determine velocities from the stream function: 
( )
( )

( )
( )

( ) ( )

2 22 2

2 22 2

2 2

2 2

x

y

y a y a
u U

y x y a x y a

x x
u

x x y a x y a

ψ
π π

ψ
π π

− +∂ Γ Γ= = + −
∂ + − + +
∂ Γ Γ= − = −
∂ + − + −

 

 
The axial length, L, is the distance between the leading and trailing stagnation points on the x-axis. 

( )1
2 2 2 2 21 1

4 4

, 0 0
2 2x

a a
u x L y U

L a L aπ π
Γ Γ= = = = − −

+ +
 

22 aL a
Uπ

Γ∴ = −   (Note:  We must have Γ/(πUa) > 1 for the Kelvin oval to exist.) 

 
Note that we could have used a potential function for this problem instead of a stream function. 
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Water flows over a flat surface at 5 ft/s as shown in the figure.  A pump draws off water through a narrow 
slit at a volume flow rate of 0.1 ft3/s per foot length of the slit.  Assume that the fluid is incompressible and 
inviscid and can be represented by the combination of a uniform flow and a sink.   

a. Locate the stagnation point on the wall (point A) and determine the equation for the stagnation 
streamline.   

b. How far above the surface, H, must the fluid be so that it does not get sucked into the slit? 
 
 
 
 
 
 
 
 
 
 
 

 
 
SOLUTION: 
 
Model the given flow as a uniform flow plus a line sink. 
 
 
 
 
 

uniform line 
flow sink

sin
2 2
m mUy Urψ ψ ψ θ θ θ
π π

= + = − = −    (where m > 0) (1) 

 
Determine the velocity field from the stream function. 

1 1
cos

2r
mu U

r r
ψ θ
θ π

∂= = −
∂

 (2) 

sinu U
rθ
ψ θ∂= − = −
∂

 (3) 

 
The stagnation point is where u = 0. 

0 sin 0S Su Uθ θ θ= = − ⇒ =    (4) 
(Neglect θS = π since the stagnation point will occur downstream of the sink.) 

   
ur = 0 =U cosθS

=1
! − m

2π
1
rS

⇒ rS =
m

2πU
 (5) 

(Note that if θS = π, then rS = -m/(2πU).  It’s the same as the previously determined point!) 
 

( ), ,0
2S S
mr
U

θ
π

⎛ ⎞∴ = ⎜ ⎟⎝ ⎠
 (6) 

 

A 
H 

5 ft/s 

0.1 ft3/s per foot into page 

x 

y 

sink strength, m 
U 
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The equation for the stagnation streamline can be determined by evaluating the stream function value at the 
stagnation point. 

sin 0
2S S S S
mUrψ θ θ
π

= − =  (7) 

Hence, the stagnation streamline equation is: 

   
U r sinθ

= y
! − m

2π
θ = 0  (8) 

2
my
U
θ

π
∴ =  (9) 

 
 
 
 
 
 
 
 
 

In order for the fluid not to be sucked into the slit, it must be on a streamline that is above the stagnation 
streamline, i.e., 

2
mH
U

>  (10) 

 
For the given values: 
U = 5 ft/s 
m = 2(0.1 ft3/(s⋅ft)) = 0.2 ft3/(s⋅ft) 

(Recall that m is the strength of the full source.  Here, we know that one half of the strength, m, is 
0.1 ft3/(s⋅ft).) 

⇒ H = 0.02 ft 
 

We could have also used conservation of mass to determine the height of the stagnation streamline far 
upstream. 

rel
CV CS

0d dV d
dt

ρ ρ+ ⋅ =∫ ∫ u A  

where 

CV

0d dV
dt

ρ =∫   (steady flow) 

rel
CS

d UH Qρ ρ ρ⋅ = − +∫ u A   (where Q is the flow rate into the sink) 

Substitute and simplify. 
0UH Qρ ρ− + =  

QH
U

∴ =    (11) 

where Q = 0.1 ft3/(s⋅ft) and U = 5 ft/s  ⇒  H = 0.02 ft.  This is the same answer as before! 

m/(2U) 
(θ → π) 

y 

x 
stagnation point 

U m/(4U) 
(θ = π/2) 

m/(2πU) 
(θ = 0) 

all of this fluid is 
pulled into the sink 
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Wing-tip vortices form on aircraft wings as a result of higher pressure air on the bottom of the wing 
“wrapping over” to the lower-pressure air on the top of the wing.  This flow can be modeled as the 
superposition of two equal strength, counter-rotating free vortices as shown in the figure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a. Write the stream function for the flow in terms of x and y using the coordinate system shown. 
b. Calculate the velocity field resulting from these vortices. 
c. Are there any stagnant regions in the flow?  If so, where are they located?  (Careful on this one.) 
d. What trajectory will these vortices have over time?  Why?  What significance would this 

phenomenon have on the landing of aircraft at airports? 
 
 
SOLUTION: 
 
The stream function for the system of vortices is: 

left right 1 2
vortex vortex

ln ln
2 2

r rψ ψ ψ
π π
Γ Γ= + = −  (1) 

where 

( )22 2
1r x a y= + +  (2) 

( )22 2
2r x a y= − +  (3) 

( ) ( )2 22 2ln ln
4 4

x a y x a yψ
π π
Γ Γ⎡ ⎤ ⎡ ⎤∴ = + + − − +⎣ ⎦ ⎣ ⎦  (4) 

 
The velocities may be found from the stream function. 

( ) ( )2 22 2

2 2
4x

y y
u

y x a y x a y

ψ
π

⎡ ⎤∂ Γ= = −⎢ ⎥
∂ + + − +⎢ ⎥⎣ ⎦

 (5) 

( )
( )

( )
( )2 22 2

2 2
4y

x a x a
u

x x a y x a y

ψ
π

⎡ ⎤+ −∂ Γ= − = − −⎢ ⎥
∂ + + − +⎢ ⎥⎣ ⎦

 (6) 

 
Stagnation points occur where u = 0.  Both velocity components are zero only far from the center of the 
vortices, i.e., the flow stagnation points (a region actually) occur at r → ∞. 

 
 

a a 

x 

y 

frontal view 

a a 

r1 

r2 

y 

x 
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The vortices will move in the –y-direction over time since the “core” of each vortex will move downward 
due to the influence of the other vortex. 
 
 
 
 
 
  
 
 
Aircraft at airports are spaced out so that the vortices have enough time to dissipate (due to viscous effects) 
before the next aircraft comes in to land.  A number of aircraft crashes have been attributed to this 
phenomenon (see, for example, the National Transportation Safety Board (NTSB) web site:  
http://www.ntsb.gov/aviation.htm). 

 
 
 
 
 

 

There is downward 
flow at the center of 
the right vortex due 
to the flow created by 
the left vortex. 
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The eye of a tornado has a radius, R.  In the eye, the tornado flow field is approximated as solid body 
rotation while outside the eye the flow is a free vortex.   
a.  Write the stream function for the tornado.  
b.  Determine the tangential velocity distribution of the tornado, uθ(r), if the maximum wind velocity 

is Umax. 
c. Where in the flow field is the flow irrotational?  Prove it. 
d. Determine the pressure variation, p(r), resulting from the tornado.  Note that the pressure far from the 

tornado is atmospheric pressure, patm. 
e. Where will the minimum pressure occur? 
f. Explain why closed windows in a home often blow outward when a tornado is nearby. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
The stream function for this flow consists of a free vortex for r > R and a forced vortex for 0 ≤ r ≤ R: 

21
2 0

ln
2

kr r R

r r R
ψ

π

⎧− ≤ ≤
⎪= ⎨−Γ >⎪⎩

 (1) 

 
The maximum wind speed will occur at the edge of the tornado eye (r = R). 
 

1 0ru r
ψ
θ

∂= =
∂

 

0
1

2

kr r R
u

r r R
r

θ
ψ

π

≤ ≤⎧∂ ⎪= − = Γ⎨∂ >⎪⎩

 

 
 
Since Umax occurs at r = R: 

max

max

max

1
22

r R

UkR k
u U R

RUR
θ

ππ
=

⎧ =⎪= = ⇒Γ⎨
⎪ Γ =⎩

 

and 

max

max

0
rU r R
Ru
RU r R
r

θ

⎧ ≤ ≤⎪⎪= ⎨
⎪ >⎪⎩

 (2) 

r 

θ 

R eye of the tornado 

uθ 

r r = R 

Umax 
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The flow is irrotational if the vorticity, ξ , is zero (here we only care about the z-component): 

( ) ( )
max2

01

0
z z

U
r R

ru R
r r r R

θξ
⎧ ≤ ≤∂ ⎪= ∇× = = ⎨∂ ⎪ >⎩

u  

Hence, the flow is irrotational for r > R but rotational for 0 ≤ r ≤ R. 
 
Bernoulli’s equation can be used everywhere within the free vortex region (r > R) since the flow is 
irrotational there. 

( ) ( )2 21 1
2 2r

p V p Vρ ρ
∞

+ = +  

where 

maxr
RV U
r

=  

0V∞ =  
Substitute and simplify: 

2
2 21 1

max2 2r r
Rp p V U
r

ρ ρ∞
⎛ ⎞− = − = − ⎜ ⎟⎝ ⎠

 

2

21
max2

rp p R
rUρ

∞− ⎛ ⎞= −⎜ ⎟⎝ ⎠
 for r > R (3) 

 
Within the forced vortex (0 ≤ r ≤ R) Bernoulli’s equation is restricted to a streamline since the flow is 
rotational there.  Hence, Euler’s equations must be used to determine the pressure distribution across the 
streamlines.  Euler’s equation in the radial direction, assuming planar flow and no body forces, is: 

2
r r r

r
u uu u u pu

t r r r r
θ θρ

θ
⎛ ⎞∂ ∂ ∂ ∂+ + − = −⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

 

Noting that ur = 0 and p = p(r) and simplifying gives: 
2u dp
r dr
θρ =  

Making use of Eq. (2) and simplifying gives: 
2

2
max

rU
dpR

r dr
ρ

⎛ ⎞
⎜ ⎟⎝ ⎠ =  

2
max 2

r dpU
drR

ρ =  

2
21
max2 1r R

rp p U
R

ρ
⎡ ⎤⎛ ⎞− = −⎢ ⎥⎜ ⎟⎝ ⎠⎢ ⎥⎣ ⎦

 

2

21
max2

1r Rp p r
RUρ

− ⎛ ⎞= −⎜ ⎟⎝ ⎠
 (4) 

where pR is the pressure at r = R which can be found using Eq. (3): 

2 2 21 1 1
max max max2 2 2

1 1R Rp p p p
U U Uρ ρ ρ

∞ ∞−
= − ⇒ = − +  

Substituting into Eq. (4) and simplifying gives: 
2

21
max2

2rp p r
RUρ

∞− ⎛ ⎞= −⎜ ⎟⎝ ⎠
 for 0 ≤ r ≤ R (5) 
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Examining Eqs. (3) and (5) indicates that the minimum pressure for the tornado will occur at the tornado 
eye (r = 0) and will be: 

0
21
max2

2rp p
Uρ

= ∞−
= −  

 
Windows in a house tend to blow outward because the pressure inside the house (which is essentially equal 
to p∞ since the air there is stagnant) is larger than the outside pressure resulting from the tornado. 
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Consider the whirlpool formed by the combination of a forced vortex (0 < r < R) and a free vortex (r > R).  
The inner part (forced vortex) of the whirlpool rotates with angular velocity ω. 
 
Determine the profile of the surface, h(r). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
The forced vortex/free vortex combination can be written in terms of the stream function: 

21
2

2

0  (forced vortex - rotational)
ln  (free vortex - irrotational)
kr r R
r r Rπ

ψ Γ

⎧ − ≤ ≤⎪= ⎨− >⎪⎩
 

The corresponding velocity field is: 

1
2

1 0

0

r

r

u
r

kr r R
u

r Rrθ
π

ψ
θ
ψ

Γ

∂= =
∂

≤ ≤⎧∂ ⎪= − = ⎨ >∂ ⎪⎩

 

Since the forced vortex rotates with constant angular velocity, ω: 

( ) 1 2
2 2R

kkR
u r R R

Rθ
π

ω
ω

πωΓ

=⎧⎪= = = ⇒⎨
Γ =⎪⎩

 

Hence, 

( )
( )

0r
R

R
r

R r R
u

R r R
θ

ω

ω

⎧ ≤ ≤⎪= ⎨
>⎪⎩

 (1) 

 
Use Bernoulli’s equation to determine the surface height in the irrotational region (r > R).  Apply 
Bernoulli’s equation between a point on the free surface located at a distance r from the origin and another 
point located at a point r→∞ also on the free surface. 

2 2
constant

2 2
r

p V p Vz z
g g g gρ ρ

∞

⎛ ⎞ ⎛ ⎞
+ + = = + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 

where 
( ) atmp r p p∞= =  

( ) ( )RrV r Rω=  

0V∞ =  

( ) ( )z r h r=  

0z∞ =  

z 

r 

gravity 

R 

ω 

fluid free surface 

h(r) 
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Substitute and solve for h(r). 

( ) ( )2 2

2
R Rh r
g r

ω ⎛ ⎞= − ⎜ ⎟⎝ ⎠
  for (r > R) (2) 

 
In the rotational zone (0 ≤ r ≤ R) we must use the Navier-Stokes equations to determine the pressure 
variation as we cross streamlines.  Note that since the flow is in solid body rotation, the viscous stress terms 
will be zero and the Navier-Stokes equations reduce to Euler’s equations.  Euler’s equation in the r-
direction, assuming steady flow with no body forces in the r-direction, is: 

2u p
r r
θρ ∂=

∂
 

Substitute for the velocity and solve for the pressure. 

( ) 2r
RR p
r r

ω
ρ
⎡ ⎤ ∂⎣ ⎦ =

∂
 

( ) ( ) ( )
2

21
2, rp r z R f z

R
ρ ω ⎛ ⎞= +⎜ ⎟⎝ ⎠

  where f(z) is an unknown function of z. (3) 

Euler’s equation in the z-direction gives: 
p g
z

ρ∂ = −
∂

 

( ) ( ),p r z gz g rρ= − +   where g(r) is an unknown function of r. (4) 
 
Comparing Eqs. (3) and (4) shows that: 

( ) ( )
2

21
2, rp r z R gz c

R
ρ ω ρ⎛ ⎞= − +⎜ ⎟⎝ ⎠

  where c is a constant. (5) 

Along the free surface, p = patm so that: 

( )
2

21
atm 2

rp R gh c
R

ρ ω ρ⎛ ⎞= − +⎜ ⎟⎝ ⎠
 

( ) ( )2 2
atm

2
R prh r c
g R g

ω
ρ

⎛ ⎞= − +⎜ ⎟⎝ ⎠
  for (0 ≤ r ≤ R) 

The constant, c, can be determined using Eq. (2) by matching the free surface height at r = R. 

( ) ( )2 2
atm

2 2
R Rp

c
g g g

ω ω
ρ

− + = −  

( )2atm Rp
c

g g
ω

ρ
∴ = −  

 
Thus, the free surface height for the whirlpool is given by: 

( )

( )

( )

2 2

2 2

2 0
2

2

R r r R
g R

h r
R R r R
g r

ω

ω

⎧ ⎡ ⎤⎛ ⎞⎪ − ≤ ≤⎢ ⎥⎜ ⎟⎝ ⎠⎪ ⎢ ⎥⎪ ⎣ ⎦= ⎨
⎪ ⎛ ⎞− >⎪ ⎜ ⎟⎪ ⎝ ⎠⎩

   (6) 

 
An alternate method for finding the surface slope is to note that at any point on the free surface: 

2
0

up pdp dr dz dr gdz
r z r

θρ ρ∂ ∂= = + = −
∂ ∂

  ⇒  
2

surface

udz
dr gr

θ=  
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  stream_fcn_16 

Page 1 of 1 

What are three properties of a stream function?  Under what general conditions can stream functions not be 
written? 
 
 
SOLUTION: 
 
Three properties of a stream function: 

1. Velocities determined from the stream function automatically satisfy the continuity equation. 
2. The stream function is a constant along a streamline. 
3. The volumetric flow rate between two streamlines is equal to the difference in their stream 

functions. 
 

Stream functions cannot be written for 3D flows, in general. 
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  stream_fcn_17 

Page 1 of 2 

Consider the plane, incompressible, Cartesian stream function in the region 0 ≤ y ≤ ∞: 

( )exp
b

ax by cy
c

ψ = + + −  

where a, b, and c are positive constants. 
a. Does this equation satisfy the continuity equation?  Show your work. 
b. What relationship must hold between the constants a, b, and c in order for the Navier-Stokes equations 

to be satisfied if gravity and pressure gradients are neglected? 
c. Determine the equation of the streamline passing through the origin. 
d. Determine the vorticity field for the flow. 
e. Can a potential function be written for the flow?  Explain your answer. 
 
SOLUTION: 
 
The given stream function will satisfy the continuity equation based on the definition of the stream function.  
To demonstrate that this particular stream function satisfies the continuity equation, first find the velocity 
field from the stream function. 

( ) ( )exp 1 expxu b b cy b cy
y
ψ∂= = − − = − −⎡ ⎤⎣ ⎦∂

 (1) 

yu a
x
ψ∂= − = −
∂

 (2) 

The continuity equation for a plane, incompressible flow is: 

0yx
uu

x y

∂∂
+ =

∂ ∂
 (3) 

Substituting Eqs. (1) and (2) into the continuity equation (Eq. (3)) gives: 

( ){ } { }1 exp 0 0 0b cy a
x y
∂ ∂− − + − = + =⎡ ⎤⎣ ⎦∂ ∂

 (4) 

Thus, we see that this stream function does indeed satisfy the continuity equation. 
 

The Navier-Stokes equations for a planar, incompressible, constant viscosity flow in Cartesian coordinates 
and neglecting gravity and pressure gradients are: 

2 2

2 2
x x x x x

x y

u u u u u
u u

t x y x y
ρ µ

⎛ ⎞∂ ∂ ∂ ∂ ∂⎛ ⎞
+ + = +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

 (5) 

2 2

2 2
y y y y y

x y

u u u u u
u u

t x y x y
ρ µ

⎛ ⎞∂ ∂ ∂ ∂ ∂⎛ ⎞
+ + = +⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

 (6) 

Note that: 

( )1 expxu b cy= − −⎡ ⎤⎣ ⎦  ⇒ 
2

2 0x x xu u u
t x x

∂ ∂ ∂
= = =

∂ ∂ ∂
, ( )expxu bc cy
y

∂
= −

∂
, and ( )

2
2

2 expxu bc cy
y

∂
= − −

∂
 (7) 

yu a= −    ⇒ 
2 2

2 2 0y y y y yu u u u u

t x yx y

∂ ∂ ∂ ∂ ∂
= = = = =

∂ ∂ ∂∂ ∂
 (8) 
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  stream_fcn_17 

Page 2 of 2 

Substituting Eqs. (7) and (8) into the Navier-Stokes equations (Eqs. (5) and (6)) gives: 

   

ρ
∂ux

∂t
=0
!

+ ux

∂ux

∂x
=0
!

+ uy

=−a
!

∂ux

∂y
=bcexp −cy( )
!

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
= µ

∂2ux

∂x2

=0
!

+
∂2ux

∂y2

=−bc2 exp −cy( )
!

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

  ⇒  ( ) ( )2exp expabc cy bc cyρ µ− − = − −  (9) 

a cν∴ =   in order for the x-component of the N-S equations to be satisfied at all points where ν is the 
kinematic viscosity.  The constant b can have any non-zero value. 
 

   

ρ
∂uy

∂t
=0
!

+ ux

∂uy

∂x
=0
!

+ uy

∂uy

∂y
=0
!

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
= µ

∂2uy

∂x2

=0
!

+
∂2uy

∂y2

=0
!

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

  ⇒  0 = 0   (10) 

The y-component of the N-S equations is automatically satisfied. 
 
 
The streamline passing through the origin will have the stream constant: 

   
ψ

0,0( ) = a x
=0
! + b y

=0
! +

b
c

exp −c y
=0
!

⎛

⎝
⎜

⎞

⎠
⎟ =

b
c

 (11) 

Since the stream function is a constant along a streamline, the equation of the streamline passing through 
the origin is: 

( )exp
b b

ax by cy
c c
= + + −  (12) 

 
The vorticity may be found from: 

y x
z

u u
x y

ω
∂⎛ ⎞∂

=∇× ⇒ = −⎜ ⎟∂ ∂⎝ ⎠
ω u  (13) 

Substituting Eqs. (7) and (8) gives: 

   

ω z =
∂uy

∂x
=0
!

−
∂ux

∂y
=bcexp −cy( )
!

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
= −bcexp −cy( )  (14) 

( )expz bc cyω∴ = − −   (The other vorticity terms are zero.) (15) 
 

Since the flow is rotational in general, a potential function cannot be written for the flow. 
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2. Potential Functions 
 
The velocity field for an irrotational flow can be written as the gradient of a potential function, φ: 

φ= ∇u  (11) 
since, from a vector identity: 

φ∇×∇ = 0  
and because an irrotational flow is defined as one with zero vorticity, i.e.: 

∇× =ω 0  
 
Now let’s ensure that the continuity equation is satisfied for an incompressible fluid (compressible potential 
flows will be considered in a separate set of notes dedicated specifically to compressible flows): 

0      0 φ∇ ⋅ = ⇒ ∇⋅∇ =u  
2 0 φ∴∇ =  (12) 

This is Laplace’s Equation!, a well studied, linear, elliptic partial differential equation that appears in many 
other disciplines such as electromagnetics and conduction heat transfer.   
 
The momentum equations for a potential flow simplify to Bernoulli’s equation since the flow is everywhere 
irrotational (refer to an earlier set of notes concerning Bernoulli’s equation): 

( ) ( )1
2

p G F t
t
φ φ φ

ρ
∂ + + ∇ ⋅∇ + =
∂

 (13) 

where G is a conservative body potential (e.g., for gravity, G = gz where g and ˆ ze  point in opposite 
directions) and F(t) is a function of time.  For a steady potential flow, Eq. (13) simplifies to: 

( )1
2 constant

p Gφ φ
ρ
+ ∇ ⋅∇ + =  (14) 

Note that the momentum equation (Eq. (13) or (14)) need not be solved to determine the fluid kinematics.  
Solving Eq. (12) subject to appropriate boundary conditions is sufficient to determine the flow velocity 
field.  This occurs because we placed two restrictions on the flow field:  the continuity equation and the 
irrotationality assumption.  The momentum equation can be solved to determine the fluid pressure field 
once the velocity field is known. 
 
The appropriate boundary conditions for Laplace’s equation are either Dirichlet (the functions value is 
specified), Neumann (the functions gradient is specified), or mixed.  At solid surfaces the appropriate 
boundary condition for the flow is that the flow velocity normal to the surface is equal to the surface 
velocity, i.e.: 

ˆ ˆ⋅ = ⋅u n U n  (15) 
where u is the fluid velocity, U is the boundary velocity, and n̂  is the normal vector to the boundary.  This 
is a Dirichlet or kinematic boundary condition.  Note that the no-slip condition is not satisfied for potential 
flows.  This occurs because potential flows have no viscous force contributions since the viscous terms in 
the Navier-Stokes equations (i.e., momentum equations) drop out due to the irrotationality assumption.  As 
a result, the Navier-Stokes equations, which are normally 2nd order PDEs, simplify to the 1st order Euler’s 
equations (and can be simplified further to Bernoulli’s equation).  Hence, only a single boundary condition 
must be specified. 
 
Neumann boundary conditions are specified at free surfaces, i.e., surfaces where the pressure is defined.  
These are sometimes called dynamic boundary conditions.  Bernoulli’s Equation (Eqs. (13) or (14)) is used 
to relate free pressure boundary conditions to the velocity field. 
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Notes: 
 
1. Incompressible potential flows are often referred to as ideal fluid flows since the fluid is 

incompressible and viscous forces are negligible.  
 
2. Potential functions can be defined for 3D flows (as long as they’re irrotational).  Recall that stream 

functions could only be specified for 2D flows. 
 
3. The governing equation for potential flows (Laplace’s equation) is a linear PDE so that the principle of 

superposition can be used to combine potential flow solutions.  The approach is similar to that 
discussed previously for stream functions. 

 
4. Potential functions and stream functions are intimately related.  This will become clear in the following 

section of notes concerning the complex potential function. 
 
5.  Streamlines (ψ = constant) and equi-potential lines (φ = constant) are perpendicular everywhere in the 

flow.  Consider the curves along which ψ = constant (a streamline) and φ = constant: 
0
0

d d
d d
ψ ψ
φ φ

= =∇ ⋅
= =∇ ⋅

x
x

 

where dx is a small distance along the curves.  Re-write these relations in terms of the velocities: 

0

0

y
y x

x

x
x y

y

udy
d u dx u dy

dx u
udy

d u dx u dy
dx u

ψ

φ

∇ ⋅ = = − + ⇒ =

∇ ⋅ = = + ⇒ = −

x

x
 

From analytical geometry, two curves are perpendicular to each other if the slopes of the curves 
multiplied together equals -1.  Hence, we see that the streamlines and equi-potential lines will always 
be perpendicular to each other.  The resulting mesh of streamlines and equi-potential lines is known as 
the flow net. 

 
 

φ = φ 1 

φ = φ 2 

φ = φ 3 

ψ = ψ2 
ψ = ψ3 

ψ = ψ1 
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3. Complex Variable Methods for Investigating Planar, Ideal, Irrotational Flows 
A good mathematics reference for this topic is:  Churchill, R.V. and Brown, J.W., Complex Variables 
and Applications, McGraw-Hill. 

 
Let’s define the complex potential, f(z): ( )f z iφ ψ= +  
 
where z = x+iy = rexp(iθ)  where 0 ≤ θ < 2π and exp(iθ)=cos(θ)+isin(θ) 
 φ is the velocity potential 
 ψ is the stream function 
 
Why do this?  Because it allows us to present information in a compact manner and because we can use 
tools from complex variable mathematics to analyze fluid flows. 
 
Notes: 
 
1. A few complex variables preliminaries: 

a. z = x+iy = rexp(iθ)  where 0 ≤ θ < 2π and exp(iθ)=cos(θ)+isin(θ) 
b. |z| = (x2+y2)1/2 = r 
c. arg(z) = tan-1(y/x) = θ  
d. 2 2 2zz z x y= = +  
e. log(z) = ln(r) + iθ 
f. A function f of the complex variable z is analytic on an open set if it has a derivative at each point 

in that set.  (counter-example:  f(z) = |z|2 is not analytic anywhere since its derivative exists only at 
z = 0.) 

g. A function, h, is harmonic if it has continuous partial derivatives of the first and second order and 
satisfies Laplace’s equation: 

2 0h∇ =  
h. If a function, f(z)=a(x,y)+ib(x,y), is analytic in D, then the first order partial derivatives of its 

component functions, a and b, must satisfy the Cauchy-Riemann equations throughout D. 

  and  a b a b
x y y x

∂ ∂ ∂ ∂= = −
∂ ∂ ∂ ∂

 

i. If two functions, a and b, are harmonic in a domain D and their first-order partial derivatives 
satisfy the Cauchy-Riemann equations throughout D, b is said to be a harmonic conjugate of a. 

 
2. If a function, f(z)=a(x,y)+ib(x,y), is analytic in a domain D then its component functions, a and b, are 

harmonic conjugates in D.  
  

Proof: 
Since f(z) is analytic in a domain D, then the first order partial derivatives of its component functions, 
a(x,y) and b(x,y), satisfy the Cauchy-Riemann equations throughout D (Note #1h). 
 
Differentiating the Cauchy-Riemann equations gives: 

2 2 2 2

2 2

2 2 2 2

2 2

  and  

a b a b
x y x yx x

a b a b
y x y xy y

∂ ∂ ∂ ∂= = −
∂ ∂ ∂ ∂∂ ∂

∂ ∂ ∂ ∂= = −
∂ ∂ ∂ ∂∂ ∂

 

But from advanced calculus: 
2 2 2 2

  and  a a b b
x y y x x y y x
∂ ∂ ∂ ∂= =
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

 

 
Substituting and simplifying: 

θ 
r 

y 

x 
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2 2 2 2

2 2 2 2

2 2

   and   

0   and   0 

a a b b
x y y x

a b

∂ ∂ ∂ ∂= − = −
∂ ∂ ∂ ∂
⇒ ∇ = ∇ =

 

Thus, a and b are harmonic (Note 1g).  Since a and b are harmonic and satisfy the Cauchy-Riemann 
equations in D, they are harmonic conjugates of each other in D (Note 1h).  Therefore, if 
f(z)=a(x,y)+ib(x,y) is analytic in a domain D then its component functions, a and b, are harmonic 
conjugates in D. 

 
3. Any analytic function, f(z)=φ(x,y)+iψ(x,y), is a valid 2D, incompressible, irrotational flow field. 

 
Proof: 
 Recall that for an irrotational flow, the velocity may be written as the gradient of a potential function, 
φ: 

from a vector identity:  0  for any φ φ
φ

=∇× =
∇×∇ =

⇒ =∇

ω u 0

u
 

For the flow to satisfy the continuity equation for an incompressible fluid: 
20      0

 is a harmonic function!
φ φ

φ
∇⋅ = ⇒ ∇⋅∇ =∇ =
∴
u

 

Also recall that the stream function, ψ, is defined for 2D flows such that continuity for an 
incompressible fluid is automatically satisfied: 

2 2

  and   

so that  0

continuity is automatically satisfied!

x yu u
y x

x y x y

ψ ψ

ψ ψ

∂ ∂= = −
∂ ∂

∂ ∂∇ ⋅ = − =
∂ ∂ ∂ ∂

∴

u  

If the flow is also irrotational, the stream function must also satisfy: 

2 2
2

2 2

    0

0

 is a harmonic function!

y x
u u
x y

x y
ψ ψ ψ

ψ

∂ ∂
= ∇× = ⇒ − =

∂ ∂
∂ ∂⇒ − − = −∇ =
∂ ∂

∴

ω u 0

 

 
In addition,  

  Cauchy-Riemann equations

   and  are harmonic conjugates!

x

y

u
x y

u
y x

φ ψ

φ ψ

φ ψ

∂ ∂ ⎫= = ⎪∂ ∂ ⎪
⎬∂ ∂ ⎪= = −
⎪∂ ∂ ⎭

∴

 

From Note 2, the components of any analytic function are harmonic conjugates.  Thus, since the 
governing equations for the fluid are Laplace’s equation and since φ and ψ are harmonic conjugates, 
then any analytic f(z)=φ+iψ will be a valid flow field. 

 
Thus, by choosing various forms of f(z) that are analytic, we can produce various valid (incompressible 
and irrotational) flow fields.  Whether or not the flow fields are interesting from an engineering 
perspective is another matter. 
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Notes…: 
 
4. Some “building block” flows and their complex potentials: 
 
uniform stream 
 
 
 
 
 
 
 

( )0 0( )f z U iV z= −  0 0

0 0

U x V y
V x U y

φ
ψ
= +
= − +

 

line source (m>0) or sink (m<0) 
 
 
 
 
 
 
 

( )0( ) log
2

  

mf z z z

m
π

= −

∈ℜ
 

ln
2

2

m r

m

φ
π

ψ θ
π

′=

′=
 

free line vortex 
 
 
 
 
 
 
 

( )0( ) log
2
if z z z
π

− Γ= −

Γ∈ℜ
 2

ln
2

r

φ θ
π

ψ
π

Γ ′=

−Γ ′=
 

line doublet (x-orientation) 
 
 
 
 
 
 
 

0

( ) cf z
z z

c

=
−

∈ℜ

 

cos

sin

c
r
c
r

θφ

θψ

′
=

′
′

= −
′

 

line doublet (y-orientation) 
 
 
 
 
 
 
 

0

( ) icf z
z z

c

=
−

∈ℜ

 

sin

cos

c
r

c
r

θφ

θψ

′
=

′
′

=
′

 

Note that in the table above:   
z=x+iy and z0=x0+iy0 
0 ≤ θ < 2π 

( ) ( )
1/ 22 2 1 0

0 0
0

   and   tan
y y

r x x y y
x x

θ − ⎛ ⎞−⎡ ⎤′ ′= − + − = ⎜ ⎟⎣ ⎦ −⎝ ⎠
 

y 

x 
U0 

V0 

θ 
r 

y 

x 

θ 
r 

y 

θ 
r 

y 

θ 
r 

y 

shown for c > 0 

shown for c > 0 

shown for m> 0 

shown for Γ> 0 

shown for U0,V0> 0 

x 

z0 

z0 

z0 

z0 
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Notes…: 
 
5. Fluid velocities are found via differentiation of the complex potential: 

( ) x y
df

f z u iu
dz

′ = = −  

( ) ( ) ( )

( )

  where  , ,

and 

and 1        since 

    (an identical result occurs if we consider  )

x y

x y

f df z
f z x y i x y

x dz x
f

i u iu
x x x
z

z x iy
x

df f df z
u iu

dz y dz y

φ ψ

φ ψ

∂ ∂= = +
∂ ∂

∂ ∂ ∂= + = −
∂ ∂ ∂
∂ = = +
∂

∂ ∂∴ = − =
∂ ∂

 

A rectangular coordinates example: 

( ) cf z
z

=   (line doublet oriented in the x-direction and centered at the origin) 

( )
( )
( )

( )
( ) ( )

2 2 2 22

2 2 2 2 22 2 2 2 2 2

2 2c x xyi y c x ydf c cz cxy
i

dz z zz x y x y x y

− − − − −= − = − = − = −
+ + +

 

∴ ( )
( )

2 2

22 2x

c x y
u

x y

− −
=

+
 and 

( )22 2

2
y

cxy
u

x y

−=
+

 

 
A polar coordinate example: 

( )

2 2 2 2

( ) log( )      (source/sink at origin)
2

1 1 exp( )
cos sin

2 2 exp( ) 2 2

cos    and   sin
2 2

or in polar coordinates using some geometry and trig.:

   an

x y

r x y

m
f z z

df m m m i m
i

dz z r i r r
m m

u u
r r

u u u uθ

π
θ θ θ

π π θ π π

θ θ
π π

=

−= = = = −

∴ = =

+ = + -1 -1
tan

d   tan tan     
1 tan

y y r

rx x

r

u
u u uu

u uu u
u

θ

θ

θ

θ
θ

θ

⎛ ⎞ +⎜ ⎟⎛ ⎞ ⎛ ⎞ ⎝ ⎠⎛ ⎞= + ⇒ =⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎛ ⎞⎝ ⎠ ⎝ ⎠ − ⎜ ⎟⎝ ⎠

 

Substituting in for our values of ux and uy and simplifying: 

( )
2

2 2 2
tan

   and    tan     1 tan 0 
2 1 tan

0   and   
2

r
r

r

r

r

u
um uu u uur
u

mu u
r

θ

θ
θ

θ

θ

θ
θ θ

π θ

π

⎛ ⎞ +⎜ ⎟⎛ ⎞ ⎝ ⎠ ⎛ ⎞+ = = ⇒ + =⎜ ⎟⎜ ⎟ ⎝ ⎠⎛ ⎞⎝ ⎠ − ⎜ ⎟⎝ ⎠

⇒ = =

 

ux 

uy 

ur 

uθ 

tan-1(uy/ux) 

tan-1(uθ/ur) 

θ 

u 

θ 

ursinθ 

urcosθ 

uθcosθ 

uθsinθ 
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In general the relation between the velocity components expressed in rectangular and polar coordinates 
is given by (refer to the figure shown above): 

cos sin
sin cos

x r

y r

u u u
u u u

θ

θ

θ θ
θ θ

= −
= +

 

( ) ( )

( ) ( )
( )( )

cos sin sin cos

cos sin cos sin

cos sin

x y r r

r

r

df
u iu u u i u u

dz
u i iu i

u iu i

θ θ

θ

θ

θ θ θ θ

θ θ θ θ
θ θ

= − = − − +

= − − −

= − −

 

( ) ( )expx y r
df

u iu u iu i
dz θ θ∴ = − = − −  (16) 

 
6. We can use the principle of superposition to combine complex potentials and form new complex 

potentials since if two functions are analytic in a domain D, then their sum is also analytic. 
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Notes…: 
 
7. A few example flows created by superposition: 
 

Flow over a Rankine half-body: 
Combine the complex potentials for a uniform stream and a source (m>0): 

( ) log
2
mf z Uz z
π

= +  

 
 
 
 
 
 
 
 
Flow over a Rankine oval: 

Combine the complex potentials for a uniform stream, a source, and a sink: 

( ) log( ) log( )
2 2
m mf z Uz z a z a
π π

= + + − −  

where m>0 and a∈ℜ > 0. 
 
 
 
 
 

 
 
 

y 

x 

x 

y 

source 

source sink 
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Flow around a non-rotating cylinder of radius R: 
Combine the complex potentials for a uniform stream and a doublet: 

( ) cf z Uz
z

= +  

where the constant c is found by not allowing any flow through the cylinder walls, i.e. 

   

ur r = R( ) = 0

f (z) = Ur cosθ + ccosθ
r

⎡

⎣
⎢

⎤

⎦
⎥

φ
! "### $###

+ i Ur sinθ − csinθ
r

⎡

⎣
⎢

⎤

⎦
⎥

ψ
! "### $###

ur =
∂φ
∂r

= 1
r
∂ψ
∂θ

=U cosθ − ccosθ
r 2

⇒ ur r = R( ) = 0 =U cosθ − ccosθ
R2 ⇒ c =UR2

 

so that the complex potential becomes: 
2

( ) Rf z U z
z

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
 (17) 

 
 
 

 
 
 
 
 
Notes: 

 
1. Real (viscous) flow over a sphere (a golf ball in the figure below) is shown below.  The 

streamlines for flow over a cylinder look much the same.   
 
 
 
 
 
 
 
 
 
 

The streamlines over the front half of a cylinder are similar to those predicted by the potential flow 
analysis.  In fact, the velocity and pressures field on the front half of the cylinder are also accurate 
(the pressures will be discussed in a moment.)  The flow field downstream of the cylinder is not 
accurately predicted.  The discrepancy between the potential flow analysis and real life occurs due 
to the formation of a viscous boundary layer on the cylinder surface.  The boundary layer 
separates near the top/bottom points of the cylinder and forms a wake.  Assuming irrotational flow 
in the boundary layer and wake are poor assumptions.  However, outside the boundary layer and 
wake, the potential flow assumption is reasonable.  We’ll discuss boundary layers in a later section 
of notes. 

  

x 

y 

 

doublet 
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2. The pressure distribution on the cylinder surface can be predicted using Eq. (17) and Bernoulli’s 
equation: 

2

( ) Rf z U z
z

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
 

From Eq. (16), the flow velocity field is: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(Note that for this case it would be easier to determine the velocity using φ or ψ directly rather than 
the complex potential).  On the cylinder surface (r = R): 

( )
0

2 sin
r r R

r R

u

u Uθ θ
=

=

=

= −
 

The pressure distribution on the cylinder surface is found via Bernoulli’s equation, and expressed 
in terms of a dimensionless pressure coefficient, cp: 

( )2
21

2

1 4sins
p

p pc
U

θ
ρ

∞−
= = −  (18) 

 
Notes: 
a. The total drag (FD) and lift (FL) on the cylinder may be found by integrating the pressure 

distribution over the entire cylinder surface: 
2

0

2

0

cos

sin

D

L

F p Rd

F p Rd

θ π

θ
θ π

θ

θ θ

θ θ

=

=

=

=

= −

= −

∫

∫
 (19) 

Either by actually evaluating Eq. (19) or noting that the velocity field is symmetric over the 
front and back and upper and lower surfaces, the drag and lift forces on the cylinder are both 
zero.  Of course in real flows we know that the drag is not zero.  The fact that the potential 
flow model predicts zero drag while real flows have non-zero drag is known as d’Alembert’s 
Paradox.  We, of course, now know that the discrepancies are explained by the formation of a 
boundary layer and boundary layer separation.  d’Alembert’s paradox will be discussed again 
when reviewing Blasius’ integral law. 

 

θ R 

p 

 

FD 

FL 

U 
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b. Equation (18) is compared to experimental data in the plot below (from Fox, R.W. and 
McDonald, A.T., Introduction to Fluid Mechanics, 5th ed., Wiley.) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Again, the potential flow analysis predicts the pressure distribution reasonably well over the 
upstream part of the cylinder but does a poor job over the back half due to boundary layer 
separation.  

 
 
 

Flow around a rotating cylinder of radius R: 
Combine the complex potentials for a uniform stream, a doublet, and a free vortex: 

( ) log
2

c if z Uz z
z π

Γ= + −  

where the constant c is found by not allowing any flow through the cylinder walls, just as in the 
previous example.  Note that the addition of a vortex will not change the value of c since a vortex 
only produces tangential flow and not radial flow.  As a result, the complex potential becomes: 

2

( ) log
2

R if z U z z
z π

⎛ ⎞ Γ= + −⎜ ⎟
⎝ ⎠

 

 
 
 
 
 
 
 
 
 
 
 

Γ 

x 

y 

 

doublet and 
free vortex 

FL 

FD 
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Notes: 
 

1. The corresponding velocity field is: 

( ) ( )

( ) ( )

2

2

2

2

exp 1
2

1 exp 2 exp
2

r
df R iu iu i U
dz zz

R iU i i
rr

θ θ
π

θ θ
π

⎛ ⎞ Γ− − = = − −⎜ ⎟
⎝ ⎠

⎡ ⎤ Γ= − − − −⎢ ⎥
⎣ ⎦

 

Using the previous results for a non-rotating cylinder: 

( )

( )

2

2

2

2

1 cos

1
1 sin

2

r
Ru U
r

Ru U
rrθ

θ

θ
π

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
⎛ ⎞ Γ= − + +⎜ ⎟
⎝ ⎠

 (20) 

On the cylinder surface (r = R): 

( )

0

12 sin
2

r r R

r R

u

u U
Rθ θ

π

=

=

=

Γ= − +
 (21) 

Using Bernoulli’s equation, the pressure coefficient over the surface is: 
2

2 1 11 4sin 4 sin
2 2pc UR UR

θ θ
π π
Γ Γ⎛ ⎞= − + −⎜ ⎟⎝ ⎠

 (22) 

The corresponding drag, FD, and lift, FL, are: 
0D

L

F
F Uρ

=
= − Γ

 (23) 

 
Notes: 
a. The drag again is zero and is not unexpected due to the fore/aft symmetry of the velocity 

field. 
b. The lift is non-zero and is related to the flow circulation.  This type of lift is referred to as 

Magnus lift.  Both drag and lift for potential flows will be discussed in detail when 
reviewing Blasius’ integral law and the Kutta-Joukowski theorem. 

c. The photo below shows the flow past a rotating golf ball.  The flow is from left to right 
and the golf ball rotates in a clockwise manner (Γ < 0).  From Eq. (23), the lift on the golf 
ball will be in the positive vertical direction. 

 
 
 
 
 
 
 
 
 
 

In real (i.e., viscous) flows the lift on a rotating object comes primarily from deflection of 
the downstream wake (the fluid momentum is directed downward resulting in an upward 
force on the ball) rather than from the unbalanced pressure distribution on the object.  
The Magnus effect is often mistakenly referred to as the primary source of the lift force.   
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Notes…: 
 
7. Flow in and around corners of varying angles can be modeled using the following complex potential: 

( )     where  and  are constantsnf z Az A n=  
 
a. This produces flows between boundaries intersecting at an angle π/n (only flows with n≥1/2 are of 

interest): 
 
 
 
 
 
 
 
 
 
 or or 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b. The potential and stream functions are given by: 

( ) ( ) ( ) ( )
( ) ( )

n
( )   exp exp cos sin

cos   and  sin

n n n n

n n

f z Az A r i Ar in Ar n iAr n

Ar n Ar n

θ θ θ θ

φ θ ψ θ

= = = = +⎡ ⎤⎣ ⎦
∴ = =

 

( )1 cosn
ru Anr n

r
ϕ θ−∂= =
∂

   and    ( )11 sinnu Anr n
rθ

ϕ θ
θ

−∂= = −
∂

 

 
c. The fluid speed at the origin is: 

( )1 1

0 0 0 0

0

lim lim ( ) lim exp ( 1) lim

0 1
lim 1

1

n n

r r r r

r

f z nAr i n nAr

n
A n

n

θ− −

→ → → →

→

′= = − =

>⎧
⎪⇒ = =⎨
⎪∞ <⎩

u

u
 

 

x 

y 

x 

y 

x 

y 

n=3 n=2 n=1 

x 

y 

n=2/3 

x 

y 

n=1/2 

x 

y 

x 

y 
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d. In a real flow (one with viscosity), the flow along the surface streamline would: 
 

for n>1: separate before reaching the corner and produce a standing eddy 
 
 
 

 
 
 
 
 

for n<1: separate after reaching the corner unless the corner angle is small 
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4. Blasius Integral Law 
 
Consider the 2D, incompressible, inviscid, steady, irrotational flow around an arbitrary closed body: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Using the LMEs, determine the lift, L, and drag, D, acting on the body: 

    

−D − p dy
Coutside

!∫ = ux ρuxdy − ρuydx( )
ρu⋅dA

" #$$ %$$Coutside

!∫

−L+ p dx
Coutside

!∫ = uy ρuxdy − ρuydx( )
ρu⋅dA

" #$$ %$$Coutside

!∫
 

 
From Bernoulli’s equation (neglecting gravity): 

( ) ( )2 2 2 21 1
2 2      x y x yp u u c p c u uρ ρ+ + = ⇒ = − +  

where c is a constant.  Substituting and re-arranging: 

   

D = −cdy + 1
2 ρ ux

2 + uy
2( )dy − ρ ux

2dy − uxuydx( )⎡
⎣

⎤
⎦

Coutside

!∫

L = cdx − 1
2 ρ ux

2 + uy
2( )dx − ρ uxuydy − uy

2dx( )⎡
⎣

⎤
⎦

Coutside

!∫
 

 
Noting that: 

   
c dy =

Coutside

!∫ c dx =
Coutside

!∫ 0  

 
and simplifying: 

   

D = − 1
2 ρ ux

2 − uy
2( )dy + ρuxuydx⎡

⎣
⎤
⎦

Coutside

!∫

L = − 1
2 ρ ux

2 − uy
2( )dx − ρuxuydy⎡

⎣
⎤
⎦

Coutside

!∫
 

 
As shown below, the previous drag and lift relations may be written in terms of the complex potential. 

 

dx 

dy 

p 

ux 

uy 

Coutside 

Cinside 

L 

D 
x 

y 

U 
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i
ρ
2

df
dz

⎛
⎝⎜

⎞
⎠⎟Coutside

!∫
2

dz = i
ρ
2

ux − iuy( )
Coutside

!∫
2

dx + idy( )

= i
ρ
2

ux
2 − 2iuxuy − uy

2( )
Coutside

!∫ dx + idy( )

= i
ρ
2

ux
2dx − uy

2dx + 2uxuydy( ) + i ux
2dy − uy

2dy − 2uxuydx( )⎡
⎣

⎤
⎦

Coutside

!∫

= − 1
2 ρ ux

2 − uy
2( )dy + ρuxuydx( )
=D

" #$$$$$ %$$$$$
− i − 1

2 ρ ux
2 − uy

2( )dx − ρuxuydy( )
=L

" #$$$$$ %$$$$$

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥Coutside

!∫

 

 
Substituting the expressions for lift, L, and drag, D, found previously: 

   
i ρ

2
df
dz

⎛
⎝⎜

⎞
⎠⎟Coutside

!∫
2

dz = D − iL  BLASIUS’ INTEGRAL LAW 

 
 
How is this result used?  Typically, it is applied using a theorem from complex variables referred to as the 
Residue Theorem (Churchill, R.V. and Brown, J.W., Complex Variables and Applications, McGraw-Hill, 
5th ed., pg. 169) which states: 

   
w(z)dz

C
!∫ = 2π i Res

z=zk

w(z)( )
k=1

n

∑  

 
A residue is the coefficient in front of the 1/(z-z0) term (the b1 term in the series below) in the Laurent series 
expansion of an analytic complex function about the point z0 (Churchill and Brown, pg. 144): 

( )
( )0

0 1 0

( ) n n
n n

n n

b
w z a z z

z z

∞ ∞

= =

= − +
−

∑ ∑  

where the coefficients an and bn are given by 

   

an =
1

2π i
w(z)dz

z − z0( )n+1
C
!∫    and   bn =

1
2π i

w(z)dz

z − z0( )−n+1
C
!∫  

The details of the expressions above won’t concern us here and are only presented for completeness.  
Blasius’ Integral Law is used in deriving the Kutta-Joukowski theorem given in the following section 
which relates the lift (and drag) around any arbitrary, closed object to the circulation, Γ, caused by the 
object. 
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Example: 
Determine, using the Blasius Integral Law, the lift acting on a rotating cylinder. 
 
 
SOLUTION: 
 
The complex potential function for flow around a rotating cylinder is: 

( )
2

log
2

R if z U z z
z π

⎛ ⎞ Γ= + −⎜ ⎟
⎝ ⎠

  ⇒  
2

2

11
2

df R iU
dz zz π

⎛ ⎞ Γ= − −⎜ ⎟
⎝ ⎠

 (24) 

22 2 2 2
2

2 2 2 2

1 11 1
4

df R i RU U
dz zz z zπ π

⎛ ⎞ ⎛ ⎞Γ Γ⎛ ⎞ = − − − +⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 (25) 

Let the contour in the integral law, C, be the circle defined as: 
( )expz R iθ′=   ⇒  ( )expdz iR i dθ θ′=  (26) 

where 0 ≤ θ < 2π and R’ is an arbitrary radius greater than R.  Thus, the Blasius Integral Law for this 
problem is: 

   

i ρ
2

df
dz

⎛
⎝⎜

⎞
⎠⎟

2

dz
C
!∫ = i ρ

2
U 2 1− R2

′R 2 exp 2iθ( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

− iΓ
π

1
′R exp iθ( )U 1− R2

′R 2 exp 2iθ( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+ Γ2

4π 2

1
′R 2 exp 2iθ( )

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
i ′R exp iθ( )dθ

θ=0

θ=2π

∫

= − ρ
2

′R U 2 exp iθ( ) 1− 2
R2

′R 2 exp −2iθ( ) + R4

′R 4 exp −4iθ( )⎡

⎣
⎢

⎤

⎦
⎥ −

iΓ
π ′R

U 1− R2

′R 2 exp −2iθ( )⎡

⎣
⎢

⎤

⎦
⎥ +

Γ2

4π 2

exp −iθ( )
′R 2

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
dθ

θ=0

θ=2π

∫

= − ρ
2

′R − iΓ
π ′R

U 2π⎧
⎨
⎩

⎫
⎬
⎭

 

   
∴D − iL = i ρ

2
df
dz

⎛
⎝⎜

⎞
⎠⎟

2

dz
C
!∫ = iρUΓ   ⇒  0  and  D L Uρ= = − Γ    (27) 

These are the same results that we found previously (Eq. (23))! 

 661 

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

C. Wassgren 693 2024-02-01



   

C. Wassgren  Last Updated:  26 Dec 2016 
Chapter 06:  Potential Flows 

5. Kutta-Joukowski Theorem 
 
Now consider the flow around an arbitrary closed body (centered at the origin) in a uniform stream of 
horizontal velocity, U.  Far from the body (z→∞) the complex potential will be of the following form (a 
Laurent series expansion): 

1

( ) log
2

n
n

n

bm if z Uz z
zπ

∞

=

− Γ⎛ ⎞= + +⎜ ⎟⎝ ⎠
∑  (28) 

Note that the coefficients, an, for the terms involving zn (n ≥ 2) in the Laurent series (refer to the previous 
set of notes on the Blasius integral law) are all zero since we are considering external flows (recall that the 
velocity field is given by df/dz so that terms involving zn where n ≥ 2 will approach ∞  as z→∞).  
Furthermore, since we are concerned only with closed bodies, the net source term, m, should also be zero.  
We, however, will continue to include the source term until the end of this analysis. 
 
Given the complex potential above, let’s apply Blasius’ Integral Law to determine the lift and drag about an 
arbitrary object: 

1

1

2 2
2

2 3

1
2

1 12
2 2

n
n

n

df m iU nb z
dz z

df m i U m iU O
dz z z z

π

π π

∞
− +

=

− Γ⎛ ⎞= + + −⎜ ⎟⎝ ⎠
− Γ − Γ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∑
 

 
Using the Residue Theorem to evaluate Blasius’ Integral Law: 

   

D − iL = i ρ
2

df
dz

⎛
⎝⎜

⎞
⎠⎟Coutside

!∫
2

dz = i ρ
2
⋅2π iRes

z=0

df
dz

⎛
⎝⎜

⎞
⎠⎟

2

= i ρ
2
⋅2π i ⋅2 m− iΓ

2π
⎛
⎝⎜

⎞
⎠⎟

U

= −ρmU + iρUΓ

 

 
Thus, we see that for a closed object (m=0): 

0  and D L Uρ= = − Γ  KUTTA-JOUKOWSKI THEOREM (29) 
 
For an object that is not closed (e.g., a Rankine half-body), we have: 

  and D mU L Uρ ρ= − = − Γ  
 
Notes: 
 
1. The result given above indicates that there is no drag around an arbitrary closed object in an a steady, 

incompressible, irrotational, inviscid flow.  In real life of course there is always some drag on an 
object.  The conflict between the derived value of zero drag and the real-life value of non-zero drag is 
referred to as d’Alembert’s Paradox.  There is no paradox, in fact, if one realizes that it is viscous 
effects (skin friction drag and form, aka pressure, drag resulting from the formation of a wake (which 
in turn is a result of boundary layer separation)), which produces drag on an object. 

 
2. Bodies of semi-infinite extent (e.g., a Rankine half-body) do have drag on them due to the fact that the 

net source term, m, is not zero.  The drag is a result of a non-zero flux of horizontal momentum out 
through the control surface. 

 
3. The Kutta-Joukowski theorem states that the lift on an object is directly proportional to the net 

circulation, Γ, caused by the object.  This is an important observation that is especially useful in 
aerodynamics when calculating the lift on an airfoil.  As will be shown later, the circulation around an 
airfoil is dependent on the free stream velocity so that the lift turns out to be proportional to the 
circulation squared.   

L 

Γ 
U 
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6. Conformal Mappings 
 

Conformal maps are analytic functions that transform curves (e.g., equi-potential lines and streamlines) in 
one complex plane, call this the z-plane, to similar curves, but expanded or contracted and rotated at each 
point, in a different complex plane, call this the ζ-plane. 

 
Conformal maps are useful because they allow us to use the complex potential for a straightforward flow 
(e.g., flow around a rotating cylinder), after the proper mapping, as the complex potential for a more 
complex flow (e.g., flow around an airfoil).  The complexity comes into play when trying to find the proper 
mapping that will give us the desired transformation.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

η 

ξ x 

y 

f(z) where z=x+iy f(ζ) where ζ=ξ+iη mapping function: 
ζ=F(z) 
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First, let’s examine some properties of a conformal map.  Let ζ=ξ+iη be an analytic function of z=x+iy 
given by:  ζ=F(z) 
 
Because the transforming function, F, is analytic, there is a connection between curves in the z-plane and 
corresponding curves in the ζ-plane. 
 

Proof: 
 
Determine the derivative of the function, ζ=F(z), at a point, z, by approaching the point from two 
different directions: 

 
 
 
 
 
 
where: 

( )
( )

F z z

F z z

ζ δζ δ
ζ δζ δ

′ ′+ = +
′′ ′′+ = +

 

 
The length ratios in the z and ζ planes are: 

   and  z
z

δ δζ
δ δζ

′ ′
′′ ′′

 

 
and the angles separating the lines are: 

arg( ) arg( )arg( ) arg( )
    and     

arg arg

z z
z
z

δζ δζδ δ
δ δζ
δ δζ

′ ′′−′ ′′−
′ ′⎛ ⎞⎛ ⎞= = ⎜ ⎟⎜ ⎟′′ ′′⎝ ⎠ ⎝ ⎠

 

 
Also, because an analytic function has a unique derivative: 

( )

( )

2

2  

dζ z O z
dz
dζ z O z
dz

δζ δ δ

δζ δ δ

⎡ ⎤′ ′ ′= + ⎣ ⎦

⎡ ⎤′′ ′′ ′′= + ⎣ ⎦

 

 
So that the length ratios and angles between the lines are the same in each plane: 

     and     arg arg

as  , 0

z z
z z

z z

δζ δ δζ δ
δζ δ δζ δ

δ δ

′ ′ ′ ′⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟′′ ′′ ′′ ′′⎝ ⎠⎝ ⎠
′ ′′ →

 

 
Thus, lengths in the neighborhood of z are stretched by a scale factor, d dzζ , and are rotated by an 

angle, ( )arg d dzζ , into the ζ-plane. 
  

x 

y 
z 

z+δ z” 

z+δ z’ 

ξ 

η 
ζ 

ζ+δ ζ” 

ζ+δ ζ’ 

 664 

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

C. Wassgren 696 2024-02-01



   

C. Wassgren  Last Updated:  26 Dec 2016 
Chapter 06:  Potential Flows 

Notes: 
1. Curves of small linear dimension in the z-plane are mapped into curves of similar shape, but expanded 

or contracted and rotated, in the ζ-plane. 
 
2. Note that a large region may be transformed into a region that bears no resemblance to the original one 

since the scale factor and angle of rotation vary, in general, from point to point. 

3. At singular points of the map, i.e. points where 0 or 
d
dz
ζ = ∞ , the mapping is not conformal. 

4. Since lines of constant φ and ψ are ⊥ in the z-plane, they will also be ⊥ in the ζ-plane, except at 
singular points.  (Refer to Note 1.) 

 
5. Since an analytic function of another analytic function is also analytic (Churchill and Brown, p. 56), 

we are assured that the function resulting from the conformal map of a complex potential will also be a 
valid complex potential (it will be a 2D, incompressible, irrotational flow). 

 
6. Velocities in the ζ-plane are proportional to the velocities in the z-plane by the inverse of the scale 

factor: 

( )x y
df df dz dz

u iu u iu
d dz d dξ η ζ ζ ζ

− = = = −  

 
7. Singularities such as vortices and sources/sinks in the z-plane map to identical singularities in the ζ-

plane.  This can be seen by considering the flow in a neighborhood of the singularity as the 
neighborhood shrinks to an infinitesimally small radius. 

   

m = u ⋅dA = uxdy − uydx( )
C
!∫

C
!∫

Γ = u ⋅ds = uxdx + uydy( )
C
!∫

C
!∫

 

Consider the integral of the complex velocity around the contour C: 

  

df
dz

dz = ux − iuy( ) dx + idy( )
C
!∫ = uxdx + uydy( )

C
!∫

Γ
" #$$ %$$

+ i
C
!∫ uxdy − uydx( )

C
!∫

m
" #$$ %$$

∴ df
dz

dz = Γ + im
C
!∫

 

Thus, 

  
Γ z + imz =

df
dz

dz =
Cz

!∫
df
dζ

dζ
dz

dz =
Cz

!∫
df
dζ

dζ =
Cζ

!∫ Γζ + imζ  

Source/sink and free vortex singularities in the z-plane map to similar singularities in the ζ-plane. 
 
8. Doublet singularities in the z-plane map to doublet singularities in the ζ-plane but with the strength 

changed in magnitude by 
 
dζ dz  and an orientation rotated by 

  
arg dζ dz( )  (recall that a doublet is 

formed by bringing a source and sink of equal strength infinitesimally close to each other while 
keeping the product m/a constant where a is the separation distance between the source and sink). 

 
9. Even though the occurrence of boundary layer separation in the real flow may limit the usefulness of a 

potential flow model, transformation of the flow field to a different flow field may produce a realistic 
flow.  For example, although in a real flow boundary layer separation occurs for flow over a rotating 
cylinder, the mapping to an airfoil shape appears realistic. 

 
10. Conformal maps are another tool we can use to produce realistic-looking flows using potential 

functions. 
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7. Joukowski Transformation 
 
An example of a particular conformal mapping is the Joukowski transformation: 

2cz
z

ζ = +  (30) 

where c∈ℜ. This mapping will transform flow around a rotating cylinder  
in the z-plane to flow around an airfoil in the ζ-plane.  This airfoil is  
referred to as a Joukowski airfoil. 

 
Consider a circle of radius R centered at the point z0 such that the 
circumference of the circle passes through the point z=c: 

( )0 expz c R iβ= − −  
The points defining the circle are given by: 

( ) ( ) ( )0 exp exp expz z R i c R i R iδ β δ= + = − − +  
 
 
If we map the points of the circle in the z-plane to the ζ-plane using the transformation given in Eq. (30), 
the resulting figure looks like an airfoil: 

 
 

c 
x 

R δ 

β 

y 

z0 

-3.0 

-2.0 

-1.0 

0.0 

1.0 

2.0 

3.0 

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 y 
or

 h

x or x

c=1.0, R/c=1.1, b=5.0 deg 
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Notes: 
 
1. The geometry of the Joukowski airfoil is determined by the quantities R/c and β.  The camber of the 

airfoil is proportional to β (camber ↑ as β ↑).  The thickness of the airfoil increases as (R/c) increases.  
The chord length of the airfoil is approximately equal to 4c (the exact chord length will also depend 
on the airfoil thickness). 

 
 
 
 
 
 
 
 
 
 
 

An airfoil with no camber (β=0): 

 
An airfoil with no camber (β=0) and larger thickness (R/c=2.0): 

 
 

mean camber line 

chord 
trailing edge (TE) leading edge (LE) 

thickness camber 

-1.0 

-0.5 

0.0 

0.5 

1.0 

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 

h

x

c=1.0, R/c=1.1,	b=0	deg	

-2.0 

-1.0 

0.0 

1.0 

2.0 

-4 -3 -2 -1 0 1 2 3 4 

h

x

c=1.0, R/c=2.0, b=0 deg 
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2. The trailing edge of the Joukowski airfoil will be cusp-shaped.  Real airfoils typically end in a finite 
angle. 

 
 
 
 
 
 
3. Joukowski airfoils are not commonly used in practice; however, they provide a good model for 

predicting the general behavior of airfoils at small angles of attack (so that boundary layer separation 
won’t occur in the real-world airfoils). 

 
4. Note that the trailing edge of the airfoil corresponds to the location where the cylinder intersects the 

location z=c.  The transformation is not conformal at z=c and thus the angle between intersecting lines 
in the ζ-plane is not necessarily the same angle between intersecting lines in the z-plane at the point 
z=c. 

2β angle > 0 
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Now consider, in the z-plane, a uniform flow with velocity U around a rotating cylinder with circulation Γ 
(an unknown value at this point) and radius R.  The complex potential for this flow is given by: 

( )
2

log
2

R i zf z U z
z Rπ

′′⎛ ⎞ Γ ⎛ ⎞′′ ′′= + −⎜ ⎟ ⎜ ⎟′′ ⎝ ⎠⎝ ⎠
 (31) 

Let’s rotate the flow so that the incoming stream is at an angle of attack, α, with respect to the horizontal: 
( ) ( )exp        expz z i z z iα α′ ′′ ′′ ′= ⇒ = −  

Let’s also translate the origin of the cylinder so that it is centered at the position z0=c-Rexp(-iβ): 
0 0       z z z z z z′ ′= + ⇒ = −  

  
The new complex potential is given by 

( ) ( ) ( ) ( ) ( ) ( )
2

0
0

0

exp exp log exp
2

z zR if z U z z i i i
z z R

α α α
π

⎡ ⎤ ⎡ − ⎤Γ ⎛ ⎞= − − + − −⎢ ⎥ ⎢ ⎥⎜ ⎟− ⎝ ⎠⎢ ⎥ ⎣ ⎦⎣ ⎦
 (32) 

 
Note that we haven’t yet determined the value of the circulation, Γ.  This will be found in the section 
below.  First, however, let’s plot some streamlines for the case with zero circulation (Γ=0): 
 
 
 
 
 
 
 
 
 
 
 
Of particular interest in the plot is the condition at the trailing edge of the airfoil.  The streamlines at the 
trailing edge make a very sharp turn (the streamlines are not smooth at the very tip of the airfoil) resulting 
in infinite fluid accelerations and velocities at the trailing edge.  This is not a very realistic flow and does 
not match what we observe in flows around real airfoils.  We can avoid this infinite velocity problem by 
adjusting the circulation around the airfoil so that the flow leaves smoothly from the trailing edge.  This is 
equivalent to moving the rear stagnation point to the tip of the trailing edge.  This adjustment is referred to 
as the Kutta Condition. 
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To quantitatively determine what the value of the circulation must be to satisfy the Kutta Condition, let’s 
examine the complex velocity of fluid along the airfoil surface: 

df df dz dz dzu iu
d dz dz dz dξ η ζ ζ

′′ ′
− = =

′′ ′
 

where 

( )

( )

( ) ( )
( )

2

2

12

0

0

1
2

exp

1

1

exp

exp

df R iU
dz zz

dz i
dz
dz
dz

dz c
d z

z z z i

z c R i

π

α

ζ

α
β

−

⎡ ⎤ Γ= − −⎢ ⎥
′′ ′′′′⎢ ⎥⎣ ⎦
′′
= −

′
′
=

⎡ ⎤⎛ ⎞= −⎢ ⎥⎜ ⎟⎝ ⎠⎢ ⎥⎣ ⎦
′′ = − −

= − −

 

so that the complex velocity in the ζ-plane is given by: 

( )
( )

122

21 exp 1
2

df R i cu iu U i
d z zz

ξ η α
ζ π

−⎧ ⎫⎡ ⎤ ⎡ ⎤Γ⎪ ⎪ ⎛ ⎞− = = − − − −⎢ ⎥ ⎢ ⎥⎨ ⎬ ⎜ ⎟′′′′ ⎝ ⎠⎢ ⎥ ⎢ ⎥⎪ ⎪ ⎣ ⎦⎣ ⎦⎩ ⎭
 (33) 

Note that at z=c the magnitude of the complex velocity approaches infinity due to the (dz/dζ) term.  To 
prevent infinite velocities from occurring, the term within the curly brackets {} must equal zero at z=c: 

( )

( )
( )( ) ( )( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

2

2

2 2

2

0

1 0
2

2 1 2 exp
exp

    where  exp exp exp exp

  2 cos sin cos

z c

z c

z c

R iU
zz

R RiUz iU R i
R iz

z c z i c c R i i R i

iUR i

π

π π α β
α β

α β α α β

π α β α β α β

=

=

=

⎧ ⎫⎡ ⎤ Γ⎪ ⎪− − =⎢ ⎥⎨ ⎬′′′′⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

⎡ ⎤ ⎡ ⎤
′′Γ = − − = − − + −⎢ ⎥ ⎢ ⎥

− +′′⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦
′′ = − − = − + − − = − +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

⇒ Γ = − + − + − + ( )
( )

sin

4 sin

i

UR

α β

π α β

− +⎡ ⎤⎣ ⎦
∴Γ = − +

 

 
Thus, to prevent infinite velocities from occurring at the trailing edge of the airfoil, the circulation must be 
given by: 

( )4 sinURπ α βΓ = − +  (34) 
 
Now that we know the circulation about the airfoil, we can use the Kutta-Joukowski Theorem to determine 
the lift of the airfoil: 

( )2   4 sin
L U

L U R
ρ

πρ α β
= − Γ

⇒ = +
 (35) 
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The lift is often presented in dimensionless form as the lift coefficient, cL: 

( ) ( )21
2

2 sin
4L

L Rc
cU c

π α β
ρ

⎛ ⎞≡ = +⎜ ⎟⎝ ⎠
 (36) 

where 4c is the approximate chord length of the airfoil. 
 
We can also determine the pressure distribution on the airfoil surface by using Bernoulli’s equation (recall 
that we’re dealing with an incompressible, irrotational flow so the same Bernoulli constant is used 
everywhere): 

2 21 1
2 2s sp u p Uρ ρ∞+ = +  

where ps and us are the pressure and speed on the airfoil surface, and p∞ and U are the pressure and speed 
far from the airfoil. 
 
The magnitude of the velocity on the surface of the airfoil can be found using the complex velocity given in 
Eq. (33) with: 

( ) ( ) ( ) ( ) ( )0 exp exp exp expz z z i R i i R iα δ α δ α′′ = − − = − = −⎡ ⎤⎣ ⎦  

where δ defines the location on the airfoil surface.  After some algebra, we arrive at: 
( ) ( )

2

2 sin sin

1
s

U
u

c
z

δ α α β− + +⎡ ⎤⎣ ⎦=
⎛ ⎞− ⎜ ⎟⎝ ⎠

 (37) 

with z=c-Rexp(-iβ)+Rexp(iδ). 
 
The pressure is often expressed non-dimensionally as the pressure coefficient, cP: 

2

21
2

1 s
P

up pc
UUρ

∞− ⎛ ⎞≡ = −⎜ ⎟⎝ ⎠
 (38) 

 
Notes: 
 
1. The lift coefficient predicted by our potential flow analysis of a Joukowski airfoil is reasonably close 

to values found experimentally at small angles of attack and small camber (to avoid boundary layer 
separation). 

 
2. Flow over a flat plate can be found by letting R/c=1 and β=0.  The resulting lift coefficient is: 

( )2 sinLc π α=  
The Joukowski transformation can also produce flow around curved plates (let R/c=0 and β>0). 

 
3. Note that increasing the angle of attack, α, the camber, β, and the thickness, R/c, all act to increase the 

lift of an airfoil. 
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4. The Joukowski transformation can also produce flow around ellipses.  To produce this type of flow, we 
center the cylinder at the origin and choose R>c.  The points on the cylinder surface are given by 

( )expz R iδ=  

where 0≤δ<2π. 
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8. Method of Images 
 
In much of our previous work concerning potential flows, we investigated external flows in an infinite 
expanse of fluid.  Since there are a number of phenomena that are of interest when there is flow near a 
boundary, we should find a method for modeling flows near walls.  The Method of Images is such a 
method. 
 
Consider how we can model the flow from a source near a wall.  To produce a horizontal streamline 
representing the wall, we can add to our original source, an “image source” an equal distance away from 
where we want our wall to be. 

[ ]

( )

( )

1 2

22
1

22
2

ln ln
2

where  

           

m
r r

r x y a

r x y a

φ
π

= +

= + −

= + +

 

 
 
 
 
 
 
 
 
 
Notes: 
 
1. There is a net upward velocity at the location of the original source of: 

( )
1

2 2
mV

aπ
=    

where m is the source strength due to the flow induced by the image source. 
 

2. The vertical force acting on the source can be determined by first calculating the pressure force acting 
on the wall using Bernoulli’s equation and then noting that the force acting on the wall is equal, but in 
the opposite direction, to the force acting on the source.  The pressure at the wall is given by: 

21
2w wp V pρ ∞+ =  

where pw and Vw are the pressure and velocity magnitude at the wall and p∞ is the pressure far from the 
wall (U∞ approaches zero as we move far from the wall).  The velocity along the wall is found from the 
potential function: 

( ) ( )2 22 2

2 20
0

0
0

2

1
2 2 2

ln ln
2

0

x y
y

y y
y

w

m
x y a x y a

m x
u

x x a

u
y

m x
p p

x a

φ
π

φ
π

φ

ρ
π

=
=

=
=

∞

⎡ ⎤= + − + + +⎢ ⎥⎣ ⎦
∂= =
∂ +

∂= =
∂

⎛ ⎞⇒ = − ⎜ ⎟+⎝ ⎠

 

Note that without the sources, the pressure acting on the wall would be p∞.  Hence, the increase in the 
force acting on the wall is: 

 

a 

a 

x 

y 

r 
r2 

r1 

(x, y) 

a 

a 

y 
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( )
2

1
2on wall 2 2

due to source

2
1

2 2

1 1
tan

4

x x

w
x x

m x
F p p dx dx

x a

m x x
a ax a

ρ
π

ρ
π

=∞ =∞

∞
=−∞ =−∞

∞

−

−∞

⎡ ⎤⎛ ⎞= − − − =⎡ ⎤ ⎢ ⎥⎜ ⎟⎣ ⎦ +⎝ ⎠⎢ ⎥⎣ ⎦

⎡ ⎤⎛ ⎞ ⎛ ⎞= − −⎜ ⎟ ⎜ ⎟⎢ ⎥+⎝ ⎠ ⎝ ⎠⎣ ⎦

∫ ∫
 

2

on wall
due to source 4

mF
a

ρ
π

∴ =  

Consequently, the force on the source will be: 
2

on  source 4
mF
a

ρ
π

= −  

 
A particularly interesting application of the method of images is investigating the effect that the ground has 
on the lift of an airfoil.  Let’s use a crude model consisting of a free vortex combined with a uniform stream 
to investigate this effect.  Recall that in order to satisfy the Kutta condition, an airfoil must have some 
circulation, which in turn develops lift (from the Kutta-Joukowski Theorem).  The potential flow model is 
given below (drawn for Γ>0). 

[ ]1 2

1
1

1
2

2

where  tan

           tan

Ux

y a
x
y a
x

φ θ θ
π

θ

θ

−

−

Γ= + −

−⎛ ⎞= ⎜ ⎟⎝ ⎠
+⎛ ⎞= ⎜ ⎟⎝ ⎠

 

 
 
 
 
 
 
 
 
 
As before with the source example, the force acting on the source will have the same magnitude, but with 
opposite sign, as the force acting on the wall.  The force acting on the wall is found by integrating the 
pressure force over the entire wall: 

2

2 2 20
0

0
0

2
2 21 1

2 2 2 2 2 2

2
1

0

2

x y
y

y y
y

w

a
axu U U

x x aa
x

u
y

aU a
p p U U

x a x a

φ
π π

φ

ρ ρ
π π

=
=

=
=

∞

⎡ ⎤
⎢ ⎥∂ Γ Γ⎢ ⎥= = + = +
⎢ ⎥∂ +⎛ ⎞+⎢ ⎥⎜ ⎟⎝ ⎠⎣ ⎦

∂= =
∂

⎡ ⎤Γ Γ⎛ ⎞⇒ = + − + +⎢ ⎥⎜ ⎟+ +⎝ ⎠⎢ ⎥⎣ ⎦

 

The resulting force acting on the wall due to the vortices (again, subtracting out the pressure when no 
vortices are present) is then: 

r 
r2 

r1 

(x, y) 
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( )
2

1
2on wall 2 2 2 2

due to vortex

2
1 11

2 2 2

2

1
2

2

2 1 1
tan tan

2

2
2

x x

w
x x

aU a
F p p dx dx

x a x a

U x x x
a a ax a

U
a

ρ
π π

ρ
π π

πρ
π

=∞ =∞

∞
=−∞ =−∞

∞

− −

−∞

⎧ ⎫⎡ ⎤Γ Γ⎪ ⎪⎛ ⎞= − − − = +⎡ ⎤ ⎢ ⎥⎨ ⎬⎜ ⎟⎣ ⎦ + +⎝ ⎠⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

⎧ ⎫Γ Γ ⎡ ⎤⎪ ⎪⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + +⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥+⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦⎪ ⎪⎩ ⎭
⎡ ⎤Γ⎛ ⎞= Γ +⎢ ⎜ ⎟⎝ ⎠⎢⎣

∫ ∫

⎥
⎥⎦

 

on wall
due to vortex

1
4

F U
aU

ρ
π
Γ⎛ ⎞∴ = Γ +⎜ ⎟⎝ ⎠

 

Thus, the force acting on the vortex is: 

on vortex 1
4

F U
aU

ρ
π
Γ⎛ ⎞∴ = − Γ +⎜ ⎟⎝ ⎠

 

 
Recall that the lift force acting on an object in an infinite expanse of fluid with circulation Γ is given by the 
Kutta-Joukowski theorem as: 

infinite
expanse
L Uρ∴ = − Γ  

Keep in mind that from the previous discussion regarding Joukowski airfoils, the circulation around an 
airfoil is negative (Γ < 0) in order to satisfy the Kutta condition at the trailing edge of the airfoil. 
 
The difference between the lift generated when the wall is nearby versus the lift in an infinite expanse of 
fluid is: 

( )wall infinite
present expanse

2

1
4

4

L L L U U
aU

a

ρ ρ
π

ρ
π

Γ⎛ ⎞Δ = − = − Γ + − − Γ⎜ ⎟⎝ ⎠
− Γ=

 

Hence, the wall acts to decrease the lift.  Experience shows, however, that an airfoil near the ground, aka in 
ground effect, actually has increased lift (and decreased drag) rather than decreased lift.  Why do we have 
this discrepancy?  It’s because our analysis considers an infinitely long airfoil, i.e., one with no wing tips.  
At the end of a finite wing, “trailing” vortices (as opposed to the vortex “bound” to the airfoil resulting 
from the Kutta condition) are generated by the wing tips as shown below.  These wingtip vortices occur 
because air in the high pressure region underneath the airfoil is pushed around the wing tips to the low 
pressure above the airfoil. 
 
 
 
 
 
 
 
 
 
When viewed from behind, the trailing vortices appear as shown below. 
 
 
 
 
 
 

U bound vortex 

trailing vortices 

low pressure side of wing 

high pressure side of wing 

wingtip vortex wingtip vortex 

starting vortex 
(This will be discussed later.) 
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The wingtip vortices induce a “downwash” along the wing surface and thus reduce the effective angle of 
attack that the airfoil sees. 
 
 
 
 
 
 
 
 
 
The lift acting on the wing per unit span (i.e., distance into the page), L, will be the lift calculated for the 
local effective angle of attack, αeff, where: 

eff indα α α= −  with ind
indtan

w
U

α
∞

=  

Here, α is the nominal angle of attack and αind is the induced angle of attack resulting from the wingtip 
vortices which induce a local downwash velocity of wind.  Since the effective angle of attack is reduced, the 
lift on the airfoil will also be reduced. 
   
There is also an induced drag on the wing Dind since the local flow is at an angle of αind from the free 
stream, which tilts the actual lift vector slightly downstream  

ind indtanD L α=  
Again, Dind is the induced drag per unit span of the wing. Note that the induced drag on the wing is not due 
to viscous effects, but is due solely to the induced angle of attack resulting from the induced downwash.  
Hence, there is a drag on a finite wing, even in an ideal flow, due to the trailing vortices. 
 
The trailing vortices also drift downwards over time due to the flow induced at the center of each vortex by 
the other vortex.  If the airfoil was turned upside down, the vortex orientation would be reversed and the 
vortices would drift upwards over time! 
 
 
 
 
 
 
 
 
 
 
Near the ground, two image vortices must also be included in the analysis in order to make the horizontal 
ground streamline.  As a result of the flow induced by the image vortices, the wingtip vortices drift outward 
when reaching the ground. 
 
 
 
 
 
 
 
 
 
 
 
 
 

If this vortex has a circulation of Γ, the 
induced velocity at the center of the other 
vortex is: 

 

where b is the distance between the wingtips. 
 

b 

Vdownward Vdownward 

downwash induced by original vortices 

image vortices 

original vortices 

upwash induced by image vortices 

αind U∞ wind 

wing 

L 

Dind 

αeff 

α 

αeff 

α 
αind 
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The image vortices also contribute an “upwash” along the wing, which helps to counteract the downwash 
caused by the original vortices.  This reduction in the downwash helps increase the lift and reduce the drag 
on the finite wing when it is located near the ground.  This is the source of the observed “ground effect.” 
 
Notes: 
 
1. Recall that from previous discussions regarding vorticity, vortex lines must either form closed loops or 

terminate on a boundary (∇⋅ω  = 0).  So how then do the vortex lines corresponding to the trailing 
vortices terminate?  The bound vortex/trailing vortex lines actually form a closed loop through a 
“starting” vortex line (shown in a previous figure).  The starting vortex occurs during the transient 
when the lift on the airfoil changes (e.g., at start up).  Since the starting vortex is typically located far 
behind the bound vortex, its effects are typically neglected in steady airfoil analyses and the bound 
vortex/trailing vortex combination is treated as a horseshoe vortex. 

 
2. The trailing vortices are not actually concentrated solely at the wingtips.  Instead, there is a distribution 

of trailing vortices along the wing due to variations in the circulation, which result from changes in 
airfoil geometry and local flow conditions.  These variations must be included a finite wing analyses 
(see, for example, Kuethe, A.M. and Chow, C-Y., Foundations of Aerodynamics, Wiley.) 

 
 
 
 
 
 
 
 
  
 
3. Trailing vortices have been the source of several airline disasters (see, for example, 

http://www.asy.faa.gov/safety_products/wake.htm and http://aviation-safety.net/events/EFV.shtml).  If 
an aircraft flies behind a preceding aircraft too closely, it can be caught in the trailing vortices and 
cause the pilot to lose control of the aircraft (this phenomenon is sometimes mistakenly referred to as 
“wake turbulence”).  The strength of the vortices is proportional to the lift generated by the airfoil 
which in turn is related to the weight of the aircraft.  Hence, the spacing between aircraft (near an 
airport for example) is a function of their relative size. 

 
4. Ground effect has been used as a significant component in the design of several aircraft.  A search for 

WIG (wing-in-ground-effect) aircraft on the web will show many different designs. 
 
 
 
 
 
 
 
 
 

Even pelicans take advantage of ground effect! 
  

bound vortex 

trailing vortices 

 

The “Caspian Sea Monster” 
developed by the Soviets in 
the 1960s. 
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Notes: 
1. We may sometimes need an infinite number of reflections to properly model a flow.  Consider for 

example, the flow resulting from a source located midway between two walls.  An infinite number of 
images are required for perfect symmetry. 
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Example: 
 
a. Write the potential function that simulates the flow of a line source placed asymmetrically between 

two parallel walls as shown in the figure.   
b. Compute the dimensionless velocity, u’ = au/(4πm), on the lower wall at (x/a, y/a) = (1,0) accurate 

to three significant digits. 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
Use the Method of Images to create the given flow.  The sequence of images is shown below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The potential function for the given flow field is: 

   

φ = m
2π

ln x2 + y − a( )2 + ln x2 + y + a( )2 + ln x2 + y −5a( )2 + ln x2 + y +5a( )2 +

ln x2 + y − 7a( )2 + ln x2 + y + 7a( )2 + ln x2 + y −11a( )2 + ln x2 + y +11a( )2 +!

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 (39) 

2a 

a 
m 

y 

x 

2a 

a 
m 

y 

x 
a 

2a 

2a 

2a 

a 

a 

repeat reflecting images to ∞ 

repeat reflecting images to ∞ 
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( ) ( )

( ) ( )

2 22 2

2 22 20

ln 6 1 ln 6 1

4 ln 6 5 ln 6 5

k

k

x y k a x y k am

x y k a x y k a
φ

π

→∞

=

⎧ ⎫⎡ ⎤ ⎡ ⎤+ − + + + + + +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎪ ⎪⎣ ⎦ ⎣ ⎦= ⎨ ⎬
⎡ ⎤ ⎡ ⎤⎪ ⎪+ − + + + + +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎩ ⎭

∑  (40) 

or, in dimensionless terms: 

( ) ( )

( ) ( )

2 22 2

2 22 2 20

ln 6 1 ln 6 1

ln 6 5 ln 6 5 4ln

k

k

x y k x y k

x y k x y k a
φ

→∞

=

⎧ ⎫⎡ ⎤ ⎡ ⎤′ ′ ′ ′+ − + + + + + +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎪ ⎪⎣ ⎦ ⎣ ⎦′ = ⎨ ⎬
⎡ ⎤ ⎡ ⎤⎪ ⎪′ ′ ′ ′+ − + + + + + +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎩ ⎭

∑  (41) 

where the dimensionless potential function is φ’ = φ/(4πm) and the dimensionless positions are x’ = x/a and 
y’ = y/a. 
 
The dimensionless velocities resulting from this potential function are: 

( ) ( )

( ) ( )

2 22 2

0
2 22 2

1 1

6 1 6 1
2

1 1

6 5 6 5

k

x
k

x y k x y k
u x

x

x y k x y k

φ →∞

=

⎧ ⎫+ +⎪ ⎪′ ′ ′ ′+ − + + + +⎡ ⎤ ⎡ ⎤′ ⎪ ⎪∂ ⎣ ⎦ ⎣ ⎦′ ′= = ⎨ ⎬′∂ ⎪ ⎪+
⎪ ⎪′ ′ ′ ′+ − + + + +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎩ ⎭

∑  (42) 

( )
( )

( )
( )

( )
( )

( )
( )

2 22 2

0
2 22 2

6 1 6 1

6 1 6 1

6 5 6 5

6 5 6 5

k

y
k

y k y k

x y k x y k
u

y y k y k

x y k x y k

φ →∞

=

′ ′− + + +⎧ ⎫
+ +⎪ ⎪

′ ′ ′ ′+ − + + + +⎡ ⎤ ⎡ ⎤⎪ ⎪′∂ ⎪ ⎣ ⎦ ⎣ ⎦ ⎪′ = = ⎨ ⎬′ ′ ′∂ − + + +⎪ ⎪+⎪ ⎪′ ′ ′ ′+ − + + + +⎡ ⎤ ⎡ ⎤⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭

∑  (43) 

where u’x = aux/(4πm) and u’y = auy/(4πm). 
 

The velocity at (x’, y’) = (1, 0) is: 

( )
( ) ( )2 2

0

1 11,0 4
1 6 1 1 6 5

k

x
k

u
k k

→∞

=

⎧ ⎫⎪ ⎪′ = +⎨ ⎬
+ + + +⎪ ⎪⎩ ⎭

∑  (44) 

( )1,0 0yu′ =   (as expected since the point is on a wall) (45) 
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The value of the horizontal velocity component at (x’, y’) = (1,0) as a function of k is given in the table 
below.  Note that “%diff from prev” is the percentage change in the value of u’x from the previous value of 
u’x, i.e. % diff = (u’x,k+1 – u’x,k)/u’x,k * 100%. 
 

k u'x % diff from prev 
0 1.962  
1 2.042 4.08% 
2 2.066 1.15% 
3 2.077 0.53% 
4 2.083 0.31% 
5 2.087 0.20% 
6 2.090 0.14% 
7 2.092 0.10% 
8 2.094 0.08% 
9 2.095 0.06% 

10 2.097 0.05% 
11 2.097 0.04% 
12 2.098 0.04% 
13 2.099 0.03% 
14 2.099 0.03% 
15 2.100 0.02% 
16 2.100 0.02% 
17 2.101 0.02% 
18 2.101 0.02% 
19 2.101 0.01% 

 
Hence, the velocity components at (x’,y’) = (1,0) are (u’x, u’y) = (2.10, 0). 
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9. Added Mass 
 
Added mass (aka apparent or virtual mass) is the concept whereby we add an extra “mass” to an object 
when we accelerate the object through a fluid.  This added mass term accounts for the force required to 
accelerate the surrounding fluid to a higher velocity.  
 
To study this concept, let’s consider the potential function for a cylinder in a fluid that is stagnant far from 
the cylinder.  To form this potential function, we first form the potential function for a uniform stream with 
velocity U flowing around a stationary cylinder of radius R.   

2

2stationary cylinder in uniform stream
cos 1

RUr
r

φ θ ⎛ ⎞
= +⎜ ⎟

⎝ ⎠
 

To change our frame of reference so that the fluid far from the cylinder is stationary, we add in a uniform 
stream of velocity U in the opposite direction: 

cylinder moving through stagnant fluid stationary cylinder in uniform stream of velocity 

2

cylinder moving through stagnant fluid

cos

cos
U
Ur

UR
r

φ φ θ

θφ

= −

∴ =
 

The resulting potential function describes the flow produced by a cylinder of radius R moving at velocity U 
through an otherwise quiescent fluid. 
 
Let’s now determine the total kinetic energy in the fluid (outside of the cylinder): 

( )( )2 21
2total 2

r

r
r R

KE rdr u uθρ π
=∞

=

= +∫  

where the fluid velocity components are given by: 

( )

2 2

2 2

2 4
2 2

4

cos 1 sin
   and   

   

r

r

UR URu u
r rr r

U Ru u
r

θ

θ

φ θ φ θ
θ

∂ − ∂ −= = = =
∂ ∂

⇒ + =
 

Note that the ρ in the kinetic energy formula is the fluid density.  Substituting the speed into the expression 
for the total kinetic energy: 

( )
2 4 2 4 2

21
2total 4 22

22

rr

r R r R

U R U R RKE rdr U
r r

πρ πρ π ρ
=∞=∞

= =

−= = =∫  

 
If we apply a force such that it increases the velocity of the cylinder by a small amount δU, the total kinetic 
energy of the fluid will increase by an amount (neglecting higher order terms): 

( ) ( ) ( )
2 2

2 2 2
total 2 2

R RKE U U U R U Uπ πδ ρ δ ρ π ρ δ= + − =  

The average force we must apply to the cylinder over time δt (the time over which the velocity goes from 
velocity U to velocity U+δU) to increase the total kinetic of the fluid is: 

   

FUδ t
total work done in time δ t
! = δ KEtotal( )

⇒   F
required to increase KE  of fluid

=
πR2ρU δU( )

Uδ t
= πR2ρ δU

δ t

 

 
Thus, the total force required to accelerate a cylinder of mass, M, through a quiescent fluid is given by: 

   

F = M
cylinder

mass

! + ρπR2

added
mass

!

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

dU
dt

 

dA = 2πrdr 

R 
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The term added to the cylinder mass in the previous equation is referred to as the added mass (aka 
apparent or virtual mass).  Thus, the added mass for a cylinder is Madded=ρπR2.  Again, the ρ is the fluid 
density. 
 
Notes: 
 
1. Note that added mass is only a factor for unsteady flows.  There is no added mass term for a steady 

flow. 
 
2. Added mass terms are typically only significant in flows of liquids since the added mass for gases is 

often small compared to the object’s mass (ρgas is typically very small).  Added mass terms in a gas can 
be significant however if the object is large and has small mass (e.g., a parachute).  

 
3. We could have also found the force on the cylinder by integrating the pressure force around the 

cylinder surface, which is found using the unsteady Bernoulli equation (neglecting gravitational 
effects): 

21
2

on surface ( )

21
2   cos

r R

s

p V p
t

dUp p U R
dt

φρ ρ

ρ ρ θ

∞
=

∞

∂⎛ ⎞+ + =⎜ ⎟∂⎝ ⎠

⇒ = − −

 

Integrating the pressure force along the surface of the cylinder to find the total force on the cylinder: 

( )
2 2 2 2

2 21
2

0 0 0 0

2

cos  cos cos cos

   (the same answer as before)

s
dUF p Rd R p d U d R d
dt

dUF R
dt

θ π π π π

θ

θ θ θ θ ρ θ θ ρ θ θ

ρπ

=

∞
=

⎡ ⎤
= = − −⎢ ⎥

⎣ ⎦

∴ =

∫ ∫ ∫ ∫
 

 
4. The added mass is dependent on the shape of the object.  It’s possible to have different values for the 

added mass depending on the orientation of the object (e.g., an ellipse will have different added masses 
depending on its orientation.)  We can also have added mass effects due to rotational acceleration of an 
object. 

 
5. An additional reference concerning added mass is:  Yih, C.S., 1969, Fluid Dynamics, McGraw-Hill 

(Now published by West River Press, Ann Arbor, MI). 
 
6. The added mass presented here was calculated for an inviscid flow.  For unsteady viscous flows an 

additional term referred to as the Bassett force also appears which takes into account unsteady viscous 
force terms.  
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10. Finite Difference Methods 
 
Recall that the governing equation for an incompressible, irrotational flow is: 

2 0φ∇ =  (46) 
where φ is the velocity potential.  Our goal here is to re-write Eq. (46) using a finite difference 
approximation so that we can solve the equation numerically.  We’ll assume a 2D flow in Cartesian 
coordinates to make the following analyses more straightforward; however, the same ideas can be applied 
to 3D and non-Cartesian (but still orthogonal!) coordinate systems.  In particular, we’ll solve Eq. (46) at the 
grid points shown in the figure below.  Note that for simplicity, neighboring grid points are assumed to be 
separated by a distance h in both the x- and y-directions.  The derivations given below may also be 
extended to non-uniform grid spacings. 
  

 
 
 
 
 
 
 

 
 
The values of the second order partial derivatives in Eq. (46), e.g., ∂2φi,j/∂x2, may be written in terms of the 
neighboring values of φ by using Taylor series expansions about the point i,j.  For example, for determining 
∂2φi,j/∂x2, express φi+1,j and φi-1,j in terms of Taylor series expansions about i,j and then add the two Taylor 
series together. 

   

φi+1, j = φi, j +
h( )
1!

∂φ
∂x i, j

+
h( )2
2!

∂2φ
∂x2

i, j

+
h( )3
3!

∂3φ
∂x3

i, j

+
h( )4
4!

∂4φ
∂x4

i, j

+!  (47) 

   

φi−1, j = φi, j +
−h( )
1!

∂φ
∂x i, j

+
−h( )2
2!

∂2φ
∂x2

i, j

+
−h( )3
3!

∂3φ
∂x3

i, j

+
−h( )4
4!

∂4φ
∂x4

i, j

+!  (48) 

   

φi+1, j +φi−1, j = 2φi, j + 2 h2

2!
∂2φ
∂x2

i, j

+ 2 h4

4!
∂4φ
∂x4

i, j

+!  (49) 

The previous expression may be re-arranged to solve for the 2nd order derivative. 

   

∂2φ
∂x2

i, j

=
φi+1, j +φi−1, j − 2φi, j

h2 + 2 h2

4!
∂4φ
∂x4

i, j

+!  (50) 

A similar approach may be used in the y-direction to determine ∂2φi,j/∂y2. 

   

∂2φ
∂y2

i, j

=
φi, j+1 +φi, j−1 − 2φi, j

h2 + 2 h2

4!
∂4φ
∂y4

i, j

+!  (51) 

Hence, at point (i,j), the solution to Eq. (46) may be written as: 

   

0 = ∇2φ
i, j

= ∂2φ
∂x2

i, j

+ ∂2φ
∂y2

i, j

=
φi+1, j +φi−1, j − 2φi, j

h2 + 2 h2

4!
∂4φ
∂x4

i, j

+
φi, j+1 +φi, j−1 − 2φi, j

h2 + 2 h2

4!
∂4φ
∂y4

i, j

+!

  

   

0 = φi+1, j +φi−1, j +φi, j+1 +φi, j−1 − 4φi, j + 2 h4

4!
∂4φ
∂x4

i, j

+ 2 h4

4!
∂4φ
∂y4

i, j

+!  (52) 

h 

h 
x 

i+1,j 

i,j-1 

i-1,j 
i,j+1 
i,j 

streamlines 

finite difference grid x 

y 

 684 

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

C. Wassgren 716 2024-02-01



   

C. Wassgren  Last Updated:  26 Dec 2016 
Chapter 06:  Potential Flows 

The previous equation is an exact solution to Eq. (46) at the point (i,j) as long as all of the higher order 
terms are included in Eq. (52).  If the value of h is sufficiently small, then we may approximate Eq. (52) by 
neglecting terms of order h4 and higher since they will be small in comparison to the remaining terms (as 
long as the higher order derivatives don’t simultaneously become very large).  The resulting truncated 
equation is now only an approximate solution to Eq. (46), 

1, 1, , 1 , 1 ,0 4i j i j i j i j i jφ φ φ φ φ+ − + −≈ + + + −  (53) 
where the truncation error in the previous equation is of order h4. 
 
Notes: 
1. Note that at a vertical solid boundary, the horizontal velocity (ux) is zero.  In terms of the velocity 

potential: 

,
,

0x i j
i j

u
x
φ∂ = =
∂

 

 
 
 
Determining the potential at (i-1,j) in terms of the Taylor series expansion about point (i,j) gives: 

   

φi−1, j = φi, j +
−h( )
1!

∂φ
∂x i, j

=0
!

+
−h( )2
2!

∂2φ
∂x2

i, j

+
−h( )3
3!

∂3φ
∂x3

i, j

+
−h( )4
4!

∂4φ
∂x4

i, j

+"  (54) 

Re-arranging this equation gives: 

( )2 31, ,
2 2 3
, ,

2 i j i j

i j i j

O h
x h x

φ φφ φ− ⎛ ⎞−∂ ∂⎜ ⎟= +
⎜ ⎟∂ ∂⎝ ⎠

 (55) 

Combine Eq. (55) with Eq. (51) to solve for ∇2φi,j = 0. 

( )

2 2
2
, 2 2

, ,

3 41, , , 1 , 1 , 2
2 2 3 4

, ,

0

2 2

i j
i j i j

i j i j i j i j i j

i j i j

x y

O h O h
h h x y

φ φφ

φ φ φ φ φ φ φ− + −

∂ ∂=∇ = +
∂ ∂

⎛ ⎞ ⎛ ⎞− + − ∂ ∂⎜ ⎟ ⎜ ⎟= + + +
⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

 

3 4
3 4

, 1 , 1 1, , 3 4
, ,

0 2 4i j i j i j i j
i j i j

O h O h
x y
φ φφ φ φ φ+ − −

⎛ ⎞ ⎛ ⎞∂ ∂⎜ ⎟ ⎜ ⎟= + + − + +
⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

 (56) 

If the previous equation is truncated, then it becomes: 
, 1 , 1 1, ,0 2 4i j i j i j i jφ φ φ φ+ − −≈ + + −  (57) 

 
A similar approach can be used at a horizontal boundary to give: 

3 4
3 4

1, 1, , 1 , 3 4
, ,

0 2 4i j i j i j i j
i j i j

O h O h
x y
φ φφ φ φ φ+ − −

⎛ ⎞ ⎛ ⎞∂ ∂⎜ ⎟ ⎜ ⎟= + + − + +
⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

 (58) 

1, 1, , 1 ,0 2 4i j i j i j i jφ φ φ φ+ − −≈ + + −  (59) 
 

y 

h 
x 

i,j-1 

i-1,j 

i,j+1 

i,j 
h 

h 
x 

y 

i,j-1 
i-1,j 

i+1,j 
i,j h 
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or at a corner: 
3 4

3 4
1, , 1 , 3 4

, ,

0 2 2 4i j i j i j
i j i j

O h O h
x y
φ φφ φ φ+ +

⎛ ⎞ ⎛ ⎞∂ ∂⎜ ⎟ ⎜ ⎟= + − + +
⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

 (60) 

1, , 1 ,0 2 2 4i j i j i jφ φ φ+ +≈ + −  (61) 

 
 
2. Equation (46), i.e., Laplace’s equation, is an elliptic partial differential equation.  In order to have a 

well-posed problem, i.e., the equation has a unique solution that depends continuously on the 
boundary and/or initial data, the gridded flow domain must be finite and continuous boundary 
conditions must be specified along the entire boundary.  The boundary conditions may be either 
Dirichlet boundary conditions (where the value of φ is specified), Neumann boundary conditions 
(where the gradient of φ is specified), or a combination of both types of boundary conditions (known 
as mixed boundary conditions). 

 
3. There are two common methods to solving the resulting finite difference approximations to Eq. (46) 

at every point in the flow domain.  Non-iterative, or direct, methods solve the equations directly (in 
“one step”) while iterative methods solve the equations after repeated calculations that (hopefully) 
converge on the answer.  Examples of each of these methods are given in the following discussions 
using the simple flow field and grid shown below. 
 
 
 
 
 
 
 
 
 
Before numerically solving for the values of φ at each of the grid points, we can easily observe that 
for the uniform grid spacing shown, we anticipate that values for φ in row 2 (i,j = 2) should be 2/3 and 
the values for φ in row 3 (i, j = 3) should be 1/3. 

 

y 

h 
x 

i,j+1 
0 h i+1,j 

1 2 3 4 

1 
2 
3 
4 
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For the given example, write the finite difference equations for each point on the grid using the 
expressions derived previously. 

At (i,j) = (1,1): 1,1 1φ =    (a given boundary condition) 
At (i,j) = (2,1): 2,1 1φ =    (a given boundary condition) 
At (i,j) = (3,1): 3,1 1φ =  (a given boundary condition) 
At (i,j) = (4,1): 4,1 1φ =  (a given boundary condition) 
At (i,j) = (1,2): 1,1 1,3 2,2 1,22 4 0φ φ φ φ+ + − =  
At (i,j) = (2,2): 1,2 3,2 2,1 2,3 2,24 0φ φ φ φ φ+ + + − =  
At (i,j) = (3,2): 2,2 4,2 3,1 3,3 3,24 0φ φ φ φ φ+ + + − =  
At (i,j) = (4,2): 3,2 4,1 4,3 4,22 4 0φ φ φ φ+ + − =  
At (i,j) = (1,3): 2,3 1,2 1,4 1,32 4 0φ φ φ φ+ + − =  
At (i,j) = (2,3): 1,3 3,3 2,2 2,4 2,34 0φ φ φ φ φ+ + + − =  
At (i,j) = (3,3): 2,3 4,3 3,2 3,4 3,34 0φ φ φ φ φ+ + + − =  
At (i,j) = (3,3): 3,3 4,2 4,4 4,32 4 0φ φ φ φ+ + − =  
At (i,j) = (1,4): 1,4 0φ =    (a given boundary condition) 
At (i,j) = (2,4): 2,4 0φ =    (a given boundary condition) 
At (i,j) = (3,4): 3,4 0φ =  (a given boundary condition) 
At (i,j) = (4,4): 4,4 0φ =  (a given boundary condition) 

 
Re-write the previous equations in matrix form. 

   

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 −4 2 0 0 1 0 0 0 0 0 0 0
0 1 0 0 1 −4 1 0 0 1 0 0 0 0 0 0
0 0 1 0 0 1 −4 1 0 0 1 0 0 0 0 0
0 0 0 1 0 0 2 −4 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 −4 2 0 0 1 0 0 0
0 0 0 0 0 1 0 0 1 −4 1 0 0 1 0 0
0 0 0 0 0 0 1 0 0 1 −4 1 0 0 1 0
0 0 0 0 0 0 0 1 0 0 2 −4 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

= A⎡⎣ ⎤⎦

! "############# $#############

φ1,1

φ2,1

φ3,1

φ4,1

φ1,2

φ2,2

φ3,2

φ4,2

φ1,3

φ2,3

φ3,3

φ4,3

φ1,4

φ2,4

φ3,4

φ4,4

⎧

⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎪

⎭

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

= φ{ }
!"# $#

=

1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0

⎧

⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

= b{ }
!"$

 (62) 
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A direct method for solving Eq. (62) is Gauss Elimination.  The algorithm for Gauss Elimination is 
not presented here and instead the reader is encouraged to review the method in a numerical methods 
text (see, for example, Hoffman, J.D., Numerical Methods for Engineers and Scientists, 2nd ed., 
Marcel-Dekker). 

 
Solving Eq. (62) using Gaussian Elimination gives: 

1,1

2,1

3,1

4,1
21,2 3
22,2 3
23,2 3
24,2 3
11,3 3
12,3 3
13,3 3
14,3 3

1,4

2,4

3,4

4,4

1
1
1
1

0
0
0
0

φ
φ
φ
φ
φ
φ
φ
φ
φ
φ
φ
φ
φ
φ
φ
φ

⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪

=⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪

⎩ ⎭⎩ ⎭

      These are the results we expected! (63) 

 
Notes: 
a. Gaussian elimination is the preferred method for solving systems of linear equations.  

Modifications to the Gaussian elimination algorithm have been proposed that are optimized for 
banded matrices (where non-zero entries in the matrix occur in diagonal bands) such as the one 
in Eq. (62).  Thomas’ algorithm is one such algorithm that is particularly efficient for tri-
diagonal matrices. 

 
b. Direct methods, as opposed to iterative methods, will always converge to a solution (assuming 

that the given [A] matrix is non-singular, i.e., it has a non-zero determinant). 
 
c. For very large systems, direct methods are generally less efficient than iterative methods.   
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Another approach for determining the values of φi,j in Eq. (62) is to use an iterative scheme.  With an 
iterative method, an initial guess for the solution to φi,j is assumed.  These initial values for φi,j are 
then used to generate new values for φi,j using a scheme that reduces the value between the current 
values of φi,j and the actual solution values.  The scheme is repeated using the new values for φi,j 
until the values converge to the solution.  Note that convergence of the iterative algorithm is not 
always guaranteed, which is the major drawback to iterative methods. 
  
One commonly used iterative algorithm is Gauss-Seidel Iteration with Successive Over-Relaxation.  
In this algorithm, the new value for φi,j

n+1, where the superscript “n+1” indicates the new value, is 
determined using the previous values, found at iteration step “n”, of φ at the surrounding points (this 
is actually known as the Jacobi Iteration Method – Gauss-Seidel Iteration will be discussed in a 
moment).  For example, Eq. (53) may be written in iterative form as: 

( )1 1
, 1, 1, , 1 , 14
n n n n n
i j i j i j i j i jφ φ φ φ φ+

− + − += + + +  (64) 

Iteration on all points (i,j) continues until the error between the current iteration value for φ and the 
previous iteration’s value for φ is less than some tolerance, i.e.: 

Repeat iterations until 1
, , tolerancen n
i j i jφ φ+ − < for all (i, j). (65) 

 
The difference between Gauss-Seidel iteration and Jacobi iteration is that Jacobi iteration determines 
the value for φi,j

n+1
 based on all of the previous iteration values whereas Gauss-Seidel iteration makes 

use of the new values for φ as they become available.  For example, if we iterate in the previous 
example moving in the direction of increasing i and increasing j, then the value for φ3,3 will be: 

( )1 1 11
3,3 2,3 4,3 3,2 3,44
n n n n nφ φ φ φ φ+ + += + + +  (66) 

By using the already updated values at the neighboring grid points, convergence is accelerated. 
 
 Often, the rate of convergence of the iterations can be improved by implementing a relaxation 

scheme.  With relaxation the value of φi,j
n+1 is found using a linear combination of Eq. (64) (or rather 

an equation similar to Eq. (66) depending on the direction of iteration) and the previous value for 
φi,j

n, i.e.: 

( )1
21

, , , ,
nn n n

i j i j i j i jφ φ ω φ φ++ = + −  (67) 

where the superscript n+1/2 refers to the intermediate value of φi,j calculated using Eq. (64) (or Eq. 
(66)) and ω  is referred to as the relaxation parameter.  The effect of relaxation can be most easily 
understood when presented graphically.  In many instances the iterative values of φi,j approach the 
actual value of φi,j from one direction as shown in the plot below where a particular φi,j is shown as a 
function of the number of iterations, n.  We observe from the plot that by using over-relaxation we 
are extrapolating the value of φi,j

n+1 using φi,j
n and φi,j

n+1/2 to help reach the converged value more 
quickly. 
 
 
 
 
 
 
 
 
 
 

number of iterations, n 

φi,j 

actual value of φi,j 
no relaxation 
over-relaxation 
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Notes: 
a. If ω > 1 then the process is known as over-relaxation, ω < 1 is under-relaxation, and when ω = 1 

there is no relaxation.  Under-relaxation is typically used when the iterations produce oscillatory 
values for φi,j.   

 
b. For over-relaxation, the iterative scheme can be shown to diverge if ω ≥ 2.   
 
c. Relaxation can reduce the convergence rate considerably, often by one to two orders of 

magnitude!    
 
d. The optimal choice for the relaxation parameter is not known a priori, in general, and multiple 

computations using differing values of ω need to be performed to determine ωopt.  Despite the 
additional computations, determining ωopt is still a worthwhile effort, especially if the system of 
equations must be solved multiple times (if the boundary conditions change for example).  As a 
rule of thumb, larger systems usually have a larger value for ωopt. 

 
4. Additional issues such as the effects of round-off and truncation errors should be considered in more 

depth for a better understanding of numerical solutions.  The reader is encouraged to study numerical 
methods texts for more information on these topics.  
 
 
 
 
 
  

  

 690 

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

C. Wassgren 722 2024-02-01



   

C. Wassgren  Last Updated:  26 Dec 2016 
Chapter 06:  Potential Flows 

11. Doublet Distributions 
 
So far we’ve approached potential flow problems by choosing potential functions and observing what types 
of flows result.  Let’s now look at a method of specifying an object shape and determining what the 
potential function should be. 
 
We’ll just examine a simple method here but it should be noted that more sophisticated methods (although 
based on the same concepts) are addressed in most books on aerodynamics (see, for example, Kuethe, A.M. 
and Chow, C.-Y., Foundations of Aerodynamics, Wiley). 
 
Recall that when we combined a uniform flow with a doublet, flow around a cylinder resulted.  Now let’s 
imagine combining on the x-axis a large number of doublets with varying strength. 
 
 
 
 
 
 
 
 
 
 
 
 
The stream function evaluated at a point (x, y) for such a flow is given by 

( )
( )2 2

0

L K yd
Uy

x y

ξ

ξ

ξ ξ
ψ

ξ

=

=

= −
− +∫  

 
where K(ξ)dξ is the total strength of the  
doublets over a very small distance dξ, ξ is  
the distance from the origin, and L is the  
total length of the line of doublets. 
 
 
Since we generally solve these types of problems numerically, re-write the integral as a summation: 

( )2 21

j N
j

j
j

K y
Uy

x y

ξ
ψ

ξ

=

=

Δ
= −

− +
∑  

where Δξ=L/N . 
 
We’re usually interested in determining what the potential function should be for a specific object.  To 
solve this inverse problem, we note that the object surface is a streamline so the stream function remains 
constant on the surface.  Since we can arbitrarily adjust the value of the stream function (by adding in a 
constant – remember that only differences or derivatives of the stream function are of interest to us), we can 
adjust the stream function so that its value is zero on the object surface: 

1
0

j N

i i ij j
j

Uy c Kψ
=

=

= = −∑  

where i is a point on the object surface and cij is referred to as the “influence coefficient” (the contribution 
of a doublet of unit density at the location j to the point i): 

( )2 2

i
ij

i j i

y
c

x y

ξ

ξ

Δ
=

− +
 (68) 

 
 

r 

θ 

y 

x
r ξ

ρ 

(x,y) 

L
r 

U 

y 

x 
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The result is a system of equations we can solve numerically to determine the appropriate values of Kj: 

   

c11K1 +c12K2 … +c1N KN =Uy1

!
cN1K1 +cN 2K2 … +cNN KN =UyN

 

Here the yi are known since the geometry is known, U is known, and the cij are known as discussed 
previously. 
 
Notes: 
 
1. We could also have used a potential function in the previous analysis but instead of specifying the 

value of the potential function on the surface of the object, we would instead require that there is no 
flow through the surface: 

0nu n
φ∂= =
∂

 

This approach is generally more involved than if we use stream functions. 
 
2. We can extend these ideas to asymmetric objects by distributing doublets along curved paths. 
 
3. Instead of using a line of doublets (aka doublet panel), we could also use lines of sources (aka source 

panels), or lines of vortices (aka vortex panels). 
 
4. There will be no lift on objects generated with doublets or sources since they produce no net 

circulation.  Only vortex panels will produce circulation and lift. 
 
5. These ideas can be extended to 3D using 3D source/doublet/vortex potentials. 
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A cylindrical tube with three (very small diameter) radially drilled orifices can be used as a flow-direction 
indicator.  Whenever the pressure on the two side holes is equal, the center hole (located halfway between 
the side holes) will point in the direction of the flow.  The pressure at the center hole is then the stagnation 
pressure.  Such an instrument is called a direction-finding Pitot tube, or a cylindrical yaw probe.   
 
a. If the orifices of a direction-finding Pitot tube were to be used to measure free-stream static pressure, 

where would they have to be located? 
b. For a direction-finding Pitot tube with orifices located as calculated in part (a), what is the device’s 

sensitivity?  Let the sensitivity be defined as the pressure change per unit angular change (i.e., 
∂p/∂θ). 

 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
Model the flow as potential flow around a cylinder.  The total potential function is the sum of the potential 
functions for a uniform stream and a doublet. 

   

φflow around
a non-rotating
cylinder

= U∞x
uniform
stream

! + K cosθ
r

doublet
"#$ %$

 (1) 

cos
cos

KU r
r
θφ θ∞= +  (2) 

where the constant K is determined by specifying that there is no flow through the cylinder surface (i.e., 
ur(r = R) = 0). 

2
cos

cosr
Ku U

r r
φ θθ∞
∂= = −
∂

 (3) 

( ) 2
2
cos

0 cosr
Ku r R U K U R
R

θθ∞ ∞= = = − ⇒ =  (4) 

Thus, Eq. (2) becomes: 
2

2cos 1
RU r
r

φ θ∞
⎛ ⎞

= +⎜ ⎟⎜ ⎟⎝ ⎠
 (5) 

 
The tangential velocity on the surface of the cylinder is found from the potential function. 

2

2
1 sin 1 Ru U
r rθ

φ θ
θ ∞

⎛ ⎞∂= = − +⎜ ⎟⎜ ⎟∂ ⎝ ⎠
 (6) 

On the surface of the cylinder (r = R): 
( ) 2 sinu r R Uθ θ∞= = −  (7) 

 

α 
α 

U∞ θ 

r 

R 

U∞ 

r 
θ 

R 
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The pressure on the surface can be found using Bernoulli’s equation. 
2 21 1

2 2s sp U p Uρ ρ∞ ∞+ = +  (8) 
where 

( )2 2 2 2 24 sins r r R
U u u Uθ θ∞=

= + =  (9) 

Substituting Eq. (9) into Eq. (8) gives: 

( )2 21
2 1 4sinsp p Uρ θ∞ ∞= + −  (10) 

 
To measure the free stream pressure (i.e., p∞), we need: 

21 4sin 0θ− =  (11) 
1
2sinθ =  

30 , 150θ∴ = ± ±o o (12) 
Note that α = 180o – θ so that the location of the pressure taps should be at: 

30α = ± o (13) 
in order to measure the free stream pressure. 
 
The sensitivity of the device is given by ∂p/∂θ where the pressure is given in Eq. (10). 

24 sin cossp Uρ θ θ
θ ∞

∂
= −

∂
 (14) 

For α = ±30o (θ = ±150o), 

( )( )2 31
2 24sp Uρ

θ ∞
∂

= −
∂

 

23sp Uρ
θ ∞

∂
= −

∂
 (15) 
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A Quonset hut (essentially a cylinder cut in half) is subjected to a crosswind as shown in the figure.  The 
interior of the hut is ventilated to the outside through a small vent at a position, θ, as indicated.  Hence, the 
pressure inside the hut (assumed uniform and constant) is the same as the pressure just outside the vent.  
Assuming potential flow over the hut, find the angle, θ, at which the net vertical lift on the hut is zero.  You 
may neglect the thickness of the wall of the hut and assume that the vent has no effect on the exterior flow.   
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
Model the flow as potential flow over a non-rotating cylinder.  The complex potential for this flow is: 

( )
2Rf z U z
z

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
  (Refer to the course notes for the derivation of this potential function.) 

The flow velocities are: 

( ) ( )

( )

( )

( ) ( ) ( )

( ) ( )

( )

2

2

2

2

2

2

2

2

2

2

2 2

2 2

exp 1

1
exp 2

1 exp 2

exp exp exp

cos sin cos sin exp

1 cos 1 sin exp

r
df Ru iu i U
dz z

RU
r i

RU i
r

RU i i i
r

RU i i i
r

R RU i i
r r

θ θ

θ

θ

θ θ θ

θ θ θ θ θ

θ θ θ

⎛ ⎞
− − = = −⎜ ⎟

⎝ ⎠
⎡ ⎤

= −⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤

= − −⎢ ⎥
⎣ ⎦
⎡ ⎤

= − − −⎢ ⎥
⎣ ⎦
⎡ ⎤

= + − − −⎢ ⎥
⎣ ⎦
⎡ ⎤⎛ ⎞ ⎛ ⎞

= − + + −⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎣ ⎦

 

2

2

2

2

1 cos

1 sin

ru R
U r

u R
U r
θ

θ

θ

⎛ ⎞
= −⎜ ⎟
⎝ ⎠
⎛ ⎞

= − +⎜ ⎟
⎝ ⎠

 (1) 

At the cylinder surface (r = R): 

0

2sin

r r R

r R

u
U
u
U
θ θ

=

=

=

= −

 (2) 

From Bernoulli’s equation, the pressure on the cylinder surface (r = R) is: 

( ) ( )2 21 1
2 2r R r

p V p Vρ ρ
= →∞

+ = +  

2
21

2

1 4sinRp p
U

θ
ρ

∞−
= −  (3) 

θ 
crosswind 

vent 
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The net vertical force (lift) acting on the hut due to the external flow and internal conditions (assumed 
constant at the pressure pvent) can be found by integrating the vertical component of the net pressure force. 

   
Lnet = − pR − pvent( )sinθ Rdθ( )

=dA
!"#

θ=0

θ=π

∫  

( ) ( )2 2 21
net vent2

0

2 3 2
vent

0 0

2 24
vent3

2 22
vent3

1 4sin 1 4sin sin

2 sin sin sin

2 2sin

4 sin

L U R p p d

U R d d

U R

U R

θ π

θ

π π

ρ θ θ θ θ

ρ θ θ θ θ θ

ρ θ

ρ θ

=

∞ ∞
=

⎡ ⎤= − + − − + −⎣ ⎦

⎡ ⎤
= −⎢ ⎥

⎣ ⎦
⎡ ⎤= −⎣ ⎦
⎡ ⎤= −⎣ ⎦

∫

∫ ∫  

Since we want zero net lift: 
2 22

net vent30 4 sinL U Rρ θ⎡ ⎤= = −⎣ ⎦  
2 2

vent 3sin θ =  

vent 54.7θ∴ = o or vent 125.3θ = o  
cross
wind 

vent 

θ 
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For the purposes of estimating the drag force on a cylinder of radius, R, in a uniform stream of velocity, U, 
and uniform density, ρ, it is assumed that the pressure distribution over the upstream side (the side facing 
the oncoming stream) is the same as that in a potential flow, whereas the pressure on the downstream side 
is constant, simulating the conditions in a wake.  Moreover, the pressure in the wake is equal to the 
pressure at the location θ = π/2.  Determine the drag coefficient for the cylinder, CD, using this model, 
where the drag coefficient is defined as: 

( )21
2 2

D
D

FC
U Rρ

≡  

and FD is the drag force acting on the cylinder. 
 
 
 
 
 
SOLUTION: 
 
The flow over the upstream side of the cylinder is modeled as a potential flow and combines a uniform 
stream and a doublet. 

cos cos
cos

K K
Ux Ur

r r
θ θφ θ= + = +  (1) 

where the doublet strength, K, is found by noting that there is no flow through the surface of the cylinder, 
i.e.: 

2
2

cos
0 cos 0r r R

r R

Ku U K UR
r R
φ θθ

=
=

∂= = ⇒ − = ⇒ =
∂

 (2) 

Substituting Eq. (2) into Eq. (1) and re-arranging gives: 
2

2cos 1
RUr
r

φ θ ⎛ ⎞
= +⎜ ⎟

⎝ ⎠
 (3) 

 
The velocity components over the surface of the cylinder are found from the potential function. 

0r r R
r R

u
r
φ

=
=

∂= =
∂

  (Found previously in Eq. (2).) (4) 

1 2 sin
r R

r R

u U
rθ

φ θ
θ=

=

∂= = −
∂

 (5) 

 
Bernoulli’s equation may be used to find the pressure distribution on the surface of the cylinder. 

( )2 2 21 1
2 2r R r r R

p U p u uθρ ρ∞ = =
+ = + +  (6) 

( ) ( )2 2 2 2 2 21 1
2 2 4 sinr R r r R

p p U u u p U Uθρ ρ θ= ∞ ∞=
⎡ ⎤= + − + = + −⎣ ⎦  (7) 

( )2 21
2 1 4sinr Rp p Uρ θ= ∞∴ = + −  (8) 

 
The drag force on the cylinder is found by integrating the pressure force over the surface (assuming unit 
depth).  Note that over the downstream side of the cylinder the pressure force is constant at the value when 
θ = π/2. 

   
FD = − pr=R cosθ Rdθ

=dA
!

θ=π 2

θ=3π
2

∫ − pr=R,
θ=π

2

2R( )  (9) 

( ) ( )( )
3
2

2

2 2 231
2 21 4sin cos 2DF p U Rd p U R

π

π

θ

θ

ρ θ θ θ ρ
=

∞ ∞
=

⎡ ⎤= − + − − −⎣ ⎦∫  (10) 

ρ, U 
R 
θ 

wake 

y 

x 
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( )( )
33 3 22 2

2 2 2

2 3 231 4
2 3 2sin sin sin 2DF p R U R p U R

ππ π

π π π
θ ρ θ θ ρ∞ ∞

⎡ ⎤= − − − − −⎢ ⎥⎣ ⎦
 (11) 

( )( )2 28 31
2 3 22 2 2DF p R U R p U Rρ ρ∞ ∞= − − + − −⎡ ⎤⎣ ⎦  (12) 

2 21
3 3DF U R U Rρ ρ= − +  (13) 

( )
8
321

2 2
D

D
FC
U Rρ

∴ ≡ =  (14) 

 
Note that experiments have shown that at large Reynolds numbers (the regime in which potential flow 
is most applicable), the drag coefficient for a cylinder is approximately 1.5. 
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Consider the complex potential given by: 
( )[ ]λπ /2exp)( 00 ziyzVzf +=  

where V0, y0, and λ are constants.  Assume that y0<<λ. 
a. Sketch the streamlines for this flow. 
b. What might this flow represent?  What do the constants y0 and λ represent? 
c. Determine the pressure distribution along the streamline corresponding to ψ=0 in terms of V0, ρ, y0, λ, 

and p∞ where p∞ is the pressure far from this streamline (y→∞). 
 
 
SOLUTION: 
 
Expand the complex potential to determine the potential and stream functions, φ and ψ, respectively. 

( )
( )( )
( )( )

( ) ( )
( ) ( )( ) ( )

0 0

0 0

0 0

0 0

0 0

( ) exp 2 /

exp 2 /

exp 2 /

exp 2 / exp 2 /

cos 2 / sin 2 / exp 2 /

f z i V z y i z

V x iy y i x iy

V x iy y ix y

V x iy y ix y

V x iy y x i x y

φ ψ π λ

π λ

π λ

π λ π λ

π λ π λ π λ

= + = +⎡ ⎤⎣ ⎦
⎡ ⎤= + + +⎣ ⎦
⎡ ⎤= + + −⎣ ⎦

= + + −⎡ ⎤⎣ ⎦
⎡ ⎤= + + + −⎣ ⎦

 

0 0 0 0
2 2 2 2

exp cos exp sin
y x y x

i V x y iV y y
π π π πφ ψ
λ λ λ λ

⎡ − ⎤ ⎡ − ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ = + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦
 

0 0
2 2

exp cos
y x

V x y
π πφ
λ λ

⎡ − ⎤⎛ ⎞ ⎛ ⎞= + ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
 (1) 

0 0
2 2

exp sin
y x

V y y
π πψ
λ λ

⎡ − ⎤⎛ ⎞ ⎛ ⎞= + ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
 (2) 

The flow velocities are: 

0 0
2 2 2

1 exp sinx
y x

u V y
x y
φ ψ π π π

λ λ λ
∂ ∂ ⎡ − ⎤⎛ ⎞ ⎛ ⎞= = = − ⎜ ⎟ ⎜ ⎟⎢ ⎥∂ ∂ ⎝ ⎠ ⎝ ⎠⎣ ⎦

 (3) 

0 0
2 2 2
exp cosy

y x
u V y

y x
φ ψ π π π

λ λ λ
∂ ∂ −⎛ ⎞ ⎛ ⎞= = − = − ⎜ ⎟ ⎜ ⎟∂ ∂ ⎝ ⎠ ⎝ ⎠

 (4) 

 
Note that along a streamline, the stream function is a constant (call it ψ0). 

0
0

0

2 2
exp sin

y x
y y

V
ψ π π

λ λ
−⎛ ⎞ ⎛ ⎞= + ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 (5) 

This function may be plotted numerically by choosing particular values for ψ0, V0, y0, λ, and x then solving 
for y (using a Newton-Raphson root finding scheme, for example).  A C program for this procedure is 
given at the end of this solution.  
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We can also determine the general streamline shape without the aid of a computer program by considering 
conditions at extreme cases.  For example, when y is large: 

0
0

0

2 2
lim exp sin
y

y x
y y y

V
ψ π π

λ λ→∞

⎡ − ⎤⎛ ⎞ ⎛ ⎞= + =⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
 ⇒ y = constant   (6) 

(i.e., The stream line is a horizontal line when y is very large). 
 
Note that the exponential term may be written as a power series: 

   
exp

−2π y
λ

⎛
⎝⎜

⎞
⎠⎟
= 1− 2π

λ
y + 1

2!
2π
λ

y
⎛
⎝⎜

⎞
⎠⎟

2

− 1
3!

2π
λ

y
⎛
⎝⎜

⎞
⎠⎟

3

+!  

If y << λ then: 
2

exp 1
yπ

λ
−⎛ ⎞ ≈⎜ ⎟⎝ ⎠

 (7) 

Substituting Eq. (7) into Eq. (5) gives: 
0

0
0

2sin x
y y

V
ψ π

λ
⎛ ⎞= + ⎜ ⎟⎝ ⎠

 (8) 

 
At ψ0 = 0: 

0
20 sin x

y y
π
λ

⎛ ⎞= + ⎜ ⎟⎝ ⎠
 

0
2sin x

y y
π
λ

⎛ ⎞= − ⎜ ⎟⎝ ⎠
  (A sine wave!) (9) 

 
Hence, the stream function represents the flow over a wavy wall where y0 represents the amplitude of the 
wall and λ represents the wall’s wavelength.  The velocity fluctuations decay as the distance from the wavy 
wall increases (i.e., as y increases). 
 
The following plot presents streamlines (lines of constant ψ) for V0 = 1, y0 = 0.1, and λ = 10.0 calculated 
from the attached C program.  The fluid is moving from left to right in the plot. 

-1

0

1

2

3

4

5

-10 -5 0 5 10

x

y

ψ0 = 0

ψ0 = 1

ψ0 = 2

ψ0 = 4

ψ0 = 5

ψ0 = 3

V 0 = 1
y0 = 0.1
λ = 10.0
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The pressure along the y = 0 streamline can be determined using Bernoulli’s equation. 
( ) ( )2 21 1

2 20 y
p V p V

ψ
ρ ρ

= →∞
+ = +  

where the flow velocities are given in Eqs. (3) and (4). 
2 2

2 2 2 2
0 0 0

2 2
2 20 0 0
0

2 2 2 2 2 2
1 exp sin exp cos

4 2 22 2 4 2
1 exp sin exp sin exp

x y
y x y x

V u u V y y

y y yy x y x
V

π π π π π π
λ λ λ λ λ λ

π π ππ π π π
λ λ λ λ λ λ λ

⎧ ⎫⎡ − ⎤ ⎡ − ⎤⎪ ⎪⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + = − +⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦⎪ ⎪⎩ ⎭

− −⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
2

2
2 0 0
0

4 2
cos

4 22 2 4
1 exp sin exp

y x

y yy x y
V

π π
λ λ

π ππ π π
λ λ λ λ λ

⎧ ⎫−⎪ ⎪⎛ ⎞ ⎛ ⎞
⎨ ⎬⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭
⎧ ⎫− −⎛ ⎞⎪ ⎪⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − +⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎪ ⎪⎩ ⎭

 
2 2

0yV V→∞ =  
Substituting into Bernoulli’s equation gives: 

2

21
002

2
0 0

1

4 22 2 4
exp sin exp

p p V
VV

y yy x y

ρ

π ππ π π
λ λ λ λ λ

∞ ⎛ ⎞−
= − ⎜ ⎟

⎝ ⎠

− −⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

 (10) 

We solve exactly for Eq. (10) along the ψ = 0 streamline using a numerical procedure or, assuming that y0 
<< λ and Eq. (7), we can get the approximate solution: 

0 0
21
02

4 2sin
p p y x

V
ψ π π

λ λρ
= ∞− ⎛ ⎞= ⎜ ⎟⎝ ⎠

 (11) 
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/* 
  A numerical routine for determining the y-values corresponding to  
  a particular x-value and a particular stream function. 
*/ 
 
# include <stdio.h> 
# include <stdlib.h> 
# include <math.h> 
# define PI (4.0*atan(1.0)) 
# define TWOPI (2.0*PI) 
 
/* The following are constants in the stream function. */ 
double V0 = 1.0; 
double yo = 0.1; 
double lambda = 10.0; 
 
/* ***** */ 
 
void main(void) { 
  double Newton_Raphson(double, double); 
  double x, y, psi, x_min, x_max, delta_x, psi_min, psi_max, delta_psi; 
  FILE *outfile; 
 
  /* Open an output file to which the data will be written. */ 
  if ((outfile = fopen("soln_pot_06.out", "wb")) == NULL) { 
    printf("Cannot open output file\n"); 
    exit(1); 
  } 
 
  /* Specify the range over which y values will be determined. */ 
  x_min = -10.0; 
  x_max = 10.0; 
  delta_x = 1.0; 
  psi_min = 0.0; 
  psi_max = 5.0; 
  delta_psi = 1.0; 
   
  /* Loop through the range of psi and x values. */ 
  for (psi=psi_min; psi<=psi_max; psi+=delta_psi) { 
    for (x=x_min; x<=x_max; x+=delta_x) { 

/* Solve for the y value corresponding to the given psi and x  
   values. */ 

      y = Newton_Raphson(psi, x); 
      /* Print the data to the output file. */ 
      fprintf(outfile, "%.2f\t%.2f\t%.2f\n", psi, x, y); 
    } 
  } 
  /* Close the output file. */ 
  fclose(outfile); 
  printf("Done.\n"); 
} 
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/* ***** */ 
 
double Newton_Raphson(double psi, double x) { 
  /* This routine solves for the y value corresponding to a  
     particular psi and x value using a Newton-Raphson root finding 
     algorithm. */ 
  int num_iterations, max_iterations=100; 
  double y, y_old, tol=1.0e-8, f, df_dy; 
  extern double V0, yo, lambda; 
   
  num_iterations = 0; 
  y = 1.0;  /* An initial guess for y. */  
  do { 
    num_iterations++; 
    y_old = y; 
    f = y+yo*exp(-TWOPI*y/lambda)*sin(TWOPI*x/lambda)-psi/V0; 
    df_dy = 1-TWOPI*yo/lambda*exp(-TWOPI*y/lambda)*sin(TWOPI*x/lambda); 
    y = y_old - f/df_dy; 
  } while ((fabs((y-y_old)/y_old) > tol) &&  
    (num_iterations < max_iterations)) ; 
  if (num_iterations == max_iterations)  { 
    printf("A converged y value could not be determined within %d 
iterations.\n", max_iterations); 
    exit(1); 
  } 
 
  return y; 
} 
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A Rankine oval is formed by combining a uniform stream of velocity, U∞, with a source of strength m 
located at (x, y) = (-a, 0) and a sink of strength m located at (x, y) = (a, 0).  
 
 
 
 
 
 
 
 
 
 
 
For this problem, let:  U∞ = 10 m/s, m = 1 m3/(s⋅m), and a = 1 m. 
 
a. Determine the overall length of the oval. 
b. Determine the overall width of the oval. 
c. Plot the shape of the oval.  (Do not sketch the oval, but actually plot the points corresponding to the 

oval surface.) 
d. Plot the surface velocity and the surface pressure profiles. 
e. Calculate the drag coefficient acting on the Rankine oval by integrating the pressure force over the 

entire surface.   
f. Calculate the drag coefficient acting on the oval using the Blasius’ Integral Law. 
 
 
SOLUTION: 
 
First, form the complex potential describing the Rankine oval. 

   

f z( ) = U∞z
uniform
stream

! + m
2π

log z + a( )
source at z=−a

(m>0)

" #$$ %$$
− m

2π
log z − a( )

sink at z=a
(m>0)

" #$$ %$$
 (1) 

Determine the velocity field from the complex potential. 

( )
( ) ( )

2 2

2 2 2

2 2 2

2 2 2 2 2 2

2 2 2

2 22 2 2

1 1
2 2
2

2

2
2 2

2 2
2 2 2

2 2

2 2

x y
df m m

u iu U
dz z a z a

m a
U

z a

m a
U

x i xy y a

m a x y a i xy
U

x y a i xy x y a i xy

a x y a i xym
U

x y a xy

π π

π

π

π

π

∞

∞

∞

∞

∞

− = = + −
+ −

−⎛ ⎞= + ⎜ ⎟−⎝ ⎠
⎛ ⎞−= + ⎜ ⎟⎜ ⎟+ − −⎝ ⎠

⎛ ⎞⎛ ⎞− − − −= + ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟− − + − − −⎝ ⎠⎝ ⎠
⎡ ⎤− − − −⎢ ⎥= + ⎢ ⎥

− − +⎢ ⎥⎣ ⎦

 

( )
( ) ( )

( )
( ) ( )

2 2 2

2 22 22 2 2 2 2 2

2 2 2
2 22 2

x y

a x y a a xym m
u iu U i

x y a xy x y a xyπ π∞

⎡ ⎤ ⎡ ⎤− − − −⎢ ⎥ ⎢ ⎥∴ − = + −⎢ ⎥ ⎢ ⎥
− − + − − +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (2) 

 

a a 
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Hence: 

( )
( ) ( )

2 2 2

2 22 2 2

2

2 2
x

a x y am
u U

x y a xyπ∞

⎡ ⎤− − −⎢ ⎥= + ⎢ ⎥
− − +⎢ ⎥⎣ ⎦

 (3) 

( )
( ) ( )

2 22 2 2

2 2
2 2

y
a xym

u
x y a xyπ

⎡ ⎤
−⎢ ⎥= ⎢ ⎥

− − +⎢ ⎥⎣ ⎦

 (4) 

 
In dimensionless terms, the velocities are: 

( )
( ) ( )

2 2

2 22 2

2 1
1

1 2
x

x y
u

x y x y
α
⎡ ⎤′ ′− − −⎢ ⎥′ = + ⎢ ⎥

′ ′ ′ ′− − +⎢ ⎥⎣ ⎦

 (5) 

( )
( ) ( )

2 22 2

2 2

1 2
y

x y
u

x y x y
α
⎡ ⎤

′ ′−⎢ ⎥′ = ⎢ ⎥
′ ′ ′ ′− − +⎢ ⎥⎣ ⎦

 (6) 

where the dimensionless source strength is α = m/(2πaU∞), the dimensionless velocities u’x and u’y are 
ux/U∞ and uy/ U∞, respectively, and the dimensionless positions x’ and y’ are x/a and y/a, respectively. 
 
The equation for the surface of the Rankine oval is the same as the stream function evaluated at the 
stagnation point on the leading (or trailing) edge of the oval.  The stream function can be determined from 
the complex potential. 

   

f z( ) =U∞z + m
2π

log z + a( )− m
2π

log z − a( )
=U∞z + m

2π
ln z + a + iarg z + a( )⎡⎣ ⎤⎦ −

m
2π

ln z − a + iarg z − a( )⎡⎣ ⎤⎦

=U∞ x + iy( ) + m
2π

ln x + a( )2 + y2⎡
⎣⎢

⎤
⎦⎥
+ i tan−1 y

x + a
⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎩⎪

⎫
⎬
⎭⎪
− m

2π
ln x − a( )2 + y2⎡
⎣⎢

⎤
⎦⎥
+ i tan−1 y

x − a
⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎩⎪

⎫
⎬
⎭⎪

= U∞x + m
2π

ln
x + a( )2 + y2

x − a( )2 + y2

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

=φ
! "##### $#####

+ i U∞ y + m
2π

tan−1 y
x + a

⎛
⎝⎜

⎞
⎠⎟
− tan−1 y

x − a
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
=ψ

! "######## $########

 

1 1tan tan
2
m y y

U y
x a x a

ψ
π

− −
∞

⎡ ⎤⎛ ⎞ ⎛ ⎞∴ = + −⎜ ⎟ ⎜ ⎟⎢ ⎥+ −⎝ ⎠ ⎝ ⎠⎣ ⎦
 (7) 

or, in dimensionless terms: 

1 1tan tan
1 1

y y
y

x x
ψ α − −′ ′⎡ ⎤⎛ ⎞ ⎛ ⎞′ ′∴ = + −⎜ ⎟ ⎜ ⎟⎢ ⎥′ ′+ −⎝ ⎠ ⎝ ⎠⎣ ⎦

 (8) 

where ψ’ = ψ/(aU∞). 
 

The dimensionless location of the leading edge stagnation point (which will occur along the x-axis due to 
symmetry) is found by setting the dimensionless velocity components equal to zero at (x’0, y’0 = 0) where 
the subscript “0” indicates a stagnation point. 

0 2
0

20 1
1xu x

α
⎡ ⎤−′ = = + ⎢ ⎥
′ −⎢ ⎥⎣ ⎦

  ⇒  0 2 1x α′ = − +  (9) 

0
0yu′ =  (10) 
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Thus, the leading edge stagnation point is located at: 

( ) ( )0 0, 2 1,0x y α′ ′ = − +  (11) 

Note that the overall length of the oval is |2x’0|, i.e.: 

0oval length 2 2 2 1x α′= = +  (12) 
 

Evaluating ψ' at the leading edge stagnation point (x’0, y’0) gives: 
0 0ψ ′ =  (13) 

 
Thus, the equation for the surface of the Rankine oval is: 

 1 10 tan tan
1 1

s s
s

s s

y y
y

x x
α − −⎡ ⎤′ ′⎛ ⎞ ⎛ ⎞

′= + −⎢ ⎥⎜ ⎟ ⎜ ⎟′ ′+ −⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
 (14) 

where the subscript “s” indicates coordinates on the surface of the object.  In addition, to remain on the 
surface of the oval, -|x’0| ≤ x’s ≤ |x’0|. 
 
The maximum width of the oval occurs when x’s = 0 (from symmetry). 

,max ,max1 1
,max0 tan tan

1 1
s s

s
y y

y α − −′ ′⎡ ⎤⎛ ⎞ ⎛ ⎞′= + −⎢ ⎥⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠⎣ ⎦
 (15) 

where  

,maxoval width 2 sy′=  (16) 
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To determine the velocity and pressure on the surface of the oval, use the following procedure: 
1. Choose a value for xs where -|x’0| ≤ x’s ≤ |x’0| and x’0 is given by Eqn. (11). 
2. Determine the maximum width of the oval (Eqn. (16)) by solving Eqn. (15) numerically. 
4. Determine y’s from Eqn. (14) (solve this equation numerically since it’s implicit in y’s). 
5. Evaluate u’x|s and u’y|s using (x’s, y’s) and Eqns. (5) and (6). 
6. Evaluate the speed squared at this point on the oval surface using V’s

2 = (u’x|s2 + u’y|s2). 
7. Evaluate the pressure at this point on the oval surface using Bernoulli’s equation: 

2 21 1
2 2s sp V p Uρ ρ∞ ∞+ = +  (17) 

2
, 21

2

1s
p s s

p p
c V

Uρ
∞

∞

− ′≡ = −  (18) 

where cp,s is a dimensionless pressure coefficient evaluated on the oval surface and p∞ is the pressure 
far upstream of the oval. 

8. The force acting on the oval surface can be found by integrating the pressure force. 

s s s s
s s

d p d= = −∫ ∫F F A  (19) 

where dAs is a differential area element on the oval’s surface. 
ˆ ˆs s x s yd dy dx′ ′ ′= +A e e  (20) 

 (21) 
 
In dimensionless terms, the drag coefficient, CD, acting on the oval is: 

    

CD ≡
Fs ⋅ êx

1
2 ρU 2 2ys,max

frontal projected
area

!"# $#

= −
ps − p∞
1
2 ρU 2

dAs ⋅ êx

2ys,maxs
∫ = −cp

s
∫ d ′ys

2ys,max

 (22) 

where the frontal projected area of the oval is used in making the drag force dimensionless.  Note 
that the atmospheric pressure term will not contribute anything to the integral if the integral 
encompasses the entire oval surface.  The lift coefficient may be found in a similar manner. 
 
 

A C program was created to perform the previously presented calculations.  A printout of the source file is 
attached at the end of this problem solution. 
 
Using the given data, the dimensionless source strength, α, is: 

( )( )
( )( )

3
2

1 m / s m
1.592*10

2 2 1 m 10 m/s
m
aU

α
π π

−

∞

⋅
= = =  (23) 

 
The dimensionless overall oval length is 2.032 and the dimensionless overall width is 9.691*10-2. 
 
A plot of the oval surface streamline is shown in Figure 1.  The dimensionless surface velocities and 
pressure coefficient are shown in Figures 2 and 3, respectively. 
 
The drag coefficient determined by integrating the pressure forces is approximately zero.  Note that the C 
program calculates a drag coefficient of 6.0*10-5, but there is error expected in this result due to numerical 
integration and finite machine precision.  Decreasing the step size (delta_x) in the numerical integration 
reduces the drag coefficient. 

 
The drag acting on the entire oval using the Blasius Integral Law is zero since there are no net sources or 
sinks (the oval is a closed body). 
 
 

dxs 

dys dAs 

θ 
n̂  

θ 
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Figure 1.  A plot of the Rankine oval surface streamline for α = 1.592*10-2.  Only the top half of the oval is 

shown since the oval is symmetric. 
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(b) 

Figure 2.  (a)  A plot of the dimensionless x-velocity on the oval upper surface.  (b) A plot of the 
dimensionless y-velocity on the oval upper surface.  The dimensionless source strength is α = 1.592*10-2. 
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Figure 3.  A plot of the pressure coefficient on the oval upper surface for a dimensionless source strength of 

α = 1.592*10-2. 
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/* 
  pot_10.c 
*/ 
 
# include <stdio.h> 
# include <stdlib.h> 
# include <math.h> 
# define PI (4.0*atan(1.0)) 
# define TWOPI (2.0*PI) 
 
/* ***** */ 
 
int main(int argc, char **argv) { 
  double Bisection(const double, const double); 
  double alpha, x, y, x_min, x_max, delta_x, ux, uy, Vsquared, cp, 
y_old, 
    delta_y, CD, y_max, y_width; 
  FILE *outfile; 
 
  // Make sure there are enough data in the command line. 
  if (argc < 2) { 
    printf("Usage:  pot_10 <alpha>\n"); 
    exit(1); 
  } 
   
  // Read in the value for alpha. 
  alpha = atof(argv[1]); 
  if (alpha <= 0.0) { 
    printf("alpha must be greater than zero.\n"); 
    exit(1); 
  } 
 
  // Open an output file to which the data will be written. 
  if ((outfile = fopen("data.out", "wb")) == NULL) { 
    printf("Cannot open output file\n"); 
    exit(1); 
  } 
 
  // Determine the maximum width of the oval. 
  y_max = Bisection(alpha,0.0); 
  y_width = 2.0*y_max; 
 
  // Specify the range over which y values will be determined. 
  x_min = -sqrt(2.0*alpha+1.0); 
  x_max = -x_min; 
  delta_x = (x_max-x_min)/1.0e6; 
  y_old = 0.0; 
  CD = 0.0; 
 
  // Loop through the range of x values. 
  for (x=x_min; x<=x_max; x+=delta_x) { 
    // Solve for the y value corresponding to the given x value. 
    y = Bisection(alpha, x); 
 
    // Determine the surface velocity components. 
    ux = 1.0+alpha*((-2.0*(x*x-y*y-1.0))/((x*x-y*y-1.0)*(x*x-y*y-1.0) + 
(2.0*x*y)*(2.0*x*y))); 
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    uy = alpha*((-4.0*x*y)/((x*x-y*y-1.0)*(x*x-y*y-1.0) + 
(2.0*x*y)*(2.0*x*y))); 
 
    Vsquared = ux*ux + uy*uy;  // Determine the surface speed. 
    cp = 1.0 - Vsquared;  // Determine the surface pressure coefficient. 
 
    delta_y = y-y_old; 
    y_old = y; 
    CD += -cp*delta_y/y_width; 
     
    // Print the data to the output file. 
    fprintf(outfile, "%.6e\t%.6e\t%.6e\t%.6e\t%.6e\t%.6e\n",  
     x, y, ux, uy, cp, -cp*delta_y/y_width); 
  } 
 
  // Close the output file. 
  fclose(outfile); 
 
  printf("alpha = %.4f\n", alpha); 
  printf("Leading edge stagnation point dimensionless location:  (%.3e, 
0)\n", x_min); 
  printf("Rankine oval dimensionless width:  %.3e\n", y_width); 
  printf("Rankine oval dimensionless length:  %.3e\n", -2.0*x_min); 
  printf("Drag coefficient:  %.3e\n", CD); 
 
  printf("Done.\n"); 
  return(0); 
} 
 
/* ***** */ 
 
double Bisection(const double alpha, const double x) { 
  /* This routine solves for the y value corresponding to a  
     particular alpha and x value using a bisection root finding 
     algorithm. */ 
  int num_iterations, max_iterations=10000, flag; 
  double y_left, y_middle, y_right, f_left, f_middle, f_right, tol=1.0e-
9; 
   
  num_iterations = 0; 
  flag = 0; 
 
  // Specify some initial bounds. 
  y_left = 2.0*tol; 
  y_right = 10.0; 
 
  do { 
    num_iterations++; 
 
    y_middle = 0.5*(y_left+y_right); 
    f_left = y_left + alpha*(atan2(y_left,x+1.0)-atan2(y_left,x-1.0)); 
    f_right = y_right + alpha*(atan2(y_right,x+1.0)-atan2(y_right,x-
1.0)); 
    f_middle = y_middle + alpha*(atan2(y_middle,x+1.0)-atan2(y_middle,x-
1.0)); 
     
    if (f_left*f_middle < 0.0) { 
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      y_left = y_left; 
      y_right = y_middle; 
    } else if (f_left*f_middle > 0.0) { 
      y_left = y_middle; 
      y_right = y_right; 
    } else { 
      y_left = y_right = y_middle; 
    } 
 
    if ((y_left == 0.0) || (fabs((y_right-y_left)/y_left) < tol)) { 
      flag = 1; 
    } 
  } while ((num_iterations < max_iterations) && (flag == 0)); 
  if (num_iterations == max_iterations)  { 
    printf("A converged y value could not be determined within %d 
iterations.\n", max_iterations); 
    exit(1); 
  } 
 
  return y_left; 
} 
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a. Determine the potential function, φ, of a cylinder without circulation in a uniform stream of velocity, U,  
centered a vertical distance, a, from a horizontal wall.   You may leave your answer in terms of the 
doublet strength, K. 

 
 
 
 
 
 
 
b. What is the vertical force acting on the cylinder?  Hint:  The vertical force acting on the cylinder will be 

equal but opposite to the vertical force acting on the wall. 
c. Discuss how the shape of the cylinder is affected as a approaches the cylinder radius. 
 
 
SOLUTION: 
 
The potential function for the flow is the sum of the potential functions for a uniform stream and two 
doublets (one plus a reflection). 

1 2

1 2

cos cosK K
Ux

r r
θ θφ = + +  (1) 

where 

( )22
1r x y a= + −  (2) 

( )22
2r x y a= + +  (3) 

1
1

cos
x
r

θ =  (4) 

2
2

cos
x
r

θ =  (5) 

Substitute and simplify. 

( ) ( )2 22 2

Kx Kx
Ux

x y a x y a
φ = + +

+ − + +
 (6) 

 
The velocities are found from the gradient of the potential function. 

( )
( )
( ) ( )

( )
( )

2 2 2 22 22 22 2

2 2
x

Kx x Kx xK K
u U

x x y a x y ax y a x y a

φ − −∂= = + + + +
∂ + − + +⎡ ⎤ ⎡ ⎤+ − + +⎣ ⎦ ⎣ ⎦

 (7) 

( )
( )

( )
( )

2 22 22 2

2 2
y

Kx y a Kx y a
u

y x y a x y a

φ − − − +⎡ ⎤ ⎡ ⎤∂ ⎣ ⎦ ⎣ ⎦= = +
∂ ⎡ ⎤ ⎡ ⎤+ − + +⎣ ⎦ ⎣ ⎦

 (8) 

Evaluate ux and uy at y = 0. 

( )
2

2 2 20 2 2

2 4
x y

K Kx
u U

x a x a
=
= + −

+ +
 (9) 

0
0y y

u
=
=   (as expected) (10) 

 

a U 

a 

a 
U 

r1 

θ1 

r2 

θ2 

(x, y) 

x 

y 
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The pressure on the horizontal wall may be found from Bernoulli’s equation. 

( )2 2 21 1
2 20 0x yy y

p u u p Uρ ρ∞= =
+ + = +  (11) 

Substitute in for the velocity components along the wall (Eqs. (9) and (10)). 

( )

2
2

21
2 2 2 20 2 2

2 4
y

K Kx
p p U U

x a x a
ρ∞=

⎧ ⎫⎡ ⎤⎪ ⎪⎢ ⎥= + − + −⎨ ⎬⎢ ⎥+ +⎪ ⎪⎣ ⎦⎩ ⎭

 (12) 

 
The force on the cylinder may be found by considering a control volume surrounding the cylinder, 
bordering the wall, and extending to distance far from the wall in the vertical direction (refer to the figure 
below). 
 
 
 
 
 
 
 
 
 
 
 
 
 

( ) cyl on CV0
0

x

y
x

p x p dx F
→∞

∞=
→−∞

⎡ ⎤− − =⎣ ⎦∫     (Assuming unit depth into page.) (13) 

( )

2
2

21
on cyl cyl on CV 2 2 2 22 2

0

2 4x

x

K Kx
F F U U dx

x a x a
ρ

→∞

=

⎧ ⎫⎡ ⎤⎪ ⎪⎢ ⎥∴ = − = − − + −⎨ ⎬⎢ ⎥+ +⎪ ⎪⎣ ⎦⎩ ⎭
∫  (14) 

Solving the integral (using a computational calculus package such as MAPLE for example): 
2

on cyl, 3
per unit depth 

KF
a

πρ=     (Note:  As a → ∞ or K → 0, Fon cyl → 0.) (15) 

 
 

The cylinder shape will be distorted if we use the potential function in Eq. (1) due to the influence of the 
image doublet. 
 
 
 
 
 
 
 

 

p∞ 

p|y = 0 

Fcyl on CV 
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Write a computer program (using any language or software package) that will compute the coordinates of a 
series of points (~100) on the surface of Joukowski airfoils.  
 
a. Plot the shape of two Joukowski airfoils.  One should have c=1.0, R/c=1.2, and β=3 deg.  The other 

should have c=1.0, R/c=1.5, and β=5 deg. 
b. Plot the pressure distribution, given in terms of the pressure coefficient, as a function of distance, s, 

from the leading edge stagnation point to the trailing stagnation point on both the pressure and suction 
sides of the airfoil.  Use the following airfoil parameters:  c=1.0, R/c=1.1, β=5 deg, and an angle of 
attack, α=5 deg. 

 
 
SOLUTION: 
 
The generating circle is given by: 

( ) ( )exp expz c R i R iβ δ= − − +  (1) 
The Joukowski transformation is given by: 

2cz
z

ζ = +  (2) 

A computer program, written in C, that calculates the (x, y) and (ξ, η) coordinates for the cylinder and 
airfoil, respectively is attached.  The generating cylinders and corresponding Joukowski airfoils are shown 
in Figures 1 and 2. 
 
The lift coefficient, cL, for a Joukowski airfoil is given by (refer to the course notes for this derivation): 

( )2 sinL
Rc
c

π α β⎛ ⎞= +⎜ ⎟⎝ ⎠
   (3) 

Note that cL is usually defined in terms of the chord length.  Here I’ve assumed the chord length is 
approximately equal to 4c.  In fact, the chord length will vary with R/c. 
 
The pressure coefficient on the airfoil surface is given by (refer to the course notes for this derivation): 

2

1 s
p

u
c

U
⎛ ⎞= −⎜ ⎟⎝ ⎠

 (4) 

where 

( ) ( )

2

2

2

2

2 sin sin

1

su
U c

z

δ α α β
⎧ ⎫
⎪ ⎪− + +⎡ ⎤⎛ ⎞ ⎪ ⎪⎣ ⎦= ⎨ ⎬⎜ ⎟⎝ ⎠ ⎪ ⎪−⎪ ⎪⎩ ⎭

 (5) 

 
The location on the airfoil surface in terms of the displacement along the surface, s, is: 

( ) ( )2 2s ξ ηΔ = Δ + Δ  (6) 
where 

( )
( )

1

1

Re

Im

n n

n n

ξ ζ ζ

η ζ ζ

−

−

Δ = −

Δ = −
 

where (n-1) indicates the previous value and (n) indicates the current value.  The value of ζ is determined 
from the transformation given in Eqn. (2).  Note that the stagnation points on the airfoil can be determined 
by setting the left-hand side of Eqn. (5) to zero.  The stagnation points occur when δ = -π+2α+β (leading 
edge) and -β (trailing edge).  The pressure coefficient along the airfoil surface is plotted in Figure 3. 
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A few additional relations are used in the computer program for handling complex variables.  These are 
given below. 

( ) ( )

( ) ( )

exp exp

cos sin cos sin

cos cos sin sin

z x iy c R i R i

c R iR R i

c R R i R

β δ
β β δ δ
β δ β δ

= + = − − +
= − + + +
= − + + +

 

( )
( )

Re cos cos

Re sin sin

x z c R R

y z R

β δ
β δ

= = − +

= = +
 (7) 

 
 

2 2 2

2

c c z c zz z z
z zz z

ζ = + = + = +  

( ) ( ) ( )
2 2

2 2Re Re Re Rec z cz z z
z z

ξ ζ
⎛ ⎞
⎜ ⎟= = + = +
⎜ ⎟⎝ ⎠

 

2

21 c
x

z
ξ

⎛ ⎞
⎜ ⎟∴ = +
⎜ ⎟⎝ ⎠

 (8) 

( ) ( ) ( )
2 2

2 2Im Im Im Imc z cz z z
z z

η ζ
⎛ ⎞
⎜ ⎟= = + = +
⎜ ⎟⎝ ⎠

 

2

21 cy
z

η
⎛ ⎞
⎜ ⎟∴ = −
⎜ ⎟⎝ ⎠

 (9) 

 

( ) ( )

( )

22 22 2 2 2 2

2 2 2 4

222 2 2 22

4 4

22 2 2 2

4 4

1 1 1

2
1 1

21

c c z c z
z z z z

c x ixy yc x iy

z z

c x y xyc
i

z z

− = − = −

− −−
= − = −

−
= − +

 

( ) 2 22 2 2 22 2

2 4 4

21 1
c x yc xyc

z z z

⎡ ⎤ ⎡ ⎤−
⎢ ⎥∴ − = − + ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

 (10) 
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/* 
  jouk.c 
  Program to generate data for Joukowski airfoils. 
 
  To compile with the GNU C compiler: 
    gcc -o jouk jouk.c -lm 
  To execute: 
    ./jouk 
  No input files. 
  Output files: 
    jouk.dat 
*/ 
 
# include <stdio.h> 
# include <stdlib.h> 
# include <math.h>  
# define PI (4.0*atan(1.0)) 
# define TWOPI (2.0*PI) 
 
/* ***** */ 
 
int main(int argc, char **argv) { 
  int max_points=100, flag; 
  double c, R, beta, alpha, delta, delta_xi, delta_eta, 
    s, delta_s, cp, magz2, V_U, temp1, temp2, num, den; 
  FILE *output; 
  struct { 
    double r, i; 
  } z, zeta, zeta_old; 
 
  /* Open the output file. */ 
  if ((output = fopen("jouk.dat", "wb")) == NULL) { 
    printf("Error opening jouk.dat\n"); 
    exit(1); 
  } 
 
  /* Define parameters. */ 
  c = 1.0; 
  R = 1.1; 
  beta = 5.0*(PI/180.0); 
  alpha = 5.0*(PI/180.0); 
 
  /* Print headers to the output file. */ 
  fprintf(output, "z.r\tz.i\tzeta.r\tzeta.i\ts\tcp\n"); 
   
  /* Evaluate points around the circle in the z-plane starting at the 
     leading stagnation point and ending at the trailing stagnation 
     point.  First look at the suction side of the airfoil. */ 
  s = 0.0; 
  flag = 1; 
  for (delta=PI+2.0*alpha+beta; delta>=-beta; delta-=TWOPI/max_points) { 
    /* Real and imaginary parts in the z-plane. */ 
    z.r = c-R*cos(beta)+R*cos(delta); 
    z.i = R*sin(beta)+R*sin(delta); 
     
    /* The magnitude squared of z:  |z|^2 */ 
    magz2 = z.r*z.r + z.i*z.i; 

 718 

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

C. Wassgren 750 2024-02-01



  pot_14 

Page 4 of 7 

     
    /* The real and imaginary parts in the zeta-plane after 
       transformation. */ 
    zeta.r = (1.0+c*c/magz2)*z.r; 
    zeta.i = (1.0-c*c/magz2)*z.i; 
 
    /* Calculate quantities used in determining the velocity 
       magnitude. */ 
    temp1 = (1.0-c*c/(magz2*magz2)*(z.r*z.r-z.i*z.i))* 
      (1.0-c*c/(magz2*magz2)*(z.r*z.r-z.i*z.i)); 
    temp2 = (c*c/(magz2*magz2)*(2.0*z.r*z.i))* 
      (c*c/(magz2*magz2)*(2.0*z.r*z.i)); 
    num = 2.0*(sin(delta-alpha)+sin(alpha+beta)); 
    den = sqrt(temp1+temp2); 
     
    /* The velocity magnitude divided by the free stream velocity. */ 
    V_U = num/den; 
     
    /* The pressure coefficient. */ 
    cp = 1.0-(V_U*V_U); 
     
    /* Print the data to an output file. */ 
    fprintf(output, "%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\n", 
     z.r, z.i, zeta.r, zeta.i, s, cp); 
 
    /* The delta displacement in the zeta-plane from the previous zeta 
       value. */ 
    if (flag == 1) { 
      zeta_old.r = zeta.r; 
      zeta_old.i = zeta.i; 
      flag = 0; 
    } 
    delta_xi = zeta.r-zeta_old.r; 
    delta_eta = zeta.i-zeta_old.i; 
    delta_s = sqrt(delta_xi*delta_xi + delta_eta*delta_eta); 
    s += delta_s; 
    zeta_old.r = zeta.r; 
    zeta_old.i = zeta.i; 
  } 
 
  /* Now look at the pressure side of the airfoil starting from the 
     leading edge stagnation point. */ 
  s = 0.0; 
  flag = 1; 
  for (delta=-PI+2.0*alpha+beta; delta<=-beta; delta+=TWOPI/max_points) 
{ 
    /* Real and imaginary parts in the z-plane. */ 
    z.r = c-R*cos(beta)+R*cos(delta); 
    z.i = R*sin(beta)+R*sin(delta); 
     
    /* The magnitude squared of z:  |z|^2 */ 
    magz2 = z.r*z.r + z.i*z.i; 
     
    /* The real and imaginary parts in the zeta-plane after 
       transformation. */ 
    zeta.r = (1.0+c*c/magz2)*z.r; 
    zeta.i = (1.0-c*c/magz2)*z.i; 
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    /* Calculate quantities used in determining the velocity 
       magnitude. */ 
    temp1 = (1.0-c*c/(magz2*magz2)*(z.r*z.r-z.i*z.i))* 
      (1.0-c*c/(magz2*magz2)*(z.r*z.r-z.i*z.i)); 
    temp2 = (c*c/(magz2*magz2)*(2.0*z.r*z.i))* 
      (c*c/(magz2*magz2)*(2.0*z.r*z.i)); 
    num = 2.0*(sin(delta-alpha)+sin(alpha+beta)); 
    den = sqrt(temp1+temp2); 
     
    /* The velocity magnitude divided by the free stream velocity. */ 
    V_U = num/den; 
     
    /* The pressure coefficient. */ 
    cp = 1.0-(V_U*V_U); 
     
    /* Print the data to an output file. */ 
    fprintf(output, "%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\n", 
     z.r, z.i, zeta.r, zeta.i, s, cp); 
 
    /* The delta displacement in the zeta-plane from the previous zeta 
       value. */ 
    if (flag == 1) { 
      zeta_old.r = zeta.r; 
      zeta_old.i = zeta.i; 
      flag = 0; 
    } 
    delta_xi = zeta.r-zeta_old.r; 
    delta_eta = zeta.i-zeta_old.i; 
    delta_s = sqrt(delta_xi*delta_xi + delta_eta*delta_eta); 
    s += delta_s; 
    zeta_old.r = zeta.r; 
    zeta_old.i = zeta.i; 
  } 
 
  /* Close the output file and quit. */ 
  fclose(output); 
  printf("Done.\n"); 
  return(0); 
} 
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c = 1.0; R /c = 1.2; β  = 3.0 deg
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Figure 1.  The generating cylinder and corresponding Joukowski airfoil for  

c = 1.0, R/c = 1.2, and β = 3.0° 

c = 1.0; R /c = 1.5; β  = 5.0 deg
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Figure 2.  The generating cylinder and corresponding Joukowski airfoil for 

c = 1.0, R/c = 1.5, and β = 5.0°. 
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c = 1.0; R /c = 1.1; β  = 5.0 deg; α  = 5.0 deg
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Figure 3.  The pressure coefficient, cp, plotted as a function of position from the leading edge stagnation 

point along the airfoil surface (not along the chord length) to the trailing stagnation point.  The Joukowski 
airfoil parameters are c = 1.0, R/c = 1.1, and β = 5.0° and the angle of attack is α = 5.0°.  Note that the 
distance along the airfoil on the suction surface is longer than the distance along the pressure surface. 
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Consider the irrotational, planar flow of an incompressible, inviscid fluid in a right-angle corner: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The basic corner flow ( f(z)=Az2 ) is modified by fluid being injected into the flow through a slot at the 
location, B, shown above where the distance OB is denoted by a.  The volume rate of injection of fluid per 
unit depth normal to the figure is denoted by Q.   
 
a. Determine the location between O and B where the velocity is zero (in terms of A, a, and Q). 
b. Determine the normal force acting on the vertical wall between y=0 and y=1.  Use the stagnation 

pressure as a reference pressure.  You need not evaluate any integrals that result. 
 
 
SOLUTION: 
 
Write the potential function for the corner flow including a line source located at x = a.  An image of the 
line source will also be required at x = -a. 

( ) ( ) ( )2 log log
2 2
m mf z Az z a z a
π π

= + − + +  (1) 

where m = 2Q since the volume flow rate considered here consists of only half of the source (the 
contribution in the upper plane – we don’t care about the lower plane contribution).  The flow velocities 
may be determined from the complex potential. 

( )( ) ( )( )

( ) ( )

2 22 2

2 22 2

2 2

1 12
2 2
1 12

2

2
2

2
2

2
2 2 2

2
2

x y
df m m

u iu Az
dz z a z a

m
Az

z a z a

m z a z a
Az

z a z a z a z a

m z a z a
Az

z az az a z az az a

m z a z a
Az

z ax a z ax a

m z a z a
Az

z a z a

π π

π

π

π

π

π

− = = + +
− +

⎛ ⎞= + +⎜ ⎟− +⎝ ⎠
⎡ ⎤− += + +⎢ ⎥− − + +⎢ ⎥⎣ ⎦
⎡ ⎤− += + +⎢ ⎥

− − + + + +⎢ ⎥⎣ ⎦
⎡ ⎤− += + +⎢ ⎥

− + + +⎢ ⎥⎣ ⎦
⎡ − += + +

− +⎣

⎤
⎢ ⎥
⎢ ⎥⎦

 

O B x 

y 

slot 
a 
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( ) ( )2 22
2x y
m z a z a

u iu Az
z a z aπ

⎡ ⎤− +⎢ ⎥− = + +
⎢ ⎥− +⎣ ⎦

 

( ) ( )2 2
2 2 2 2

2
2x
m x a x a

u Ax
x y a x y aπ

⎡ ⎤
⎢ ⎥− += + +⎢ ⎥
⎢ ⎥+ − + +
⎣ ⎦

 (2) 

( ) ( )2 2
2 2 2 2

2
2y
m y y

u Ay
x y a x y aπ

⎡ ⎤
⎢ ⎥

= − + +⎢ ⎥
⎢ ⎥+ − + +
⎣ ⎦

 (3) 

 
The stagnation point along the x axis ( y = 0) can be found by setting ux  = 0 (uy is already zero along the y-
axis). 

( ) ( )2 2

2 2

0 2
2

1 12
2

2
2

2

s s
s

s s

s
s s

s
s

s

x a x am
Ax

x a x a

m
Ax

x a x a

xm
Ax

x a

π

π

π

⎡ ⎤− +
= + +⎢ ⎥

− +⎢ ⎥⎣ ⎦
⎡ ⎤

= + +⎢ ⎥− +⎣ ⎦
⎡ ⎤

= + ⎢ ⎥−⎣ ⎦

 

2 2

2s
m

x a
Aπ

= −  

( ) 2, ,0s s
Q

x y a
Aπ

⎛ ⎞
∴ = −⎜ ⎟⎜ ⎟⎝ ⎠

 (4) 

where m = 2Q. 
 

The pressure force acting on the wall (x = 0) can be found using Bernoulli’s equation and integrating.  
Choose the stagnation point, s, for the reference pressure. 

( ) ( )2 21 1
2 2ss

p V p p Vρ ρ+ = = +   ⇒  21
2sp p Vρ= −  (5) 

where, along x = 0: 
2

2 2

0 0

2

2 2

1 12
2

22
2

yx x

m
V u Ay

y a y a

m y
Ay

y a

π

π

= =

⎧ ⎫⎡ ⎤⎪ ⎪= = − + +⎨ ⎬⎢ ⎥− +⎪ ⎪⎣ ⎦⎩ ⎭

⎧ ⎫⎡ ⎤⎪ ⎪= − +⎨ ⎬⎢ ⎥−⎪ ⎪⎣ ⎦⎩ ⎭

 

The pressure force (which acts in the negative x-direction) between y = 0 and y = 1 is: 

( )
1 1

21
2 0

0 0

y y

x s x
y y

F pdy p V dyρ
= =

=
= =

= − = − −∫ ∫  

( )
21

1
2 2 2

0

21 2
y

x s
y

Q y
F p Ay dy

y a
ρ

π

=

=

⎧ ⎫⎡ ⎤⎪ ⎪∴ = − + − +⎨ ⎬⎢ ⎥−⎪ ⎪⎣ ⎦⎩ ⎭
∫  (6) 

Evaluating this integral is tedious and will not be performed here.  It can, however, be easily solved using a 
symbolic/numeric package such as MAPLE. 
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a. Write the potential function that simulates the flow of a line source placed asymmetrically between 
two parallel walls as shown in the figure.   

b. Compute the dimensionless velocity, u’ = au/(4πm), on the lower wall at (x/a, y/a) = (1,0) accurate 
to three significant digits. 

 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
Use the Method of Images to create the given flow.  The sequence of images is shown below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The potential function for the given flow field is: 

   

φ = m
2π

ln x2 + y − a( )2 + ln x2 + y + a( )2 + ln x2 + y −5a( )2 + ln x2 + y +5a( )2 +

ln x2 + y − 7a( )2 + ln x2 + y + 7a( )2 + ln x2 + y −11a( )2 + ln x2 + y +11a( )2 +!

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 (1) 

2a 

a 
m 

y 

x 

2a 

a 
m 

y 

x 
a 

2a 

2a 

2a 

a 

a 

repeat reflecting images to ∞ 

repeat reflecting images to ∞ 
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( ) ( )

( ) ( )

2 22 2

2 22 20

ln 6 1 ln 6 1

4 ln 6 5 ln 6 5

k

k

x y k a x y k am

x y k a x y k a
φ

π

→∞

=

⎧ ⎫⎡ ⎤ ⎡ ⎤+ − + + + + + +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎪ ⎪⎣ ⎦ ⎣ ⎦= ⎨ ⎬
⎡ ⎤ ⎡ ⎤⎪ ⎪+ − + + + + +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎩ ⎭

∑  (2) 

or, in dimensionless terms: 

( ) ( )

( ) ( )

2 22 2

2 22 2 20

ln 6 1 ln 6 1

ln 6 5 ln 6 5 4ln

k

k

x y k x y k

x y k x y k a
φ

→∞

=

⎧ ⎫⎡ ⎤ ⎡ ⎤′ ′ ′ ′+ − + + + + + +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎪ ⎪⎣ ⎦ ⎣ ⎦′ = ⎨ ⎬
⎡ ⎤ ⎡ ⎤⎪ ⎪′ ′ ′ ′+ − + + + + + +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎩ ⎭

∑  (3) 

where the dimensionless potential function is φ’ = φ/(4πm) and the dimensionless positions are x’ = x/a and 
y’ = y/a. 
 
The dimensionless velocities resulting from this potential function are: 

( ) ( )

( ) ( )

2 22 2

0
2 22 2

1 1

6 1 6 1
2

1 1

6 5 6 5
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x
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x y k x y k
u x

x

x y k x y k

φ →∞

=

⎧ ⎫+ +⎪ ⎪′ ′ ′ ′+ − + + + +⎡ ⎤ ⎡ ⎤′ ⎪ ⎪∂ ⎣ ⎦ ⎣ ⎦′ ′= = ⎨ ⎬′∂ ⎪ ⎪+
⎪ ⎪′ ′ ′ ′+ − + + + +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎩ ⎭

∑  (4) 
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′ ′ ′ ′+ − + + + +⎡ ⎤ ⎡ ⎤⎪ ⎪′∂ ⎪ ⎣ ⎦ ⎣ ⎦ ⎪′ = = ⎨ ⎬′ ′ ′∂ − + + +⎪ ⎪+⎪ ⎪′ ′ ′ ′+ − + + + +⎡ ⎤ ⎡ ⎤⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭

∑  (5) 

where u’x = aux/(4πm) and u’y = auy/(4πm). 
 

The velocity at (x’, y’) = (1, 0) is: 

( )
( ) ( )2 2

0

1 11,0 4
1 6 1 1 6 5

k

x
k

u
k k

→∞

=

⎧ ⎫⎪ ⎪′ = +⎨ ⎬
+ + + +⎪ ⎪⎩ ⎭

∑  (6) 

( )1,0 0yu′ =   (as expected since the point is on a wall) (7) 
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The value of the horizontal velocity component at (x’, y’) = (1,0) as a function of k is given in the table 
below.  Note that “%diff from prev” is the percentage change in the value of u’x from the previous value of 
u’x, i.e., % diff = (u’x,k+1 – u’x,k)/u’x,k * 100%. 
 

k u'x % diff from prev 
0 1.962  
1 2.042 4.08% 
2 2.066 1.15% 
3 2.077 0.53% 
4 2.083 0.31% 
5 2.087 0.20% 
6 2.090 0.14% 
7 2.092 0.10% 
8 2.094 0.08% 
9 2.095 0.06% 

10 2.097 0.05% 
11 2.097 0.04% 
12 2.098 0.04% 
13 2.099 0.03% 
14 2.099 0.03% 
15 2.100 0.02% 
16 2.100 0.02% 
17 2.101 0.02% 
18 2.101 0.02% 
19 2.101 0.01% 

 
Hence, the velocity components at (x’,y’) = (1,0) are (u’x, u’y) = (2.10, 0). 
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Obtain a numerical solution to the planar, potential flow around a bend using the grid sketched below.  
The upstream and downstream boundaries to be used are φ = 0 and φ = 1, respectively.  You are not 
required to use any special procedures to treat the singular behavior near the projecting corner.  You 
are advised to use an iterative method with over-relaxation and, by trial and error, to find an effective 
value of the over-relaxation factor, which improves the convergence of the iterative process.   
a. Determine the velocity potential at all of the nodes. 
b. Determine the velocity components at all of the nodes. 
c. Determine the volumetric flow rates at the inlet and outlet.  What could be done to reduce the error 

between these flow rates? 
d. If the pressure coefficient is defined by (p-pA)/(1/2ρU2) where p is the pressure, pA is the pressure 

at the point A, and ρ is the fluid density, find the pressure coefficient at all of the nodes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

1 2 3 4 5 6 7 8 9 1
0 
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φ = 0 

φ = 1 

flow 

A 

grid spacing: 
Δx = Δy = 0.25 
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SOLUTION: 
 
The attached C computer program computes the potential function, velocity components, and pressure 
coefficients at all of the grid points. 
 
The volumetric flow rates at the entrance and exit are found using: 

( )1
inlet , 1 ,2

inlet nodes
i j i jQ u u y+= − Δ∑  

( )1
outlet 1, ,2

outlet nodes
i j i jQ u u x+= − Δ∑  

 
For the given conditions, I calculate that Qinlet = -1.328 and Qoutlet = 1.282 giving a relative error of 3.5%.  
The error can be improved if additional nodes are used in the calculations. 
 
The pressure coefficient at any node point can be determined using Bernoulli’s equation with the point A 
serving as a reference. 

   

pi, j +
1
2 ρ ux

2

i, j
+ uy

2

i, j( )
=Vi , j

2
! "## $##

= pA +
1
2 ρVA

2  

2
, ,

21,
2

1i j A i j
p i j

AA

p p V
c

VVρ
− ⎛ ⎞

≡ = −⎜ ⎟
⎝ ⎠

 

 
Values of the potential function, horizontal velocity, vertical velocity, and pressure coefficients are given in 
Tables 1-4, respectively.  Figure 1 plots the number of iterations to reach convergence as a function of the 
relaxation parameter, α. 
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/* 
  bend.c 
 
  A finite difference based routine for determining potential flow in  
  a pipe bend. 
 
  To compile using the GNU C compiler. 
    gcc -o bend bend.c -lm 
  To execute: 
    bend <relaxation parameter, alpha>  
  No input files: 
  Output files: 
    bend.out 
*/ 
 
# include <stdio.h> 
# include <stdlib.h> 
# include <math.h> 
# define PI (4.0*atan(1.0)) 
# define TWOPI (2.0*PI) 
 
int rmax, cmax, r_corner, c_corner; 
struct parameters{ 
  /* node type:   
     -1 = ignore this node,  
     0 = a Dirichlet node point (a specified phi value), 
     1 = an interior node point,  
     2 = a downward-facing horizontal wall boundary point, 
     3 = an upward-facing horizontal wall boundary point,  
     4 = a rightward-facing vertical wall boundary point,  
     5 = a leftward-facing vertical wall boundary point,  
     6 = a downward/rightward-facing interior corner point, 
     7 = a downward/leftward-facing interior corner point, 
     8 = an upward/rightward-facing interior corner point, 
     9 = an upward/leftward-facing interior corner point 
  */ 
  int type;   
  double phi, phi_old, ux, uy, cp; 
} **node; 
 
/* ***** */ 
 
int main(int argc, char **argv) { 
  void InitializePhiValues(void); 
  void DeterminePhiValues(double); 
  int CheckConvergence(void); 
  void PrintNodeValues(void); 
  void DetermineVelocities(double, double); 
  void DeterminePressureCoefficients(double); 
   
  int num_iterations, max_iterations=5000, r, c; 
  double alpha, deltax, deltay, VA; 
 
  /* Check to make sure that alpha is specified in the command line. */ 
  if (argc < 2) { 
    printf("Usage:  bend <alpha>\n"); 

 730 

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

C. Wassgren 762 2024-02-01



  pot_21
  

Page 4 of 14 

    exit(1); 
  } 
 
  /* Set the over-relaxation parameter. */ 
  alpha = atof(argv[1]); 
  if ((alpha < -1.0) || (alpha > 1.0)) { 
    printf("alpha must be between -1 and +1.\n"); 
    exit(1); 
  } 
 
  /* Set the grid spacing. */ 
  deltax = 0.25; 
  deltay = deltax; 
 
  /* Initialize the phi values. */ 
  InitializePhiValues();  
     
  /* Initialize the number of iterations required for convergence. */ 
  num_iterations = 0; 
   
  do { 
    /* Increment the number of iterations. */ 
    num_iterations++;   
     
    /* Determine the new phi values. */ 
    DeterminePhiValues(alpha); 
 
    /* Check for convergence of the phi values. */ 
  } while ((CheckConvergence() == 0) && (num_iterations < 
max_iterations));   
 
  if (num_iterations < max_iterations) { 
    printf("%d iterations required for convergence with an over-
relaxation parameter of alpha = %.2f.\n", num_iterations, alpha); 
     
    /* Determine velocities. */ 
    DetermineVelocities(deltax, deltay); 
     
    /* Determine pressures coefficients. Use the reference velocity at 
       point A. */ 
    r = r_corner; 
    c = cmax; 
    VA = sqrt(node[r][c].ux*node[r][c].ux + 
node[r][c].uy*node[r][c].uy); 
    DeterminePressureCoefficients(VA); 
     
    /* Print the values at the node points. */ 
    PrintNodeValues(); 
  } else { 
    printf("Could not get a converged solution within %d iterations with 
an over-relaxation parameter of %.2f.\n",  
    max_iterations, alpha); 
  } 
  return(0); 
} 
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/* ***** */ 
 
void InitializePhiValues() { 
  /* Initialize the boundary potential function values. */ 
  int r, c; 
  extern int rmax, cmax, r_corner, c_corner; 
  extern struct parameters **node; 
 
  rmax = 15;  /* 15 */ 
  cmax = 15;  /* 15 */ 
  r_corner = 11;  /* 11 */ 
  c_corner = 9;   /* 9 */ 
 
  /* Make space for the node array. */ 
  if ( (node = (struct parameters **)  
 calloc(rmax+1, sizeof(struct parameters *))) == NULL) { 
    printf("Not enough storage for **node.\n"); 
    exit(1); 
  } 
  for (r=1; r<=rmax; r++) { 
    if ( (node[r] = (struct parameters *)  
   calloc(cmax+1, sizeof(struct parameters))) == NULL) { 
      printf("Not enough storage for *node[%d].\n", r); 
      exit(1); 
    } 
  } 
 
  /* Initialize all points to the "ignore" type. */ 
  for (r=1; r<=rmax; r++) { 
    for (c=1; c<=cmax; c++) { 
      node[r][c].type = -1; 
    } 
  } 
 
 
  /* At the inlet. */ 
  c = cmax; 
  for (r=r_corner; r<=rmax; r++) { 
    node[r][c].type = 0;  /* Dirichlet node. */ 
    node[r][c].phi = 0.0; 
  } 
 
  /* At the outlet. */ 
  r = 1; 
  for (c=1; c<=c_corner; c++) { 
    node[r][c].type = 0;  /* Dirichlet node. */ 
    node[r][c].phi = 1.0; 
  } 
 
 
  /* At the upper wall boundary. */ 
  r = rmax; 
  for (c=2; c<cmax; c++) { 
    node[r][c].type = 2;  /* downward-facing horz. wall */ 
    node[r][c].phi = 0.0; 
  } 
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  /* At the lower wall inlet boundary. */ 
  r = r_corner; 
  for (c=c_corner+1; c<cmax; c++) { 
    node[r][c].type = 3;  /* upward-facing horz. wall */ 
    node[r][c].phi = 0.0; 
  } 
 
  /* At the left wall boundary. */ 
  c = 1; 
  for (r=2; r<rmax; r++) { 
    node[r][c].type = 4;  /* rightward-facing vert. wall */ 
    node[r][c].phi = 0.0; 
  } 
 
  /* At the right wall boundary. */ 
  c = c_corner; 
  for (r=2; r<r_corner; r++) { 
    node[r][c].type = 5;  /* leftward-facing vert. wall */ 
    node[r][c].phi = 0.0; 
  } 
 
  /* At the upper left corner. */ 
  r = rmax; 
  c = 1; 
  node[r][c].type = 6;  /* downward/rightward-facing corner point */ 
  node[r][c].phi = 0.0; 
   
  /* At the interior points. */ 
  for (r=r_corner+1; r<rmax; r++) { 
    for (c=2; c<cmax; c++) { 
      node[r][c].type = 1;  /* interior point */ 
      node[r][c].phi = 0.0; 
    } 
  } 
 
  for (r=2; r<=r_corner; r++) { 
    for (c=2; c<c_corner; c++) { 
      node[r][c].type = 1;  /* interior point */ 
      node[r][c].phi = 0.0; 
    } 
  } 
 
  r = r_corner; 
  c = c_corner; 
  node[r][c].type = 1;  /* interior point */ 
  node[r][c].phi = 0.0; 
} 
 
 
 
/* ***** */ 
 
void DeterminePhiValues(double alpha) { 
  /* Determine the "new" node phi values based on the conditions at 
     the neighboring nodes. */ 
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  int r, c; 
  extern int rmax, cmax; 
  extern struct parameters **node; 
 
  for (r=1; r<=rmax; r++) { 
    for (c=1; c<=cmax; c++) { 
 
      /* Set the old phi values. */ 
      if ((node[r][c].type != -1) || (node[r][c].type != 0)) { 
 node[r][c].phi_old = node[r][c].phi; 
      } 
 
      /* Update the phi values. */ 
      if (node[r][c].type == 1) { 
 /* This is an interior point. */ 
 node[r][c].phi = 0.25*(node[r+1][c].phi + node[r-1][c].phi + 
          node[r][c+1].phi + node[r][c-1].phi);  
      } else if (node[r][c].type == 2) { 
 /* This is a downward-facing horizontal boundary point. */ 
 node[r][c].phi = 0.25*(2.0*node[r-1][c].phi + 
          node[r][c+1].phi + node[r][c-1].phi); 
      } else if (node[r][c].type == 3) { 
 /* This is an upward-facing horizontal boundary point. */ 
 node[r][c].phi = 0.25*(2.0*node[r+1][c].phi + 
          node[r][c+1].phi + node[r][c-1].phi); 
      } else if (node[r][c].type == 4) { 
 /* This is a rightward-facing vertical boundary point. */ 
 node[r][c].phi = 0.25*(node[r+1][c].phi + node[r-1][c].phi + 
          2.0*node[r][c+1].phi); 
      } else if (node[r][c].type == 5) { 
 /* This is a leftward-facing vertical boundary point. */ 
 node[r][c].phi = 0.25*(node[r+1][c].phi + node[r-1][c].phi + 
          2.0*node[r][c-1].phi); 
      } else if (node[r][c].type == 6) { 
 /* This is a downward/rightward-facing interior corner point. */ 
 node[r][c].phi = 0.25*(2.0*node[r-1][c].phi +  
          2.0*node[r][c+1].phi); 
      } else if (node[r][c].type == 7) { 
 /* This is a downward/leftward-facing interior corner point. */ 
 node[r][c].phi = 0.25*(2.0*node[r-1][c].phi +  
          2.0*node[r][c-1].phi); 
      } else if (node[r][c].type == 8) { 
 /* This is a upward/rightward-facing interior corner point. */ 
 node[r][c].phi = 0.25*(2.0*node[r+1][c].phi +  
          2.0*node[r][c+1].phi); 
      } else if (node[r][c].type == 9) { 
 /* This is a upward/leftward-facing interior corner point. */ 
 node[r][c].phi = 0.25*(2.0*node[r+1][c].phi +  
          2.0*node[r][c-1].phi); 
      } 
 
      /* Apply over-relaxation to this point. */ 
      if ((node[r][c].type != -1) || (node[r][c].type != 0)) { 
 node[r][c].phi = alpha*node[r][c].phi_old +  
   (1.0-alpha)*node[r][c].phi; 
      } 
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    } 
  } 
} 
 
/* ***** */ 
 
int CheckConvergence() { 
  /* Check for convergence of the phi values at all points.  Returning a 
     "1" value means that all of the phi values have converged.   
     A "0" value means that at least one of the phi values has not 
     converged. */ 
  int r, c; 
  double tol=1.0e-8; 
  extern int rmax, cmax; 
  extern struct parameters **node; 
 
  /* Check to see if all of the points have converged.  If any point 
     has not converged, then exit the loop and return a "0" value. */ 
  for (c=1; c<=cmax; c++) { 
    for (r=1; r<=rmax; r++) { 
      if ((node[r][c].type != -1) && (node[r][c].type != 0)) { 
 if (fabs((node[r][c].phi-node[r][c].phi_old)/ 
   node[r][c].phi_old) > tol) { 
   return 0; 
 } 
      } 
    } 
  } 
   
  return 1; 
} 
 
/* ***** */ 
 
void PrintNodeValues() { 
  int r, c; 
  extern int rmax, cmax; 
  extern struct parameters **node; 
  FILE *outfile; 
 
  /* Open an output file to which the data will be written. */ 
  if ((outfile = fopen("bend.out", "wb")) == NULL) { 
    printf("Cannot open output file\n"); 
    exit(1); 
  } 
 
  fprintf(outfile, "node type values:\n"); 
  for (r=rmax; r>=1; r--) { 
    for (c=1; c<=cmax; c++) { 
      if (node[r][c].type != -1) { 
 fprintf(outfile, "%d\t", node[r][c].type); 
      } 
    } 
    fprintf(outfile, "\n"); 
  } 
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  fprintf(outfile, "\nphi values:\n"); 
  for (r=rmax; r>=1; r--) { 
    for (c=1; c<=cmax; c++) { 
      if (node[r][c].type != -1) { 
 fprintf(outfile, "%.3f\t", node[r][c].phi); 
      } 
    } 
    fprintf(outfile, "\n"); 
  } 
 
  fprintf(outfile, "\nux values:\n"); 
  for (r=rmax; r>=1; r--) { 
    for (c=1; c<=cmax; c++) { 
      if (node[r][c].type != -1) { 
 fprintf(outfile, "%.3f\t", node[r][c].ux); 
      } 
    } 
    fprintf(outfile, "\n"); 
  } 
 
  fprintf(outfile, "\nuy values:\n"); 
  for (r=rmax; r>=1; r--) { 
    for (c=1; c<=cmax; c++) { 
      if (node[r][c].type != -1) { 
 fprintf(outfile, "%.3f\t", node[r][c].uy); 
      } 
    } 
    fprintf(outfile, "\n"); 
  } 
 
  fprintf(outfile, "\ncp values:\n"); 
  for (r=rmax; r>=1; r--) { 
    for (c=1; c<=cmax; c++) { 
      if (node[r][c].type != -1) { 
 fprintf(outfile, "%.3f\t", node[r][c].cp); 
      } 
    } 
    fprintf(outfile, "\n"); 
  } 
   
  /* Close the output file. */ 
  fclose(outfile); 
}  
 
/* ***** */ 
 
void DetermineVelocities(double deltax, double deltay) { 
  /* Determine the velocity at all of the nodes. */ 
  int r, c; 
  double Q_inlet, Q_outlet; 
  extern int rmax, cmax; 
  extern struct parameters **node; 
   
  for (r=1; r<=rmax; r++) { 
    for (c=1; c<=cmax; c++) { 
      if (node[r][c].type == 1) { 
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 /* interior points */ 
 node[r][c].ux = (node[r][c+1].phi - node[r][c-
1].phi)/(2.0*deltax); 
 node[r][c].uy = (node[r+1][c].phi - node[r-
1][c].phi)/(2.0*deltay); 
      } else if ((node[r][c].type == 2) || (node[r][c].type == 3)) { 
 /* horizontal wall points */ 
 node[r][c].ux = (node[r][c+1].phi - node[r][c-
1].phi)/(2.0*deltax); 
 node[r][c].uy = 0.0; 
      } else if ((node[r][c].type == 4) || (node[r][c].type == 5)){ 
 /* vertical wall points */ 
 node[r][c].ux = 0.0; 
 node[r][c].uy = (node[r+1][c].phi - node[r-
1][c].phi)/(2.0*deltay); 
      } else if ((node[r][c].type == 6) || (node[r][c].type == 7) || 
   (node[r][c].type == 8) || (node[r][c].type == 9)) { 
 /* interior corner points */ 
 node[r][c].ux = 0.0; 
 node[r][c].uy = 0.0; 
      } 
    } 
  } 
 
  /* At the inlet. */ 
  c = cmax; 
  for (r=1; r<=rmax; r++) { 
    if (node[r][c].type == 0) { 
      /* Use a backward differencing scheme. */ 
      node[r][c].ux = (node[r][c].phi-node[r][c-1].phi)/deltax; 
      node[r][c].uy = 0.0; 
    } 
  } 
 
  /* At the outlet. */ 
  r = 1; 
  for (c=1; c<=cmax; c++) { 
    if (node[r][c].type == 0) { 
      node[r][c].ux = 0.0; 
      /* Use a forward differencing scheme. */ 
      node[r][c].uy = (node[r+1][c].phi-node[r][c].phi)/deltay; 
    } 
  } 
 
  /* Determine volumetric flow rates at the inlet and outlet. */ 
  /* At the inlet. */ 
  c = cmax; 
  Q_inlet = 0.0; 
  for (r=1; r<rmax; r++) { 
    if ((node[r][c].type == 0) || (node[r+1][c].type == 0)) { 
      Q_inlet += 0.5*(node[r][c].ux + node[r+1][c].ux)*deltay; 
    } 
  } 
  printf("Q_inlet = %.3f\n", Q_inlet); 
 
  /* At the outlet. */ 
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  r = 1; 
  Q_outlet = 0.0; 
  for (c=1; c<cmax; c++) { 
    if ((node[r][c].type == 0) || (node[r][c+1].type == 0)) { 
      Q_outlet += 0.5*(node[r][c].uy + node[r][c+1].uy)*deltax; 
    } 
  } 
  printf("Q_outlet = %.3f\n", Q_outlet); 
  printf("Q_error = %.2f percent\n",  
  fabs((Q_outlet-Q_inlet)/Q_inlet)*100.0); 
}  
 
/* ***** */ 
 
void DeterminePressureCoefficients(double VA) { 
  int r, c; 
  double Vsquared; 
  extern int rmax, cmax; 
  extern struct parameters **node; 
 
  for (r=1; r<=rmax; r++) { 
    for (c=1; c<=cmax; c++) { 
      if (node[r][c].type != -1) { 
 Vsquared = node[r][c].ux*node[r][c].ux +  
node[r][c].uy*node[r][c].uy; 
 node[r][c].cp = 1.0-Vsquared/(VA*VA); 
      } 
    } 
  } 
}  
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Table 1.  The velocity potential at each of the node points. 
  0.631 

0.628 
0.620 

0.605 
0.583 

0.554 
0.517 

0.472 
0.417 

0.355 
0.288 

0.218 
0.146 

0.073 
0.000 

 
0.634 

0.631 
0.623 

0.608 
0.587 

0.558 
0.522 

0.476 
0.421 

0.358 
0.290 

0.219 
0.146 

0.073 
0.000 

 
0.643 

0.640 
0.632 

0.618 
0.598 

0.570 
0.535 

0.490 
0.433 

0.366 
0.294 

0.221 
0.147 

0.074 
0.000 

 
0.657 

0.654 
0.647 

0.634 
0.616 

0.591 
0.558 

0.515 
0.456 

0.378 
0.300 

0.224 
0.149 

0.074 
0.000 

 
0.676 

0.674 
0.667 

0.656 
0.640 

0.619 
0.592 

0.555 
0.499 

0.390 
0.304 

0.225 
0.149 

0.074 
0.000 

 
0.699 

0.697 
0.692 

0.683 
0.670 

0.654 
0.634 

0.613 
0.597 

 
0.726 

0.724 
0.720 

0.713 
0.703 

0.692 
0.679 

0.667 
0.661 

 
0.755 

0.754 
0.751 

0.746 
0.739 

0.731 
0.723 

0.716 
0.713 

 
0.787 

0.786 
0.784 

0.780 
0.775 

0.770 
0.765 

0.761 
0.759 

 
0.821 

0.820 
0.818 

0.816 
0.812 

0.809 
0.805 

0.803 
0.802 

 
0.855 

0.855 
0.854 

0.852 
0.850 

0.847 
0.845 

0.844 
0.843 

 
0.891 

0.891 
0.890 

0.889 
0.887 

0.886 
0.884 

0.883 
0.883 

 
0.927 

0.927 
0.926 

0.926 
0.925 

0.924 
0.923 

0.923 
0.922 

 
0.963 

0.963 
0.963 

0.963 
0.962 

0.962 
0.962 

0.961 
0.961 

 
1.000 

1.000 
1.000 

1.000 
1.000 

1.000 
1.000 

1.000 
1.000 

 
  Table 2.  The horizontal velocity at each of the node points. 
 0.000 

-0.023 
-0.047 

-0.073 
-0.101 

-0.132 
-0.165 

-0.200 
-0.233 

-0.258 
-0.275 

-0.285 
-0.290 

-0.292 
-0.293 

 
0.000 

-0.023 
-0.047 

-0.072 
-0.100 

-0.130 
-0.164 

-0.201 
-0.236 

-0.263 
-0.279 

-0.287 
-0.291 

-0.293 
-0.293 

 
0.000 

-0.022 
-0.044 

-0.068 
-0.095 

-0.126 
-0.161 

-0.203 
-0.248 

-0.278 
-0.290 

-0.293 
-0.294 

-0.295 
-0.295 

 
0.000 

-0.020 
-0.040 

-0.062 
-0.087 

-0.115 
-0.152 

-0.203 
-0.274 

-0.313 
-0.309 

-0.302 
-0.299 

-0.297 
-0.297 

 
0.000 

-0.017 
-0.035 

-0.054 
-0.074 

-0.097 
-0.129 

-0.184 
-0.330 

-0.392 
-0.330 

-0.309 
-0.301 

-0.298 
-0.297 

 
0.000 

-0.014 
-0.029 

-0.043 
-0.058 

-0.071 
-0.081 

-0.075 
0.000 

 
0.000 

-0.011 
-0.023 

-0.033 
-0.042 

-0.049 
-0.049 

-0.036 
0.000 

 
0.000 

-0.009 
-0.017 

-0.024 
-0.030 

-0.032 
-0.030 

-0.019 
0.000 

 
0.000 

-0.006 
-0.012 

-0.017 
-0.021 

-0.021 
-0.019 

-0.011 
0.000 

 
0.000 

-0.005 
-0.009 

-0.012 
-0.014 

-0.014 
-0.012 

-0.007 
0.000 

 
0.000 

-0.003 
-0.006 

-0.008 
-0.009 

-0.009 
-0.007 

-0.004 
0.000 

 
0.000 

-0.002 
-0.004 

-0.005 
-0.006 

-0.006 
-0.005 

-0.003 
0.000 

 
0.000 

-0.001 
-0.002 

-0.003 
-0.004 

-0.003 
-0.003 

-0.001 
0.000 

 
0.000 

-0.001 
-0.001 

-0.002 
-0.002 

-0.002 
-0.001 

-0.001 
0.000 

 
0.000 

0.000 
0.000 

0.000 
0.000 

0.000 
0.000 

0.000 
0.000 
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Table 3.  The vertical velocity at each of the node points. 
 0.000 

0.000 
0.000 

0.000 
0.000 

0.000 
0.000 

0.000 
0.000 

0.000 
0.000 

0.000 
0.000 

0.000 
0.000 

 
-0.023 

-0.023 
-0.024 

-0.026 
-0.029 

-0.032 
-0.035 

-0.036 
-0.032 

-0.021 
-0.012 

-0.006 
-0.003 

-0.001 
0.000 

 
-0.045 

-0.046 
-0.048 

-0.052 
-0.058 

-0.065 
-0.073 

-0.077 
-0.070 

-0.040 
-0.020 

-0.010 
-0.004 

-0.002 
0.000 

 
-0.066 

-0.067 
-0.070 

-0.076 
-0.085 

-0.097 
-0.113 

-0.130 
-0.132 

-0.048 
-0.019 

-0.008 
-0.003 

-0.001 
0.000 

 
-0.084 

-0.086 
-0.090 

-0.097 
-0.109 

-0.126 
-0.153 

-0.197 
-0.281 

0.000 
0.000 

0.000 
0.000 

0.000 
0.000 

 
-0.100 

-0.101 
-0.106 

-0.114 
-0.126 

-0.145 
-0.175 

-0.225 
-0.323 

 
-0.113 

-0.114 
-0.119 

-0.126 
-0.137 

-0.154 
-0.176 

-0.205 
-0.232 

 
-0.123 

-0.124 
-0.128 

-0.135 
-0.144 

-0.156 
-0.171 

-0.187 
-0.196 

 
-0.131 

-0.132 
-0.135 

-0.140 
-0.147 

-0.156 
-0.166 

-0.174 
-0.178 

 
-0.136 

-0.137 
-0.140 

-0.144 
-0.149 

-0.155 
-0.161 

-0.166 
-0.168 

 
-0.140 

-0.141 
-0.143 

-0.146 
-0.150 

-0.154 
-0.158 

-0.161 
-0.162 

 
-0.143 

-0.144 
-0.145 

-0.147 
-0.150 

-0.153 
-0.156 

-0.158 
-0.159 

 
-0.145 

-0.145 
-0.146 

-0.148 
-0.150 

-0.153 
-0.155 

-0.156 
-0.156 

 
-0.146 

-0.146 
-0.147 

-0.149 
-0.150 

-0.152 
-0.154 

-0.155 
-0.155 

 
-0.146 

-0.147 
-0.147 

-0.149 
-0.150 

-0.152 
-0.154 

-0.155 
-0.155 

 
  Table 4.  The pressure coefficient at each of the node points. 
 1.000 

0.994 
0.975 

0.940 
0.885 

0.804 
0.692 

0.548 
0.388 

0.245 
0.144 

0.084 
0.052 

0.037 
0.033 

 
0.994 

0.988 
0.969 

0.934 
0.878 

0.796 
0.680 

0.529 
0.358 

0.214 
0.120 

0.069 
0.043 

0.031 
0.028 

 
0.977 

0.971 
0.952 

0.917 
0.860 

0.774 
0.646 

0.465 
0.249 

0.106 
0.046 

0.026 
0.019 

0.018 
0.017 

 
0.951 

0.945 
0.926 

0.891 
0.834 

0.742 
0.593 

0.341 
-0.044 

-0.134 
-0.082 

-0.035 
-0.010 

0.002 
0.005 

 
0.920 

0.914 
0.895 

0.861 
0.805 

0.714 
0.549 

0.176 
-1.125 

-0.735 
-0.228 

-0.079 
-0.026 

-0.005 
-0.000 

 
0.887 

0.881 
0.864 

0.832 
0.782 

0.704 
0.580 

0.363 
-0.183 

 
0.856 

0.851 
0.835 

0.808 
0.766 

0.706 
0.622 

0.510 
0.390 

 
0.829 

0.824 
0.811 

0.789 
0.756 

0.712 
0.659 

0.603 
0.566 

 
0.806 

0.803 
0.792 

0.775 
0.750 

0.720 
0.686 

0.656 
0.642 

 
0.789 

0.787 
0.778 

0.765 
0.747 

0.726 
0.705 

0.688 
0.680 

 
0.777 

0.775 
0.768 

0.758 
0.745 

0.731 
0.717 

0.706 
0.702 

 
0.768 

0.767 
0.762 

0.754 
0.745 

0.734 
0.725 

0.718 
0.716 

 
0.762 

0.761 
0.757 

0.752 
0.744 

0.737 
0.730 

0.725 
0.723 

 
0.759 

0.758 
0.755 

0.750 
0.744 

0.738 
0.732 

0.729 
0.727 

 
0.758 

0.757 
0.754 

0.750 
0.744 

0.738 
0.733 

0.730 
0.728 
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Figure 1.  The num

ber of iterations to convergence as a function of the relaxation param
eter, α
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Prove that a potential function, φ, that satisfies Laplace’s equation, ∇2φ=0, also satisfies the continuity 
equation.  Show that the incompressible, constant viscosity, Newtonian Navier-Stokes equations with 
conservative body forces simplifies to the unsteady Bernoulli equation. 
 
 
SOLUTION: 

 
Laplace’s equation may be expanded as: 

2

0
j jx x
φ∂ =

∂ ∂
 (1) 

0
j jx x

φ⎛ ⎞∂ ∂ =⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠
 (2) 

 
Since the velocity potential is defined as uj = ∂φ/∂xj, we can write Eq. (2) as: 

( ) 0j
j

j j

u
u

x x

∂∂ = =
∂ ∂

 (3) 

which is the continuity equation for an incompressible flow. 
 

 
The incompressible Navier-Stokes equations for a Newtonian fluid with constant viscosity are: 

2
i i i

j i
j i j j

u u up
u g

t x x x x
ρ µ ρ
⎡ ⎤∂ ∂ ∂∂+ = − + +⎢ ⎥
∂ ∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦

 (4) 

2

i
i j j i i j j i

p
g

t x x x x x x x x
φ φ φ φρ µ ρ

⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂+ = − + +⎢ ⎥
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦

 (5) 

Re-ordering the time and spatial derivatives in the first term on the left-hand side, and the spatial 
derivatives in the last term on the right hand side gives: 

2

i
i j j i i i j j

p
g

x t x x x x x x x
φ φ φ φρ µ ρ

⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂+ = − + +⎢ ⎥
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦

 (6) 

Noting that: 

1
2j j i j i j i j jx x x x x x x x x

φ φ φ φ φ φ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂= = ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
 (7) 

Substituting Eq. (7) back into Eq. (6) gives: 

   

ρ ∂
∂xi

∂φ
∂t

+ 1
2

∂
∂xi

∂φ
∂x j

∂φ
∂x j

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= − ∂p

∂xi

+ µ ∂
∂xi

∂2φ
∂x j ∂x j

=0
!"# $#

+ ρgi  (8) 
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Noting that the second term on the RHS is zero (it’s Laplace’s equation!), re-writing the gravitational 
acceleration as the gradient of a potential function G, i.e., gi = -∂G/∂xi, and pulling the gradient ∂/∂xi 
outside of each term gives: 

1
2i j j i i

p G
x t x x x x

φ φ φρ ρ
⎡ ⎤⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂+ = − −⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

 (9) 

1
2i j j

p G
x t x x

φ φ φρ ρ
⎧ ⎫⎡ ⎤⎛ ⎞∂ ∂ ∂ ∂⎪ ⎪+ = − −⎢ ⎥⎜ ⎟⎨ ⎬⎜ ⎟∂ ∂ ∂ ∂⎢ ⎥⎪ ⎪⎝ ⎠⎣ ⎦⎩ ⎭

 (10) 

( )1
2 j j

p G F t
t x x
φ φ φρ ρ ρ

⎛ ⎞∂ ∂ ∂+ + + =⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠
  The unsteady Bernoulli equation! (11) 
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Water flows over a flat surface at a velocity of U as shown in the figure.  A pump draws off water through a narrow 
slit at a volume flow rate of Q per unit length of the slit.  Assuming that the flow is incompressible and inviscid: 
a. locate the stagnation point on the wall (point A), 
b. determine the equation for the stagnation streamline A, and 
c. determine how far above the surface, H, the fluid must be so that it does not get sucked into the slit. 
 
 
 

 
 
 
 
 
 
 
 
 
 

SOLUTION: 
 
Model the flow using the complex potential function for a uniform stream added to the complex potential function 
for a line sink centered at the origin. 

( ) log
2
mf z Uz z
π

= −     (m > 0) (1) 

 
Note that the sink strength m is related to the slit’s volume flow rate, Q.  Consider the flow rate entering half a line 
sink (as shown in the diagram below). 

( ) ( ) ( ) ( )1 1
log exp exp

2 2 2r
m df m mf z z u iu i i

dz z rθ θ θ
π π π

= − ⇒ = − − = − = − −  

1
2
0

r
mu
r

uθ
π

= −

=
 

The volumetric flow rate into the half sink, Q, is equal to the fluid velocity at a radius r multiplied by the distance 
over which the fluid enters, which in this case is half a circle with perimeter, πr. 

1
2r
mQ u r r
r

π π
π

= =  

2m Q∴ =  (2) 
 

A 
H 

U 

Q per unit depth into page 

stagnation streamline A 
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Determine the flow velocities from Eq. (1). 
1

x y
df Q Q z Q z

u iu U U U
dz z zz zπ π π

− = = − = − = −  (3) 

2 2x y
Q x iy

u iu U
x yπ
−− = −
+

 

2 2x
Q x

u U
x yπ

= −
+

 (4) 

2 2y
Q y

u
x yπ

= −
+

 (5) 

 
The stagnation point along the wall (y = 0) occurs at: 

stag

10x
Q

u U
xπ

= = −   ⇒  stag
Q

x
Uπ

=    (Note that Q > 0.) 

 
Another way to find the stagnation point is to go directly from Eq. (3): 

1 1
x y

df Q Q
u iu U U

dz z x iyπ π
− = = − = −

+
 

At the stagnation point, which occurs at y = 0, ux = uy = 0 so that: 

stag
stag

10 Q Q
U x

x Uπ π
= − ⇒ =   (The same answer as before!) 

 
The stream function corresponding to the stagnation streamline can be determined by expanding the complex 
potential (Eq. (1)). 

   

f z( ) =U x + iy( )− Q
π

ln r + iθ( )

= Ux − Q
π

ln r
⎛
⎝⎜

⎞
⎠⎟

=φ
! "## $##

+ i Uy − Q
π
θ

⎛
⎝⎜

⎞
⎠⎟

=ψ
! "# $#

 

QUyψ θ
π

= −  (6) 

The stream function evaluated at the stagnation point (y = 0, θ = 0) is ψ = 0 so that the stagnation streamline can be 
written as: 

1tanQ Q y
y

U U x
θ

π π
− ⎛ ⎞= = ⎜ ⎟⎝ ⎠

  (Note:  Q > 0.) (7) 

 
Far upstream (θ → π), the stagnation streamline is at a height, H: 

QH
U

=   (Note:  Q > 0.) (8) 
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Another way to determine H is to use conservation of mass.  The volumetric flow rate entering the slit is Q.  Far 
upstream of the slit the fluid velocity is in the horizontal direction with a uniform velocity U.   

 
 
 
 
 
 
 

 
Hence, from conservation of mass: 

QHU Q H
U

= ⇒ =   (The same answer as before!) 

 
 

 
 
 

A 
H 

U 
stagnation streamline A 
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The upper surface of a half-body is sketched below.  This pattern is formed in an ideal flow by combining a 
source of strength, m, at the origin and a uniform flow from left to right with velocity, U∞.   
 
 
 
 
 
 
 
 
a. Determine the potential function for the given flow field in polar coordinates. 
b. Determine the equation of the streamline passing through the stagnation point. 
c. Obtain an expression for the pressure coefficient, Cp, defined as: 

21
2

p
p pC
Uρ

∞

∞

−
≡  

where p is the pressure, p∞ is the pressure far upstream, and ρ is the fluid density.  Express your answer 
in terms of U∞, m, r, and θ.  

d. Determine the acceleration of a fluid particle traveling along the stagnation streamline upstream of the 
body. 

 
 
SOLUTION: 
 
The potential function for the flow field is: 

ln cos ln
2 2
m m

U x r U r rφ θ
π π∞ ∞= + = +  

and the corresponding stream function for the flow is: 

sin
2 2
m mU y U rψ θ θ θ
π π∞ ∞= + = +  

 
To determine the equation of the streamline through the stagnation point, we must first determine the value 
of the stream function at the stagnation point (where the flow velocity is zero).  The velocity components 
for the flow are: 

1 1
cos

2r
mu U

r r r
φ ψ θ

θ π∞
∂ ∂= = = +
∂ ∂

 

1 sinu U
r rθ

φ ψ θ
θ ∞
∂ ∂= = − = −
∂ ∂

 

The θ-velocity component is zero when θ = 0 and π.  The upstream stagnation point obviously occurs when 
θ = π.  The radial velocity component is zero at θ = π when: 

10
2r
mu U
rπ∞= = − +   ⇒  

2
mr
Uπ ∞

=  

Thus, the stagnation point occurs when: 

( )stag, ,
2
mr
U

θ π
π ∞

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 

The value of the stream function at this point is: 
1

stag 2mψ =  
Hence, the equation of the streamline passing through the stagnation point is: 

1
2 sin

2
mm U r θ θ
π∞= +   or, after some re-arrangement:  1

2 sin
mr

U
θ

θ π∞

⎛ ⎞= −⎜ ⎟⎝ ⎠
 

 

x 

y 

U∞ 

source of strength m located at origin 

r 
θ 
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The pressure at any point in the flow field may be found using Bernoulli’s equation: 
2 21 1

2 2p U p Uρ ρ∞ ∞+ = +    
where the subscript “∞” indicates conditions far upstream.  Hence, the pressure coefficient is given by: 

2

2 21
2

1p
p p UC
U Uρ

∞

∞ ∞

−
≡ = −  

where 

( )
2

22 2 2

2
2 2 2 2

2
2

1
cos sin

2

1 1
cos cos sin

2

1 1
cos

2

r
mU u u U U
r

m mU U U
r r

m mU U
r r

θ θ θ
π

θ θ θ
π π

θ
π π

∞ ∞

∞ ∞ ∞

∞ ∞

⎛ ⎞= + = + + −⎜ ⎟⎝ ⎠

⎛ ⎞= + + +⎜ ⎟⎝ ⎠

⎛ ⎞= + + ⎜ ⎟⎝ ⎠

 

Therefore: 
2

2
2

2

1 1 1
1 cos

2

1 1
1 1 cos

2

p
m mC U U
r rU

m m
U r U r

θ
π π

θ
π π

∞ ∞
∞

∞ ∞

⎡ ⎤⎛ ⎞= − + +⎢ ⎥⎜ ⎟⎝ ⎠⎢ ⎥⎣ ⎦
⎡ ⎤⎛ ⎞
⎢ ⎥= − + + ⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 

2
1 1
cos

2p
m mC
U r U r

θ
π π∞ ∞

⎛ ⎞
∴ = − −⎜ ⎟

⎝ ⎠
 

 
The acceleration of a fluid particle in polar coordinates is: 

r z
uD u u

Dt t r r z
θ

θ
∂ ∂ ∂ ∂= + + +
∂ ∂ ∂ ∂

u u u u u  

where 
1

cos
2r
mu U
r

θ
π∞= +  ⇒ 

2

1
2

ru m
r rπ

∂
= −

∂
 and   sinru U θ

θ ∞
∂

=
∂

  

sinu Uθ θ∞= −  ⇒ 0
u
r
θ∂
=

∂
 and cos

u
Uθ θ

θ ∞
∂

= −
∂

 

Note that the present flow is steady and planar.  The stagnation streamline upstream of the body occurs 
along the line: 

stag 2
mr r
Uπ ∞

> =   and  θ π=  

so that: 
1

2r
mu U
rθ π π∞=

= − +  and 2

1
2

ru m
r rθ π π=

∂
= −

∂
 and 0ru

θ πθ =

∂
=

∂
 

0uθ θ π= =  and 0
u
r
θ

θ π=

∂
=

∂
  and u Uθ

θ πθ ∞
=

∂
=

∂
 

Hence, the acceleration of a fluid particle is: 

2

1 1
2 2

0

rDu m mU
Dt r r
Du
Dt

θ

π π∞
⎛ ⎞⎛ ⎞= − + −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

=
  for stag 2

mr r
Uπ ∞

> =  
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A Flettner rotor ship is powered by the wind, but rather than using sails, lift is generated using rotating cylinders.  
Assume the air speed relative to the boat is U in the y direction as shown in the figure below.  Also assume the boat 
has a single cylinder with a length L and a radius R.  The cylinder rotates in a clockwise manner (when viewed from 
above) with a circulation magnitude of Γ per unit length of the cylinder.   
 
a. Write the velocity components (ur, uθ) of the air flow around the cylinder.  Express your answer in terms of (a 

subset of) U, R, Γ, r, and θ. 
b. At what angle(s), θ, with respect to the x axis shown in the figure below do the stagnation points occur on the 

cylinder?  Express your answer(s) in terms of (a subset of) U, R, and Γ. 
c. Determine the force acting to move the boat forward.  Express your answer in terms of (a subset of) ρ, U, R, L, 

and Γ, where ρ is the air density. 
 
Hint:  Be careful in evaluating the sign of the circulation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 

 
Model the flow around the cylinder as a 2D potential flow.  Potential flow around a rotating cylinder may be 
modeled as the sum of the potential flows for a uniform stream, a doublet, and a free vortex.  Here the circulation is 
in the negative direction 

cos
cos

2
kUr
r
θφ θ θ

π
Γ= + +

  
 (1) 

where Γ < 0.  The corresponding stream function is: 
sinsin ln

2
kUr r
r
θψ θ

π
Γ= − −  (2) 

 
Determine the flow velocity components from the potential function. 

2

1 cos
cosr

ku U
r r r
φ ψ θθ

θ
∂ ∂= = = −
∂ ∂

 (3) 

2

1 sinsin
2

ku U
r r rrθ

φ ψ θθ
θ π
∂ ∂ Γ= = − = − − +
∂ ∂

 (4) 

 
The constant k may be found by stipulating that there is no flow through the cylinder, i.e., ur(r = R) = 0.   

2

cos
0 cosr r R

ku U
R

θθ
=

= = −   ⇒  2k UR=  (5) 

 
Thus, the velocity components are: 

( )
2

, cos 1r
Ru r U
r

θ θ
⎡ ⎤⎛ ⎞= −⎢ ⎥⎜ ⎟⎝ ⎠⎢ ⎥⎣ ⎦

 (6) 

( )
2

, sin 1
2

Ru r U
r rθ θ θ

π
⎡ ⎤ Γ⎛ ⎞= − + +⎢ ⎥⎜ ⎟⎝ ⎠⎢ ⎥⎣ ⎦

 (7) 

U 

2R 

R 

x 

y 

r 

θ U 

 

x 

y 

θ 

r 

 749 

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

C. Wassgren 781 2024-02-01



  pot_25 
 

Page 2 of 2 
 

The location of the stagnation points on the cylinder surface may be found be letting (ur, uθ) = (0, 0) when r = R. 

( )
2

, cos 1 0r
Ru R U
R

θ θ
⎡ ⎤⎛ ⎞= − =⎢ ⎥⎜ ⎟⎝ ⎠⎢ ⎥⎣ ⎦

  (Automatically satisfied!  No flow through the cylinder surface.) (8) 

( )
2

stag stag, sin 1 0
2

Ru R U
R Rθ θ θ

π
⎡ ⎤ Γ⎛ ⎞= − + + =⎢ ⎥⎜ ⎟⎝ ⎠⎢ ⎥⎣ ⎦

  ⇒  stag0 2 sin
2

U
R

θ
π
Γ= − +   ⇒  stagsin

4 RU
θ

π
Γ=  (9) 

 
The force acting on the cylinder may be found from the Kutta-Joukowski Theorem: 

ˆU Lρ= − ΓF j   ⇒   
ˆU Lρ= − ΓF j    (10) 

Note that the lift acts perpendicular to the incoming velocity, and since Γ < 0, the lift acts in the positive y direction. 
The drag acting on the cylinder is zero. 
 
Alternately, one could integrate the pressure distribution around the surface of the cylinder. 

2

0

ˆsinr Rp Rd L
θ π

θ

θ θ
=

=
=

= − ∫F j (11) 

where 
2 21 1

2 2r R r Rp U p Uρ ρ= = ∞+ = +  (12) 
2

21
2 1 r R

r R
Up p U
U

ρ =
= ∞

⎡ ⎤⎛ ⎞= + −⎢ ⎥⎜ ⎟⎝ ⎠⎢ ⎥⎣ ⎦
 (13) 

and 
2 2

2 2 2 2 2
, , 2 20 2 sin 4 sin 4 sin

2 2 4r R r r R r RU u u U U U
R R Rθ θ θ θ

π π π= = =
Γ Γ Γ⎛ ⎞= + = + − + = − +⎜ ⎟⎝ ⎠

 (14) 

Thus, 
2

2 21
2 2 2 2

21 4sin sin
4r Rp p U

RU R U
ρ θ θ

π π= ∞

⎛ ⎞Γ Γ= + − + −⎜ ⎟
⎝ ⎠

 (15) 

and 
2 2

2 21
2 2 2 2

0

2 ˆ1 4sin sin sin
4

p U Rd L
RU R U

θ π

θ

ρ θ θ θ θ
π π

=

∞
=

⎡ ⎤⎛ ⎞Γ Γ= − + − + −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

∫F j (16) 

    

F = − p∞ sinθR dθLĵ
θ=0

θ=2π

∫
=0

! "### $###
− 1

2 ρU 2 1− 4sin2θ + 2Γ
πRU

sinθ − Γ2

4π 2R2U 2

⎛
⎝⎜

⎞
⎠⎟

sinθR dθLĵ
θ=0

θ=2π

∫  (17) 

2 2
2 21

2 2 2 2
0

2ˆ 1 4sin sin sin
4

U RL d
RU R U

θ π

θ

ρ θ θ θ θ
π π

=

=

⎛ ⎞Γ Γ= − − + −⎜ ⎟
⎝ ⎠

∫F j  (18) 

    

F = − 1
2 ρU 2RLĵ sinθ dθ

θ=0

θ=2π

∫
=0

! "# $#
− 4 sin3θ dθ

θ=0

θ=2π

∫
=0

! "# $#
+ 2Γ
πRU

sin2θ dθ
θ=0

θ=2π

∫
=π

! "## $##
− Γ2

4π 2R2U 2 sinθ dθ
θ=0

θ=2π

∫
=0

! "# $#

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 (19) 

21
2

2 ˆU RL
RU

ρ Γ⎛ ⎞= − ⎜ ⎟⎝ ⎠
F j  (20) 

ˆU Lρ= − ΓF j    (Note that Γ < 0 so that the force is in the positive y direction.  Same as previous result!) (21) 
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6.13. Review Questions

(1) Describe three properties of stream functions.
(2) Can stream functions be used for rotational flows? How about irrotational flows?
(3) What restrictions are there when using stream functions?
(4) Can stream functions be superposed?
(5) What is the governing equation for an incompressible potential flow?
(6) What are the requirements for modeling a flow as a potential flow?
(7) What are the appropriate boundary conditions for a potential flow?
(8) Can potential functions be written for 3D flows? How about stream functions?
(9) Can stream functions be written for rotational flows?

(10) How are streamlines related to equipotential lines?
(11) Under what conditions can one write a complex potential function to describe a flow?
(12) How is a fluid velocity field determined from a complex potential function?
(13) Describe the potential flow model for ideal fluid flow around a non-rotating cylinder.
(14) Describe the potential flow model for ideal fluid flow around a rotating cylinder.
(15) What is d’Alembert’s paradox?
(16) What causes Magnus lift? Is this what causes baseballs or golf balls to curve?
(17) Why does potential flow modeling fail to capture the behavior of real flows downstream of a cylinder?
(18) What is the Blasius integral law?
(19) What is the Kutta-Joukowski theorem?

item Describe the “method of images”.
(20) What is meant by “ground effect”?
(21) What is meant by “added mass”? Under what conditions will the added mass on an object be

significant?
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CHAPTER 7

Dimensional Analysis

7.1. What is Dimensional Analysis?

Dimensional analysis is a method for reducing the number and complexity of variables used to describe a
physical system. It’s a technique that can be applied to all fields, not just fluid mechanics. The mechanics
of dimensional analysis are simple to learn and apply, and the benefits from using it are significant.

Dimensional analysis can be used to present data in an efficient manner, reduce the number of experiments
or simulations one needs to perform to investigate the relationship between variables, and scale results.
However, dimensional analysis cannot tell us what the functional relationship is between variables. Additional
experiments or theoretical analyses are required to determine this information.

7.1.1. Motivating Example 1: A ball falling under gravity

To motivate the use of dimensional analysis, let’s consider a simple example involving a ball falling under
the action of gravity in a vacuum (Figure 7.1). From basic physics, we know that the vertical position of the
ball, y, is given by:

y = −1

2
gt2 + ẏ0t+ y0, (7.1)

where g is the acceleration due to gravity, t is the time from when the ball was released, ẏ0 is the initial
speed of the ball, and y0 is the initial position of the ball. Note that Eq. (7.1) is dimensional. In other words,
each term in the equation has dimensions of length L. For example, the dimension of the first term on the
right-hand side is length, [1/2gt2] = L, where the square brackets indicate “dimensions of”. If we were to
plot the position, y, as a function of time, t, for varying g, ẏ0, and y0, we would have plots that look like
Figure 7.2.

Figure 7.1. A schematic of the ball drop example.

Now let’s present the same information, but in dimensionless form. Starting with Eq. (7.1), divide all terms
by y0 (a length), to make each term dimensionless,

y

y0
= −1

2
t2
g

y0
+

ẏ0√
gy0

t

√
g

y0
+ 1, (7.2)

or, in a slightly more compact form,

y′ = −1

2
t′2 + ẏ′0t

′ + 1, (7.3)
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Figure 7.2. Plots of the ball position (vertical axes) as a function of time (horizontal axes)
for different initial positions (different intercepts on the vertical axes), different initial speeds
(different colors), and different gravitational accelerations (different plots).

where,

y′ :=
y

y0
, ẏ′0 :=

ẏ0√
gy0

, and t′ := t

√
g

y0
, (7.4)

are the dimensionless position, initial speed, and time, respectively. Note that Eqs. (7.3) and (7.1) are
identical; they’re just written in dimensionless or dimensional form. Now if we were to plot Eq. (7.3) for all
of the various combinations of variables, we would have the plot shown in Figure 7.3. This dimensionless
plot contains all of the information that was contained in the previous dimensional plots. As you can see,
presenting data in dimensionless form is very efficient!

Now let’s assume we didn’t know that Eq (7.1) existed and we had to perform a series of experiments to try
to find the functional relationship between the variables,

y = f1(g, t, ẏ0, y0), (7.5)

where f1 is the unknown function we’re trying to determine. Let’s say that we perform a series of experiments
where we vary each of the variables independently five times. Since we have four independent variables
(g, t, ẏ0, y0), this means we have a total of 54 = 625 experiments to perform! Not only is this a lot of
experiments, but some of these experiments are likely to be difficult and expensive to carry out, e.g., varying
g isn’t trivial.
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Figure 7.3. The dimensionless ball position (vertical axis) plotted as a function of dimen-
sionless time (horizontal axis) for different dimensionless initial speeds (different lines).

Now if we instead performed a dimensional analysis on Eq. (7.5), which you’ll learn how to do later in this
set of notes, we could show that Eq. (7.5) can be written in dimensionless form as,

y

y0
= f2

(
t

√
g

y0
,
ẏ0√
gy0

)
. (7.6)

(Compare Eqs. (7.6) and (7.3) to verify.) Equation (7.6) contains only two independent variables; hence,
varying each parameter five times gives a total of 52 = 25 total experiments. Clearly, performing a dimensional
analysis can reduce the number of experiments one needs to perform! Not only are the number of experiments
reduced, but the experiments can be much easier to perform. For example, varying the two independent
parameters in Eq. (7.6) can be achieved by simply letting time vary, and varying the initial drop speed.

We needn’t worry about varying gravity, g, independently since g is contained within the term t
√
g/y0, for

example.

Finally, now let’s say that we’re interested in launching an object on the Moon (indicated by the subscript
“M”) from a specified height, y0,M = 1 m, with a specified speed, ẏ0,M = 1 m s−1, and want to know how
long it will take for the object to impact the ground, yM (tM =?) = 0. We know that the acceleration due
to gravity on the Moon is gM = 1.62 m/s2. Again, assuming we don’t know that Eq. (7.1) exists, we can
still determine this time by performing a similar experiment on Earth, and then scale the result. If we’re to
perform this similar experiment on Earth, where gE = 9.81 m/s2, we need to first determine the initial drop
height, yE,0, and speed, ẏE,0, for the Earth experiment. Since the same physical process holds for both the
Moon and Earth, the dimensionless terms describing the process will be identical, i.e., Eq. (7.6) will be the
same for the Earth and Moon. Thus, we can equate dimensionless terms to determine the values that should
be used on the Moon,(

y

y0

)
E

=

(
y

y0

)
M

=⇒ y0,E = y0,M

(
yE
yM

)
= (1 m)

(
0 m

0 m

)
=⇒︸ ︷︷ ︸

limyE,yM→0

y0,E = 1 m, (7.7)

(
ẏ0√
gy0

)
E

=

(
ẏ0√
gy0

)
M

=⇒ ẏ0,E = ẏ0,M

√
y0,E

y0,M

√
gE

gM
= (1 m s−1)

√
1 m

1 m

√
9.81 m/s2

1.62 m/s2
=⇒ ẏ0,E = 2.46 m s−1. (7.8)
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When performing the drop test on Earth with the given initial conditions, the time required for the ball to
hit the ground is tE = 0.77 s (which can be verified using Eq. (7.1)). To determine the corresponding time
for the Moon, we equate the last dimensionless term in Eq. (7.8), tM = 1.89 s.(

t

√
g

y0

)
E

=

(
t

√
g

y0

)
M

=⇒ tM = tE

√
ge
gM

√
y0,M

y0,E
= (0.77 s)

√
9.81 m/s2

1.62 m/s2

√
1 m

1 m
=⇒ tM = 1.89 s. (7.9)

This time is exactly what one would calculate from Eq. (7.1) using y0,M = 1 m, ẏ0,M = 1 m s−1, and
gM = 1.62 m/s2. Thus, we see that dimensional analysis can be used for scaling!

Hopefully, you’re convinced that dimensional analysis is a worthwhile topic to study and apply. The remainder
of this chapter presents the mechanics of performing a dimensional analysis along with examples. In addition,
similarity and scaling issues are discussed.

7.1.2. Motivating Example 2: Pressure drop in a pipe

Most fluids engineering problems are too complex to be amenable to analytic, closed-form solutions. As a
result, experiments are used to determine relationships between the variables of interest, e.g., pressure and
velocity. Let’s consider the following example. Say we want to measure the pressure difference, ∆p = p2−p1,
between two points separated by a distance, L, in a pipe (Figure 7.4).

Figure 7.4. A schematic of the pipe pressure drop example.

On what variables do we expect the average pressure gradient, ∆p/L, to depend? From experience and
intuition we might expect the following parameters to be important:

V := average flow velocity (7.10)

D := pipe diameter (7.11)

ρ := fluid density (7.12)

µ := fluid dynamic viscosity (7.13)

We can write this relationship in the following, more mathematical form,

∆p/L = f1(V,D, ρ, µ). (7.14)

In order to determine the form of this function, it would be logical to design experiments where we vary just
one of the parameters while holding the others constant and observe how ∆p/L varies. Figure 7.5 shows
an illustration of typical experimental data one might obtain. This procedure, although logical, can be very
time consuming, expensive, and difficult (if not impossible) to perform. For example, can you find fluids
that have the same viscosity but varying density? As with the first motivating example, using dimensional
analysis will greatly simplify our experimental procedure. This example will be used while presenting the
various steps of performing a dimensional analysis in the following sections.
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Figure 7.5. An illustration of the measured pressure gradient plotted as a function of the
various independent variables.

7.2. Buckingham-Pi Theorem

The key component to dimensional analysis is the Buckingham-Pi Theorem: If an equation involving k
variables is dimensionally homogeneous, it can be reduced to a relationship among k− r independent dimen-
sionless products (referred to as Π terms), where r is the minimum number of reference dimensions required
to describe the variables, i.e.,

(# of Π terms) = (# of variables)︸ ︷︷ ︸
=k

− (# of reference dimensions)︸ ︷︷ ︸
=r

. (7.15)

The proof to this theorem will not be presented here.

Notes:

(1) Dimensionally homogeneous means that each term in the equation has the same units. For example,
the following form of Bernoulli’s equation,

p

ρg
+
V 2

2g
+ z = constant, (7.16)

is dimensionally homogeneous since each term has units of length (L).
(2) A dimensionless product, also commonly referred to as a Pi (Π) term, is a term that has no

dimensions. For example,
p

ρV 2
, (7.17)

is a dimensionless product since both the numerator and denominator have the same dimensions.
(3) Reference dimensions are usually basic dimensions such as mass (M), length (L), and time (T )

or force (F ), length (L), and time (T ). We’ll discuss the “usually” modifier a little later when
discussing the Method of Repeating Variables.
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7.3. Method of Repeating Variables

The Buckingham-Pi Theorem merely states that a relationship among dimensional variables may be written,
perhaps in a more compact form, in terms of dimensionless variables (Π terms). The Pi Theorem does not,
however, tell us what these dimensionless variables are. The Method of Repeating Variables is an algorithm
that can be used to determine these dimensionless variables.

The Method of Repeating Variables algorithm is as follows:

(1) List all variables involved in the problem.
(a) This is the most difficult step since it requires experience and insight.
(b) Variables are things like pressure, velocity, gravitational acceleration, viscosity, etc.
(c) List only independent variables. For example, you can list ρ (density) and g (gravitational

acceleration), or ρ and γ (specific weight), or g and γ, but you should not list ρ, g, and γ since
one of the variables is dependent on the others.

(d) If you include variables that are unimportant to the system, then you’ll form Π terms that
won’t have an impact in practice. This situation is the same one you’d have if dimensional
variables were used.

(e) If you leave out an important variable, then you’ll find that your relationship between dimen-
sionless terms won’t fully describe the system behavior. Again, this situation is the same one
you’d have if you used dimensional terms.

(2) Express each variable in terms of basic dimensions.
(a) For fluid mechanics problems we typically use mass (M), length (L), and time (T ) or force

(F ), length (L), and time (T ) as basic dimensions. We may occasionally need other basic
dimensions such as temperature (θ).

(b) For example, the dimensions of density can be written as,

[ρ] =
M

L3
=
FT 2

L4
. (7.18)

Note that the square brackets are used to indicate “dimensions of”.
(3) Determine the number of Π terms using the Buckingham-Pi Theorem.

(a) (# of Π terms) = (# of variables) – (# of reference dimensions)
(b) Usually the number of reference dimensions will be the same as the number of basic dimensions

found in the previous step. There are (rare) cases where some of the basic dimensions always
appear in particular combinations so that the number of reference dimensions is less than the
number of basic dimensions. For example, say that the variables in the problem are A, B, and
C, and their corresponding basic dimensions, are,

[A] =
M

L3
[B] =

M

L3T 2
[C] =

MT

L3
. (7.19)

The basic dimensions are M , L, and T (there are three basic dimensions). Notice, however,
that the dimensions M and L always appear in the combination M/L3. Thus, we really only
need two reference dimensions, M/L3 and T , to describe all of the variable dimensions.

(4) Select repeating variables where the number of repeating variables is equal to the number of reference
dimensions.
(a) The repeating variables should come from the list of independent variables. In our previous

example, the list of independent variables is V , D, ρ, and µ.
(b) Each repeating variable must have units independent of the other repeating variables.
(c) Don’t make the dependent variable one of the repeating variables. In our previous example,

∆p/L is the dependent variable. If we do that, then the resulting Π terms may have the
dependent variable embedded in them.

(d) All of the reference dimensions must be included in the group of repeating variables.
(5) Form a Π term by multiplying one of the non-repeating variables by the product of the repeating

variables, each raised to an exponent that will make the combination dimensionless.
(a) This step is most clearly illustrated in an example and will not be discussed here.
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(b) Repeat this step for all non-repeating variables.
(6) Check that all Π terms are dimensionless.

(a) This is an important, but often overlooked, step to verify that your Π terms are, in fact,
dimensionless.

(7) Express the final form of the dimensional analysis as a relationship among the Π terms.
(a) For example, Π1 = f(Π2,Π3, . . . ,Πk−r).

Let’s use our pipe flow experiment to demonstrate the procedure.

(1) List all variables involved in the problem.
The variables that are important in this problem are,

∆p/L := average pressure gradient over length L (7.20)

V := average flow velocity, (7.21)

D := pipe diameter, (7.22)

ρ := fluid density, (7.23)

µ := fluid dynamic viscosity. (7.24)

Thus,

∆p/L = f1(V,D, ρ, µ). (7.25)

(2) Express each variable in terms of basic dimensions.
The basic dimensions of each variable are,[

∆p

L

]
=

F

L3
=

M

L2T 2
, (7.26)

[V ] =
L

T
, (7.27)

[D] = L, (7.28)

[ρ] =
M

L3
, (7.29)

[µ] =
FT

L2
=

M

LT
. (7.30)

(3) Determine the number of Π terms using the Buckingham-Pi Theorem.
• (# of variables) = 5 (∆p/L, V , D, ρ, µ)
• (# of reference dimensions) = 3 (F , L, T or M , L, T )
• (# of Π terms) = (# of variables) – (# of reference dimensions) = 2

Thus, instead of having a relation involving five terms, we actually have a relationship involving
just two terms!

(4) Select repeating variables where the number of repeating variables is equal to the number of reference
dimensions.
Select the following three repeating variables (three since the number of reference dimensions is
three): ρ, V , D.
(a) These three repeating variables have independent dimensions.
(b) The dependent variable (∆p/L) is not one of the repeating variables.
(c) We could have also selected (V, µ,D) or (V, ρ, µ) or (µ,D, ρ) as repeating variables. The

choice of repeating variables is somewhat arbitrary as long as they have independent reference
dimensions and do not include the dependent variable.
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(5) Form a Π term by multiplying one of the non-repeating variables by the product of the repeating
variables, each raised to an exponent that will make the combination dimensionless.

Π1 =

(
∆p

L

)
ρaV bDc (7.31)

(MLT )0 =

(
M

L2T 2

)(
M

L3

)a(
L

T

)b(
L

1

)c
(7.32)

Examining the M , L, and T terms individually,

M0 = M1Ma =⇒ 0 = 1 + a (7.33)

L0 = L−2L−3aLbLc =⇒ 0 = −2− 3a+ b+ c (7.34)

T 0 = T−2T−b =⇒ 0 = −2− b (7.35)

Solving this system of equations gives: a = −1, b = −2, c = 1,

∴ Π1 =
(∆p/L)D

ρV 2
. (7.36)

Now consider the second Π term.

Π2 = µρaV bDc (7.37)

(MLT )0 =

(
M

LT

)(
M

L3

)a(
L

T

)b(
L

1

)c
(7.38)

Examining the M , L, and T terms individually,

M0 = M1Ma =⇒ 0 = 1 + a (7.39)

L0 = L−1L−3aLbLc =⇒ 0 = −1− 3a+ b+ c (7.40)

T 0 = T−1T−b =⇒ 0 = −1− b (7.41)

Solving this system of equations gives: a = −1, b = −1, c = −1,

∴ Π2 =
µ

ρV D
. (7.42)

(6) Check that all Π terms are dimensionless.

[Π1] =

[
(∆p/L)D

ρV 2

]
=

M

L2T 2

L

1

L3

M

T 2

L2
= M0L0T 0 OK! (7.43)

[Π2] =

[
µ

ρV D

]
=

M

LT

L3

M

T

L

1

L
= M0L0T 0 OK! (7.44)

(7) Express the final form of the dimensional analysis as a relationship among the Π terms.
Re-write the original relationship in dimensionless terms.

(∆p/L)D

ρV 2
= f2

(
µ

ρV D

)
. (7.45)

Notes:

(1) Instead of having to run four different sets of experiments as was discussed at the beginning of this
chapter, we only really need to run one set of experiments where we vary,

Π2 =
µ

ρV D
, (7.46)

and measure,

Π1 =
(∆p/L)D

ρV 2
. (7.47)
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All of the information contained in Figure 7.5 is contained within Figure 7.6! This reduces the
complexity, cost, and time required to determine the relationship between the average pressure
gradient and the other variables.

Figure 7.6. An illustration of the dimensionless pressure gradient plotted as a function of
the Reynolds number. Compare this plot to the ones in Figure 7.5.

(2) Dimensional analysis is a very powerful tool because it tells us what terms really are important in
an equation. For example, we started with the relation,

∆p

L
= f1(V,D, ρ, µ), (7.48)

leading us to believe that V , D, ρ, and µ are all important terms by themselves. However, dimen-
sional analysis shows us that instead of the terms by themselves, it is the following grouping of
terms,

(∆p/L)D

ρV 2
= f2

(
µ

ρV D

)
, (7.49)

that is important in the relationship. This is a subtle but very important point.
(3) Dimensional analysis tells us how many dimensionless terms are important in a relation. It does

not tell us what the functional relationship is. We need to rely on other analyses or experiments to
determine the functional relationship.

(4) The dimensionless Π terms found via dimensionless analysis are not necessarily unique. Had we
chosen different repeating variables in the previous example, we would have ended up with different
Π terms. One can multiply, divide, or raise their set of Π terms to form the Π terms found by
another. The number of Π terms, however, is unique.

(5) After a bit of practice, one can quickly form Π terms by inspection rather than having to go through
the method of repeating variables.
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  dim_anal_03 

Page 1 of 2 

An open cylindrical tank having a diameter D is supported around its bottom circumference and is filled to 
a depth h with a liquid having a specific weight g.  The vertical deflection, d, of the center of the bottom is a 
function of D, h, d, g, and E where d is the thickness of the bottom and E is the modulus of elasticity of the 
bottom material.  Form the dimensionless groups describing this relationship. 
 
 
SOLUTION: 
 
1. Write the dimensional functional relationship. 

  
 

2. Determine the basic dimensions of each parameter. 
 

 

 

 

 

 

 
3. Determine the number of P terms required to describe the functional relationship. 

# of variables = 6 (d, D, h, d, g, E) 
# of reference dimensions = 2 (L, F/L2 or L, M/T2)   

(Note that the number of reference dimensions and the number of basic dimensions are not the 
same for this problem!) 
 

(# P terms) = (# of variables) – (# of reference dimensions) = 6 – 2 = 4 
 

4. Choose two repeating variables by which all other variables will be normalized (same # as the # of 
reference dimensions). 

D, g  (Note that the dimensions for D and g are independent.) 
 

5. Make the remaining non-repeating variables dimensionless using the repeating variables. 
 

Þ     

F:   
L:    Þ   

 

 
 

Þ      

F:   
L:    Þ   

 

( )1 , , , ,f D h d Ed g=

[ ] Ld =

[ ]h L=

[ ]D L=

[ ]d L=

[ ] 2 2 3

M F
L T L

g = =

[ ] 2 2

M FE
LT L

= =

1
a bDd gP =

( )( ) ( )0 0
31 1
baL L FF L L=

0 b=
0 1 3a b= + - 1a = -

1 D
d\P =

2
a bhD gP =

( )( ) ( )0 0
31 1
baL L FF L L=

0 b=
0 1 3a b= + - 1a = -

2
h
D\P =
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Video solution: https://www.youtube.com/watch?v=9vWyVCXTnJM
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Þ     

F:   
L:    Þ   

 

 
 

Þ     

F:    Þ   
L:    Þ   

 

 
6. Verify that each P term is, in fact, dimensionless. 

  OK! 

  OK! 

  OK! 

  OK! 

 
7. Re-write the original relationship in dimensionless terms. 

 

 
 

3
a bdD gP =

( )( ) ( )0 0
31 1
baL L FF L L=

0 b=
0 1 3a b= + - 1a = -

3
d
D\P =

4
a bED gP =

( )( ) ( )0 0
2 31

baF L FF L L L=

0 1 b= + 1b = -
0 2 3a b= - + - 1a = -

( )4
E
Dg\P =

[ ]1 1L
D L

dé ùP = = =ë û

[ ]2 1h L
D L

é ùP = = =ë û

[ ]3 1d L
D L

é ùP = = =ë û

[ ] ( ) ( )( )( )3
24
1 1E F L
L FD Lg

é ùP = = =ê úë û

2 , ,h d Ef
D D D D
d

g
æ ö

= ç ÷
è ø
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Video solution: https://www.youtube.com/watch?v=9vWyVCXTnJM
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A viscous fluid is poured onto a horizontal plate as shown in the figure.  Assume that the time, t, required 
for the fluid to flow a certain distance, d, along the plate is a function of the volume of fluid poured, V, 
acceleration due to gravity, g, fluid density, r, and fluid dynamic viscosity, µ.  Determine an appropriate set 
of dimensionless terms to describe this process. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
1. Write the dimensional functional relationship. 

  
 

2. Determine the basic dimensions of each parameter. 
 

 

 

 

 

 

 
3. Determine the number of P terms required to describe the functional relationship. 

# of variables = 6 (t, d, V, g, r, µ) 
# of reference dimensions = 3 (T, L, M)   

(Note that the number of reference dimensions and the number of basic dimensions are equal 
for this problem.) 
 

(# P terms) = (# of variables) – (# of reference dimensions) = 6 – 3 = 3 
 

4. Choose three repeating variables by which all other variables will be normalized (same # as the # of 
reference dimensions). 

d, g, r  (Note that the dimensions for these variables are independent.) 
 

( )1 , , , ,t f d V g r µ=

[ ]t T=

[ ]d L=

[ ] 3V L=

[ ] 2
Lg T=

[ ] 3
M
Lr =

[ ] ( )
M
LTµ =

d 

volume, V 
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5. Make the remaining non-repeating variables dimensionless using the repeating variables. 
 

Þ     

  Þ   

 

 
 

 Þ     

  Þ   

 

 
 

Þ     

  Þ   

 

 
 

6. Verify that each P term is, in fact, dimensionless. 

  OK! 

  OK! 

  OK! 

 
7. Re-write the original relationship in dimensionless terms. 

 

 
 

1
a b ctd g rP =

0 0 0
2 31 1

a b cT L L MM L T
T L

æ öæ ö æ ö æ ö= ç ÷ç ÷ ç ÷ ç ÷
è øè ø è ø è ø

: 0
: 0 3
: 0 1 2

M c
L a b c
T b

=
= + -
= -

1
2

1
2

0

a
b
c

= -

=

=

1
gt
d

\P =

2
a b cVd g rP =

3
0 0 0

2 31 1

a b cL L L MM L T
T L

æ öæ ö æ ö æ ö= ç ÷ç ÷ ç ÷ ç ÷
è ø è ø è øè ø

: 0
: 0 3 3
: 0 2

M c
L a b c
T b

=
= + + -

= -

3
0
0

a
b
c

= -
=
=

2 3

V
d

\P =

3
a b cd gµ rP =

0 0 0
2 31

a b cM L L MM L T
LT T L

æ öæ ö æ ö æ ö= ç ÷ç ÷ ç ÷ ç ÷
è øè ø è ø è ø

: 0 1
: 0 1 3
: 0 1 2

M c
L a b c
T b

= +
= - + + -

= - -

3
2
1
2

1

a
b
c

= -

= -

= -

3 d gd
µ

r
\P =

[ ]
1
2

1
2

1
1 1

1
g T Lt
d T L

é ù
P = = =ê ú

ë û

[ ]
3

2 3 3

1 1
1

V L
d L
é ùP = = =ê úë û

[ ] 1 1
2 2

3

3
1 1 1M L T

LT M L L Ld gd
µ

r

é ù
P = = =ê ú

ê úë û

2 3 ,
g Vt f
d d d gd

µ
r

æ ö
= ç ÷ç ÷

è ø
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 Page 1 of 2 

It is desired to determine the wave height when wind blows across a lake.  The wave height, H, is assumed 
to be a function of the wind speed, V, the water density, r, the air density, ra, the water depth, d, the 
distance from the shore, L, and the acceleration of gravity, g.  Use d, V, and r as repeating variables to 
determine a suitable set of pi terms that could be used to describe this problem. 
 
SOLUTION: 
 
 
 
 
 
 
 
 
1. Write the dimensional functional relationship. 

  
 

2. Determine the basic dimensions of each parameter. 
 

 

 

 

 

 

 

 
3. Determine the number of P terms required to describe the functional relationship. 

# of variables = 7 (H, V, r, ra, d, L, g) 
# of reference dimensions = 3 (L, T, M)   

 
(# P terms) = (# of variables) – (# of reference dimensions) = 7 – 3 = 4 
 

4. Choose three repeating variables by which all other variables will be normalized (same # as the # of 
reference dimensions). 

 d, V, r 
 

5. Make the remaining non-repeating variables dimensionless using the repeating variables. 

   (by inspection) 

   (by inspection) 

 (by inspection) 

 (by inspection, This is a Froude number!) 

 
 

( )1 , , , , ,aH f V d L gr r=

[ ]H L=

[ ] LV T=

[ ] 3
M
Lr =

[ ] 3a
M
Lr =

[ ]d L=

[ ]L L=

[ ] 2
Lg T=

1
H
d

P =

2
ar
r

P =

3
L
d

P =

4
V
gd

P =

H 

L 

V g ra 

r d 
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6. Verify that each P term is, in fact, dimensionless. 
  OK! 

  OK! 

  OK! 

  OK! 

 
7. Re-write the original relationship in dimensionless terms. 

 

 
 

 

[ ]1 1 11
H L
d L

é ùP = = =ë û

[ ] 3
32 1a M L
ML

r
r

é ùP = = =ê úë û

[ ]3 1 11
L L
d L

é ùP = = =ë û

[ ] 1 1
2 24
1 1V L T

T L Lgd
é ù

P = = =ê ú
ë û

2 , ,aH L Vf
d d gd

r
r

æ ö
= ç ÷ç ÷

è ø
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Small droplets of liquid are formed when a liquid jet breaks up 
in spray and fuel injection processes.  The resulting droplet 
diameter, d, is thought to depend on liquid density, r, viscosity, 
µ, and surface tension, s, as well as jet speed, V, and diameter, 
D.  How many dimensionless ratios are required to characterize 
this process?  Determine these ratios. 
 
 
SOLUTION: 
1. Write the dimensional functional relationship. 

  
 

2. Determine the basic dimensions of each parameter. 
 

 

 

 

   

 
3. Determine the number of P terms required to describe the functional relationship. 

# of variables = 6 (d, r, µ, s, V, D) 
# of reference dimensions = 3 (M, L, T)   

 
(# P terms) = (# of variables) – (# of reference dimensions) = 6 – 3 = 3  
 

4. Choose three repeating variables by which all other variables will be normalized (same # as the # of 
reference dimensions). 

r, V, D  (Note that these repeating variables have independent dimensions.) 
 

 
5. Make the remaining non-repeating variables dimensionless using the repeating variables. 

 

Þ     

M:  Þ   
T:    Þ   
L:    Þ   

 

  

( )1 , , , ,d f V Dr µ s=

[ ]d L=

[ ] 3
M
Lr =

[ ] M
LTµ =

[ ] 2
F M
L Ts = =

[ ] LV T=

[ ]D L=

1
a b cd V DrP =

( )( ) ( ) ( )0 0 0
31 1
a b cL M L LM LT TL=

0 a= 0a =
0 b= - 0b =
0 1 3a b c= - + + 1c = -

1
d
D

\P =
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Þ      

M:    Þ   
T:      Þ   
L:      Þ   

 or    (a Reynolds number!) 

 
 

Þ      

M:    Þ   
T:      Þ   
L:      Þ   

 or   (a Weber number!) 

 
 

6. Verify that each P term is, in fact, dimensionless. 

  OK! 

  OK! 

  OK! 

 
 

7. Re-write the original relationship in dimensionless terms. 

 (1)  

2
a b cV DµrP =

( ) ( ) ( )0 0 0
3 1
a b cM M L LM L T TLLT

æ ö= ç ÷
è ø

0 1 a= + 1a = -
0 1 b= - - 1b = -
0 1 3a b c= - - + + 1c = -

2 VD
µ

r
\P = 2
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Spin plays an important role in the flight trajectory of golf, Ping-Pong, and tennis balls.  Therefore, it is 
important to know the rate at which spin decreases for a ball in flight.  The aerodynamic torque, T, acting 
on a ball in flight, is thought to depend on flight speed, V, air density, r, air viscosity, µ, ball diameter, D, 
spin rate (angular speed), w, and diameter of the dimples on the ball, d.  Determine the dimensionless 
parameters that result. 
 
 
SOLUTION: 
 
1. Write the dimensional functional relationship. 

  
 

2. Determine the basic dimensions of each parameter. 
 

 

 

 

 

 

 
 

3. Determine the number of P terms required to describe the functional relationship. 
# of variables = 7 (T, V, r, µ, D, w, d) 
# of reference dimensions = 3 (M, L, T)   

 
(# P terms) = (# of variables) – (# of reference dimensions) = 7 – 3 = 4  
 

4. Choose three repeating variables by which all other variables will be normalized (same # as the # of 
reference dimensions). 

r, V, D  (Note that these repeating variables have independent dimensions.) 
 

 
5. Make the remaining non-repeating variables dimensionless using the repeating variables. 

 

Þ     

M:  Þ   
T:    Þ   
L:    Þ   

 

  

( )1 , , , , ,T f V D dr µ w=

[ ] 2
2

MLT F L T= × =

[ ] LV T=

[ ] 3
M
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[ ] M
LTµ =
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[ ] 1
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1
a b cT V DrP =

( )( ) ( ) ( )20 0 0
2 3 1

a b cML M L LM LT TT L=

0 1 a= + 1a = -
0 2 b= - - 2b = -
0 2 3a b c= - + + 3c = -
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V Dr
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Þ      

M:    Þ   
T:      Þ   
L:      Þ   

 or    (a Reynolds number!) 

 
 

Þ      

M:    Þ   
T:      Þ   
L:      Þ   

  

 
 

Þ      

M:    Þ   
T:      Þ   
L:      Þ   

  

 
 

6. Verify that each P term is, in fact, dimensionless. 

  OK! 

  OK! 

  OK! 

  OK! 

 
 

7. Re-write the original relationship in dimensionless terms. 
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7.4. Dimensionless Form of the Governing Equations

Consider the dimensional form of the governing equations for an incompressible, Newtonian fluid with con-
stant viscosity in a gravity field:

Continuity Equation:
∂uj
∂xj

= 0 (7.50)

Navier-Stokes Equations: ρ

(
∂ui
∂t

+ uj
∂ui
∂xj

)
= − ∂p

∂xi
+ µ

∂2ui
∂xj∂xj

+ ρgi (7.51)

Thermal Energy Equation:ρc

(
∂T

∂t
+ uj

∂T

∂xj

)
= k

∂2T

∂xj∂xj
+ µ

(
∂uj
∂xi

+
∂ui
∂xj

)(
∂ui
∂xj

)
(7.52)

Note that in the thermal energy equation the internal energy has been written as the specific heat (assumed
constant, since for an incompressible fluid cv = cp = c) multiplied by the temperature and the heat transfer
has been assumed to be due solely to conduction (Fourier’s Law with a constant conduction coefficient, k).
Let’s re-write these equations in dimensionless form using some characteristic quantities. The variables in
the equations are made dimensionless in the following manner:

x∗i :=
xi
L

=⇒ xi = Lx∗i , (7.53)

∂

∂x∗i
:= L

∂

∂xi
=⇒ ∂

∂xi
=

1

L

∂

∂x∗i
, (7.54)

u∗i :=
ui
U

=⇒ ui = Uu∗i , (7.55)

t∗ :=
t

τ
=⇒ t = τt∗, (7.56)

p∗ :=
p

p0
=⇒ p = p0p

∗, (7.57)

T ∗ :=
T

T0
=⇒ T = T0T

∗, (7.58)

where the superscript “*” refers to a dimensionless quantity. The quantity L represents a characteristic
length for the flow of interest (e.g., a pipe diameter or the diameter of a sphere), U is a characteristic velocity
(e.g., the free stream velocity or the average velocity in a pipe), τ is a characteristic time scale (e.g., the
period of an oscillating boundary), p0 is a characteristic pressure (e.g., the free stream pressure or the vapor
pressure), and T0 is a characteristic temperature (e.g., the free stream temperature). These characteristic
quantities give us an estimate of the typical magnitude of the various terms in the equations. They give us
insight into how a parameter might scale in a flow, e.g., we might expect the fluid velocities in a flow to scale
with the incoming free stream velocity.

Now let’s rewrite the governing equations using these dimensionless parameters. First start with the Conti-
nuity Equation,

∂(Uu∗j )

∂(Lx∗j )
= 0, (7.59)(

U

L

)
∂u∗j
∂x∗j

= 0, (7.60)

∂u∗j
∂x∗j

= 0 . (7.61)
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Thus, the dimensionless Continuity Equation looks identical to the dimensional Continuity Equation. Now
examine the Navier-Stokes Equations,

ρ

[
∂(Uu∗i )

∂(τt∗)
+ (Uu∗j )

∂(Uu∗i )

∂(Lx∗j )

]
= −∂(p0p

∗)

∂(Lx∗i )
+ µ

∂2(Uu∗i )

∂(Lx∗j )∂(Lx∗j )
+ ρgi, (7.62)(

ρU

τ

)
∂u∗i
∂t∗

+

(
ρU2

L

)
u∗j
∂u∗i
∂x∗j

= −
(p0

L

) ∂p∗
∂x∗i

+

(
µU

L2

)
∂2u∗i
∂x∗j∂x

∗
j

+ ρgi. (7.63)

A dimensional quantity in front of a term represents a particular characteristic force per unit volume, i.e.,

ρU

τ
:=characteristic unsteady inertial force per unit volume, (7.64)

ρU2

L
:=characteristic convective inertial force per unit volume, (7.65)

p0

L
:=characteristic pressure force per unit volume, (7.66)

µU

L2
:=characteristic viscous force per unit volume, (7.67)

ρg :=characteristic weight per unit volume. (7.68)

In order to make the Navier-Stokes equation dimensionless, the convention is to divide through by the
characteristic convective inertial force per unit volume term (ρU2/L),(

L

τU

)
︸ ︷︷ ︸

St

∂u∗i
∂t∗

+ u∗j
∂u∗i
∂x∗j

= −
(
p0

ρU2

)
︸ ︷︷ ︸

Eu

∂p∗

∂x∗i
+

(
µ

ρUL

)
︸ ︷︷ ︸

= 1
Re

∂2u∗i
∂x∗j∂x

∗
j

+

(
gL

U2

)
︸ ︷︷ ︸

= 1
Fr2

ĝi. (7.69)

where ĝi is a unit vector pointing in the direction of the gravitational acceleration. This equation is now
dimensionless. Furthermore, the quantities in parentheses in front of each term are characteristic force ratios,
which are given special names:

• Strouhal number, St = L
τU . Represents the ratio of characteristic (local or Eulerian) inertial forces

to characteristic convective inertial forces. The Strouhal number is often significant in unsteady,
periodic flows.

• Euler number, Eu = p0
ρU2 . Represents the ratio of a characteristic pressure forces to characteristic

convective inertial forces. The Euler number is typically significant in flows where large changes in
pressure occur. The Euler number is also often written as a pressure coefficient, cP ,

cP :=
p− p0
1
2ρU

2
. (7.70)

or in flows where cavitation occurs, as the cavitation number, Ca,

Ca :=
p− pv
1
2ρU

2
. (7.71)

where pv is the vapor pressure of the liquid.
• Reynolds number, Re = ρUL

µ . Represents the ratio of characteristic convective inertial forces to

characteristic viscous forces. The Reynolds number is significant in virtually all fluid flows.
• Froude number, Fr = U√

gL
. Represents the ratio of characteristic convective inertial forces to

characteristic gravitational forces. The Froude (pronounced “’früd”) number is typically significant
in flows involving a free surface.
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Finally, let’s make the Thermal Energy Equation dimensionless following the same procedure,

ρc

[
∂(T0T

∗)

∂(τt∗)
+ (Uu∗j )

∂(T0T
∗)

∂(Lx∗j )

)
= k

∂2(T0T
∗)

∂(Lx∗j )∂(Lx∗j )
+ µ

[
∂(Uu∗j )

∂(Lx∗i )
+
∂(Uu∗i )

∂(Lx∗j )

][
∂(Uu∗i )

∂(Lx∗j )

]
, (7.72)

(
ρcT0

τ

)
∂T ∗

∂t∗
+

(
ρcUT0

L

)
uj
∂T ∗

∂x∗j
=

(
kT0

L2

)
∂2T ∗

∂x∗j∂x
∗
j

+

(
µU2

L2

)(
∂u∗j
∂x∗i

+
∂u∗i
∂x∗j

)(
∂u∗i
∂x∗j

)
. (7.73)

The expressions in parentheses in front of each term has dimensions of M/(LT 3). Now make this equation
dimensionless by dividing through by the quantity in front of the convective acceleration term,(

L

τU

)
︸ ︷︷ ︸

=St

∂T ∗

∂t∗
+ uj

∂T ∗

∂x∗j
=

(
k

cµ

)
︸ ︷︷ ︸

= 1
Pr

(
µ

ρUL

)
︸ ︷︷ ︸

= 1
Re

∂2T ∗

∂x∗j∂x
∗
j

+

(
U2

cT0

)
︸ ︷︷ ︸

=Ec

(
µ

ρUL

)
︸ ︷︷ ︸

= 1
Re

(
∂u∗j
∂x∗i

+
∂u∗i
∂x∗j

)(
∂u∗i
∂x∗j

)
. (7.74)

• Prandtl number, Pr = cµ
k . Represents the ratio of the characteristic momentum diffusivity, ν = µ/ρ,

to the characteristic thermal diffusivity, k/(ρc). The Prandtl number gives a measure of how rapidly
momentum diffuses through a fluid compared to the diffusion of heat. Most gases have a Prandtl
number near one (heat and momentum diffuse at nearly the same rate) while water has a Prandtl
number near ten (momentum diffuses faster than heat).

• Eckart number, Ec = U2

cT0
. Represents the ratio of the characteristic specific macroscopic kinetic

energy, U2, to the characteristic specific internal energy, cT0. When the Eckart number divided by
the Reynolds number is small, i.e., Ec/Re � 1, then the change in the fluid energy due to viscous
dissipation can be neglected and the thermal energy equation becomes a balance between advection
and conduction.

Additional dimensionless quantities occur when dealing with other equations of significance, e.g., the equa-
tions for a compressible fluid, and with the boundary conditions, e.g., surface tension effects or surface
roughness.
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The differential equation for small-amplitude vibrations of a simple beam is given by: 

 

where 
y º vertical displacement of beam 
x º horizontal position 
t º time 
r º beam material density 
A º cross-sectional area 
I º area moment of inertia 
E º Young’s modulus 

 
Rewrite the differential equation in dimensionless form.  Discuss the physical significance of any 
dimensionless terms in the resulting equation. 
 
 
SOLUTION: 
 
Re-write the variables y, x, and t in dimensionless form using other variables in the equation where [y] = L, 
[x] = L, and [t] = T.  Use r, A, and E as repeating variables where [r] = M/L3, [A] = L2, and [E] = F/L2 = 
M/(LT2). 

   OK! (1) 

   OK! (2) 

   OK! (3) 

 
Substitute into the original PDE. 

 

 

 

 (4) 

The term I/A2 is a dimensionless geometric parameter. 
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Note that if we let: 

 (5) 

 (6) 

 (7) 

then: 

 

 

 

 (8) 
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7.5. Modeling and Similarity

Models are often used in fluid mechanics to predict the kinematics and dynamics of full-scale (often referred
to as prototype) flows. From previous discussions of dimensional analysis, we observe that we can write
the governing equations and boundary conditions of our flow in dimensionless terms (Π terms). Thus, if we
have two different flows, e.g., a large-scale, prototype flow and a small scale, model flow, that have identical
dimensionless parameters, then the same solution, also in terms of dimensionless parameters, will hold for
both. This is extremely helpful when modeling fluid systems.

When a model and the prototype have the same dimensionless parameters, we say that they are similar. We
typically discuss similarity in three categories: geometric, dynamic, and kinematic.

• Geometric similarity occurs when the model is an exact geometric replica of the prototype. In other
words, all of the lengths in the model are scaled by exactly the same amount as in the prototype,
as shown in Figure 7.7. Note that surface roughness may even need to be scaled if it is a significant

Figure 7.7. An illustration of geometric similarity between a model and prototype. All of
the lengths are scaled by the same amount.

factor in the flow.
• Dynamic similarity occurs when the ratio of forces in the model is the same as the ratio of significant

forces in the prototype. For example,

(ratio of unsteady to conv. inertial forces)P = (ratio of unsteady to conv. forces)M =⇒ StP = StM , (7.75)

(ratio of inertial to viscous forces)P = (ratio of inertial to viscous forces)M =⇒ ReP = ReM , (7.76)

(ratio of pressure to inertial forces)P = (ratio of pressure to inertial forces)M =⇒ EuP = EuM , (7.77)

(ratio of inertial to grav. forces)P = (ratio of inertial to grav. forces)M =⇒ FrP = FrM . (7.78)

• Kinematic similarity occurs when the prototype and model fluid velocity fields have identical stream-
lines (but scaled speeds). Since the forces affect the fluid motion, geometric similarity and dynamic
similarity will automatically ensure kinematic similarity.

Notes:

(1) When modeling, we need to maintain similarity between all of the dimensionless parameters that are
important to the physics of the flow. This means that we do not necessarily need to have similarity
between all Π terms, just the ones that significantly affect the flow physics. Knowing a priori what
dimensionless terms are important can be difficult, but with experience the task becomes easier.

(2) It is not uncommon to have the important physics of a system change at different scales. For
example, surface tension forces become more pronounced at smaller geometric scales. If one was
scaling up a small system in which surface tension was an important effect, but didn’t consider
the dynamic similarity of the surface tension force at the larger scale, then the scaling experiments
would result in incorrect results.
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7.5.1. Partial Similarity

True similarity may be difficult to achieve in practice. In such cases, one must either: (a) acknowledge that
model testing may not be possible, or (b) relax one or more similarity requirements and use a combination
of experimentation and analysis to scale the measurements.

For example, in modeling the flow around ships, both Reynolds number and Froude number similarity are
important; however, both are difficult to achieve simultaneously. In such cases, one of the similarity require-
ments is relaxed (in boat modeling it’s the Reynolds number similarity) and a combination of experiments
and analysis is utilized to scale the measurements.

The two primary components of drag on a ship’s hull are viscous drag, i.e., the friction of the water against
the hull’s surface, and wave drag, i.e., the force required to create the waves generated by the hull. The two
significant dimensionless parameters corresponding to these phenomena are the,

Reynolds number: ratio of inertial to viscous forces Re =
V L

ν
, (7.79)

Froude number: ratio of inertial to gravitational forces Fr =
V√
gL

. (7.80)

Maintaining both Reynolds number and Froude number similarity is difficult to achieve in practice,

FrM = FrP =⇒
(

V√
gL

)
M

=

(
V√
gL

)
P

=⇒ VM = VP

√
LM
LP

√
gM
gP

=⇒ VM = VP

√
LM
LP

, (7.81)

ReM = ReP =⇒
(
V L

ν

)
M

=

(
V L

ν

)
P

=⇒ νM = νP

(
VM
VP

)(
LM
LP

)
=⇒ νM = νp

(
LM
LP

)3/2

, (7.82)

where the gravitational acceleration is assumed constant across scales (gM = gP ). As an example, consider
a scale model that has LP = 100LM , νP = νH2O = 1 cSt =⇒ νM = 0.001 cSt. There is no such common
model fluid available! Thus, we cannot easily maintain both Froude number and Reynolds number similarity.

How do we resolve this difficulty? In practice, Froude number similarity is maintained with water as both the
prototype and model fluid (i.e., Eq. (7.81) holds). Reynolds number similarity is neglected in the experiment
and instead analysis or computation is used to estimate the viscous drag contribution. The procedure is as
follows:

(1) The total drag acting on the model is measured in the experiment. This drag force is usually
expressed in terms of a dimensionless resistance coefficient.

(2) The viscous drag contribution to the total drag is calculated using analysis, e.g., boundary layer
analysis, or computation, e.g., computational fluid dynamics.

(3) The difference between the total drag and the viscous drag is the wave drag.
(4) The viscous drag contribution to the total drag is calculated using analysis (e.g., boundary layer

analysis) or computation (e.g., computational fluid dynamics).
(5) Estimate the viscous drag contribution for the prototype using analysis or computation.
(6) Sum the predicted viscous drag force (step 5) with the scaled wave drag force (step 4) to get the

total prototype drag force.

As a demonstration of how well the procedure works, consider the resistance coefficient data from a 1:80 scale
model test of the U.S. Navy guided missile frigate Oliver Hazard Perry (FFG-7) as shown in Figure 7.8. The
error between the scaled and actual total drag force measurements is approximately ±5%.

Notes:

(1) Experimental observations have shown that in many (but not all!) cases, Reynolds number similarity
may be neglected for sufficiently large Reynolds numbers. For example, consider the Moody plot
in Figure 7.9, which plots the dimensionless wall friction coefficient (aka the friction factor) as
a function of Reynolds number for varying dimensionless wall roughnesses. At sufficiently large
Reynolds numbers, known as the “fully rough zone”, the friction factor no longer is a function of
the Reynolds number.
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Figure 7.8. The resistance coefficient plotted as a function of Froude number for a scale
model (left) and prototype (right). These plots are from Figs. 7.2 and 7.3 in Fox, R.W.,
Pritchard, P.J., and McDonald, A.T., 2008, Introduction to Fluid Mechanics, 7th ed., Wiley.

Figure 7.9. The Moody plot, which plots the friction coefficient as a function of Reynolds
number for varying relative roughness. Note that in the fully rough zone, the friction factor
is independent of the Reynolds number. This plot is from Fox, R.W., Pritchard, P.J., and
McDonald, A.T., 2008, Introduction to Fluid Mechanics, 7th ed., Wiley.

(2) The drag coefficients for flow around sphere and circular disk are insensitive to the Reynolds number
over a wide range of Reynolds numbers, as shown in Figure 7.10.
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Figure 7.10. The drag coefficients for a sphere and circular disk plotted as a function of
the Reynolds number. The drag coefficient is nearly independent of the Reynolds number
over a wide range of Reynolds numbers. This figure is from Fox, R.W., Pritchard, P.J., and
McDonald, A.T., 2008, Introduction to Fluid Mechanics, 7th ed., Wiley.

7.6. The Stokes Number (St) for Small Particles in a Flow

The Stokes number, St, is defined as the ratio of the particle response time, τp, to the fluid response time,
τf ,

St :=
τp
τf
. (7.83)

A response time is a measure of how rapidly a quantity responds to rapid changes. The Stokes number for a
particle is essentially a measure of how well the particle follows fluid streamlines. If St� 1 then the particle
will be able to follow the fluid streamlines whereas if St � 1 then the particle will not be able to follow
sudden changes in the fluid velocity. For example, consider driving down a country road late at night during
the summer when a lot of bugs are out. If the Stokes number for a bug is small, then it will follow the fluid
streamlines as you drive past it and it won’t impact your car (Figure 7.11). However, if the Stokes number
for the bug is large, it will end up hitting your windshield since it won’t be able to follow the fluid streamlines
that contour around your car.

Figure 7.11. An illustration of a bug following the streamlines over a car when St � 1
(yeah!) or not following the streamlines when St� 1 (oh no!).
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The particle response time can be found by considering the particle equation of motion (assuming spherical
particles) for a particle with a speed slower than the surrounding fluid (so the particle accelerates),(

ρ
π

6
d3
p

) dup
dt

= CD
1

2
ρf (uf − up)2

(
πd2

p

4

)
, (7.84)

where ρp an ρf are the particle and fluid densities, dp is the particle diameter, up and uf are the particle
and fluid velocities, t is time, and CD is the particle drag coefficient. Define the Reynolds number for the
particle using the local relative velocity,

Red =
ρ(uf − up)dp

µf
(Note that uf > up is assumed.) (7.85)

Substitute Eq. (7.85) into Eq. (7.84) and simplify,

dup
dt

= CDRed

[
µf

ρf (uf − up)dp

]
ρf (uf − up)2

(
3

4ρpdp

)
, (7.86)

= CDRed

(
3µf

4ρpd2
p

)
(uf − up). (7.87)

For small Reynolds numbers the drag coefficient approaches the Stokes drag,

CD =
24

Red
(We’re now assuming that we’re dealing with small particles.), (7.88)

so that the particle equation of motion becomes,

dup
dt

=
18µf
ρpd2

p

(uf − up). (7.89)

The solution to this equation, assuming a constant fluid velocity and a particle released from rest (up(t =
0) = 0), is,

up = uf

[
1− exp

(
− t

τp

)]
, (7.90)

where τp is the particle response time,

τp =
ρpd

2
p

18µf
. (7.91)

Let the fluid response time, τf , for the flow geometry be,

τf =
L

uf
, (7.92)

where L is a typical flow dimension, e.g., the effective frontal diameter of the car in the car/bug example
discussed previously. Therefore, the Stokes number for the particle is,

St =
τp
τf

=
ρpd

2
puf

18µfL
. (7.93)

Re-writing in terms of the Reynolds number, ReL, based on the typical flow dimension, L,

ReL =
ρfufL

µf
, (7.94)

the Stokes number is,

St =
ρpd

2
puf

18µfL

(
ReL

µf
ρfufL

)
, (7.95)

St =
ReL
18

(
ρp
ρf

)(
dp
L

)2

. (7.96)
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For very small particles compared to the flow dimension, i.e., (dp/L � 1), and moderate flow Reynolds
numbers and density ratios, we observe that St� 1 and the particle should follow the fluid streamlines.
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The power, P, to drive an axial flow pump depends on the following variables: 
density of the fluid, r 
angular speed of the rotor, W 
diameter of the rotor, D 
head rise across the pump, DH  ( = Dp/rg) 
volumetric flow through the pump, Q 

 
a. Rewrite the functional relationship in dimensionless form. 
b. A model scaled to one-third the size of the prototype has the following characteristics:   

Wm = 900 rpm 
Dm = 5 in 
DHm = 10 ft 
Qm = 3 ft3/s 
Pm = 2 hp 

If the full-size pump is to run at 300 rpm, what is the power required for this pump?  What head will 
the pump maintain?  What will the volumetric flow rate be in the prototype? 
 
 

SOLUTION: 
 
1. Write the dimensional functional relationship. 

  
 

2. Determine the basic dimensions of each parameter. 
 

 

 

 

 

 

 
3. Determine the number of P terms required to describe the functional relationship. 

# of variables = 6 (P, r, W, D, DH, Q) 
# of reference dimensions = 3 (M, L, T)   

 
(# P terms) = (# of variables) – (# of reference dimensions) = 6 – 3 = 3 
 

4. Choose three repeating variables by which all other variables will be normalized (same # as the # of 
reference dimensions). 

r, D, W  (Note that these repeating variables have independent dimensions.) 
 

( )1 , , , ,P f D H Qr= W D

[ ] 2
3

FL MLP T T= =

[ ] 3
M
Lr =

[ ] 1
TW =

[ ]D L=

[ ]H LD =

[ ] 3LQ T=
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5. Make the remaining non-repeating variables dimensionless using the repeating variables. 
 

Þ     

M:  Þ   
L:    Þ   
T:    Þ   

 

 
 

Þ      

M:    Þ   
L:      Þ   
T:      Þ   

 

 
 

 

M:    Þ   
L:     Þ   
T:      Þ   

 

 
6. Verify that each P term is, in fact, dimensionless. 

  OK! 

  OK! 

  OK! 

 
7. Re-write the original relationship in dimensionless terms. 

 

 
 

1
a b cP DrP = W

( )( ) ( ) ( )20 0 0
3 3

1
1

a b cML M LM LT TT L=

0 1 a= + 1a = -
0 2 3a b= - + 5b = -
0 3 c= - - 3c = -

1 3 5

P
Dr

\P =
W

2
a b cH DrP = D W

( )( ) ( ) ( )0 0 0
3

1
1 1

a b cL M LM LT TL=

0 a= 0a =
0 1 3a b= - + 1b = -
0 c= - 0c =

2
H
D
D

\P =

3
a b cQ DrP = W

( )( ) ( ) ( )30 0 0
3

1
1

a b cL M LM LT T TL=

0 a= 0a =
0 3 3a b= - + 3b = -
0 1 c= - - 1c = -

3 3

Q
D

\P =
W

[ ] 2 3 3
3 51 3 5

1 11
P ML L T

MT LDr
é ù

P = = =ê úWë û

[ ]2 1 11
H L

LD
Dé ùP = = =ê úë û

[ ] 3
33 3

1 11
Q L T

T LD
é ùP = = =ê úWë û

23 5 3,P H Qf
DD Dr
Dæ ö= ç ÷W Wè ø
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Now perform a scaling analysis assuming that the same fluid is used in the model and prototype, i.e., rM = 
rP.  Note that since a one-third scale model is being used, DP/DM = 3/1. 

 

 

 

 
 

 

 

 

 
 

 

 

 
 
 

3 5 3 5
M P

P P
D Dr r

æ ö æ ö
=ç ÷ ç ÷W Wè ø è ø

3 5

P P
P M
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DP P
D

æ ö æ öW
= ç ÷ ç ÷Wè ø è ø

( )
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æ ö æ ö= ç ÷ ç ÷

è øè ø
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M P
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D D
D Dæ ö æ ö=ç ÷ ç ÷
è ø è ø

P
P M

M

DH H
D

æ ö
D = D ç ÷

è ø
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æ öD = ç ÷
è ø
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3 3
M P
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æ ö æ ö=ç ÷ ç ÷W Wè ø è ø
3

P P
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æ öæ öW
= ç ÷ç ÷Wè øè ø

327 ft /sPQ =
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The drag characteristics of a blimp 5 m in diameter and 60 m long are to be studied in a wind tunnel.  If the 
speed of the blimp through still air is 10 m/s, and if a 1/10 scale model is to be tested, what airspeed in the 
wind tunnel is needed for dynamic similarity?  Assume the same air temperature and pressure for both the 
prototype and model. 
 
 
SOLUTION: 
 
For dynamic similarity, equate the model and prototype Reynolds numbers. 

 

Þ   

Since both the model and prototype use air at the same temperature and pressure as the working fluid, nP = 
nM. 

Þ   

 

 
Note that the model speed is still low enough that Mach number effects (i.e., compressibility effects) do not 
come into play. 

Re ReP M=

P M

VD VD
n n

æ ö æ ö=ç ÷ ç ÷
è ø è ø

( ) 10m10 s 1
P

M P
M

DV V
D

æ ö æ ö= =ç ÷ ç ÷
è øè ø

m100 sMV\ =

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

Video solution: https://www.youtube.com/watch?v=S3j7lR0q3Mo
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The height of the free surface, h, in a tank of diameter, D, that is draining fluid through a small hole at the 
bottom with diameter, d, decreases with time, t.  This change in free surface height is studied 
experimentally with a half-scale model.  For the prototype tank: 
 H = 16 in.  (the initial height of the free surface) 
 D = 4.0 in. 
 d = 0.25 in. 
 
Experimental data is obtained from the prototype and half-scale model and is given below: 
 

Model Data     Prototype Data 
h [in.]  t [s]    h [in.]  t [s] 
8.0  0.0    16.0  0.0 
7.0  3.1    14.0  4.5 
6.0  6.2    12.0  8.9 
5.0  9.9    10.0  14.0 
4.0  13.5    8.0  20.2 
3.0  18.1    6.0  25.9 
2.0  24.0    4.0  32.8 
1.0  32.5    2.0  45.7 
0.0  43.0    0.0  59.8  

 
 
1. Plot, on the same graph, the height data as a function of time for both the model and the prototype. 
2. Develop a set of dimensionless parameters for this problem assuming that:  h = f(H, D, d, g, t) 
3. Re-plot, on the same graph, the height data as a function of time in non-dimensional form for both the 

model and prototype. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

D 

h 

hole with diameter, d 

g 
H 
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SOLUTION: 
 
First plot the model and prototype dimensional data. 
 

 
 
Now perform a dimensional analysis to determine the dimensionless terms describing the relationship. 
 
1. Write the dimensional functional relationship. 

  
 

2. Determine the basic dimensions of each parameter. 
 

 

 

 

 

 
 

3. Determine the number of P terms required to describe the functional relationship. 
# of variables = 6 (h, H, D, d, g, t) 
# of reference dimensions = 2 (L, T)   

(Note that the number of reference dimensions and the number of basic dimensions are equal 
for this problem.) 
 

(# P terms) = (# of variables) – (# of reference dimensions) = 6 – 2 = 4 
 

4. Choose two repeating variables by which all other variables will be normalized (same # as the # of 
reference dimensions). 

H, g  (Note that the dimensions for these variables are independent.) 
 

0
2
4
6
8
10
12
14
16
18

0 20 40 60 80

h 
[in

.]

t [s]

model
prototype

( )1 , , , ,h f H D d g t=

[ ]h L=

[ ]H L=

[ ]D L=

[ ]d L=

[ ] 2
Lg T=

[ ]t T=
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5. Make the remaining non-repeating variables dimensionless using the repeating variables. 

  (Found via inspection.) 

  (Found via inspection.) 

  (Found via inspection.) 

 

Þ     

  Þ   

 

 
6. Verify that each P term is, in fact, dimensionless. 

  OK! 

  OK! 

  OK! 

  OK! 

 
7. Re-write the original relationship in dimensionless terms. 

 

 
 
Now plot the model and prototype data in dimensionless form.  Note that since there is geometric similarity 
(the model is one-half the size of the prototype): 

  and   
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Notice that the data collapse to a single curve when plotted in dimensionless terms. 
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A model test of a tractor-trailer rig is performed in a wind tunnel.  The drag force, FD, is found to depend 
on the frontal area, A, wind speed, V, air density, r, and air viscosity, µ.  The model scale is 1:4 (e.g., 1 m 
in the model is equivalent to 4 m in the prototype), frontal area of the model is A = 0.625 m2.   
a. Obtain a set of dimensionless parameters suitable to characterize the model test results.   
b. If the drag force on the full-scale vehicle traveling at 22.4 m/s is to be predicted from model testing, 

what should be the wind tunnel air speed?  Assume that the air conditions are the same for the model 
and prototype.   

c. When tested at the wind speed found in part (b), the measured drag force on the model was FD = 2.46 
kN.  Estimate the aerodynamic drag force on the full-scale vehicle.   

d. Calculate the power needed to overcome the full-scale drag force. 

 
 
SOLUTION: 
 
1. Write the dimensional functional relationship. 

  
 

2. Determine the basic dimensions of each parameter. 
 

 

 

 

 

 
3. Determine the number of P terms required to describe the functional relationship. 

# of variables = 5 (FD, A, V, r, µ) 
# of reference dimensions = 3 (L, T, M)   

 
(# P terms) = (# of variables) – (# of reference dimensions) = 5 – 3 = 2 
 

4. Choose three repeating variables by which all other variables will be normalized (same # as the # of 
reference dimensions). 

 A, V, r 
 

5. Make the remaining non-repeating variables dimensionless using the repeating variables. 
 

( )1 , , ,DF f A V r µ=

[ ] 2D
MLF T=

[ ] 2A L=

[ ] LV T=

[ ] 3
M
Lr =

[ ] M
LTµ =

1
a b c

DF A V rP =
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Þ     

  Þ   

  (This is a drag coefficient!) 

 
 

 Þ     

  Þ   

  or    (This is a Reynolds number!) 

 
6. Verify that each P term is, in fact, dimensionless. 

  OK! 

  OK! 

 
7. Re-write the original relationship in dimensionless terms. 

 (1) 

 
To maintain similarity, the dimensionless terms must be the same between the model and prototype, 

  =>   (2) 

 
To determine the model testing wind speed, keep the Reynolds numbers the same between scales (the Pi 
term on the right hand side of Eq. (1)), 

, (3) 

  (same air properties; Lp/LM = 4/1 => AP/AM = (4/1)2 = 16/1) (4) 

=>  VM = 4VP = 89.6 m/s. (5) 
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The force on the prototype is found using the other Pi term, 

 

  (Note the same air is used in both the model and prototype.) (6) 

 
 

The power required to overcome the prototype drag force is: 
 (7) 
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A cylinder with a diameter, D, floats upright in a liquid as shown in the figure.  When the cylinder is 
displaced slightly along its vertical axis it will oscillate about its equilibrium position with a frequency, w.  
Assume that this frequency is a function of the diameter, D, the mass of the cylinder, m, the liquid density, 
r, and the acceleration due to gravity, g.   
 
If the mass of the cylinder were doubled (assuming the same cylinder material density), by how much 
would the oscillation frequency change? 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
1. Write the dimensional functional relationship. 

 (1)  
 

2. Determine the basic dimensions of each parameter. 
 

 

 

 

 

 
3. Determine the number of P terms required to describe the functional relationship. 

# of variables = 5 (w, D, m, r, g) 
# of reference dimensions = 3 (M, L, T)   

 
(# P terms) = (# of variables) – (# of reference dimensions) = 5 – 3 = 2 
 

4. Choose three repeating variables by which all other variables will be normalized (same # as the # of 
reference dimensions). 

r, D, g  (Note that these repeating variables have independent dimensions.) 
 

5. Make the remaining non-repeating variables dimensionless using the repeating variables. 
 

Þ     
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Þ      

M:    Þ   
T:      Þ   
L:      Þ   

 

 
6. Verify that each P term is, in fact, dimensionless. 

  OK! 

  OK! 

 
7. Re-write the original relationship in dimensionless terms. 

 (2) 

 
 
For similarity: 

 (3) 

 (4) 

 
Assuming the same liquid (i.e. r1 = r2), Eq. (4) indicates: 

 (5) 

Using Eq. (5) with Eq. (3), assuming the same gravitational acceleration (i.e., g1 = g2), gives: 

 (6) 

 
Hence, doubling the mass (i.e., m2 = 2m1) will result in a smaller frequency with w2 = 2-1/6 w1. 
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Hoppers are a commonly used device in the handling and storage of particulate materials.  A hopper design 
typically consists of a bin section located above a converging section with a hole located in the bottom 
through which the particulate material flows (refer to the figures below).   
 
 
 
 
 
 
 
 
 
 
 
 
One interesting observation with hopper flows is that the mass flow rate from the hopper exit is 
independent of the height of the material above the exit and the bin diameter (except when the hopper is 
nearly empty).  The parameters that do affect the discharge rate (assuming cohesionless particles) include 
the hopper exit diameter, the acceleration due to gravity, the angle of the hopper walls, the friction 
coefficient between the particulate material and the walls and between the particles themselves, and the 
bulk density of the material at the discharge plane. 
 
a. Perform a dimensional analysis to determine the dimensionless quantities that govern flow from a 

hopper. 
b. If the same hopper and particulate material are used (i.e., the wall angle and friction properties remain 

the same), how will the mass flow rate from the hopper change if the hopper exit diameter is doubled? 
c. Compare the discharge rate found in part (a) with the mass discharge rate expected for a liquid. 
 
 
SOLUTION: 
 
1. Write the dimensional functional relationship. 

 (1) 

where  is the mass discharge rate from the hopper, DE is the hopper exit diameter, g is the 
acceleration due to gravity, q is the hopper wall angle, µpp and µpw are the friction coefficients between 
particles and between particles and the hopper walls, respectively, and rb is the bulk density of the 
material at the hopper exit (the bulk density is the density of the particulate material including the void 
space between particles).  

 
2. Determine the basic dimensions of each parameter. 

 

 

 

 

 

 

 
3. Determine the number of P terms required to describe the functional relationship. 

# of variables = 7 ( , DE, g, q, µpp, µpw, rb) 
# of reference dimensions = 3 (L, T, M)   

   
!m = f1 DE ,g,θ ,µ pp ,µ pw ,ρb( )
  !m

  
!m⎡⎣ ⎤⎦ = M

T
[ ]ED L=

[ ] 2
Lg T=

[ ]q = -

pp pwµ µé ù é ù= = -ë û ë û

[ ] 3b
M
Lr =

  !m
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(# P terms) = (# of variables) – (# of reference dimensions) = 7 – 3 = 4 (2) 
 

4. Choose three repeating variables by which all other variables will be normalized (same # as the # of 
reference dimensions). 

 DE, g, rb 

 
5. Make the remaining non-repeating variables dimensionless using the repeating variables. 

 (3) 

Þ     (4) 

  Þ   (5) 

 (6) 

   (angles are dimensionless) 
 (friction coefficients are dimensionless) 
 (friction coefficients are dimensionless) 

 
6. Verify that each P term is, in fact, dimensionless. 

  OK! 

  OK! 

  OK! 

  OK! 
 

7. Re-write the original relationship in dimensionless terms. 

 (7) 

 
If the wall angle and frictional properties remain constant, then doubling the exit diameter increases the 
mass flow rate by a factor of 25/2 » 5.66. 
 
The mass discharge rate for a liquid discharging from the hopper is given by: 

 (8) 

where r is the liquid density and VE is the liquid speed at the hopper exit.  The liquid speed may be found 
using Bernoulli’s equation applied along a streamline from the hopper free surface, located a height, H, 
above the hopper exit, to the hopper exit.  On both surfaces the fluid pressure is atmospheric and, hence: 

 (9) 
assuming that the kinetic energy of the upper free surface is negligible (i.e., it moves at a small velocity).  
Comparing Eqs. (7) and (8) shows that the mass discharge rate for a liquid depends upon the height of 
liquid above it while for a particulate material the discharge rate is independent of material height.  In 

   Π1 = !mDE
a gbρb

c

0 0 0
2 31

a b cM L L MM L T
T T L

æ öæ ö æ ö æ ö= ç ÷ç ÷ ç ÷ ç ÷
è øè ø è ø è ø

: 0 1
: 0 3
: 0 1 2

M c
L a b c
T b
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= + -
= - -

5
2

1
2

1

a
b
c

= -

=

= -

   

∴Π1 =
!m
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1
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5
2
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addition, the discharge rate for a particulate material is more sensitive to the hopper exit diameter (varying 
with DE5/2) than it is for a liquid (varying with DE2). 
 
Notes: 
 
1. Beverloo et al. (1961) observed that the experimental data for mass discharge rate from a flat-bottomed 

hopper is better fit using the following relation: 
 Beverloo Mass Flow Rate Correlation (10) 

where c is a constant incorporating the hopper wall angle and frictional properties (function f2 in Eq. 
(7)),  k is a constant that depends on the geometry of the exit and particle shape, and d is the effective 
diameter of the particles.  The factor kd accounts for the fact that there is an annular zone at the 
periphery of the exit within which there are few particles.  Hence, the effective exit diameter is reduced.  
The parameter k typically varies between 1.3 – 2.9 with a value of k » 1.5 for spherical particles.  
Angular particles have somewhat larger values for k.  A value of k » 1.4 is a good general estimate if 
no discharge rate test data is available.   
 
Beverloo et al. also observed that for funnel flow hoppers the parameter c is nearly independent of the 
friction coefficients, µpp and µpw, and the hopper wall angle, q, and remains at a constant value of c » 
0.58.  A funnel flow hopper is one in which material remains stagnant adjacent to the hopper walls.  A 
mass flow hopper is one in which all of the material flows simultaneously within the hopper. 
 
 
 
 
 
 
 
 
 
 
 
 

 
3. The bulk density, rb, in Eqs. (7) and (10) is not the bulk density of the material within the hopper.  

Studies have shown that the discharge rate from a hopper is independent of how the material is 
originally filled into the hopper.  Instead, rb is the bulk density of the flowing material.  Since we often 
don’t know the flowing bulk density of the material a priori, one can use the bulk density measured by 
loosely filling a container.  The resulting predicted mass flow rate is typically within 5% of the 
measured value. 

 
4. Blocking of the hopper exit can occur when the exit diameter is less than about six times the particle 

diameter.  When the exit is smaller than this value, particles can form a mechanical arch that can 
support the force exerted by the material above it. 

 
 
 
 
 
 
 
References: 
 
Beverloo, W.A., Leniger, H.A., and Van de Velde, J., 1961, “The flow of granular solids through orifices,” 

Chemical Engineering Science, Vol. 15, p. 260. 
 

( )
51 22

b EW c g D kdr= -

 
A funnel-flow hopper. 

 

stagnant 
zones 

 
A mass-flow hopper. 

 

shaded particles form a 
mechanical arch 
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A 1/16th-scale model of a weir has a measured flow rate of Q = 2.1 ft3/s when the upstream water height is 
h = 6.3 in.  The flow rate is known to be a function of the acceleration due to gravity, g, the weir width 
(into the page), b, and the upstream water height, h.  Furthermore, the flow rate is found to be directly 
proportional to the weir width, b.  What is the flow rate over the prototype weir when the upstream water 
height is h = 3.2 ft. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
1. Write the dimensional functional relationship. 

  
 

2. Determine the basic dimensions of each parameter. 
 

 

 

 
 

3. Determine the number of P terms required to describe the functional relationship. 
# of variables = 4 (Q, g, h, b) 
# of reference dimensions = 2 (L, T)   

 
(# P terms) = (# of variables) – (# of reference dimensions) = 4 – 2 = 2 
 

4. Choose three repeating variables by which all other variables will be normalized (same # as the # of 
reference dimensions). 

 g, h 
 

5. Make the remaining non-repeating variables dimensionless using the repeating variables. 

   (by inspection) 

 (by inspection) 

 
 

( )1 , ,Q f g h b=

[ ] 3LQ T=

[ ] 2
Lg T=

[ ]h L=

[ ]b L=

1 5

Q
gh

P =

2
b
h

P =

h 
g 

Q 
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6. Verify that each P term is, in fact, dimensionless. 

  OK! 

 

 
7. Re-write the original relationship in dimensionless terms. 

  (1) 

 
We are also told that Q µ b so that Eqn. (1) becomes: 

  (2) 

  (3) 

where c is a constant of proportionality. 
 
Since the right-hand side of Eq. (1) is a constant, then: 

 

 

The gravitational acceleration is the same for the model and prototype (i.e., g1 = g2): 

 (4) 

Use the given data to determine Q2. 
Qmodel = 2.1 ft3/s 
hmodel = 6.3 in. = 0.525 ft. 
bmodel/bprototype = 1/16 
hprototype = 3.2 ft 
Þ  Qprototype = 506 ft3/s 

[ ]
3

1 5 5
2

1
LQ T
Lgh LT

é ù
ê úP = = =
ê ú ×ë û

[ ]2 1b L
h L
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In the late 1940s, much of the science concerning nuclear bombs was highly classified.  In particular, 
information regarding the energy released in a nuclear explosion, e.g. the number of equivalent kilotons of 
TNT (nowadays the energy is measured in megatons), was top secret.  G.I. Taylor, a famous fluid 
mechanics professor, was asked in 1941 by the British Civil Defence Research Committee of the Ministry 
of Home Security to predict the dynamics of a blast caused by a nuclear explosion.  In his analysis, Taylor 
assumed that a finite amount of energy, E, is suddenly released in an infinitely concentrated form.  The 
resulting blast wave, with a radius R, then propagates into the surrounding atmosphere, with density r0 and 
specific heat ratio g = cp/cv , as a function of time, t.  Taylor’s analysis resulted in a simple relationship 
between the blast radius as a function of the time, air density, blast energy, and specific heat ratio.  Using 
declassified photographs of the first nuclear explosion, which occurred at the Trinity test site in New 
Mexico in 1945, Taylor was able to estimate the energy release to within remarkable accuracy.  
 
Perform a dimensional analysis to determine an expression involving the blast radius as a function of the 
other significant parameters in the problem. 
 

 
 
 
References:  Taylor, G., 1950, “The formation of a blast wave by a very intense explosion.  I.  Theoretical 
analyses,” Proceedings of the Royal Society of London.  Series A, Mathematical and Physical Sciences, 
Vol. 201, No. 1065, pp. 159 – 174.  Taylor, G., 1950, “The formation of a blast wave by a very intense 
explosion.  II.  The atomic explosion of 1945,” Proceedings of the Royal Society of London.  Series A, 
Mathematical and Physical Sciences, Vol. 201, No. 1065, pp. 175 – 186. 
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SOLUTION: 
 
1. Write the dimensional functional relationship. 

 (1) 
 

2. Determine the basic dimensions of each parameter. 
[R] = L 
[t] = T 
[E] = FL=ML2/T2 
[r0] = M/L3 

[g] = - 
 

3. Determine the number of P terms required to describe the functional relationship. 
# of variables = 5 
# of reference dimensions = 3 (L, T, M)   

 
(# P terms) = (# of variables) – (# of reference dimensions) = 5 – 3 = 2 
 

4. Choose three repeating variables by which all other variables will be normalized (same # as the # of 
reference dimensions):   t, E, r0. 

 
5. Make the remaining non-repeating variables dimensionless using the repeating variables. 

   (2) 

Þ     

  Þ   

   (3) 

 
   (the specific heat ratio is already a dimensionless quantity) (4) 

  
6. Verify that each P term is, in fact, dimensionless. 

  OK! (5) 

  OK!  (6) 
 

7. Re-write the original relationship in dimensionless terms. 

 (7) 
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Note that the specific heat ratio and density of the atmosphere are well known (and assumed constant) so 
we could write Eq. (7) as: 

   (8) 
where c1 is a constant (involving r0 and g).  Taking the base 10 logarithm of both sides and re-arranging: 

 (9) 
Thus, for a given explosion, the blast radius should follow a straight line when (5/2)log10R is plotted as a 
function of log10t.  The intercept of the line will be related to the atmospheric conditions (recall that c1 is a 
function of r0 and g) and the blast energy, E.  The following plots shows the measurements made from the 
video of the 1945 nuclear test.  It’s remarkable that the predictions performed by Taylor four years before 
the actual test are so accurate.  In addition, simple radius vs. time measurements from a movie of the 
explosion could also easily give an estimate of the energy released.  Taylor estimated the energy release to 
be between 23.7 kilotons of TNT.  The actual energy release was estimated to be 20 kilotons. 
 

 

2 1
5 5

1R c t E=
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The aerodynamic behavior of a flying insect is to be investigated in a 
wind tunnel using a ten-times scale model.  If the insect flaps its wings 
50 times a second when flying at 4 ft/s, determine the wind tunnel air 
speed and wing oscillation frequency required for dynamic similarity. 
 
 
 
 
 
 
 
SOLUTION: 
 
Maintain Reynolds number similarity, 

  Þ    Þ   (1) 

where LP/LM = 1/10 and nM/nP = 1 (air used in both cases).  Hence, 
VM = (1/10)VP = 0.4 ft/s (2) 
 

Also maintain Strouhal number similarity, 

  Þ    Þ   (3) 

where LP/LM = 1/10 and VM/VP = 1/10.  Hence, 
wM = (1/100)wP = 0.5 Hz (4) 

Re ReM P=
M P

VL VL
n n

= P M
M P

M P

LV V
L

n
n

æ öæ ö
= ç ÷ç ÷

è øè ø

St StM P=
M P

L L
V V
w w

= P M
M P

M P

L V
L V

w w
æ öæ ö

= ç ÷ç ÷
è øè ø

 

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

C. Wassgren 835 2024-02-01



Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

7.7. Review Questions

(1) Describe some of the benefits to performing a dimensional analysis of a problem.
(2) What does the Buckingham-Pi theorem state? Are the dimensionless terms resulting from the

theorem unique?
(3) Describe the Method of Repeating Variables. Must this method always be followed to determine

dimensionless terms?
(4) What is the difference between “basic dimensions” and “reference dimensions”?
(5) Describe the three types of similarity.
(6) Must there be exact similarity between a model and prototype in order to perform engineering

modeling?
(7) In words, define the Reynolds, Froude, Strouhal, and Euler numbers.
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CHAPTER 8

Solutions to the Navier-Stokes Equations

8.1. Introduction

Because there is no general method for solving a system of non-linear, partial differential equations, there are
only a small number of exact solutions to the governing equations of fluid mechanics. For an incompressible
fluid with constant viscosity in a gravity field, the equations governing the fluid motion are the Continuity
and Navier-Stokes equations,

∇ · u = 0, (8.1)

ρ

[
∂u

∂t
+ (u ·∇)u

]
= −∇p+ µ∇2u+ ρg. (8.2)

In general, we must make a number of assumptions to simplify the governing equations so they become
manageable analytically. In particular, we often simplify the equations so the non-linear convective term in
the Navier-Stokes equations, (u ·∇)u, is zero. Although we need to make many assumptions in determining
exact solutions, the resulting solutions are still of great engineering value. They are often good models for
real-world flows and they are commonly used to validate numerical codes and experimental methods.

One assumption we’ll make in all of the solutions is that the flow is laminar as opposed to being turbulent
or transitional. A laminar flow means that the fluid moves in smooth layers (or lamina). A turbulent flow
is one in which the fluid flows in a chaotic manner with vortices of different size and nearly random spatial
and temporal variations in the fluid velocity. A transitional flow is one between the laminar and turbulent
states where the flow is mostly laminar, but with occasional turbulent fluctuations.

8.2. Boundary Conditions

When solving the governing equations of fluid dynamics, we’ll need to apply boundary conditions (BCs) for
specific flow geometries. Two common types of BCs include kinematic and dynamic boundary conditions.
Kinematic boundary conditions specify the fluid velocity. One example is the no-slip boundary condition,
which states that at either a solid boundary or fluid interface, the fluid velocity must be continuous,

ufluid = uboundary. (8.3)

Another common kinematic boundary condition is that fluid velocities must remain finite. Dynamic boundary
conditions specify that stresses must be continuous across solid or fluid interfaces,

σnn,fluid = σnn,boundary, (8.4)

σns,fluid = σns,boundary, (8.5)

where the subscripts “nn” and “ns” refer to the normal and shear stresses at the boundary.

Note that there are many graduate-level texts that review more exact solutions than will be presented in
these notes. Several good references include:

• White, F.M., Viscous Fluid Flow, McGraw-Hill.
• Panton, R.L., Incompressible Flow, Wiley.
• Currie, I.G., Fundamental Mechanics of Fluids, McGraw-Hill.
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8.3. Planar Couette-Poiseuille Flow

Consider the steady flow of an incompressible, constant viscosity Newtonian fluid between two infinitely long,
parallel plates separated by a distance, h, as shown in Figure 8.1. Assume the bottom plate is fixed, but the
top plate moves at a constant speed U to the right.

Figure 8.1. The geometry for a planar Couette-Poiseuille flow.

For this flow, we’ll make the following assumptions.

(1) The flow is planar. =⇒ uz = constant and ∂
∂z (. . . ) = 0,

(2) The flow is at steady-state. =⇒ ∂
∂t (. . . ) = 0,

(3) The flow is fully-developed in the x-direction. =⇒ ∂ux
∂x =

∂uy
∂x = ∂uz

∂x = 0,
(4) The only body force is due to gravity in the −y-direction. =⇒ gx = gz = 0, gy = −g.

First examine the Continuity Equation,

∂ux
∂x︸︷︷︸

=0 (#3)

+
∂uy
∂y

+
∂uz
∂z︸︷︷︸

=0 (#1)

= 0, (8.6)

∂uy
∂y

= 0, (8.7)

duy
dy

= 0, (8.8)

uy = constant. (8.9)

The first term in the Continuity Equation is zero due to assumption #3 (the flow is fully-developed in the
x-direction) and the third term is zero due to assumption #1 (the flow is planar). We go from a partial
derivative in Eq. (8.7) to an ordinary derivative in Eq. (8.8) because we recognize that uy is not a function of
time (assumption #2), it’s not a function of x (assumption #3), and it’s not a function of z (assumption #1).
Thus, at most uy is only a function of y. Integrating Eq. (8.8) shows that uy is at most a constant. We can
determine the constant by noting that there is no flow through the boundary surfaces, i.e., uy(x, y = 0, h) = 0.
Thus,

uy(x, y) = 0 (call this condition #5). (8.10)

We could have also stated that the vertical component of the velocity is zero since we’re assuming a laminar
flow. However, since we didn’t make that assumption explicitly here, we instead had to derive the uy
component using the Continuity Equation.

Now let’s examine the Navier-Stokes equation in the y-direction,

ρ

 ∂uy
∂t︸︷︷︸

=0(#2,#5)

+ux
∂uy
∂x︸︷︷︸

=0(#3,#5)

+uy
∂uy
∂y︸ ︷︷ ︸

=0(#5)

+uz
∂uy
∂z︸︷︷︸

=0(#1,#5)

 = −∂p
∂y

+µ

 ∂2uy
∂x2︸ ︷︷ ︸

=0(#3,#5)

+
∂2uy
∂y2︸ ︷︷ ︸

=0(#5)

+
∂2uy
∂z2︸ ︷︷ ︸

=0(#1,#5)

+ρ gy︸︷︷︸
=−g(#4)

(8.11)
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∴
∂p

∂y
= −ρg. (8.12)

Thus, there’s a hydrostatic pressure change in the y-direction. If we integrate this equation with respect to
y, then,

p = −ρgy + f(x, z), (8.13)

where f(x, z) is an unknown function of x and z. This unknown function can also include a constant.

Now let’s examine the Navier-Stokes equation in the z-direction,

ρ

 ∂uz
∂t︸︷︷︸

=0(#2)

+ux
∂uz
∂x︸︷︷︸

=0(#3)

+ uy︸︷︷︸
=0(#5)

∂uz
∂y

+ uz
∂uz
∂z︸︷︷︸

=0(#1)

 = −∂p
∂z

+ µ

 ∂2uz
∂x2︸ ︷︷ ︸

=0(#3)

+
∂2uz
∂y2︸ ︷︷ ︸

=0(#1)

+
∂2uz
∂z2︸ ︷︷ ︸

=0(#1)

+ ρ gz︸︷︷︸
0(#4)

(8.14)

∴
∂p

∂z
= 0. (8.15)

Thus, there is no change in pressure in the z-direction. With this in mind, Eq. (8.13) becomes,

p = −ρgy + f(x). (8.16)

Note that if we differentiate this equation with respect to x we obtain,

∂p

∂x
= f ′(x). (8.17)

In other words, ∂p/∂x is not a function of y. This fact will be useful in the following derivation.

Finally, examine the Navier-Stokes equation in the x-direction,

ρ

 ∂ux
∂t︸︷︷︸

=0(#2)

+ux
∂ux
∂x︸︷︷︸

=0(#3)

+ uy︸︷︷︸
=0(#5)

∂ux
∂y

+ uz
∂ux
∂z︸︷︷︸

=0(#1)

 = −∂p
∂x

+ µ

 ∂2ux
∂x2︸ ︷︷ ︸

=0(#3)

+
∂2ux
∂y2

+
∂2ux
∂z2︸ ︷︷ ︸

=0(#1)

+ ρ gx︸︷︷︸
0(#4)

(8.18)

∂2ux
∂y2

=
1

µ

∂p

∂x
, (8.19)

d2ux
dy2

=
1

µ

∂p

∂x
, (8.20)

dux
dy

=
1

µ

∂p

∂x
y + c1, (8.21)

ux =
1

2µ

∂p

∂x
y2 + c1y + c2, (8.22)

where c1 and c2 are constants of integration. In going from Eq. (8.19) to Eq. (8.20) we make use of the fact
that ux is not a function of time (assumption #2), it’s not a function of x (assumption #3), and it’s not a
function of z (assumption #1). Thus, ux is at most a function only of y. Another item to note in going from
Eq. (8.20) to (8.22) is that we made use of Eq. (8.17), i.e., the pressure gradient in the x direction is not a
function of y.

We need to apply boundary conditions to find the constants of integration in Eq. (8.22),

no slip at y = 0 =⇒ ux(y = 0) = 0, (8.23)

no slip at y = h =⇒ ux(y = h) = U. (8.24)

Using these two boundary conditions to solve for the two unknown constants in Eq. (8.22) results in the
following velocity profile,

ux = U
(y
h

)
+
h2

2µ

(
−∂p
∂x

)(y
h

)(
1− y

h

)
. (8.25)

This type of flow is referred to as a planar Couette-Poiseuille flow (pronounced “’pwäz I”).
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Notes:

(1) The stress acting on the fluid at any point can be found from the stress-strain rate constitutive
relations for a Newtonian fluid,

σij = −pδij + µ

(
∂ui
∂xj

+
∂uj
∂xi

)
. (8.26)

(2) If we remove the pressure gradient, i.e., ∂p/∂x = 0, and move the fluid using just the moving upper
boundary, the velocity profile becomes linear,

ux = U
(y
h

)
. (8.27)

This type of flow is known as a planar Couette flow.
(3) If we fix both boundaries and move the fluid using only a pressure gradient (note that flow in the

positive x-direction occurs for ∂p/∂x < 0), the velocity profile becomes,

ux =
h2

2µ

(
−∂p
∂x

)(y
h

)(
1− y

h

)
. (8.28)

This type of flow is called a planar Poiseuille flow.
(4) The average flow velocity may be found by setting the volumetric flow rate using an average velocity

profile equal to the volumetric flow rate using the real velocity profile. For example, for planar
Poiseuille flow the average velocity is,

Q = ūh =

ˆ y=h

y=0

h2

2µ

(
−∂p
∂x

)(y
h

)(
1− y

h

)
dy =

h3

12µ

(
−∂p
∂x

)
, (8.29)

ū =
h2

12µ

(
−∂p
∂x

)
=

2

3
umax, (8.30)

where,

umax =
h2

8µ

(
−∂p
∂x

)
. (8.31)

(5) Recall that we assumed that these solutions only hold for laminar flows (resulting in uy = 0).
Experimentally we observe that planar Couette-Poiseuille flow remains laminar for,

Reh =
ρūh

µ
< 1500, (8.32)

where Reh is the Reynolds number based on the channel height h and ū is the average flow speed.
The value of 1500 is only approximate and can vary considerably depending on how carefully the
experiment is performed. Its value is given only as an engineering rule-of-thumb.

(6) Velocity profiles for various conditions are sketched in Figure 8.2.

Figure 8.2. Velocity profiles for planar Couette-Poiseuille flow.

(7) There are three different ways to move fluid: (i) via a moving boundary and the no slip condition,
e.g., a Couette flow, (ii) via a pressure gradient that pushes the fluid, e.g., a Poiseuille flow, and
(iii) via a body force such as gravity, e.g., flow down an inclined plane.
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(8) The assumption of fully-developed flow in the x direction means that the flow velocity profile doesn’t
change in the x direction. This assumption is reasonable for infinitely long plates. There’s no reason
the profile should look different in the x direction since every x location looks identical.

8.4. Poiseuille Flow

Consider the steady-state flow of an incompressible, constant viscosity, Newtonian fluid within an infinitely
long, circular pipe of radius, R, as shown in Figure 8.3.

Figure 8.3. A sketch of the Poiseuille flow geometry in a circular pipe.

For this flow, we’ll make the following assumptions.

(1) The flow is axi-symmetric and there is no “swirl” velocity component. =⇒ ∂
∂θ (. . . ) = 0 and uθ =

0,
(2) The flow is at steady-state. =⇒ ∂

∂t (. . . ) = 0,

(3) The flow is fully-developed in the z-direction. =⇒ ∂ur
∂z = ∂uθ

∂z = ∂uz
∂z = 0,

(4) There are no body forces =⇒ gr = gθ = gz = 0.

Regarding this last assumption, we could have also assumed that gravity acts in the z-direction, e.g., a
tilted pipe. Simplification of the Navier-Stokes equation in the z-direction will show that the gravitational
acceleration can be combined with the pressure gradient in the z direction to form an effective pressure
gradient. For the present derivation, however, we’ll assume that there are no body forces.

First examine the Continuity Equation,

1

r

∂(rur)

∂r
+

1

r

∂uθ
∂θ︸︷︷︸

=0(#1)

+
∂uz
∂z︸︷︷︸

=0 (#3)

= 0, (8.33)

∂(rur)

∂r
= 0, (8.34)

d(rur)

dr
= 0, (8.35)

ur =
c

r
. (8.36)

The second term in the Continuity Equation is zero due to assumption #1 (the flow is axi-symmetric with no
“swirl” velocity component) and the third term is zero due to assumption #3 (the flow is fully-developed in
the z-direction). We go from a partial derivative in Eq. (8.34) to an ordinary derivative in Eq. (8.35) because
we recognize that ur is not a function of time (assumption #2), it’s not a function of θ (assumption #1),
and it’s not a function of z (assumption #3). Thus, at most ur is only a function of r. Integrating Eq. (8.35)
gives that (rur) is at most a constant.

We can determine the constant by noting that there is no flow through the pipe wall, i.e., ur(r = R) = 0.
Thus,

ur = 0 (call this condition #5). (8.37)
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We could have also concluded that the radial component of the velocity is zero since we’re assuming a laminar
flow. However, since we didn’t make that assumption explicitly here, we instead had to derive ur = 0 using
the Continuity Equation.

Now let’s examine the Navier-Stokes equation in the z-direction,

ρ

 ∂uz
∂t︸︷︷︸

=0(#2)

+ ur︸︷︷︸
=0(#5)

∂uz
∂r

+
uθ
r

∂uz
∂θ︸ ︷︷ ︸

=0(#1)

+uz
∂uz
∂z︸︷︷︸

=0(#3)

 = −∂p
∂z

+ µ

1

r

∂

∂r

(
r
∂uz
∂r

)
+

1

r2
∂2uz
∂θ2︸ ︷︷ ︸

=0(#1)

+
∂2uz
∂z2︸ ︷︷ ︸

=0(#3)

+ ρ gz︸︷︷︸
=0(#4)

(8.38)

As discussed previously, if there is a body force in the z-direction, the ρgz term could be combined with the
pressure gradient to form an effective pressure gradient, i.e.,

∂p

∂z

∣∣∣∣
eff

=
∂p

∂z
− ρgz. (8.39)

Simplifying the Navier-Stokes equation in the z-direction,

d

dr

(
r
duz
dr

)
=
r

µ

dp

dz
, (8.40)

r
duz
dr

=
r2

2µ

dp

dz
+ c1, (8.41)

uz =
r2

4µ

dp

dz
+ c1 ln r + c2, (8.42)

where c1 and c2 are constants of integration. In writing Eq. (8.40) we make use of the fact that since ur is
not a function of time (assumption #2), it’s not a function of θ (assumption #1), and it’s not a function
of z (assumption #3), ur is at most a function only of r. Furthermore, an analysis of the Navier-Stokes
equations in the θ and r directions would show that the pressure gradients in those directions are zero, i.e.,
∂p/∂θ = ∂p/∂r = 0. Thus, since the pressure doesn’t vary with time (steady-state flow), then at most the
pressure would be a function only of z and ∂p/∂z may be written as dp/dz.

Now let’s apply boundary conditions to determine the unknown constants c1 and c2. First, note that the
fluid velocity in a pipe must remain finite as r → 0 so the constant c1 must be zero (this is a type of kinematic
boundary condition). Also, the pipe wall is fixed so we have uz(r = R) = 0 (the no-slip condition). After
applying these boundary conditions, Eq. (8.42) is,

uz =
R2

4µ

(
−dp
dz

)[
1−

( r
R

)2
]
. (8.43)

This result is the velocity profile for Poiseuille Flow in a Circular Pipe, or pressure-driven flow in a circular
pipe.

Notes:

(1) In the previous derivation we used the fact that the flow velocity must remain finite to set c1 = 0.
We could have also used a symmetry argument for this boundary condition. Because the pipe is
circular, the velocity at the centerline must be a maximum or minimum, which means that the
velocity gradient there is zero, i.e., dur/dz(r = 0) = 0. From Eq. (8.41) we see then that c1 = 0.

(2) The velocity profile is a paraboloid with the maximum velocity occurring along the centerline. The
average velocity in the pipe is found by equating the volumetric flow rate using an average velocity
profile to the volumetric flow rate using the actual velocity profile,

ūπR2 =

ˆ r=R

r=0

uz(2πrdr), (8.44)

ū =
R2

8µ

(
−dp
dz

)
=

1

2
umax, (8.45)
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where,

umax =
R2

4µ

(
−dp
dz

)
. (8.46)

(3) As with planar Couette-Poiseuille flow, we can determine stresses using the constitutive relations
for a Newtonian fluid. The shear stress that the pipe walls apply to the fluid, τw, is,

τw =
R

2

(
dp

dz

)
=
−4µū

R
. (8.47)

An alternate method for determining the average wall shear stress, which in this case is equal to
the exact wall shear stress, is to balance shear forces and pressure forces on a small slice of the flow
as shown in Figure 8.4.

Figure 8.4. A free-body diagram of the forces on a differentially-thick slice of fluid in a
circular pipe flow.

∑
Fz = 0 = pπR2 −

(
p+

dp

dz
dz

)
πR2 + τw2πRdz, (8.48)

τw =
R

2

dp

dz
The same answer as before! (8.49)

In engineering applications it’s common to express the average shear stress in dimensionless form
by dividing by the dynamic pressure. This quantity is known as the (Darcy) friction factor, fD,

fD :=

∣∣∣∣ 4τw
1
2ρū

2

∣∣∣∣ = 64

(
µ

ρūD

)
=

64

ReD
, (8.50)

where D = 2R is the pipe diameter and ReD is the Reynolds number based on the pipe diameter.
The Darcy friction factor commonly appears in the Moody plot for incompressible, viscous pipe
flow. Note again that this solution is only valid only for a laminar flow. The condition for the flow
to remain laminar is found experimentally to be,

ReD =
ρūD

µ
< 2300. (8.51)

(4) We can also use the general solution (before applying boundary conditions) to determine the flow
between two concentric cylinders by applying different boundary conditions. For example, two fixed
cylinders will have the boundary conditions: uz(r = RI) = 0 and uz(r = RO) = 0 where RI and
RO are the inner and outer cylinder radii.

(5) Laminar flow in an elliptical cross-section pipe can be determined by considering the simplified
Navier-Stokes equation in the z-direction but using Cartesian coordinates (assuming ux = uy = 0),

∂2uz
∂x2

+
∂2uz
∂y2

=
1

µ

dp

dz
(Poisson’s equation!), (8.52)

where z is the coordinate along the centerline of the pipe. Note that the pipe wall boundary is the
ellipse (Figure 8.5) given by, (x

a

)2

+
(y
b

)2

= 1, (8.53)
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Figure 8.5. A pipe with an elliptical cross-section. The major axis length is 2a and the
minor axis length is 2b.

where 2a and 2b are the lengths of the major and minor axes. Since we must satisfy the no-slip
boundary at the pipe walls, let’s guess that the solution has the form,

uz = α

[(x
a

)2

+
(x
b

)2

− 1

]
, (8.54)

since this profile automatically satisfies the boundary condition. The quantity α is an unknown
constant. To determine if this is indeed a valid solution to the fluid equations, we first note that it
satisfies the Continuity Equation (ux = uy = 0 and uz is not a function of z). If we substitute into
the z-component of the Navier-Stokes equations (the Poisson’s equation written previously) we find
that our guess for the velocity distribution is valid if the constant α is given by,

α

(
2

a2
+

2

b2

)
=

1

µ

dp

dz
, (8.55)

α =
a2b2

2µ(a2 + b2)

dp

dz
, (8.56)

which means that the velocity profile for an elliptical pipe is given by,

uz =
a2b2

2µ(a2 + b2)

dp

dz

[(x
a

)2

+
(x
b

)2

− 1

]
. (8.57)

For very complex cross-sections, we can determine the velocity profile by solving Poisson’s equation
numerically; however, we must keep in mind that the flow must remain laminar for the solution to
be valid.

8.5. Starting Flow Between Two Parallel Plates

Consider a flow starting from rest between two parallel flat plates (Figure 8.6). The bottom plate is fixed
while the top plate moves impulsively at t > 0 with constant velocity, U . There are no pressure gradients in
the flow.

Figure 8.6. An illustration for the geometry used to analyze the starting flow between two
parallel plates.

For this flow, we’ll make the following assumptions.
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(1) The flow is planar. =⇒ uz = constant and ∂
∂z (. . . ) = 0,

(2) The flow is fully-developed in the x-direction. =⇒ ∂ux
∂x =

∂uy
∂x = ∂uz

∂x = 0,
(3) There are no body forces. =⇒ gx = gy = gz = 0,

(4) There is no pressure gradient in the x direction. =⇒ ∂p
∂x = 0.

First examine the Continuity Equation,

∂ux
∂x︸︷︷︸

=0 (#2)

+
∂uy
∂y

+
∂uz
∂z︸︷︷︸

=0 (#1)

= 0, (8.58)

∂uy
∂y

= 0, (8.59)

uy = f(t). (8.60)

In going from Eq. (8.59) to Eq. (8.60), we note that because of assumptions #1 and #2, the y component
of the velocity can be at most a function of time. Since there is no flow through the walls at any time, the
y-velocity must be zero,

uy = 0 (Call this condition #5.) (8.61)

Now simplify the Navier-Stokes equation in the x-direction,

ρ

∂ux∂t + ux
∂ux
∂x︸︷︷︸

=0(#2)

+ uy︸︷︷︸
=0(#5)

∂ux
∂y

+ uz
∂ux
∂z︸︷︷︸

=0(#1)

 = − ∂p

∂x︸︷︷︸
=0(#4)

+µ

 ∂2ux
∂x2︸ ︷︷ ︸

=0(#2)

+
∂2ux
∂y2

+
∂2ux
∂z2︸ ︷︷ ︸

=0(#1)

+ ρ gx︸︷︷︸
0(#3)

, (8.62)

=⇒ ∂ux
∂t

= ν
∂2ux
∂y2

where ν =
µ

ρ
. (8.63)

The initial and boundary conditions for the flow are,

no flow initially =⇒ ux(y, t = 0) = 0, (8.64)

no slip at y = 0 =⇒ ux(y = 0, t > 0) = 0, (8.65)

no slip at y = h =⇒ ux(y = h, t > 0) = U. (8.66)

Note that as t→∞, the flow profile should approach the Couette flow profile derived previously, i.e.,

ux(y, t→∞) = U
(y
h

)
. (8.67)

Hence, let’s investigate a solution of the form,

u′x = ux − U
(y
h

)
. (8.68)

Substituting back into Eq. (8.63) and the boundary and initial conditions,

∂u′x
∂t

= ν
∂2u′x
∂y2

, (8.69)

u′x(y, t = 0) = −U
(y
h

)
, (8.70)

u′x(y = 0, t > 0) = 0, (8.71)

u′x(y = h, t > 0) = 0. (8.72)

To solve Eq. (8.69), try a separation of variables approach,

u′x(y, t) = Y (y)T (t), (8.73)
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so that, upon substitution into Eq. (8.69),

Y T ′ = νY ′′T, (8.74)

T ′

T
= ν

Y ′′

Y
= −λ2, (8.75)

where λ is a constant since the only way the T and Y sides of the equation can be equal for any t and y is if
both sides are equal to a constant. Solving for each part of the equation gives,

T ′

T
= −λ2 =⇒ T (t) = c1 exp(−λ2t), (8.76)

Y ′′

T
= −λ

2

ν
=⇒ Y (y) = c2 sin

(
λ√
ν
y

)
+ c3 cos

(
λ√
ν
y

)
. (8.77)

Thus, the solution has the form,

u′x(y, t) =

[
c2 sin

(
λ√
ν
y

)
+ c3 cos

(
λ√
ν
y

)] [
c1 exp(−λ2t)

]
, (8.78)

u′x(y, t) = exp(−λ2t)

[
c4 sin

(
λ√
ν
y

)
+ c5 cos

(
λ√
ν
y

)]
. (8.79)

In order to satisfy the boundary condition at y = 0 the constant c5 must equal zero. The equation now
becomes,

u′x(y, t) = c exp(−λ2t) sin

(
λ√
ν
y

)
. (8.80)

In order to satisfy the boundary condition at y = h without having c = 0, we must have,

λ =
nπ
√
ν

h
where n is an integer. (8.81)

Thus,

u′x,n(y, t) = c exp

(
−n2π2 νt

h2

)
sin
(
nπ

y

h

)
. (8.82)

Since Eq. (8.69) and the boundary and initial conditions are linear, we can add the together the solutions in
Eq. (8.82) so they satisfy the given initial condition (Eq. (8.70)). Note that we can add together the constants
for the negative values of n with the positive values of n since the magnitude of the exponential and sine
terms are identical, i.e.,

c(|n|) exp

[
−(|n|)2π2 νt

h2

]
sin
[
(|n|)π y

h

]
+ c(−|n|) exp

[
−(−|n|)2π2 νt

h2

]
sin
[
(−|n|)π y

h

]
, (8.83)

=
[
c(|n|) − c(−|n|)

]
exp

[
−(|n|)2π2 νt

h2

]
sin
[
(|n|)π y

h

]
, (8.84)

= d(|n|) exp

[
−(|n|)2π2 νt

h2

]
sin
[
(|n|)π y

h

]
. (8.85)

Furthermore, we needn’t include n = 0 since it will give u′x,n=0 = 0 which doesn’t contribute to the sum-
mation. Hence, the solution to Eq. (8.69) subject to the given boundary conditions (Eqs. (8.71) and (8.72))
is,

u′x(y, t) =

∞∑
n=1

dn exp

(
−n2π2 νt

h2

)
sin
(
nπ

y

h

)
, (8.86)

where the constants dn are found by forcing Eq. (8.86) to satisfy the given initial condition (Eq. (8.70)). A
Fourier sine series analysis at t = 0 gives the constants as,

dn =
2

h

ˆ y=h

y=0

(
−U y

h

)
sin
(
nπ

y

h

)
dy =

2U

nπ
cos(nπ) =

2U

nπ
(−1)n. (8.87)
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Combining Eqs. (8.68), (8.86), and (8.87) gives,

ux(y, t)

U
=
y

h
+

2

π

∞∑
n−1

(−1)n

n
exp

(
−n2π2 νt

h2

)
sin
(
nπ

y

h

)
. (8.88)

A plot of the dimensionless velocity profile for various dimensionless times is shown in Figure 8.7.

Figure 8.7. The dimensionless velocity plotted as a function of dimensionless position for
different dimensionless times.

8.6. Starting Flow in a Circular Pipe

Consider the unsteady, pressure-driven flow of an incompressible, constant viscosity, Newtonian fluid within
an infinitely long, circular pipe of radius, R, as shown in Figure 8.8.

For this flow, we’ll make the following assumptions.

(1) The flow is axi-symmetric and there is no “swirl” velocity component. =⇒ ∂
∂θ (. . . ) = 0 and uθ =

0,
(2) The flow is fully-developed in the z-direction. =⇒ ∂ur

∂z = ∂uθ
∂z = ∂uz

∂z = 0,
(3) There are no body forces =⇒ gr = gθ = gz = 0.
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Figure 8.8. A sketch of the starting flow Poiseuille geometry in a circular pipe.

First examine the Continuity Equation,

1

r

∂(rur)

∂r
+

1

r

∂uθ
∂θ︸︷︷︸

=0(#1)

+
∂uz
∂z︸︷︷︸

=0 (#2)

= 0, (8.89)

∂(rur)

∂r
= 0, (8.90)

ur =
f(t)

r
. (8.91)

Since there is no flow through the wall regardless of the time, i.e.,

ur(r = R, t) =
f(t)

R
= 0, (8.92)

we must have,

ur(r, t) = 0 (Call this condition # 4.) (8.93)

Now examine the Navier-Stokes equation in the z-direction,

ρ

∂uz∂t + ur︸︷︷︸
=0(#4)

∂uz
∂r

+
uθ
r

∂uz
∂θ︸ ︷︷ ︸

=0(#1)

+uz
∂uz
∂z︸︷︷︸

=0(#2)

 = −∂p
∂z

+ µ

1

r

∂

∂r

(
r
∂uz
∂r

)
+

1

r2
∂2uz
∂θ2︸ ︷︷ ︸

=0(#1)

+
∂2uz
∂z2︸ ︷︷ ︸

=0(#2)

+ ρ gz︸︷︷︸
=0(#3)

(8.94)

ρ
∂uz
∂t

= −dp
dz

+ µ
1

r

∂

∂r

(
r
∂uz
∂r

)
. (8.95)

Examining the Navier-Stokes equations in the r and θ directions shows that the pressure p is a function only
of z and, thus, an ordinary derivative can be used when differentiating the pressure with respect to z.

The initial and boundary conditions for the flow are,

no flow initially =⇒ uz(r, t = 0) = 0, (8.96)

no-slip at wall =⇒ uz(r = R, t) = 0. (8.97)

We know that as t→∞ the flow should approach the Poiseuille flow solution found in Section 8.4,

uz(r, t→∞) =
R2

4µ

(
−dp
dz

)[
1−

( r
R

)2
]
. (8.98)

Hence, investigate a solution with the following form,

uz(r, t) =
R2

4µ

(
−dp
dz

)[
1−

( r
R

)2
]
− u′z(r, t). (8.99)
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Substitute Eq. (8.99) into Eq. (8.95),

−ρ∂u
′
z

∂t
= −dp

dz
+ µ

1

r

∂

∂r

{
r

[
R2

4µ

(
−dp
dz

)(
− 2r

R2

)
− ∂u′z

∂r

]}
, (8.100)

−ρ∂u
′
z

∂t
= −dp

dz
+ µ

1

r

∂

∂r

[
R2

4µ

(
−dp
dz

)(
−2r2

R2

)
− r ∂u

′
z

∂r

]
, (8.101)

−ρ∂u
′
z

∂t
= −dp

dz
+
dp

dz
− µ∂

2u′z
∂r2

− µ1

r

∂u′z
∂r

, (8.102)

∂u′z
∂t

= ν
∂2u′z
∂r2

+ ν
1

r

∂u′z
∂r

, (8.103)

∂u′z
∂t

= ν

(
∂2u′z
∂r2

+
1

r

∂u′z
∂r

)
. (8.104)

The corresponding boundary and initial conditions are,

no flow initially =⇒ u′z(r, t = 0) =
R2

4µ

(
−dp
dz

)[
1−

( r
R

)2
]
, (8.105)

no-slip at wall =⇒ u′z(r = R, t) = 0. (8.106)

Try a separation of variables approach to solving Eq. (8.104),

u′z = f(r)g(t). (8.107)

Substitute into Eq. (8.104) and re-arrange to put the functions of t on one side and the functions of r on the
other,

g′f = ν

(
gf ′′ +

1

r
gf ′
)
, (8.108)

1

ν

g′

g
=
f ′′

f
+

1

r

f ′

f
= C, (8.109)

where C is a constant. Equation (8.109) can be written as two ODEs,

g′

g
= −νC =⇒ ln g = −νCt+ c1 =⇒ g = c2 exp(−νCt), (8.110)

f ′′ +
1

r
f ′ + Cf = 0. (8.111)

Since we anticipate that u′z decreases with increasing time, we can assume that C > 0. In order to simplify
the solution to Eq. (8.111), make the change of variable, z = λ(r/R) where C = λ2/R2 > 0 so that Eq. (8.111)
becomes,

d

dr

df

dr
+

1

r

df

dr
+ Cf = 0, (8.112)

λ2

R2

d

dz

df

dz
+

λ2

R2z

df

dz
+
λ2

R2
f = 0, (8.113)

d2f

dz2
+

1

z

df

dz
+ f = 0, (8.114)

which can also be written as,

d2f

dz2
+

1

z

df

dz
+

(
1− k2

z2

)
f = 0, (8.115)

where k = 0. The reason for writing the differential equation in the form of Eq. (8.115) is because it is the
canonical form of the Bessel equation, which has the solution,

f = c3Jk(z) + c4Yk(z), (8.116)
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which, for k = 0 and our definition for z, becomes,

f = c3J0

(
λr

R

)
+ c4Y0

(
λr

R

)
. (8.117)

Note that Jk and Yk are called Bessel functions of the first and second kind. The Bessel function of the
second kind approaches negative infinity as r approaches zero, i.e.,

lim
r→0

[
Y0

(
λr

R

)]
→ −∞, (8.118)

which implies that c4 = 0 in order to keep the velocity finite at the centerline of the pipe. Thus, the form of
u′z is,

u′z = c3J0

(
λr

R

)
c2 exp(−νCt) = c5J0

(
λr

R

)
exp

(
−λ2 νt

R2

)
. (8.119)

To find the constants c5 and λ we must use the initial and boundary conditions (Eqs. (8.105) and (8.106)).
Note also that Eq. (8.119) approaches zero as t approaches infinity, which was one of the conditions specified
previously. In order to satisfy Eq. (8.106), we must have,

J0(λn) = 0, (8.120)

where λn are the zeros of J0 (recall that the Bessel function of the first kind is oscillatory). Thus, Eq. (8.119)
now becomes,

u′z =

∞∑
n=1

cnJ0

(
λnr

R

)
exp

(
−λ2

n

νt

R2

)
. (8.121)

The constant c5 is now written as cn since each zero of the Bessel function may contribute a different amount
to the total constant. These constants cn can be found by using the initial condition (Eq. (8.105)),

R2

4µ

(
−dp
dz

)[
1−

( r
R

)2
]

=

∞∑
n=1

cnJ0

(
λnr

R

)
. (8.122)

The solution approach to finding these cn is complex and is not detailed in these notes. Instead, the reader
is referred to Langlois and Deville, Slow Viscous Flow (2014) for details.

The final solution for the starting flow is,

uz(r, t)

R2

4µ

(
−dpdz

) =

[
1−

( r
R

)2
]
− 8

∞∑
n=1

1

λ3
n

J0(λnr/R)

J1(λn)
exp

(
−λ2

n

νt

R2

)
, (8.123)

where λn are the zeros of J0 (refer to Eq. (8.120)).

8.7. Impulsively Started Flat Plate (aka Stokes’ First Problem, aka the Rayleigh Problem)

Consider the incompressible, constant viscosity, Newtonian fluid flow resulting from the sudden movement
of an infinitely long flat plate. The geometry of the problem is shown in Figure 8.9.

Figure 8.9. An illustration for the geometry used to analyze the impulsively started flow
above a flat plate.

For this unsteady flow, we’ll make the following assumptions.
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(1) The flow is planar. =⇒ uz = constant and ∂
∂z (. . . ) = 0,

(2) The flow is fully-developed in the x-direction. =⇒ ∂ux
∂x =

∂uy
∂x = ∂uz

∂x = 0,
(3) There are no body forces. =⇒ gx = gy = gz = 0,

(4) There is no pressure gradient in the x-direction. =⇒ ∂p
∂x = 0.

Simplifying the Continuity Equation using these assumptions gives uy = 0. Simplifying the Navier-Stokes
equation in the x-direction gives,

∂ux
∂t

= ν
∂2ux
∂y2

. (8.124)

The boundary and initial conditions for this flow are,

no slip at the plate =⇒ ux(y = 0, t > 0) = U, (8.125)

finite velocity far from plate =⇒ ux(y →, t) remains finite, (8.126)

the fluid is initially at rest =⇒ ux(y, t = 0) = 0. (8.127)

Note that there is no geometric length scale in the problem, which suggests that we can use a similarity
variable, η, to reduce the number of independent variables from two (t and y) to one (η = η(y, t)), i.e.,
we can convert the PDE into an ODE. We may anticipate this reduction in the number of variables by
considering where and when the fluid velocity reaches some value, e.g., ux(y, t) = 0.4U . It is reasonable to
expect that the location, y, where the velocity reaches 0.4U will vary depending on t, e.g., the location y gets
farther from the plate as t gets larger. Thus, ux will not depend on the parameters y and t independently
but will instead depend on some combination of y and t. To determine this combination, let’s first re-write
the velocity in dimensionless form using the plate velocity, U ,

u∗ :=
ux
U
, (8.128)

so that the original PDE becomes,

∂u

∂t
= ν

∂2u

∂y2
=⇒ ∂u∗

∂t
= ν

∂2u∗

∂y2
, (8.129)

with the boundary and initial conditions,

u∗(y = 0, t > 0) = 1, (8.130)

u∗(y →, t) remains finite, (8.131)

u∗(y, t = 0) = 0. (8.132)

Since the velocity is dimensionless, it must depend only on dimensionless quantities. The only dimensional
quantities in the PDE are t, y, and ν. We can form only one dimensionless variable from these quantities,
call it η, the similarity variable,

η :=
y√
4νt

. (8.133)

The “4” is added to the similarity variable for convenience in solving the resulting differential equation. The
dimensionless velocity will be a function only of the similarity variable, i.e.,

u∗ = f(η). (8.134)

Re-writing the original PDE in terms of this similarity variable gives,

f ′
∂η

∂t
= νf ′′

(
∂η

∂y

)2

, (8.135)

where,

f ′ =
df

dη
and f ′′ =

d2f

dη2
, (8.136)

∂η

∂t
= − η

2t
and

∂η

∂y
=

1√
4νt

, (8.137)
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so that the final equation becomes,

f ′
(
− η

2t

)
= f ′′

1

4t
, (8.138)

=⇒ f ′′ + 2ηf ′ = 0, (8.139)

subject to the boundary conditions,

f(η) =

{
0 for η →∞
1 for η = 0

(8.140)

Note that the initial condition is subsumed into the η →∞ condition.

Thus, we see that by using a similarity variable (justified based on dimensional arguments), the PDE with
two independent variables is reduced into a (linear) ODE. Now we must solve the ODE. Fortunately, we can
solve the resulting ODE without much difficulty,

f ′′ + 2ηf ′ = 0 =⇒ d

dη
(ln f ′) = −2η, (8.141)

=⇒ df

dη
= c1 exp(−η2), (8.142)

=⇒ f(η) = c1

ˆ η

0

exp(−ξ2)dξ + c2, (8.143)

where ξ is a dummy variable of integration. Applying the boundary conditions to determine the constants
c1 and c2,

f(0) = 1 = c2, (8.144)

f(∞) = 0 = c1

ˆ ∞
0

exp(−ξ2)dξ + 1 =⇒ c1 = − 2√
π
, (8.145)

where the indefinite integral has been evaluated. Thus, the velocity distribution for an impulsively started
flat plate flow is,

ux
U

= 1− 2√
π

ˆ y√
4νt

0

exp(−ξ2)dξ = 1− erf

(
y√
4νt

)
, (8.146)

where the integral is known as the error function (erf).

Notes:

(1) A plot of the flow profile in terms of dimensional and dimensionless quantities is shown in Figure 8.10.

(2) As we can see from the plots shown in Note #1, the effect of the plate diffuses into the remainder
of the fluid. An estimate of the depth of fluid that is affected by the movement of the plate may
be found by determining the distance from the plate, δ, where the velocity is 1% that of the plate
velocity, i.e., u/U = 0.01. This distance is,

ux
U

(η = 1.8) = 0.01 =⇒ δ = 3.6
√
νt. (8.147)

Thus, we see that the thickness of the affected layer is proportional to the square root of the
kinematic viscosity and to the square root of the time (note that it is not a function of the plate
velocity, U , or the absolute viscosity, µ). The distance, δ, which is also referred to as the shear layer
thickness, is an important parameter that gives us an estimate of how far into the flow the effects
of the boundary are felt. We will come across this parameter again, in terms of a boundary layer
thickness, in Chapter 9.
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(a) (b)

Figure 8.10. Velocity profiles for an impulsively-started flat plate flow. (A) Using dimen-
sional variables. (B) Using the dimensionless similarity variable.

The shear layer thickness after one minute in:

air is: δ = 10.8 cm (νair = 0.150 cm2/s), (8.148)

water is: δ = 2.8 cm (νwater = 0.010 cm2/s). (8.149)

(8.150)

Thus, we see that the effects of a boundary are felt further into a flow of air than into a flow of
water in a specified amount of time!

(3) We can also use this solution to examine the flow resulting from a fluid with a uniform velocity
U over a plate that has come to a sudden stop. To produce the resulting velocity profile, we note
that this flow can be produced via a Galilean transformation of the problem we just investigated,
(u/U)stopped plate = 1− (u/U)moving plate. The resulting flow profile is,

ux
U

= erf

(
y√
4νt

)
. (8.151)

(4) The vorticity in the flow is found via,

ωz = −∂ux
∂y

= − ∂

∂y

{
U

[
1− erf

(
y√
4νt

)]}
=

U√
πνt

exp

(
− y2

4νt

)
. (8.152)

A plot of the vorticity as a function of time is shown in Figure 8.11. Vorticity is created at the
wall through the no-slip condition and diffuses through the rest of the fluid through the action of
viscosity.

8.8. Oscillating Flat Plate Flow (aka Stokes’ Second Problem, aka the Rayleigh Problem)

Consider the incompressible, constant viscosity, Newtonian fluid flow resulting from the sinusoidal oscillation
of an infinitely long flat plate. The geometry of the problem is shown in Figure 8.12.

For this unsteady flow, we’ll make the following assumptions.

(1) The flow is planar. =⇒ uz = constant and ∂
∂z (. . . ) = 0,

(2) The flow is fully-developed in the x-direction. =⇒ ∂ux
∂x =

∂uy
∂x = ∂uz

∂x = 0,
(3) There are no body forces. =⇒ gx = gy = gz = 0,

(4) There is no pressure gradient in the x-direction. =⇒ ∂p
∂x = 0
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Figure 8.11. The vorticity plotted as a function of distance from the plate at different
times for flow generated by an impulsively started flat plate.

Figure 8.12. An illustration for the geometry used to analyze flow above an oscillating flat plate.

Simplifying the Continuity Equation using these assumptions gives uy = 0. Simplifying the Navier-Stokes
equation in the x-direction gives,

∂ux
∂t

= ν
∂2ux
∂y2

. (8.153)

The boundary and initial conditions for this flow are,

no slip at the plate =⇒ ux(y = 0, t > 0) = U cos(ωt), (8.154)

finite velocity far from plate =⇒ ux(y →, t)remains finite, (8.155)

the fluid is initially at rest =⇒ ux(y, t = 0) = 0. (8.156)

Since the boundary condition is time dependent and oscillatory, we might expect that the fluid velocity will
have the following (separation of variables) form,

ux(y, t) = f(y) exp(iωt), (8.157)

where only the real part of the velocity is relevant to the solution. Substituting into the PDE and simplifying,

iωf exp(iωt) = νf ′′ exp(iωt), (8.158)

=⇒ νf ′′ exp(iωt)− iωf exp(iωt) = 0, (8.159)

=⇒ f ′′ − iω

ν
f = 0. (8.160)
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Solving for f ,

f(y) = A exp

(
−y
√
iω

ν

)
, (8.161)

=⇒ ux(y, t) = A exp

(
−y
√
iω

ν

)
exp(iωt) = A exp

(
−y
√
iω

ν
+ iωt

)
, (8.162)

which can be simplified to,

ux(y, t) = A exp

(
−1 + i√

2
y

√
ω

ν
+ iωt

)
= A exp

(
−y
√

ω

2ν

)
exp

[
i

(
−y
√

ω

2ν
+ ωt

)]
, (8.163)

ux(y, t) = A exp

(
−y
√

ω

2ν

)[
cos

(
−y
√

ω

2ν
+ ωt

)
+ i sin

(
−y
√

ω

2ν
+ ωt

)]
, (8.164)

ux(y, t) = A exp

(
−y
√

ω

2ν

)
cos

(
−y
√

ω

2ν
+ ωt

)
. (8.165)

(8.166)

In the last step, only the real part of the velocity component is relevant to the solution. Applying the
boundary conditions gives the velocity profile for flow over an oscillating plate,

ux(y, t) = U exp

(
−y
√

ω

2ν

)
cos

(
ωt− y

√
ω

2ν

)
. (8.167)

Notes:

(1) A plot of the velocity profile is shown in Figure 8.13.

Figure 8.13. The dimensionless velocity plotted as a function of the dimensionless distance
above an oscillating plate at different dimensionless times.

(2) The velocity amplitude decreases exponentially with the distance from the plate. There is a phase
lag in the velocity profile compared to the plate, which is a function of distance from the plate.
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(3) The region of fluid affected by the plate can be estimated by determining the y location (y = δ) at
which u/U = 0.01. We’ll also assume the maximum value for the cosine function,

ux
U

= 0.01 = exp

(
−δ
√

ω

2ν

)
cos

(
ωt− δ

√
ω

2ν

)
︸ ︷︷ ︸

=1

, (8.168)

=⇒ δ = − ln(0.01)

√
2ν

ω
≈ 6.51

√
ν

ω
. (8.169)

Notice that δ ∝
√
ν, just like in the impulsively started flat plate system.

(4) We can also use this solution to investigate flow oscillating far from the plate and having a fixed
plate by performing a Galilean transformation on the velocity profile.

8.9. Planar Stagnation Point Flow (aka Hiemenz Flow)

Consider the flow in the vicinity of a stagnation point as shown in Figure 8.14.

Figure 8.14. An illustration for the geometry used to analyze planar stagnation point flow.

For this flow, we’ll make the following assumptions.

(1) The flow is planar. =⇒ uz = constant and ∂
∂z (. . . ) = 0,

(2) The flow is steady. =⇒ ∂
∂t (. . . ) = 0

(3) There are no body forces. =⇒ gx = gy = gz = 0,

Recall from the discussion of potential flows in a different chapter that the complex potential model for this
type of flow is,

f(z) = Az2 = A(x2 − y2)︸ ︷︷ ︸
=φ

+i (2Axy)︸ ︷︷ ︸
=ψ

, (8.170)

where A is a constant that is proportional to the velocity far from the body, U∞, divided by a characteristic
length of the body, L,

A ∝ U∞
L
. (8.171)

The constant of proportionality depends on the exact shape of the body. The velocity components for the
flow are,

f ′(z) = ux − iuy = 2Az = 2Ax+ i2Ay, (8.172)

=⇒ ux = 2Ax and uy = −2Ay. (8.173)

The pressure distribution at any point (x, y) in the flow is,

p(x, y) = p0 −
1

2
ρ(u2

x + u2
y) = p0 − 2ρA2(x2 + y2), (8.174)

where p0 is the pressure at the stagnation point.

C. Wassgren 856 2024-02-01



Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

Note that this potential flow solution satisfies our governing equations of fluid dynamics (Continuity and
Navier-Stokes) and it satisfies part of the no-slip condition (no flow through the surface). It does not,
however, satisfy the tangential component of the no-slip condition. Thus, the potential flow solution is of
limited use since it won’t be a good model close to the plate surface.

To determine a valid solution close to the plate surface, let’s try modifying the potential flow model (we’ll
work with the stream function since close to the surface the flow will be rotational) so that it does satisfy
the no-slip boundary conditions. Let’s try the following stream function,

ψ = 2Axf, (8.175)

=⇒ ux = 2Axf ′ and uy = −2Af, (8.176)

where f = f(y) and f ′ = df/dy. The function, f , is unknown at this point. We’ll place several constraints
on the function, f , so that it satisfies the governing fluid equations (Continuity and Navier-Stokes) and we’ll
also make sure that far from the plate the flow has the same form as the original potential flow solution.

We know that since we’re using a stream function, the Continuity Equation is automatically satisfied. To
make sure we satisfy the momentum equations we substitute the velocity components into the Navier- Stokes
equations (simplified using our assumptions),

ux
∂ux
∂x

+ uy
∂ux
∂y

= −1

ρ

∂p

∂x
+ ν

(
∂ux
∂x2

+
∂2ux
∂y2

)
, (8.177)

ux
∂uy
∂x

+ uy
∂uy
∂y

= −1

ρ

∂p

∂y
+ ν

(
∂uy
∂x2

+
∂2uy
∂y2

)
, (8.178)

4A2x(f ′)2 − 4A2xf ′′ = −1

ρ

∂p

∂x
+ 2Aνxf ′′′, (8.179)

4A2ff ′ = −1

ρ

∂p

∂y
− 2Aνxf ′′. (8.180)

(8.181)

We need to say something about the pressure distribution before proceeding further. Let’s integrate the
y-component of the Navier-Stokes equations with respect to y,

4A2ff ′ = −1

ρ

∂p

∂y
− 2Aνf ′′, (8.182)

∂p

∂y
= −4ρA2ff ′ − 2Aρνf ′′, (8.183)

p(x, y) = −2ρA2f2 − 2Aρνf ′ + g(x), (8.184)

where g(x) is an unknown function of x (since p is a function of both x and y). To determine the form of
g(x) we recall that far from the plate the current solution should approach the potential flow solution where
the pressure distribution is given by,

p(x, y) = p0 − 2ρA2(x2 + y2), (8.185)

and the function f(y → ∞) → y, which gives the original potential flow function. Thus, the unknown
function of x should be (as y becomes very large),

p(x, y) = −2ρA2y2 − 2Aρν + g(x) = p0 − 2ρA2(x2 + y2), (8.186)

=⇒ g(x) = p0 − 2ρA2x2 + 2ρνA, (8.187)

and the pressure distribution becomes,

p(x, y) = p0 − 2ρA2f2 + 2Aρν(1− f ′)− 2ρA2x2. (8.188)
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Substituting this pressure distribution into the x-component of the Navier-Stokes equations gives,

∂p

∂x
= −4ρA2x, (8.189)

=⇒ 4A2x(f ′)2 − 4A2xff ′′ = 4A2x+ 2Aνxf ′′′, (8.190)

=⇒ ν

2A
f ′′′ + ff ′′ − (f ′)2 + 1 = 0. (8.191)

Thus, the function f must satisfy this non-linear, third order ODE to satisfy the x-momentum equation
(note that we’ve already established that the original stream function satisfies the Continuity Equation and
y-momentum equation). The boundary conditions for the ODE are,

no slip at surface in x-direction : ux(x, y = 0) = 0 =⇒ f ′(y = 0) = 0, (8.192)

no slip at surface in y-direction : uy(x, y = 0) = 0 =⇒ f(y = 0) = 0, (8.193)

potential flow far from plate : f(y →∞)→ y =⇒ f ′(y →∞) = 1. (8.194)

(8.195)

Currently the ODE and boundary conditions are in dimensional form. To make the solution to the ODE
general, let’s re-write it in terms of dimensionless parameters,

f(y) =

√
ν

2A
F (η) where y = η

√
ν

2A
, (8.196)

=⇒ f ′ =
df

dy
=
df

dη

(
dη

dy

)
=

√
ν

2A
F ′

(√
2A

ν

)
= F ′, (8.197)

=⇒ f ′′ =
d2f

dη2

(
dη

dy

)2

=

√
ν

2A
F ′′
(

2A

ν

)
=

√
2A

ν
F ′′, (8.198)

=⇒ f ′′′ =
d3f

dη3

(
dη

dy

)3

=

√
ν

2A
F ′′′

(
2A

ν

)3/2

=
2A

ν
F ′′′, (8.199)

(8.200)

so that the original dimensional ODE is now in dimensionless form,

F ′′′ + FF ′′ − (F ′)2 + 1 = 0 , (8.201)

subject to the boundary conditions,

F ′(η = 0) = 0,

F (η = 0) = 0,

F ′(η →∞) = 1.

(8.202)

(8.203)

(8.204)

An exact analytical solution to this ODE has not been found so we solve it numerically (using, for example, a
Runge-Kutta numerical scheme). Even though we solve the equation numerically, we still consider the result
an “exact” solution since we can find the solution numerically to any precision.

The velocity components and pressure distribution are found using the original assumed stream function,

ψ =
√

2AνxF,

ux = 2AxF ′ and uy = −2
√

2AνF,

p(x, y) = p0 − ρAνF 2 + 2ρAν(1− F ′)− 2ρA2x2.

(8.205)

(8.206)

(8.207)

Notes:

(1) The functions F , F ′, and F ′′ are plotted as functions of η in Figure 8.15 .
(2) For this flow the non-linear convective terms in the Navier-Stokes equations, (u ·∇)u, do not drop

out as they have in the previous exact solutions.
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Figure 8.15. The functions F , F ′, and F ′′ plotted as functions of η. This plot is from
Panton, R.L., Incompressible Flow, Wiley.

(3) In flows around objects with surface curvature (e.g., a torpedo-shaped object), this solution will
still be valid in some vicinity of the stagnation point. As we zoom in very close to the stagnation
point, the local object surface will be approximately flat.

(4) Recall that far from the plate, the viscous flow solution should approach the potential flow solution.
We can estimate this distance by determining the location, y = δ, at which the x-velocity is 99%
that of the velocity far from the plate at the same x-location, U∞ (for y > δ the vorticity will be
very small since the velocity gradients are small),

ux = 2AxF ′ and ux(η →∞) = U∞ = 2Ax, (8.208)

=⇒ ux
U∞

= F ′ = 0.99 when η = δ

√
2A

ν
≈ 2.4, (8.209)

δ ≈ 2.4

√
ν

2A
. (8.210)

The distance, δ, is referred to as the (99%) boundary layer thickness. Note that here the boundary
layer thickness is a constant value and proportional to the square root of the kinematic viscosity.
Since the boundary layer thickness is constant, we can interpret that the shear layer displaces the
outer potential flow a constant distance from the surface. From the plot we note that as η → ∞,
F ≈ (η−0.65) (recall that in the potential flow region “far” from the boundary, F is linear) so that
this displacement thickness, δD, is given by,

η = δD

√
2A

ν
≈ 0.65 =⇒ δD ≈ 0.65

√
ν

2A
. (8.211)
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We’ll address the concept of a displacement thickness again when discussing boundary layer flow.
(5) The pressure gradients for the flow are given by,

∂p

∂x
= −4ρA2x = −ρU∞

dU∞
dx

(using the U∞ defined in the previous note), (8.212)

∂p

∂x
= −2ρAν(FF ′ + F ′′). (8.213)

The pressure gradient in the x-direction is the same as that given by Bernoulli’s equation using
the outer potential flow velocity while the pressure gradient in the y-direction will be small if the
kinematic viscosity is small (F , F ′, and F ′′ are all of order one near the surface). Thus, the
pressure in the shear layer is nearly constant in the y-direction and it has the same magnitude as
the pressure in the outer potential flow. This is an important result that will be discussed again
when investigating boundary layer flows in Chapter 9.

(6) An exact solution for axisymmetric stagnation point flow can also be found. Its solution was first
presented by Homann (1936). The approach for the axisymmetric problem is very similar to what
was presented here for planar flow except a different stream function is used. Refer to White, F.M.,
Viscous Fluid Flow, McGraw-Hill for more details. The resulting velocity profiles, pressure, and
shear stress distributions for the axisymmetric case are similar to those found for the planar case,
but with slightly different magnitudes.

8.10. Very Low Reynolds Number Flows (aka Creeping Flows, aka Stokes Flows)

Consider the governing equations for an incompressible fluid, neglecting body forces, in dimensional form,

∇ · u = 0, (8.214)

ρ

[
∂u

∂t
+ (u ·∇)u

]
= −∇p+ µ∇2u. (8.215)

Recall that when the Reynolds number is very small, viscous forces dominate the inertial forces. Let’s re-
write these equations in dimensionless form keeping in mind that we’ll be investigating flows where viscous
forces dominate (or where the fluid inertia is negligible). The variables in the equations are normalized in
the following manner,

x∗ :=
x

L
=⇒ x = Lx∗, u∗ :=

u

U
=⇒ u = Uu∗, (8.216)

t∗ :=
tU

L
=⇒ t =

Lt∗

U
, p∗ :=

p

µU/L
=⇒ p =

µU

L
p∗, (8.217)

where the superscript “*” refers to a dimensionless quantity and L and U represent, respectively, a charac-
teristic length and velocity for the flow of interest. Note that the pressure has been made dimensionless using
a characteristic viscous stress, µU/L, rather than the usual dynamic pressure term, i.e., 1/2ρU2. This dif-
ference is because here we’re investigating flows where viscous forces dominate (or fluid inertia is negligible).
Also note that we’ve assumed that the time scale is set by the flow velocity and length scale. This assump-
tion is fine unless there is some other well-defined time scale in the problem, such as an oscillation period
(for acoustic applications, for example). Now let’s rewrite the governing equations using these dimensionless
parameters,

∇∗ · u∗ = 0, (8.218)

ρU2

L

[
∂u∗

∂t∗
+ (u∗ ·∇∗)u∗

]
= −µU

L2
∇∗p∗ +

µU

L2
∇∗2u∗. (8.219)
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Dividing through by the characteristic viscous force term gives,

ρUL

µ

[
∂u∗

∂t∗
+ (u∗ ·∇∗)u∗

]
= −∇∗p∗ +∇∗2u∗, (8.220)

ReL

[
∂u∗

∂t∗
+ (u∗ ·∇∗)u∗

]
= −∇∗p∗ +∇∗2u∗, (8.221)

where ReL is the Reynolds number, which is a ratio of typical fluid inertial forces to viscous forces in a flow.
If the viscous forces dominate, then the Reynolds number should be small. For creeping flows we investigate
the limit when ReL → 0, i.e., the fluid has negligible inertia. Thus, for creeping flows the governing fluid
equations simplify to,

∇∗ · u∗ = 0 (8.222)

,∇∗p∗ = ∇∗2u∗, (8.223)

or, in dimensional form,

∇ · u = 0,

∇p = µ∇2u,

(8.224)

(8.225)

These equations are known as Stokes’ Equations. Note that ρ doesn’t appear in these equations, indicating
that Stokes flows behave the same regardless of the surrounding fluid density.

Two additional useful relations can be found if we take the curl of both sides of the momentum equation,

∇×∇p = µ∇2(∇× u), (8.226)

∇2ω = 0 . (8.227)

If we take the divergence of both sides of the momentum equation (and use the Continuity Equation),

∇ ·∇p = µ∇2(∇ · u), (8.228)

∇2p = 0 . (8.229)

In a creeping flow, the vorticity and pressure fields both satisfy Laplace’s equation.

Notes:

(1) Examples of where creeping flow might occur (ReL � 1):
• small length dimensions (flow in small pipes or channels, around small particles, flow through

small pores),
• very viscous fluids,
• small velocities.

A good reference for this topic is Happel and Brenner (1965).
(2) Since Laplace’s equation is a linear PDE, we can add together solutions to form new solutions (the

principle of superposition). This approach is very similar to what we did with potential flows where
we could add together valid velocity fields (in the form of a potential function) to form new velocity
fields. The difference, however, is that here we can also add together pressure and vorticity fields.
Note that in potential flows we couldn’t add together pressure fields since the pressure was found
using the non-linear Bernoulli’s equation.

(3) If we consider a two-dimensional flow and use a stream function to describe the velocity field, we
find that the vorticity can be written in terms of the stream function as,

ωz =
∂uy
∂x
− ∂ux

∂y
= −∂

2ψ

∂x2
− ∂2ψ

∂y2
= −∇2ψ. (8.230)

Substituting this equation into Eq. (8.227),

∇2(∇2ψ) = ∇4ψ = 0 . (8.231)
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This is the governing equation for a two-dimensional Stokes flow. Note that in 2D Cartesian
coordinates,

∇4 =
∂4

∂x4
+ 2

∂4

∂x2∂y2
+

∂4

∂y4
. (8.232)

Equation (8.231) is a biharmonic equation and is a common equation found in other fields of study,
such as solid mechanics where the Airy stress function is used to solve two-dimensional problems in
elasticity.

(4) The pressure increases proportionally with the dynamic viscosity of the fluid assuming that the
viscosity is independent of pressure (Eq. (8.225)). When the pressures become very large, such as
in lubrication flows, the viscosity becomes a function of pressure (recall that the viscosity is also a
function of temperature).

(5) There are several approaches to finding solutions to creeping flow problems. These include:
(a) forming “building block” solutions that we can add together to form new solutions. We used a

similar approach with potential flow problems. Note that we can add together pressure fields
since Eq. (8.229) is linear. We can’t do this for potential flows since Bernoulli’s equation is
non-linear in terms of the velocities.

(b) solving the boundary value problem for the given geometry and boundary conditions,
(c) borrowing solutions from other disciplines that have the same governing equations, e.g., the

Airy stress function in solid mechanics, and
(d) using computational methods to solve the governing equations.

(6) Note that if u is a Stokes flow solution, then u′ = −u is also a solution since,

∇ · u′ = 0 and ∇p′ = µ∇2u′ =⇒ ∇p′ = −∇p. (8.233)

In addition, ∇2ω′ = 0 and ∇2p′ = 0 where ω′ = ∇ × u′ = −∇ × u. Hence, Stokes flows are
kinematically reversible and flow around symmetric objects will produce symmetric streamlines.

8.11. Stokes Flow Around a Sphere

Figure 8.16. The geometry for Stokes flow around a sphere.

Now let’s examine the creeping flow around a sphere of radius, R, in a uniform stream of velocity, U
(Figure 8.16). For axisymmetric creeping flows it is convenient to use a stream function in spherical polar
coordinates, (r, θ, φ), to describe the fluid velocity. The angle φ is zero when aligned with the incoming
free stream. Since the flow is axisymmetric, the stream function will be a function only of r and θ. After
substituting the stream function into the biharmonic equation (in spherical coordinates and noting that for
an axisymmetric problem there is no variation in the φ-direction),

∇4ψ = 0, (8.234)

=⇒
[
∂2

∂r2
+

1

r2

∂2

∂θ2
− cot θ

r2

∂

∂θ

]2

ψ = 0. (8.235)
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The velocity components are related to the spherical stream function by,

ur =
1

r2 sin θ

∂ψ

∂θ
and uθ = − 1

r sin θ

∂ψ

∂r
. (8.236)

These forms of the velocity components in terms of the stream function can be verified by substituting them
into the (incompressible) Continuity Equation in spherical polar coordinates. Recall that the stream function
is defined such that it automatically satisfies the Continuity Equation,

1

r2

∂

∂r
(r2ur) +

1

r sin θ

∂

∂θ
(uθ sin θ) = 0, (8.237)

1

r2

∂

∂r

r2 1

r2 sin θ

∂ψ

∂θ︸ ︷︷ ︸
=ur

+
1

r sin θ

∂

∂θ

− 1

r sin θ

∂ψ

∂r︸ ︷︷ ︸
=uθ

sin θ

 = 0, (8.238)

1

r2

∂

∂r

(
1

sin θ

∂ψ

∂θ

)
+

1

r sin θ

∂

∂θ

(
−1

r

∂ψ

∂r

)
= 0, (8.239)

1

r2 sin θ

(
∂2ψ

∂r∂θ

)
− 1

r2 sin θ

(
∂2ψ

∂θ∂r

)
= 0 (Continuity Equation satisfied!) (8.240)

The no-slip condition at the surface means that,

ur(r = R) = uθ(r = R) = 0, (8.241)

=⇒ ∂ψ

∂θ
(r = R) = 0 and

∂ψ

∂r
(r = R) = 0, (8.242)

and far from the sphere (as r → ∞), the stream function approaches the stream function for a uniform
stream,

ψ(r →∞) =
r2

2
U sin2 θ + constant, (8.243)

=⇒ ur → U cos θ and uθ → −U sin θ. (8.244)

Solve the differential equation with the given boundary conditions using separation of variables. Based on the
form of the stream function far from the origin, let’s assume that the solution has the form ψ = f(r) sin2 θ,[

∂2

∂r2
+

1

r2

∂2

∂θ2
− cot θ

r2

∂

∂θ

]2 [
f(r) sin2 θ

]
= 0. (8.245)

After simplifying, (
d2

dr2
− 2

r2

)2

f(r) = 0. (8.246)

In trying to solve this ODE, let’s try a solution of the form f(r) = rn,(
d2

dr2
− 2

r2

)2

rn = [(n− 2)(n− 3)− 2] [(n)(n− 1)− 2] rn−4 = 0, (8.247)

=⇒ n = −1, 1, 2, 3, (8.248)

∴ f(r) =
A

r
+Br + Cr2 +Dr3. (8.249)

The corresponding stream function and velocity components are,

ψ(r, θ) =

(
A

r
+Br + Cr2 +Dr3

)
sin2 θ, (8.250)

ur = 2

(
A

r3
+
B

r
+ C +Dr

)
cos θ, (8.251)

uθ = −
(
A

r3
+
B

r
+ 2C + 3Dr

)
sin θ. (8.252)
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Applying the boundary conditions we find that,

A =
UR3

4
B =

−3UR

4
C =

U

2
D = 0. (8.253)

Consequently,

ψ(r, θ) =
R2U

4

(
R

r
− 3r

R
+

2r2

R2

)
sin2 θ,

ur = U cos θ

(
1 +

R3

2r3
− 3R

2r

)
,

uθ = U sin θ

(
−1 +

R3

4r3
+

3R

4r

)
.

(8.254)

(8.255)

(8.256)

The pressure, found using the momentum equation (∇p = µ∇2u) is,

p = p∞ −
3

2

µU

R

(
R

r

)2

cos θ. (8.257)

The viscous stresses are found using the constitutive relations for a Newtonian fluid,

σrr = 2µ
∂ur
∂r

, (8.258)

σθθ = 2µ

(
1

r

∂uθ
∂θ

+
ur
r

)
, (8.259)

σφφ = 2µ

(
1

r sin θ

∂uφ
∂φ

+
ur
r

+
uθ cot θ

r

)
, (8.260)

σrθ = µ

[
r
∂

∂r

(uθ
r

)
+

1

r

∂ur
∂θ

]
, (8.261)

σrφ = µ

[
1

r sin θ

∂u

∂φ
+ r

∂

∂r

(uφ
r

)]
, (8.262)

σφθ = µ

[
sin θ

r

∂

∂θ

( uφ
sin θ

)
+

1

r sin θ

∂uθ
∂φ

]
. (8.263)

Evaluating at the sphere’s surface (r = R) gives,

σrr|r=R = σφφ|r=R = σθθ|r=R = σrφ|r=R = σφθ|r=R = 0, (8.264)

σrθ|r=R = −3

2

µU

R
sin θ. (8.265)

Figure 8.17. The geometry for calculating the Stokes flow drag on a sphere.

The drag force acting on the sphere surface (r = R) is found by integrating the pressure and viscous forces
in the horizontal direction over the entire sphere’s surface (Figure 8.17),

F = −
ˆ π

0

σrθ|r=R sin θdA−
ˆ π

0

p|r=R cos θdA where dA = 2πR2 sin θdθ, (8.266)

=⇒ F = 4πµUR+ 2πµUR. (8.267)
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Thus, the total force acting on the sphere consists of 2/3 viscous force (the first term in the previous equation)
and 1/3 pressure force (the second term in the previous equation) giving the total Stokes drag force on a
sphere,

F = 6πµUR . (8.268)

Notes:

(1) The drag is independent of the fluid density and is proportional to the velocity (and not velocity
squared).

(2) Stokes drag is usually presented in dimensionless form as a drag coefficient, cD. The usual form is,

cD :=
F

1
2ρU

2(πR2)
=

6πµUR
1
2ρU

2(πR2)
=

12µ

ρUR
=

24µ

ρUD
, (8.269)

∴ cD =
24

ReD
, (8.270)

where ReD = ρUD/µ is the Reynolds number based on the sphere diameter (D = 2R).
(3) Stokes drag is strictly valid only when ReD → 0, but it is found experimentally to be a reasonable

estimate up to ReD = 1.
(4) Oseen (1910) included first-order inertial effects in the drag analysis and found a drag coefficient of,

cD =
24

ReD

(
1 +

3

16
ReD

)
. (8.271)

This drag coefficient is found to give good results up to ReD ≈ 5.
(5) Although the streamlines for flow around a sphere look similar for a potential flow and a Stokes flow

(in the sphere’s frame of reference, FOR), there are some important differences. The streamlines for
potential flows are grouped closer together near the sphere than they are for a Stokes flow. More
strikingly, if we plot the streamlines using a frame of reference in which the fluid is at rest far from
the sphere (and the sphere moves with a velocity −U), we find that in a potential flow the fluid is
“pushed” out of the way while in a Stokes flow the fluid is “dragged” along with the sphere. These
phenomena are illustrated in Figure 8.18.

Figure 8.18. Streamlines for potential flow around a sphere and Stokes flow around a sphere.
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(6) We can also use the solution approach presented here to determine the drag on a spherical droplet
of a fluid (with dynamic viscosity µi) in a different fluid (of dynamic viscosity µo). The general
differential equation is the same, but the boundary conditions are different. For the spherical droplet
problem, the boundary conditions at the sphere radius consist of continuous velocity components
(no-slip, but the tangential velocity is not zero) and continuous stresses between the droplet fluid
and the outer fluid. The resulting drag force acting on the droplet becomes,

F = 6πRµoU
1 + 2

3
µo
µi

1 + µo
µi

. (8.272)

For µi � µo, e.g., a solid droplet in a gas or liquid, we get the original Stokes drag equation,
F = 6πµoUR. For µi � µo, e.g., a gas bubble in a liquid, then we get a smaller drag force since
the outer fluid can slip at the boundary surface: F = 4πµoRU .

(7) It can be shown that the drag on an irregular object in a Stoke’s flow is bounded by the drag on
a sphere that inscribes the object and the drag on a sphere that circumscribes the object (refer to
Hill and Power, 1956) (Figure 8.19). This result is useful for practical applications.

Figure 8.19. A sphere that inscribes an irregular particle and a sphere that circumscribes
the particle.

(8) An interesting observation, referred to as the Stokes Paradox, can be made using dimensional
analysis. Assuming that inertia is negligible for a Stokes flow, the force, F , on an object is a
function of the dynamic viscosity, the flow speed, and the object size, i.e.,

F = f(µ,U, L). (8.273)

For a 2D flow, the dimensions of the force will be F/L (force per unit depth) while for a 3D flow
the dimension of the force will simply be F . Thus, from dimensional analysis,

F ′2D =
F2D

µU
= constant, (8.274)

F ′3D =
F3D

µUL
= constant, (8.275)

where F ′ is the dimensionless force. The first equation indicates that in a 2D Stokes flow the force
on an object is independent of the object size. This result contradicts what we observe in reality.
Hence, our initial assumption that the fluid inertia is negligible must be incorrect. For 2D flows,
the density must be a factor in determining the force on an object, i.e.,

F2D = f(ρ, µ, U, L), (8.276)

=⇒ F ′2D =
F2D

µU
= f

(
ρUL

µ

)
. (8.277)
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Consider two infinitely long parallel plates separated by a constant distance H as shown in the figure below. 
Between the plates is a Newtonian, incompressible fluid with density r and viscosity µ.  There are no pressure 
gradients in the direction of the flow and gravity acts in the negative y-direction. 
 
 
 
 
 
 
 
 
 
 
 
Assume at time t < 0 the entire system is at rest.  For t ≥ 0, the walls are impulsively started and move at a constant 
speed V0 in the +x-direction. 
 
For these conditions, which of the following simplifications to the Navier-Stokes equations provides the governing 
equation for determining the velocity profile in the x-direction? 
 
 

A.  

 

B.  

 

C.  
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SOLUTION: 
 
Make the following assumption about the flow. 

1. fully developed flow in the x-direction  Þ   (1) 

2. planar flow Þ   (2) 

3. no pressure gradient in the x-direction  Þ   (3) 

4. no gravity in the x-direction  Þ  gx = 0 (4) 
 

Note that the flow velocity chanes with time.  Hence, the flow is unsteady. 
 

Consider the continuity equation for an incompressible fluid. 

  Þ   (5) 

Since uy ≠ fcn(x, y, z) (assumption #1, Eq. (5), and  assumption #2), at most we can have: 
 (6) 

However, at the boundaries uy(t) = 0, thus, uy = 0 everywhere and for all times.  Call this condition #5. 
 
Now consider the Navier-Stokes equation for an incompressible, Newtonian fluid in the x-direction. 

 (7) 

Thus, 

 (8) 

 
The boundary conditions for the flow are, 

no-slip at the top and bottom boundaries  Þ   (9) 
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A wide flat belt moves vertically upward at constant speed, U, through a large bath of viscous liquid as 
shown in the figure.  The belt carries with it a layer of liquid of constant thickness, h.  The motion is steady 
and fully-developed after a small distance above the liquid surface level.  The external pressure is 
atmospheric (constant) everywhere. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a. Simplify the governing equations to a form applicable for this particular problem. 
b. State the appropriate boundary conditions 
c. Determine the velocity profile in the liquid. 
d. Determine the volumetric flow rate per unit depth. 
 
 
SOLUTION: 
 
Make the following assumptions. 

1. steady flow Þ  

2. planar flow Þ  

3. fully-developed flow in the y-direction Þ  

4. gravity acts only in the –y-direction Þ  
 

Consider the continuity equation. 

  Þ    Þ     (Note that ux does not vary with either y or z either.) 

Since there is no flow through the belt, 
   (Call this condition #5.) (1) 

 
 
Consider the Navier-Stokes equation in the x-direction. 
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Note that along the free surface of the liquid film the pressure remains constant (= patm).  Hence, from Eqn. 
(2) the pressure everywhere in the film will be the same, i.e. p(x,y) = patm (call this condition #6.). 
 
Now consider the Navier-Stokes equation in the y-direction. 

 

Note that since uy is neither a function of y or z, we can replace the partial derivative with an ordinary 
derivative. 

 (3) 

 
Solve the differential equation given in Eqn. (3). 

 

 (4) 

 
Apply the following boundary conditions. 

no-slip at x = 0 Þ  Þ  
At the free surface, the air will provide a negligible resisting shear stress so: 

no shear at x = h Þ  Þ  

 
Hence, 

  (0 £ x £ h)  (5) 

 
The volumetric flow rate in the film (per unit depth), Q, is given by: 

 

 (6) 
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A viscous, incompressible fluid flows between the two infinite, vertical, parallel plates shown in the figure.  
Determine, by use of the Navier-Stokes equations, an expression for the pressure gradient in the direction 
of flow.  Express your answer in terms of the mean velocity.  Assume that the flow is steady and fully 
developed in the x direction. 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
Make the following assumptions about the flow: 

1. The flow is planar.   Þ  

2. The flow is steady. Þ  

3. The flow is fully developed in the x-direction. Þ  

4. Gravity acts in the –x direction. Þ  
 

The continuity equation for an incompressible, planar flow is: 

  Þ      (1) 

Since the flow is also steady (#2), fully developed (#3), and planar (#1), the y-velocity can be at most a 
constant.  Since uy = 0 at the wall, then uy everywhere is: 

  (Call this condition #5.) (2) 
 

Now examine the x-momentum equation: 

 

  (3) 

where the partial derivatives have been replaced by ordinary derivatives since ux is not a function of x (#3), 
t (#2), or z (#1).  In addition, consideration of the y and z-momentum equations will show that p is not a 
function of either x or y and since the flow is fully developed, dp/dx = constant. 
 
Now solve Eq. (3) for the velocity profile, 

 (4) 
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Apply boundary conditions to determine the unknown constant c1 and c2. 
no-slip at y = -1/2h Þ    Þ  (7) 

no-slip at y = 1/2h Þ  Þ  (8) 

Substract Eq. (8) from Eq. (7) to determine c1. 
  (Note that we could have also determined this from symmetry and Eq. (5).) (9) 

The other constant, c2, is thus: 
 (10) 

and the velocity profile is: 

 (11) 

where a is given in Eq. (4) 

 (12) 

 
The average velocity is found from the volumetric flow rate, Q. 

 (13) 

 (14) 

 (15) 

 
 (16) 

 (17) 

Re-arrange to solve for the pressure gradient in terms of the average velocity. 

 (18) 
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Now choose a differential control volume and apply conservation of mass and the linear momentum 
equation to solve the problem. 
 
 
 
 
 

 
 
 
 
 
 
 
 

, (19) 

where, 

  (steady flow), (20) 

, (21) 

,  

assuming unit depth and planar flow. 
Substitute and simplify, 

, (22) 

, (23) 

which is the same as Eq. (1) 
 
Now consider the linear momentum equation in the x direction using the same differential control volume, 

, (24) 

where, 

  (steady flow), (25) 

 (the flow is fully developed in the x direction, planar, and uy = 0), (26) 

, (27) 
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Substitute and simplify.  

, (29) 

 . (30) 

Note that for a Newtonian fluid, 

 . (31) 

Substitute this expression into Eq. (30), 

. (32) 

Since the flow is fully developed, steady, and planar, the last term in Eq. (31) may be written in terms of 
ordinary derivatives.  In addition, apply the linear momentum equation in the y and z directions would show 
that the pressure gradient in both of those directions is zero.  Hence, Eq. (32) becomes, 

. (33) 

This equation is exactly the same as Eq. (4) 
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Consider two concentric cylinders with a Newtonian liquid of constant density, r, and constant dynamic 
viscosity, µ, contained between them.  The outer pipe, with radius, Ro, is fixed while the inner pipe, with 
radius, Ri, and mass per unit length, m, falls under the action of gravity at a constant speed.  There is no 
pressure gradient within flow and no swirl velocity component.  Determine the vertical speed, V, of the 
inner cylinder as a function of the following (subset of) parameters:  g, Ro, Ri, m, r, and µ.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
First determine the velocity profile of the fluid within the annulus.  Make the following assumptions: 

1. steady flow Þ  

2. gravity acts in the z-direction Þ  

3. fully-developed flow in the z-direction Þ  

4. the flow is axi-symmetric and there is no swirl velocity Þ  

5. no pressure gradients in the z direction Þ  

 
Consider the continuity equation. 

  Þ   Þ    (1) 

Note that from assumptions 3 and 4, ur is not a function of either q or z.  Since there is no radial flow at r = 
Ri or r = Ro,  the constant in the previous equation must be zero.  Thus,  

  (condition 6) (2) 
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Now consider the Navier-Stokes equations. 

 (3) 

Þ   (4) 

 (5) 

Þ   (6) 

 (7) 

Þ   (8) 

 
Note that since uz is not a function of q (assumption #4) or z (assumption #3), then uz = uz(r) and the partial 
differentials in Eqn. (8) may be written as ordinary differentials.  Solve the ODE given in Eqn. (8). 

 

 

 

 (9) 

 
Apply the following boundary conditions to determine the constants c1 and c2. 

no-slip at r = R0:   Þ   (10) 

no-slip at r = Ri:    Þ   (11) 

 
First determine c1 by subtracting Eqn. (10) from Eqn. (11). 
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Find c2 by applying the no-slip condition at r = Ro:  
 

 (13) 

 (14) 

 
 

Perform a force balance on a small length of the cylinder. 
 (15) 

 (16) 

 
Since the fluid is Newtonian: 

  Þ   (17) 

 
Substitute Eqn. (17) into Eqn. (16) and solve for V. 
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Consider a film of Newtonian liquid draining at volume flow rate Q down the outside of a vertical rod of 
radius, a, as shown in the figure.  Some distance down the rod, a fully developed region is reached where 
fluid shear balances gravity and the film thickness remains constant.  Assuming incompressible laminar 
flow and negligible shear interaction with the atmosphere, find an expression for uz(r) and a relation for the 
volumetric flow rate Q. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
The continuity and momentum equations in cylindrical coordinates for an incompressible, Newtonian fluid 
with constant viscosity are: 
 

 

 
 
Make the following additional assumptions: 

1. steady flow Þ  

2. gravity acts in the z-direction Þ  

3. fully-developed flow in the z-direction Þ  

4. the flow is axi-symmetric and there is no swirl velocity Þ  

5. no pressure gradients in the z direction (due to free surface) Þ  
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Simplify the continuity equation using the given assumptions: 

  Þ   Þ   

Note that from assumptions 3 and 4, ur is not a function of either q or z.  Since there is no radial flow at this 
inner boundary (r = a), the constant in the previous equation must be zero.  Thus,  

  (condition 6) 
 

Now simplify the momentum equations using our assumptions and condition 6: 

 

   

 

(Note that since the pressure on the free surface remains constant at atmospheric pressure and the 
pressure not a function of either r or q, the pressure everywhere in the z direction will remain 
constant.  Hence, assumption #5 is a reasonable one.) 

 

Note that since uz is not a function of q or z (assumptions 3 and 4), the partial derivatives with respect to r 
in the last equation can be written as ordinary derivatives. 
 
Simplifying the last equation gives: 

 

 

 

 
Apply the following boundary conditions to determine the unknown constants: 

no-shear stress at r = b:  

  

no-slip at r = a: 
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Hence, the velocity profile in the z-direction is: 

 

and the shear stress on an r-face in the z-direction is: 

 

 
The volumetric flow rate, Q, is given by: 
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Two immiscible viscous liquids are introduced into a Couette flow device so that they form two layers of 
equal height as shown: 
 
 
 
 
 
 
 
 
 
The dynamic viscosity, µ, of liquid A is one quarter that of liquid B.  The upper plate is moved at a 
constant velocity, U, while the bottom plate remains stationary. 
 
a. Determine the velocity of the interface between the two liquids. 
b. Determine the “apparent viscosity” of the mixture as seen by an experimenter who believes that only 

one liquid is in the device. 
 
 
SOLUTION: 
 
Make several assumptions regarding the flow in each region: 
 
1. planar flow Þ  

2. steady flow Þ  

3. fully-developed flow in the x-direction Þ  

4. no pressure gradient in the x-direction Þ  

5. no body forces Þ  
 
First examine the continuity equation. 

  Þ   

This result combined with assumptions 1 and 3 indicate that uy = constant.  Since there is no flow through 
the walls, uy = 0 everywhere (call this condition #6). 
 
Simplify the Navier-Stokes equation in the x-direction. 

 

  (Note that ux = ux(y) from assumptions 1, 2, and 3.) (1) 

Integrating twice with respect to y gives: 

 (2) 

 (3) 
Note that Eqns. (1) - (3) are valid for both fluids (A and B). 
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Now apply boundary conditions for each fluid. 
 
Fluid B: 

no-slip at y = 0 Þ   (where Vi is the interface velocity) 

no-slip at y = -H/2 Þ    

  (4) 

 
Fluid A: 

no-slip at y = 0 Þ   (where Vi is the interface velocity) 

no-slip at y = H/2 Þ    

 (5) 

 
Also note that the shear stress is continuous at the interface. 

 

 

   (6) 
 

To determine the “apparent viscosity”, µ*, note that if there was only a single fluid between the two plates 
with viscosity, µ*, the shear stress exerted by the upper plate would be: 

   (7) 

With the two fluids, the shear stress exerted by the upper plate on fluid A is:  

 (8) 

Equating Eqns. (7) and (8) shows that the apparent viscosity is: 
   (9) 
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In cylindrical coordinates, the momentum equations for an inviscid fluid (Euler’s equations) become: 

 

where ur, uq, and uz are the velocities in the r, q, and z directions, p is the pressure, r is the fluid density, 
and fr, fq, and fz are the body force components.  The Lagrangian derivative is: 

 

A cylinder is rotated at a constant angular velocity denoted by W.  The cylinder contains a compressible 
fluid which rotates with the cylinder so that the fluid velocity at any point is uq=Wr (ur=uz=0).  If the 
density of the fluid, r, is related to the pressure, p, by the polytropic relation: 

 
where A and k are known constants, find the pressure distribution p(r) assuming that the pressure, p0, at the 
center (r=0) is known.  Neglect all body forces. 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 

 
 
Make the following assumptions. 

1. steady flow  Þ  

2. no body forces  Þ  

3. no flow in the z-direction and no variation in the z-direction  Þ   

4. no flow in the r-direction Þ  
 
5. solid body rotation  Þ  
 
 

Simplify Euler’s equations using the given assumptions. 
r-direction: 
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q-direction: 

 

 (2) 

 
z-direction: 

 

 (3) 

 
Note that Eqns. (2) and (3) imply that: 

 (4) 

so that Eqn. (1) becomes: 

 (5) 

Substituting the given relation between the pressure and density gives: 
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An incompressible fluid flows between two porous, parallel flat plates as shown: 
 
 
 
 
 
 
 
 
 
 
An identical fluid is injected at a constant speed V through the bottom plate and simultaneously extracted 
from the upper plate at the same velocity.  Assume the flow to be steady, fully-developed, the pressure 
gradient in the x-direction is a constant, and neglect body forces.  Determine appropriate expressions for the 
x and y velocity components. 
 
 
SOLUTION: 
 
First, make several assumptions regarding the flow. 

1. The flow is steady. Þ  

2. The flow is fully developed in the x-direction. Þ  

3. The flow is planar. Þ  

4. The pressure gradient in the x-direction is constant. Þ  

5. Body forces can be neglected. Þ  
6. The fluid is incompressible and Newtonian.  
 

First examine the continuity equation. 

  Þ    

Since the y-velocity doesn’t vary in the x or z-directions either (assumptions #2 and #3, respectively), the y-
velocity must be a constant, i.e. uy = constant.  Since the y-velocity at the lower plate is uy = V, we must 
have everywhere: 

  (Call this condition #7.) (1) 
 

Now examine the Navier-Stokes equation in the x-direction. 
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Let z = dux/dy so that Eqn. (2) becomes: 

 

 

  (where c is a constant) 

 

 

 

   (where c1 and c2 are constants) (3) 

 
Apply boundary conditions. 

no-slip at y = 0 Þ  Þ  

no-slip at y = h Þ   

 Þ  

   

   

 
Hence, 

 

 

 
 

p dzVz
x dy

r µ¶
= - +

¶
dz dy

p Vz
x

µ

r
=

¶
+

¶

ò ò

ln p Vz y c
V x
µ r
r

¶æ ö+ = +ç ÷¶è ø

expxdup VyV c
x dy

rr
µ

æ ö¶
+ = ç ÷¶ è ø

1expxdu Vy pc
dy V x

r
µ r

æ ö ¶
= -ç ÷ ¶è ø

1expx
Vy pdu c dy dy

V x
r
µ r

æ ö ¶
= -ç ÷ ¶è ø

ò ò ò

1 2
1expx

Vy pu c y c
V x

r
µ r

æ ö ¶
= - +ç ÷ ¶è ø

( )0 0xu y = = 2 1c c= -

( ) 0xu y h= =

1 2
10 exp Vh pc h c
V x

r
µ r

æ ö ¶
= - +ç ÷ ¶è ø

1 1

1

10 exp

1exp 1

Vh pc h c
V x

Vh pc h
V x

r
µ r

r
µ r

æ ö ¶
= - -ç ÷ ¶è ø
é ùæ ö ¶

- =ê úç ÷ ¶è øë û

1

1 exp

h p
V xc

Vh
r

r
µ

¶æ ö-ç ÷¶è ø=
æ ö

- ç ÷
è ø

1 1

1

1exp

exp 1

x
Vy pu c y c

V x

Vy y pc
V x

r
µ r

r
µ r

æ ö ¶
= - -ç ÷ ¶è ø

é ùæ ö ¶
= - -ê úç ÷ ¶è øë û

1 exp

1 exp
x

Vy
h p yu
V x hVh

r
µ

r r
µ

ì üé ùæ ö
-ï ïê úç ÷¶ ï ïæ ö è øê ú= -í ýç ÷ ê ú¶ æ öè øï ï-ê úç ÷ï ïê úè øë ûî þ

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

C. Wassgren 886 2024-02-01



  ns_09 

Page 1 of 3 

Consider the fully-developed, steady, laminar circular pipe flow of an incompressible, non-Newtonian fluid 
due to a constant pressure gradient dp/dz < 0.  Gravitational effects may be neglected.  The normal stress in 
this fluid in the z-direction, i.e. szz, is equal to –p where p is the pressure.  The shear stress, srz, is related to 
the velocity gradient by: 

 

 
where C is a known constant.   
 
Find: 
1. the velocity profile, uz(r), and  
2. the friction factor, f, (i.e. the wall shear stress made dimensionless using the dynamic pressure based on 

the average velocity in the pipe)  
for this pipe flow in terms of C, r (the fluid density), dp/dz, r, and R (the radius of the pipe), or a subset of 
these parameters. 
 
 
SOLUTION: 
Make the following assumptions regarding the flow. 

1. steady flow Þ  (1) 

2. fully developed flow in z-direction Þ  (2) 

3. axisymmetric flow with no swirl velocity Þ  (3) 

4. negligible gravitational forces in z-dir. Þ  (4) 
 

First consider the continuity equation. 

 Þ  (5) 

Since there is no flow through the pipe wall, we must have ur = 0 (call this condition #6). 
 
Now consider the momentum equation in the z-direction.  Note that the Navier-Stokes equation should not 
be used since the flow is non-Newtonian. 

 (6) 

 (7) 

 
We’re given the expressions for the flow stresses. 

   and    (8) 
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Substitute and simplify. 

   (9) 

(Note:  uz = uz(r) so we may replace the partial derivative in the first term with an ordinary derivative.) 

 

 (10) 

The velocity profile will be symmetric about the centerline of the pipe.  Hence: 

  Þ   (11) 

Simplify Eqn. (10) further. 

 (12) 

 (13) 

Apply the no-slip boundary condition, uz = 0, at r = R to determine the unknown constant. 

    Þ    (14) 

 
Hence, the velocity profile for this flow is: 

 (15) 

or, in dimensionless form: 

 (16) 

Note that dp/dz < 0 Þ C < 0. 
 
The wall shear stress may be found from the given stress relation and velocity profile: 

 (17) 

 (18) 

where 

 (19) 

 (20) 

Thus, 
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  Þ   (21) 

 
 
Note that we could have also arrived at Eqn. (12) by performing a force balance on the differential 
fluid element shown below. 

 
 
 
 
 
 
 
 

 
Since the flow is steady and fully developed in the z-direction, the forces must balance in the z-direction. 

 (22) 

 

Substituting the given stresses gives: 

 

  (This is the same as Eqn. (12)!) (23) 
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Consider a viscous flow through a pipe with an equilateral triangle cross-section: 
 
 
 
 
 
 
 
 
 

a. Determine the velocity distribution in the pipe assuming a constant pressure gradient, dp/dz<0.  Hint:  
Find a function that is zero on the boundary and check if it’s a solution. 

b. Determine the magnitude and location of the maximum shear stress on the pipe wall. 
c. Determine the average shear stress that the walls exert on the fluid.  Note:  There is an easy way to 

calculate this quantity. 
 
 
SOLUTION: 
 
First, make several assumptions regarding this flow: 
 
1. constant property fluid Þ r, µ are constants 

2. fully-developed flow in the z-direction Þ  

3. steady flow Þ  

4. negligible body forces Þ  
5. laminar, unidirectional flow in z-direction Þ  
 
Simplify the Navier-Stokes equation in the z-direction: 

 

   (Poisson’s Equation!) (1) 

 
Notes: 
1. Using our assumptions the continuity equation is automatically satisfied. 
2. The x and y components of the Navier-Stokes equations indicate that:   

  Þ  p = p(z) 

 
The boundary conditions for this flow are that there is no slip at the walls and that the flow velocities 
remain finite everywhere. 
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If we can find a velocity profile that satisfies the PDE and the boundary conditions, then it will be the 
solution for the flow.  Let’s try to find a function that will automatically satisfy the no-slip condition at the 
pipe walls.  If we multiply together the equations describing each boundary, then the resulting equation will 
satisfy the boundary conditions at any boundary. 
 

Wall 1:  

Wall 2:  
Wall 3:  
 

 
 
 
Let’s assume: 

 (2) 

which, after some algebra, simplifies to: 
 (3) 

since this function will automatically satisfy the boundary conditions. 
 
The function must also satisfy the governing equations to be a valid fluid velocity profile.  It clearly 
satisfies the continuity equation since uz = uz(x, y) and ux = uy = 0.  To see if it satisfies the Navier-Stokes 
equation, substitute Eqn. (3) into Eqn. (1). 

 

    If c has this value, then the z-momentum equation is satisfied. (4) 

Hence, the velocity profile is: 

 (5) 

or 

 (6) 
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The shear stress acting on the fluid is found using the constitutive stress-strain rate relation for a Newtonian 
fluid: 

 

For this flow, ux  = uz = 0 and uz = uz(x, y) so that we have as the only shear stresses: 

 (7) 

 (8) 

Since the flow has symmetry, the shear stress distribution on each of the walls will be the same.  Let’s find 
the maximum shear stress on the x = a wall (note that syz = 0 along this wall): 

 

  which occurs at y = 0 along the x = a wall (9) 

Note that from symmetry, the other two walls will also have the same maximum shear stress at their mid-
lines. 
 
The average shear stress can be found by considering a force balance on a differential CV: 
 

where: 
º average wall shear stress 

P º pipe perimeter =  

A º pipe cross-sectional area = 
 

 
 
 

 

 

   

(This is the shear stress the wall applies to the fluid.  Note that dp/dz < 0 for flow in the positive z-
direction.) 
 

We could have also found the average wall stress by averaging the stress distribution found earlier for the x 
= a wall. 

 

  (This is the same answer as before!) 
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To find the stress distribution on the walls other than the x = a wall, we need to make use of Cauchy’s 
formula concerning stresses.  Consider for example the wall described by the equation: 

  (This is wall #1.) (10) 
The normal vector for this surface is: 

 

The stress on this surface (acting in the z-direction) is: 
 (11) 

where szx and szy are given by Eqns. (7) and (8), respectively.  Along the wall surface (given by Eqn. (10)) 
we have: 

 (12) 

 (13) 

Substituting Eqns. (12) and (13) into Eqn. (11) gives: 

 

 (14) 

 occurring at x = -a/2 (at the middle of the wall). 
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" ê y

ˆz ji j zx x zy yn n ns s s s= = +n

( )2 2 21
3

1 4 4 2
4zx

dp x xa a x xa
a dz

s æ ö é ù= - + + - -ç ÷ ë ûè ø

2 22 3 4 3 2 3 4 3
3 3 3 3

1
4zy

dp x xa xa a
a dz

s æ ö é ù= - + - -ç ÷ ë ûè ø

( ) ( )2 2 2 23 2 3 2 3 4 31 2 2 4
ˆ 2 3 3 3 2 3 3 3

1
4z ji j

dpn x xa a x xa a
a dz

s s æ ö é ù= = - - - - + + + -ç ÷ ë ûè ø
n

2 284 4
ˆ 3 3 3

1
4z

dp x xa a
a dz

s æ ö é ù\ = - + -ç ÷ ë ûè ø
n

[ ]
( )ˆ2 ,

3max
4zx a a

dp
a dz

s
= -

æ ö= ç ÷
è ø

n

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

C. Wassgren 893 2024-02-01



  ns_27 

Page 1 of 2 

Consider steady flow at horizontal velocity U (at y → ∞) past an infinitely long and wide plate.  The plate 
is porous and there is uniform flow normal to the surface at a constant velocity, V.  Assume there are no 
pressure gradients and that gravity is negligible. 
  
 
 
 
 
 
 
 
 
 
 
a. Determine the y-velocity at all points in the flow field. 
b. Determine the x-velocity at all points in the flow field. 
c. What restriction is there on the velocity V? 
d. Quantify how far into the flow the wall effects are felt.  Clearly indicate what criterion you are using.   
 
 
SOLUTION: 
 
Make the following assumptions about the flow: 

1. The flow is planar.   Þ  

2. The flow is steady. Þ  

3. The flow is fully-developed in the x-direction. Þ  

4. Neglect gravity. Þ  

5. No pressure gradients. Þ  

 
The continuity equation for an incompressible, planar flow is: 

  Þ    (call this condition #6) 

Since uy is not a function of x (#3), z (#1), or y (#6), then uy = constant.  Since the flow at the wall has 
vertical velocity, V: 

 (1) 
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Now examine the x-momentum equation: 

 

  (2) 

where the partial derivatives have been replaced by ordinary derivatives since ux is not a function of x (#3) 
or z (#1).  Not also that n = µ/r. 
 
Solving Eqn. (2): 

 

 

 

 (3) 

 
Apply the following boundary conditions: 

no-slip at y = 0 Þ  (4) 

horz. velocity is U as y → ∞ Þ  (5) 
 

 (6) 

 (7) 

Note that in order to have ux remain finite as y → ∞, we must have V < 0.  Hence, Eqn. (7) implies that c4 = 
U.  Substituting and simplifying gives: 

 (8) 

 
To quantify the distance into the flow that the wall effects are felt, use the 99% boundary layer thickness, d, 
i.e.: 
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An incompressible, Newtonian liquid of density r and dynamic viscosity µ is sheared between concentric 
cylinders as shown in the sketch below.  The inner cylinder radius is Ri and the outer cylinder radius is Ro. 
 

 
 
 
 
 
 
 
 

a. Determine the velocity profile for the liquid in the gap assuming that the inner cylinder rotates with 
constant angular speed, w.  Do not assume that (Ro – Ri) << Ro. 

b. Determine the torque (per unit depth into the page) acting on the outer wall of the cylinder. 
 
 

SOLUTION: 
 
The continuity and momentum equations in cylindrical coordinates for an incompressible, Newtonian fluid 
with constant viscosity are: 
 

 

 
Make the following additional assumptions: 

1. steady flow Þ  

2. neglect gravity Þ  

3. planar flow Þ  

4. axi-symmetric flow Þ  

5. no pressure gradients in the q direction Þ   (due to the axi-symmetric flow assumption) 

Simplify the continuity equation using the given assumptions: 

  Þ   Þ   

Note that from assumptions #3 and #4, ur is not a function of either z or q.  Since there is no radial flow at 
the inner boundary (r = Ri), the constant in the previous equation must be zero.  Thus,  
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Now simplify the momentum equations using our assumptions and condition #6: 

 

Þ  

 

Þ  

Note that since uq is not a function of z or q (assumptions #3 and #4), the partial derivatives with respect to 
r in the last equation can be written as ordinary derivatives.  Integrating the second equation with respect to 
r twice gives: 

  

where c1 and c2 are constants.   
 
The boundary conditions for the flow are: 

no-slip at r = Ri:   

no-slip at r = Ro:    
The boundary conditions are used to determine the unknown constants. 
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  Þ   
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The torque on the outer wall (assuming unit depth) is given by: 

 

 

Note that the stress srq is the stress acting on the fluid.  The stress acting on the cylinder will be in the 
opposite direction.  Thus, the torque on the cylinder is: 
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Consider a Newtonian liquid film that is driven by a constant shear stress, tyx(y = h) = C, applied by a plate 
to the top surface.  Assume that the liquid film is flat, fully developed, and has a constant pressure gradient 
in the x-direction such that there is zero net flow rate (Q = 0).   
 
 
 
 
 
 
 
 
Determine the velocity profile u(y) and the pressure gradient dp/dx.   
a. Use the continuity and Navier-Stokes equations to solve this problem. 
b. Use a differential control volume and apply conservation of mass and the linear momentum equation to 

solve this problem. 
 
 
SOLUTION: 
Make the following assumptions about the flow: 

1. The flow is planar.   Þ  

2. The flow is steady. Þ  

3. The flow is fully developed in the x-direction. Þ  

4. Gravity acts in the –y direction. Þ  
 

The continuity equation for an incompressible, planar flow is: 

  Þ  .    (1) 

Since the flow is also steady (#2), fully developed (#3), and planar (#1), the y-velocity can be at most a 
constant.  Since uy = 0 at the wall, then uy everywhere is: 

  (Call this condition #5.) (2) 
 

Now examine the x-momentum equation: 

 

  (3) 

where the partial derivatives have been replaced by ordinary derivatives since ux is not a function of x (#3), 
t (#1), or z (#1).   
 
Now consider the y-momentum equation, 
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, (5) 

, (6) 

. (7) 
Note that the pressure is not a function of the z direction since the flow is planar.   
 
Now solve Eqn. (3) for the velocity profile. 

, (8) 

 (9) 

 (10) 

 
Apply boundary conditions to determine the unknown constant c1 and c2. 

no-slip at y = 0 Þ    Þ  (11) 

constant stress at y = h Þ  Þ  (12) 

     (13) 

 
Re-write the velocity profile, 

 , (14) 

 
Since the flow has zero volumetric flow rate, 

, (15) 

, (16)  

, (17) 

, (18) 

, (19) 

.  Note that   (refer to Eq. (7)). (20) 
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Substitute back into Eq. (14) to get, 

, (21)  

. (22) 

 
 
Now solve the same problem, but using the fixed differential control volume shown in the following figure. 
 
 
 
 
 
 
 
 
 
Apply conservation of mass, 

, (23) 

where, 

 (steady), (24) 

, (25) 

(Note:  Assuming planar flow so the z component isn’t shown.) 

. (26) 

Note that the flow is fully developed in the x direction, planar, and steady,  

. (27) 

Substitute and simplify, 

  =>  . (28) 

Using the same logic used to derive Eq. (2) gives uy = 0. 
 
Now apply the linear momentum equation in the x direction, 
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. (33) 

 
Substitute and simplify, 

, (34) 

, (35) 

. (36) 

Note that, 

. (37) 

Since the flow is steady, full developed in the x direction, and planar, Eq. (37) can be written in terms of an 
ordinary derivative, 

 

Thus, Eq. (36) becomes, 

, (38)  

. (39) 

This equation is the same as that found previously (Eq. (8)).   
 
The pressure gradient in the y direction can be found by applying the linear momentum equation in the y 
direction to the same control volume, 
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, (46) 

Note that, 

, (47) 

where the order of the partial derivative have been flipped near the end of the equation. 
 
Equation (46) now becomes, 
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, (49) 

which is precisely the same as Eq. (6) 
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8.12. Lubrication Flow

One very important application of creeping flows is in the study of lubrication problems. Let’s consider the
example of a simple, stationary, planar slipper pad bearing as shown in Figure 8.20.

Figure 8.20. The slipper pad bearing lubrication flow geometry.

To analyze this flow, let’s examine the typical magnitudes of various terms in the Navier-Stokes equations.
First let’s consider the x-component of the Navier-Stokes equations for the steady flow of an incompressible
fluid with negligible body forces (the gravitational body force term in lubrication problems is typically very
small in comparison to the other term and so is neglected),

ρ

(
u
∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x
+ µ

(
∂2u

∂x2
+
∂2u

∂y2

)
. (8.278)

The characteristic magnitudes of the velocity, length, and vertical direction are,

u ∼ U x ∼ L y ∼ h0. (8.279)

The characteristic y-velocity can be determine from the Continuity Equation,

∂u

∂x
+
∂v

∂y
= 0 =⇒ ∂v

∂y
=
∂u

∂x
∼ U

L
=⇒ v ∼ Uh0

L
. (8.280)

Now examine the magnitudes of the convective inertial forces,

ρu
∂u

∂x
∼ ρU2

L
and ρv

∂u

∂y
∼ ρU2

L
. (8.281)

Both convective terms are of similar magnitude. The magnitudes of the viscous forces are,

µ
∂2u

∂x2
∼ µU

L2
and µ

∂2u

∂y2
∼ µU

h2
0

. (8.282)

Since we’re investigating flows where h0/L� 1, the second term will dominate the magnitude of the viscous
forces.

Let’s examine the case where convective inertial terms can be neglected in comparison to the viscous terms
(a creeping flow),

ρU2

L
� µU

h2
0

=⇒ ρUL

µ

(
h0

L

)2

� 1, (8.283)

∴ ReL

(
h0

L

)2

� 1 . (8.284)

To check the value of this ratio for a typical lubrication problem, consider the following parameters

U = 10 m s−1, L = 4 cm, h0 = 0.1 mm, ν = 5× 10−4 m2/s (SAE 30 oil),
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which gives,

ReL = 800, but ReL

(
h0

L

)2

= 0.005.

Thus, this flow can be considered a creeping flow.

Using the simplifications just discussed, the Navier-Stokes equation in the x-direction reduces to,

∂p

∂x
= µ

∂2u

∂y2
. (8.285)

Note that we expect the magnitude of the pressure gradient in the x-direction to be of the order,

∂p

∂x
∼ µU

h2
0

, (8.286)

based on the previous scaling arguments.

Considering the Navier-Stokes equation in the y-direction we find that the pressure gradient in the y-direction
should be of the order, (

∂p

∂y
∼ µU

h0L

)
�
(
∂p

∂x
∼ µU

h2
0

)
, (8.287)

where h0/L � 1 has been assumed. Thus, it’s reasonable to assume that the pressure remains essentially
constant in the y-direction in comparison to how the pressure changes in the x-direction.

Solving the differential equation given in Eq. (8.285) gives,

u =
1

2µ

∂p

∂x
y2 + c1y + c2. (8.288)

Applying no-slip boundary conditions at the top and bottom walls,

u(y = 0) = U and u(y = h) = 0, (8.289)

results in the following velocity profile,

u =
h2

2µ

(
−∂p
∂x

)(y
h

)(
1− y

h

)
︸ ︷︷ ︸

Poiseuille flow

+U
(

1− y

h

)
︸ ︷︷ ︸
Couette flow

. (8.290)

We see that the velocity profile is a combination of a Poiseuille flow and a Couette flow.

We now have a relation relating two unknowns, the velocity profile and the pressure distribution. We must
use another relation solve for the pressure distribution (or velocity distribution) in terms of known quantities.
So far we’ve used the momentum equations to derive Eq. (8.290), now let’s consider the Continuity Equation.
Specifically, the mass flow rate at any cross-section must remain the same,

∂ṁ

∂x
=

∂

∂x

ˆ y=h(x)

y=0

udy = 0. (8.291)

Note that the fluid was assumed incompressible when writing this equation. Substituting in for the velocity
using Eq. (8.290),

∂

∂x

ˆ y=h(x)

y=0

udy =
∂

∂x

ˆ y=h(x)

y=0

[
h2

2µ

(
−∂p
∂x

)(y
h

)(
1− y

h

)
+ U

(
1− y

h

)]
= 0, (8.292)

=⇒ ∂

∂x

[
h2

2µ

(
−∂p
∂x

)(
h2

2h
− h3

3h2

)
+ U

(
h− h2

2h

)]
= 0, (8.293)

=⇒ ∂

∂x

[
h3

12µ

(
−∂p
∂x

)
+ U

h

2

]
= 0, (8.294)

∴
∂

∂x

(
h3 ∂p

∂x

)
= 6µU

∂h

∂x
. (8.295)

This last equation is known as Reynolds’ Equation for Lubrication in a Planar Channel.
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Notes:

(1) We can use Reynolds’ Equation to solve for the pressure distribution p(x) assuming we know the
bearing geometry h(x). Let’s consider the simple example using the slipper pad bearing shown in
Figure 8.20. The bearing geometry, which is a straight line, is given by,

h(x) = h0 + (h1 − h0)
x

L
. (8.296)

Substituting this expression for h(x) into Eq. (8.295) and solving for the pressure gradient using
the boundary conditions p(x = 0) = p(x = L) = p∞ gives,

p− p∞
µUL
h2
0

=
6
(
x
L

) (
1− x

L

) (
1− h1

h0

)
(

1 + h1

h0

) [
1−

(
1− h1

h0

) (
x
L

)]2 . (8.297)

A plot of this dimensionless pressure distribution is shown in Figure 8.21. The magnitude of the

Figure 8.21. The dimensionless pressure plotted as a function of dimensionless position in
a slipper pad bearing.

maximum pressure can be quite large. Consider, for example, the following typical parameters: U =
10 m s−1, L = 4 cm, h0 = 0.1 mm, µ = 0.4 Pa s (SAE 30 oil) =⇒ µUL/h2

0 ≈ 1.6 MPa ≈ 160 atm!
A more accurate analysis of the flow would also include variations in the fluid viscosity due to the
large pressure variations.

(2) A truly symmetric bearing and flow would result in zero lift on the bearing since the pressure
increase on the upstream side of the bearing would be offset by an equivalent pressure reduction
on the downstream side (the solid line in Figure 8.22). The reason real bearings can support a
load is because the pressure distribution is, in fact, not symmetric. When a liquid flows past the
centerline of the bearing the pressure begins to decrease below zero gage pressure as shown in the
figure. However, the minimum pressure is limited by the vapor pressure of the liquid (the dashed
line in the figure). Hence, there is a net positive gage pressure force acting on the bearing surface,
which acts to produce a lift force on the bearing.

8.13. Review Questions

(1) Describe several common assumptions used to simplify the Navier-Stokes equations.
(2) Describe several common boundary conditions used when solving the Navier-Stokes equations.
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Figure 8.22. A symmetric planar bearing geometry. The symmetric solid line is the pres-
sure distribution that would occur if cavitation didn’t occur, e.g., a gas as the lubricating
fluid. In this situation there would be no lift force. If cavitation does occur, which would
be the case for liquid as the lubricating fluid, then the pressure on the downstream side of
the bearing would follow the dashed line. For this case there would be a net lift force on the
bearing.

(3) At what (rule of thumb) Reynolds number does transition from laminar to turbulent flow occur for
planar Couette flow?

(4) At what (rule of thumb) Reynolds number does transition from laminar to turbulent flow occur for
Poiseuille flow?

(5) Sketch the velocity profiles for a planar Couette-Poiseuille flow with different pressure gradients.
(6) What is meant by the “shear layer thickness”?
(7) How does the shear layer thickness typically depend on the kinematic viscosity for laminar flows?
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A hydrostatic bearing is to support a load of 3600 lbf per foot of length perpendicular to the diagram.  The 
bearing is supplied with SAE 30 oil at 100 ºF and 100 psig through the central slit.  Since the oil is viscous 
and the gap is small, the flow may be considered fully developed.  Calculate: 
a. the required width of the bearing pad, 
b. the resulting pressure gradient, dp/dx, and 
c. the gap height if Q = 0.0006 ft3/min per foot of length. 
 
 
 
 
 
 
 
SOLUTION: 
 
For a fully-developed flow, the pressure gradient remains constant, i.e. dp/dx = c, where the constant c is: 

  (1) 

where p0 is the gage pressure at the origin. 
 
The pressure in the gap is found by integrating the pressure gradient. 

 (2) 

   (3) 
 
The force (per unit depth into the page) acting on the bearing pad is found by integrating the pressure force.  
Since the geometry is symmetric, the total force is twice the force acting on one side of the bearing pad.  
Also note that gage pressures are being used.  

 (4) 

 (5) 

Substitute Eqn. (1) into Eqn. (5) and solve for the width, W, in terms of F. 

 (6) 

 (7) 

Using the given data: 
F  = 3600 lbf/ft 
p0 = 100 psi = 14400 lbf/ft2 

Þ  W = 0.5 ft 
 

The pressure gradient is found using Eqn. (1) and the previous result. 

 (8) 

Þ  dp/dx = -57600 lbf/ft3 = -400 psi/ft 
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The gap height is found using the velocity profile within the gap.   

 (9) 

where, for a planar Poiseuille flow (refer to the course notes or course textbook), the velocity profile is: 

  (10) 

Substituting Eqn. (10) into Eqn. (9) and simplifying gives: 

 (11) 

 (12) 

 
Thus: 

 (13) 

Using the given data: 
µ = 2.30e-3 lbf×s/ft2 
Q = 0.0006 ft3/min/ft  
dp/dx = -400 psi/ft 
Þ h = 1.6e-3 in. 
 

Double-check the laminar flow assumption by calculating the Reynolds number. 

   (14) 

where the average velocity, , is found via:   

 (15) 

Using the given data: 
n = 1.29e-3 ft2/s 
Þ  Re = 8.04e-4 < 1500  Þ  The laminar flow assumption is valid. 
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Viscous oil is supplied at a low volumetric flow rate, Q, through a central opening to fill the space between 
two parallel disks as shown in the figure. 
a. Assuming that the flow is axi-symmetric and that the gap is narrow (h << R), simplify the Navier-

Stokes equations to the form that describes the flow field in the narrow gap. 
b. Solve the equation in part (a) for p-patm and the velocity field in terms of Q for the narrow gap. 

 
 
 
 
 
 
 
 
 
 
 
 
 

SOLUTION: 
 
Simplify the continuity and Navier-Stokes equations (consider only the r-direction) using the following 
assumptions: 

1. steady flow Þ  

2. axi-symmetric flow Þ  

3. no “swirl” velocity Þ  
4. neglect body forces Þ  
5. laminar flow Þ  
 

Continuity: 

 

  (Call this condition #6.) (1) 

 
Navier-Stokes in the r-direction: 

 

 (2) 
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Since the gap size is small compared to the channel length, i.e. h << R, it is possible to reduce Eqn. (2) 
further using scaling arguments.  The velocity and lengths in the flow are expected to scale with the 
following parameters: 

 (3) 

Hence, the ratio of the convective inertial term to the viscous term is of the order: 

 (4) 

Thus, as long as the Reynolds number is not very large (it won’t be here since the flow rate is small, the oil 
is viscous, and r does not approach zero (so that u remains finite)) and h << R, then the convective inertial 
term may be neglected in comparison to the viscous term.  As a result, Eqn. (2) simplifies to: 

 (5) 

Note that the Navier-Stokes equations in the q and z directions indicate that ¶p/¶q = 0 and ¶p/¶z = 0, 
respectively, so that p = p(r). 
 
Solving the ODE given in Eqn. (5) gives: 

 

 (6) 

where f1(r) and f2(r) are unknown functions of r. 
 

The boundary conditions for the flow are: 
no-slip on the bottom surface Þ  Þ  (7) 

no-slip on the top surface Þ  Þ  (8) 

 
Using the given boundary conditions, Eqn. (6) becomes: 

 (9) 

 
From conservation of mass, the flow rate at any radius, r, is: 

 

 (10) 
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Substituting into Eqn. (9) gives: 

   

  where R0 £ r £ R (11) 

 
Re-arranging Eqn. (10) and solving for the pressure as a function of r: 

 

 

   where R0 £ r £ R (12) 
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A slider bearing has an exponentially varying gap so that: 
 

where k is a positive constant and the coordinate system is shown in the illustration.  If the pressure is zero 
(gage pressure) at each end of the slider, determine: 
a. and plot the pressure profile, p(x), 
b. the total lift on the stationary part, and  
c. the total drag force on the stationary part. 

 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 

 
SOLUTION: 
From the Reynolds lubrication equation, 

!
!"
!!#
!"
ℎ$# = −6𝜇𝑉 !%

!"
   (Note that the plate velocity is in the -x direction.) (1) 

where, 
ℎ = ℎ& exp(𝑘𝑥)  (−𝐿 ≤ 𝑥 ≤ 0), (2) 
ℎ$ = ℎ&$ exp(3𝑘𝑥), (3) 
!%
!"
= 𝑘ℎ& exp(𝑘𝑥). (4) 

Substitute and integrate, 
!
!"
4!#
!"
ℎ&$ exp(3𝑘𝑥)5 = −6𝜇𝑉𝑘ℎ& exp(𝑘𝑥), (5) 

!#
!"
ℎ&$ exp(3𝑘𝑥) = −6𝜇𝑉ℎ& exp(𝑘𝑥) + 𝑐', (6) 

!#
!"
= − ()*

%!"
exp(−2𝑘𝑥) + 𝑐+ exp(−3𝑘𝑥), (7) 

𝑝 = $)*
,%!"

exp(−2𝑘𝑥) − 𝑐$ exp(−3𝑘𝑥) + 𝑐-, (8) 

𝑝. ≔ #
#$%
&'!
"
= exp(−2𝑘𝐿𝑥′) − 𝑐/ exp(−3𝑘𝐿𝑥′) + 𝑐(. (9) 

where x’ = x/L. 
 
Apply boundary conditions (note that the following are gage pressures), 

𝑝.(𝑥. = 0) = 0  =>  0 = 1 − 𝑐/ + 𝑐(  =>  𝑐( = 𝑐/ − 1, (10) 
𝑝′(𝑥. = −1) = 0  =>  0 = exp(2𝑘𝐿) − 𝑐/ exp(3𝑘𝐿) + (𝑐/ − 1), (11) 

Solve for c5 and c6, 
𝑐/[exp(3𝑘𝐿) − 1] = exp(2𝑘𝐿) − 1  =>  𝑐/ =

012(+,4)6'
012($,4)6'

 ,  (12) 

𝑐( =
012(+,4)6'
012($,4)6'

− 1 . (13) 
  

( ) ( )kxhxh exp0=

( ) ( )kxhxh exp0=

L 

V 

h0 

x 

y 
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Thus, 
𝑝. = exp(−2𝑘𝐿𝑥′) − 4012(+,4)6'

012($,4)6'
5 exp(−3𝑘𝐿𝑥.) + 4012(+,4)6'

012($,4)6'
5 − 1, (14) 

𝑝. = exp(−2𝑘𝐿𝑥′) − 1 + 4012(+,4)6'
012($,4)6'

5 [1 − exp(−3𝑘𝐿𝑥′)]. (15) 
or, using dimensional variables, 

#
#$%
&'!
"
= exp(−2𝑘𝑥) − 1 + 4012(+,4)6'

012($,4)6'
5 [1 − exp(−3𝑘𝑥)]. (16) 

 
The dimensionless pressure is plotted below for various kL values. 

 
 
Since the pressure on the pad is much larger than the shear stress on the part, the lift will be due primarily 
to the pressure, 

𝑝~ )*4
%!"

  and  𝜏~ )*
%!

  so  #
7
~!)*4

%!"
# !%!

)*
# = 4

%!
≫ 1. (17) 

 
The lift on the pad is, 

lift = ∫ 𝑝"8&
"864 𝑑𝑥,    (18) 

(Pressure multiplied by the projected area in the horizontal direction, assuming unit depth into the page.)  In 
dimensionless form, 

lift. = 9:;<
#$%(
&'!
"
= ∫ 𝑝′&

6' 𝑑𝑥′, (19) 

9:;<
#$%(
&'!
"
= ∫ Hexp(−2𝑘𝐿𝑥′) − 1 + 4012(+,4)6'

012($,4)6'
5 [1 − exp(−3𝑘𝐿𝑥′)]I 𝑑𝑥′&

6' , (20) 

9:;<
#$%(
&'!
"
= '

6+,4
[1 − exp(2𝑘𝐿)] − 1 + 4012(+,4)6'

012($,4)6'
5 H1 − '

6$,4
[1 − exp(3𝑘𝐿)]I, (21) 

9:;<
#$%
&( =

(
'!
>
" =

'
+,4

[exp(2𝑘𝐿) − 1] − 1 + 4012(+,4)6'
012($,4)6'

5 H1 + '
$,4

[1 − exp(3𝑘𝐿)]I. (22) 
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The drag on the pad is, 
drag = −∫ 𝑝?8%!

?8%! 012(6,4)
𝑑𝑦,   (pressure acting on the vertical projected area)  (23) 

where, 
𝑦 = ℎ& exp(𝑘𝑥)  =>  𝑑𝑦 = 𝑘ℎ& exp(𝑘𝑥) 𝑑𝑥 (24) 

and, 
𝑦 = ℎ&  =>  𝑥 = 0  and  𝑦 = ℎ& exp(−𝑘𝐿)  =>  𝑥 = −𝐿 . (25) 

Thus, 
drag = −𝑘ℎ& ∫ 𝑝"8&

"864 exp(𝑘𝑥)𝑑𝑥,  (26) 
drag = −𝑘ℎ&

$)*
,%!"

∫ Hexp(−2𝑘𝑥) − 1 + 4012(+,4)6'
012($,4)6'

5 [1 − exp(−3𝑘𝑥)]I&
64 exp(𝑘𝑥) 𝑑𝑥,  (27) 

@ABC
#$%
'!

= ∫ Hexp(−𝑘𝑥) − exp(𝑘𝑥) + 4012(+,4)6'
012($,4)6'

5 [exp(𝑘𝑥) − exp(−2𝑘𝑥)]I64
& 𝑑𝑥,  (28) 

@ABC
#$%
'!

= '
6,
exp(−𝑘𝑥)O

&

64
− '

,
exp(𝑘𝑥)O

&

64
+ 4012(+,4)6'

012($,4)6'
5 P'
,
exp(𝑘𝑥)O

&

64
− '

6+,
exp(−2𝑘𝑥)O

&

64
Q,  (29) 

!"#$
!"#
$%

= %
&
[1 − exp(𝑘𝐿)] − %

&
[exp(−𝑘𝐿) − 1] + .'()(+&,).%'()(/&,).%/ 0

%
&
[exp(−𝑘𝐿) − 1] + %

+&
[exp(2𝑘𝐿) − 1]2, (30) 

@ABC
#$%
&'!

= 1 − exp(𝑘𝐿) + 1 − exp(−𝑘𝐿) + 4012(+,4)6'
012($,4)6'

5 4exp(−𝑘𝐿) − 1 + '
+
exp(2𝑘𝐿) − '

+
5, (31) 

@ABC
#$%
&'!

= 2 − exp(𝑘𝐿) − exp(−𝑘𝐿) + 4012(+,4)6'
012($,4)6'

5 4exp(−𝑘𝐿) + '
+
exp(2𝑘𝐿) − $

+
5. (32) 

@ABC
#$%
&(

(
'!

= 2 − exp(𝑘𝐿) − exp(−𝑘𝐿) + 4012(+,4)6'
012($,4)6'

5 4exp(−𝑘𝐿) + '
+
exp(2𝑘𝐿) − $

+
5. (33) 

 
Note that the scaling on the drag force is different than the scaling on the lift, 

lift~ $)*
,4
! 4
%!
#
+
   and   drag~ $)*

,4
4
%!

   =>  lift ≫ drag   since h0/L ≪ 1 (34) 
 
The dimensionless lift and drag are plotted below as functions of kL.  The drag is negative since it points in 
the -x direction. 
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Consider the slow flow (with velocity, U) of a viscous, incompressible fluid between two parallel plates 
separated by a small width, d, as shown in the figure.  Between the plates is an object of characteristic 
length, L, where L >> d. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a. Simplify the governing equations using order of magnitude arguments to a form applicable to this 

geometry.  You may assume a steady flow and neglect body forces. 
b. Using the simplified equations from part (a), determine the fluid velocity components in the x and y 

directions in terms of the local pressure gradients, the fluid dynamic viscosity, the gap width, and the z-
position. 

c. Show that the flow between these plates will produce the same streamlines as those found in a 
potential flow.  Hint:  Show that the same governing equations are satisfied.  Discuss the relation 
between the pressure in this flow and the velocity potential in a potential flow. 

d. Discuss the limitations of using this device to model potential flows. 
 
This type of device is called a Hele-Shaw cell and is often used to visualize potential flows. 
 
 
SOLUTION: 
 
First consider the characteristic dimensions of various parameters in the system: 

 
 

 
From the continuity equation: 

 

 (1) 

 
Now consider the Navier-Stokes equation in the x-direction assuming steady flow and no body forces. 

 (2) 

Note that the first two terms in the viscous forces are much smaller than the last viscous force term since d 
<< L, i.e.: 

 (3) 

~ ~x yu u U
~ ~x y L
~z d

yxz
uuu

z x y
¶¶¶

= - -
¶ ¶ ¶

~z
Udu
L

Þ

   

ux

∂ux

∂x
~U 2

L

!"#
+ uy

∂ux

∂y

~U 2

L

!"#
+ uz

∂ux

∂z
~U 2

L

!"#
= − 1

ρ
∂p
∂x

+ν
∂2ux

∂x2

~νU
L2

!"#
+ν

∂2ux

∂y2

~νU
L2

!"#
+ν

∂2ux

∂z2

~νU
d2

!"#

2 2

U U
L d
n n

<<

L 

d 

U 

object 

x 

y 
z 

z 

y 

d/2 d/2 

side view 

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

C. Wassgren 916 2024-02-01



  ns_22 

Page 2 of 3 

For a slow flow of a viscous fluid with L >> d, inertial terms are expected to be negligible in comparison to 
viscous terms.  Another way of stating this is: 

    (to have creeping flow) (4) 

Note that the pressure gradient will be of the same order of size as the dominant viscous force since it is the 
pressure gradient that drives the flow. 
 
Examining the Navier-Stokes equation in the y-direction will give similar results.  Examining the Navier-
Stokes equation in the z-direction indicates that: 

 (5) 

which implies that the pressure does not vary much in the z-direction (as compared to the x- and y-
directions) and hence is considered to be independent of z, i.e. p = p(x, y). 

 
The Navier-Stokes equations simplify to the following relations using the scaling arguments discussed 
previously. 

 (6) 

 (7) 

No-slip boundary conditions occur at the top and bottom plate surfaces. 

 (8) 

 
Combining Eqns. (6) and (7) into one equation gives: 

 (9) 

Taking the divergence of both sides of the equation results in: 

   (where the continuity equation has been used in the last step) 

   (10) 
Equation (10) is the governing equation for this viscous-dominated flow.  Note that it’s Laplace’s equation, 
which is exactly the same equation for incompressible potential flow (Ñ2f = 0). 
 
Integrate Eqns. (6) and (7) with respect to z (taking into account Eqn. (5)). 

 (11) 

 (12) 

Using the boundary conditions in Eqn. (8) and substituting into Eqns. (11) and (12) gives: 

 (13) 

 (14) 

or, in a more compact form: 

 (15) 
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Note that just like with potential flows, the velocity in this flow is found from the gradient of a function 
(recall that u = Ñf for a potential flow).  In this case, the function is a “constant” multiplied by the 
pressure: 

   (the gradient here operates only in the x and y directions) (16) 
where 

  (At any given elevation, z, the value of c is constant.) (17) 

 
Lastly, there will be no flow through the object’s surface: 

 (18) 

just like the case with a potential flow; however, the viscous-dominated flow will satisfy the no-slip 
condition whereas the potential flow will not.  This region is localized very near to the object’s surface 
since d/L << 1, and it is here where the assumption that ¶u/¶x, ¶u/¶y << ¶u/¶z breaks down.  A small 
distance away from the surface, i.e. outside the boundary layer in the x, y direction, the move essentially 
parallel to the object’s surface and appears visually to not violate the no-slip condition. 
 
We observe that the pressure for this viscous-dominated flow is analogous to the potential function in an 
incompressible potential flow.  The pressure must satisfy Laplace’s equation, just like the potential 
function, the velocity is found from the pressure gradient, just like with a potential flow, and there is no 
flow through the object’s surface with slip along the object’s surface (or at least very near to the surface), 
just like with a potential flow.  As a result, the viscous-flow streamlines look identical to what one would 
expect in a potential flow.  Recall that the limitation for the analogy to be valid is that ReL(d/L)2 << 1. 
 
The following image shows the flow pattern around a cylinder in a Hele-Shaw cell.  Note that the 
streamlines look very similar to what would be expected from a potential flow solution. 
 

 
 

 
 

( )cp c p= Ñ = Ñu

( )2 21
4

1
2

c z d
µ

= -

at object's
surface

ˆ 0× =u n
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CHAPTER 9

Boundary Layers

9.1. Boundary Layer Structure

Boundary layers are the regions near a boundary in which rotational and viscous effects are significant. The
various flow field regions are shown in Figure 9.1.

Figure 9.1. A schematic illustrating different regions in the external flow around an object.

9.2. Boundary Layer Thickness Definitions

Before continuing further, we should define what we mean by the “thickness” of a boundary layer. There are
three commonly used definitions.

(1) 99% boundary layer thickness, δ or δ99%. This thickness definition is the most commonly used
definition. The boundary layer thickness, δ, is defined as the distance from the boundary at which
the fluid velocity, u, is 99% that of the outer velocity, U (Figure 9.2),

u(y = δ) = 0.99U . (9.1)

(2) displacement thickness, δD or δ∗. The displacement thickness, δD, is the distance at which the
undisturbed outer flow is displaced from the boundary by a stagnant layer of fluid that removes the
same mass flow as the actual boundary layer profile (Figure 9.3),ˆ ∞

0

ρ(U − u)dy = ρUδD, (9.2)

δD =

ˆ ∞
0

(
1− u

U

)
dy ≈

ˆ δ

0

(
1− u

U

)
dy. (9.3)
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Figure 9.2. A schematic illustrating the 99% boundary layer thickness definition.

The approximate sign in Eq. (9.3) is because in going from y = δ to y → ∞, the velocity u is less
than 1% different from the free stream value U .

Figure 9.3. A schematic illustrating the displacement boundary layer thickness definition.

(3) momentum thickness, δM or Θ. The momentum thickness, δM , is the thickness of a stagnant layer
that has the same momentum deficit, relative to the outer flow, as the actual boundary layer profile
(Figure 9.4). This concept is similar to the one used to define the displacement thickness except
instead of a mass deficit, the momentum thickness considers the momentum deficit.ˆ ∞

0

uρ(U − u)dy = ρU2δM , (9.4)

δM =

ˆ ∞
0

u

U

(
1− u

U

)
dy ≈

ˆ δ

0

u

U

(
1− u

U

)
dy. (9.5)

Figure 9.4. A schematic illustrating the momentum boundary layer thickness definition.

Notes:
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(1) Usually, δ > δD > δM .
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Consider flow between two parallel plates in which a boundary layer has formed, as shown in the figure. 
 
 
 
 
 
 
 
 
 
 
Determine the mass flow rate in terms of the displacement thickness. 
 
SOLUTION: 
 
Let’s just consider the lower half of the flow since the upper and lower halves are symmetric.  The mass flow rate 
in the lower half is, 

. (1) 

Note that the uniform, outer flow velocity at this cross-section is U’ which is larger than U (to conserve mass).  The 
second integral can be re-written as, 

, (2) 

so that the mass flow rate is, 

 (3) 

 (4) 

 
Thus, if we replace the real velocity profile by a uniform velocity profile at that cross-section (which has velocity 
U‘), we must decrease the effective cross-sectional area (per unit depth) of each half of the pipe at that particular 
location by the displacement thickness, dD, to maintain the same mass flow rate.  Note that we would need to have 
another relation for dD in order to solve for U’ and visa-versa. 
 

   

!m1
2
= ρu dy

0

δ

∫
mass flow rate in BL
"#$

+ ρ ′U dy
δ

H
2

∫
mass flow rate in outer flow
"#% $%

2 2

0 0

H H

U dy U dy U dy
d

d

r r r¢ ¢ ¢= -ò ò ò

   

!m1
2
= ρu dy

0

δ

∫ + ρ ′U dy
0

H
2

∫ − ρ ′U dy
0

δ

∫ = ρ u − ′U( )dy
0

δ

∫ + ρ ′U dy
0

H
2

∫

= −ρ ′U 1− u
′U

⎛
⎝⎜

⎞
⎠⎟

dy
0

δ

∫
=δD

" #$$ %$$
+ ρ ′U H

2( )

   
∴ !m1

2
= ρ H

2 −δ D( ) ′U

H/2 

H/2 boundary layer velocity, u(y) 

free stream 
velocity, U 

core velocity, U’ 
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Using the Linear Momentum Equation, determine the viscous drag on a flat plate in terms of the momentum 
thickness.  Assume a steady flow with the pressure everywhere equal.  Make use of the given control volume. 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
Apply the LME in the x-direction to the CV shown to determine the drag acting on the fluid (or the plate) over the 
distance x, 

, (1) 

where the height, h, is found via COM on the same CV to be, 

, (2) 

so that the drag is, 

 , (3) 

 (4)
  

We see that the drag is related to the momentum thickness.  Note that this particular example is for a situation 
with no pressure gradients (the pressure is a constant).  The drag expression will be different if the pressure varies 
for the flow, but the resulting drag expression will still include the momentum thickness. 
 
 

( ) 2 2
rel

CV CS 0

      x x
dD u dV u d D u dy U h
dt

d

r r r r- = + × Þ - = -ò ò òu A

0 0

          uUh udy h dy
U

d d

r r= Þ =ò ò

   

−D = ρu2 dy
0

δ

∫ − ρU 2 u
U

dy
0

δ

∫      ⇒      D = ρU 2 u
U

1− u
U

⎛
⎝⎜

⎞
⎠⎟

dy
0

δ

∫
=δM

! "## $##

2
MD Ur d\ =

y 

x 

U 

d 

U 

u 

x 

top of CV follows a streamline so that there is 
no flow out from the top of the CV 

h 

D 
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One method proposed to decrease drag and avoid boundary layer separation on aircraft is to use suction to 
remove the low momentum fluid near the aircraft surface.  By removing the low momentum fluid near the 
surface, the boundary layer remains more stable and transition to a turbulent boundary layer is delayed.  
This method has been attempted in practice (Aviation Week & Space Technology, Oct. 12, 1998, pg. 42).  
Airbus tested a micro-perforated titanium skin on an Airbus A320 aircraft fin.  The ultimate goal of Airbus’ 
tests was to reduce wing drag by 10-16% and empenage/nacelles drag by nearly 5%.  Fuel consumption 
was expected to decrease by as much as 13%. 
 
To analyze this flow, consider a laminar boundary layer on a porous flat plate.  Fluid is removed through 
the plate at a uniform velocity, V.  The thickness of the boundary layer is denoted by d and the velocity 
outside the boundary layer is a constant, U.  Assuming that the velocity profile, u, is given by a power law 
expression (n is a positive constant describing the shape of the profile and y is the vertical distance from the 
surface of the plate): 
 

 

 
Determine: 
1. the momentum thickness of the boundary layer in terms of d 
2. the drag acting on the plate over a length L if the plate has a depth b into the page (express your answer 

in terms of dM.) 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

SOLUTION: 
 

Determine the momentum thickness from its definition, 

 

 (1) 

1
nu y

U d
æ ö= ç ÷
è ø

  

δM = u
U

1− u
U

⎛
⎝⎜

⎞
⎠⎟
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∫ dy

= y
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1
n
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1
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⎢
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⎥
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⎠⎟
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⎢
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⎥
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⎠⎟
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⎠⎟
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⎢
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⎥
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⎢
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⎦
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⎥
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Determine the drag using the linear momentum equation in the x-direction using the control volume shown 
below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

where 

  (steady flow) 

   

 
  (Since U is a constant, the pressure will remain constant.) 

Substituting and simplifying gives, 

 (2) 
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d d
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The height, h, can be found using conservation of mass on the same control volume, 

 

where, 

  (steady flow) 

 

Substituting and simplifying gives, 

 

 (3) 

 
Substituting Eqn. (3) into Eqn. (2) gives, 

 (4) 

or 

 (5) 
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9.3. Boundary Layer Equations

To determine the boundary layer velocity profile for a given flow, we need to go back to the governing
equations of fluid motion. Let’s consider steady, incompressible, laminar flow over a sharp-edged flat plate
as shown in Figure 9.5.

Figure 9.5. A schematic showing the formation of a boundary layer on a flat plate. The
dashed line is the 99% boundary layer thickness and the solid line is a typically flow stream-
line.

In the following analysis, we’ll assume that the boundary layer thickness, δ, is much smaller than the distance
from the leading edge of the plate, x,

δ

x
� 1. (9.6)

To help simplify the governing equations, let’s make some estimates of the magnitudes of some of the other
parameters,

u ∼ U, x ∼ x, y ∼ δ. (9.7)

From the Continuity Equation,

∂u

∂x
+
∂v

∂y
= 0 =⇒ ∂v

∂y
∼ ∂u

∂x
∼ U

x
=⇒ v ∼ Uδ

x
. (9.8)

We can use these estimates in the momentum equations (Navier-Stokes equations) to determine if any terms
are small in comparison to the other terms in the equations. Note that body forces are neglected in the
following equations since they are typically very small in comparison to the other terms,

x-dir: u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
= ν

(
∂2u

∂x2
+
∂2u

∂y2

)
, (9.9)

y-dir: u
∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
= ν

(
∂2v

∂x2
+
∂2v

∂y2

)
. (9.10)

x-dir:
U2

x
+
U2

x
= −1

ρ

∂p

∂x
+
νU

x2
+
νU

δ2
, (9.11)

y-dir:
U2

x

(
δ

x

)
+
U2

x

(
δ

x

)
= −1

ρ

∂p

∂y
+
νU

x2

(
δ

x

)
+
νU

δ2

(
δ

x

)
. (9.12)

Since we’re assuming that δ � x, the second viscous term in the x momentum equation is much greater than
the first viscous term,

νU

x2
� νU

δ2
, (9.13)
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so the first viscous term can be neglected. Also, since the fluid in the boundary layer is being accelerated
in the x-direction despite strong viscous forces, we’ll assume that the inertial terms are of the same order as
the viscous term,

U2

x
∼ νU

δ2
=⇒ δ ∼

√
νx

U
. (9.14)

Thus, we expect the boundary layer thickness to scale with x for a laminar flow over a flat plate. Furthermore,
since we assumed that δ � x, we have,

δ

x
� 1 =⇒

√
ν

Ux
� 1 =⇒ Rex � 1 . (9.15)

The assumption that δ � x is the same as saying that the Reynolds number based on the x-position must
be much greater than one.

Now let’s compare the magnitude of the pressure gradient in the x-direction to the magnitude of the pressure
gradient in the y-direction. From the x-momentum equation we see that,

∂p

∂x
∼ ρU2

x
∼ µU

δ2
, (9.16)

From the y-momentum equation,

∂p

∂y
∼ ρU2

x

(
δ

x

)
∼ µU

δ2

(
δ

x

)
. (9.17)

Since δ � x,

∂p

∂x
� ∂p

∂y
, (9.18)

so that the pressure remains essentially constant in the y-direction in comparison to how the pressure changes
in the x-direction, i.e., p = p(x). Thus, we can use the pressure in the outer potential flow, determined using
Bernoulli’s equation, to determine how p varies with x since the pressure is essentially constant in the y-
direction,

p+
1

2
ρU2 = constant =⇒ ∂p

∂x
= −ρU ∂U

∂x
. (9.19)

Substituting this relation into the x-momentum equation and simplifying gives,

momentum: u
∂u

∂x
+ v

∂u

∂y
= U

∂U

∂x
+ ν

∂2u

∂y2
,

continuity:
∂u

∂x
+
∂v

∂y
= 0,

boundary conditions: u(x, y = 0) = 0 (no-slip at surface)

v(x, y = 0) = 0 (no flow through the surface)

u(x, y →∞) = U (inner flow matches outer flow)

assuming: Rex :=
Ux

ν
� 1.

(9.20)

(9.21)

(9.22)

(9.23)

(9.24)

(9.25)

These are known as the Boundary Layer Equations!

Notes:

(1) The velocity U is the outer flow velocity, i.e., the velocity just outside the boundary layer. It is not
necessarily the upstream velocity, U∞.
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9.4. Exact Solution for Laminar Boundary Layer Flow over a Flat Plate with No Pressure
Gradient (aka the Blasius Solution)

In the previous section we developed the Boundary Layer Equations for steady, incompressible, laminar flow
over a sharp-edged flat plate as shown in Figure 9.5. For flow over a flat plate, the outer potential flow
velocity, U will remain constant if the displacement thickness remains small (Rex � 1 so that the outer flow
is not perturbed much),

U = constant =⇒ ∂U

∂x
= 0 =⇒ ∂p

∂x
= 0, (9.26)

so that the boundary layer equations simplify to,

momentum: u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
, (9.27)

continuity:
∂u

∂x
+
∂v

∂y
= 0, (9.28)

boundary conditions: u(x, y = 0) = 0 (no-slip at surface) (9.29)

v(x, y = 0) = 0 (no flow through the surface) (9.30)

u(x, y →∞) = U (inner flow matches outer flow) (9.31)

assuming: Rex :=
Ux

ν
� 1. (9.32)

Notice that there’s no characteristic length scale in the x-direction so we might expect that the flow profiles
will have similar shape, but scaled in magnitude, as we move downstream. This being the case, let’s look for
a solution to the Boundary Layer Equations of the form,

u

U
= f

(y
δ

)
, (9.33)

where the boundary layer thickness, δ, for this laminar flow will scale with (refer to the previous section),

δ ∼
√
νx

U
. (9.34)

Thus, let’s try looking for a similarity solution to the original PDEs using the similarity variable, η, defined
as,

u

U
= f(η) where η := y

√
U

2νx
. (9.35)

Note that the factor of “2” has been included in the similarity variable merely for convenience. It will make
the resulting differential equation a little easier to work with. One other simplification we can make since we
are investigating a planar flow is to write the velocity components u and v in terms of a stream function, ψ,

u =
∂ψ

∂y
=
∂ψ

∂η

∂η

∂y
= Uf(η), (9.36)

∂ψ

∂η
= U

∂y

∂η
f(η), (9.37)

ψ =

ˆ
U

√
2νx

U
f(η)dη + constant. (9.38)

Since the constant is arbitrary (we really only care about the velocities so it doesn’t matter what the constant
is), set it equal to zero. The resulting stream function becomes,

ψ =
√

2νUxF (η), (9.39)

where F ′ = f . The velocities are found from the stream function,

u =
∂ψ

∂y
=
√

2νUxF ′
∂η

∂y
, (9.40)

∴ u = UF ′. (9.41)
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v = −∂ψ
∂x

= −1

2

√
2νU

x
F −

√
2νUxF ′

∂η

∂x
= −1

2

√
2νU

x
F +

1

2

√
2νUxF ′y

√
U

2νx3
, (9.42)

∴ v =

√
νU

2x
(ηF ′ − F ). (9.43)

Note that f = F ′. Also,

∂u

∂x
=
∂(UF ′)

∂η

∂η

∂x
= −UF

′′y

2

√
U

2νx3
= − U

2x
ηF ′′, (9.44)

∂u

∂y
=
∂(UF ′)

∂η

∂η

∂y
= Uf ′′

√
U

2νx
, (9.45)

∂2u

∂y2
=
∂2(UF ′)

∂η2

(
∂η

∂y

)2

= UF ′′
U

2νx
, (9.46)

∂v

∂y
=

∂

∂η

[√
νU

2x
(ηF ′ − F )

]
∂η

∂y
=

U

2x
ηF ′′. (9.47)

The Continuity Equation is automatically satisfied after substitution (as expected since a stream function
has been used) and the original momentum PDE becomes,

UF ′
(
− U

2x
ηF ′′

)
+

√
νU

2x
(ηF ′ − f)

(
UF ′′

√
U

2νx

)
= ν

(
Uf ′′′

U

2νx

)
, (9.48)

∴ F ′′′ + FF ′′ = 0, (9.49)

and the boundary conditions become,

u(x, y = 0) = 0 =⇒ F ′(η = 0) = 0, (9.50)

v(x, y = 0) = 0 =⇒ F (η = 0) = 0, (9.51)

u(x, y →∞) = 0 =⇒ F ′(η →∞) = 1. (9.52)

In summarizing these results, we see that the original boundary layer PDEs for laminar flow over a flat plate
with no pressure gradient can be simplified to a non-linear ODE by using a similarity variable. The resulting
equations and boundary conditions become,

F ′′′ + FF ′′ = 0,

F ′(η = 0) = 0,

F (η = 0) = 0,

F ′(η →∞) = 1,

u = UF ′,

v =

√
νU

2x
(ηF ′ − F ),

η =

√
U

2νx
.

(9.53)

(9.54)

(9.55)

(9.56)

(9.57)

(9.58)

(9.59)

This is the Blasius Equation for Boundary Layer Flow Over a Flat Plate.

Notes:

(1) There is no known closed-form solution to this ODE so we resort to solving it numerically (using a
Runge-Kutta method, for example). A plot of the solution is shown in Figure 9.6. The analytical
results found here match experimental data very well. Note that the similarity variable in the plot
does not include the square root of two term, i.e.,

ηplot =
√

2ηthese notes. (9.60)
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Figure 9.6. A plot showing experimental data for the dimensionless horizontal speed in a
flat plate, no pressure gradient boundary layer flow plotted against the similarity variable
η. The line in the plot is the numerical Blasius solution. This plot is from Panton, R.L.,
Incompressible Flow, 2nd ed., Wiley.

(2) The boundary layer thickness, δ, is found from the numerical solution to occur at η = 3.5,

F ′(η = 3.5) =
u

U
(η = 3.5) = 0.99. (9.61)

The boundary later thickness is then,

η = 3.5 = δ

√
U

2νx
=⇒ δ

x
=

5.0

Re1/2
x

. (9.62)

(3) The displacement and momentum thicknesses can also be found numerically using their definitions,

δD
x

=
1.72

Re1/2
x

,
δM
x

=
0.664

Re1/2
x

. (9.63)

(4) The shear stress at the plate surface in dimensionless form is known as the friction coefficient, cf ,

cf :=
τw

1
2ρU

2
=

Uµ
(
d(u/U)
dη

∂η
∂y

) ∣∣∣∣
y=0

1
2ρU

2
=

√
2F ′′|η=0√

Rex
=

0.664

Re1/2
x

. (9.64)

The friction coefficient is a ratio of the shear stress to the dynamic pressure in the flow.
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(5) The drag coefficient, cD, defined as the dimensionless drag acting on the plate between x = 0 and
x = L, is found by integrating the shear force over the plate area,

cD :=

´ x=L

x=0
τwdx

1
2ρU

2L
=

1.328

Re
1/2
L

(where cD is the drag coefficient per unit depth). (9.65)

Note that although the boundary layer assumptions break down near the leading edge of the plate
(Rex 6� 1), the distance over which this is the case is small in comparison to the typical lengths of
interest. This discrepancy is generally neglected in engineering applications.

(6) This solution is only valid for laminar boundary layers. As a rule of thumb, the transition from
laminar flow to turbulent flow occurs at: Rex ≈ 500, 000.

(7) Recall that the boundary layer equations on which the Blasius solution is based are valid only when
Rex � 1. In practice, it has been found that the Blasius solution is accurate when ReL > 1000.
For 1 ≤ ReL ≤ 1000, the following relation developed by Imai (1957) is more appropriate,

cD =
1.328

Re
1/2
L

+
2.3

ReL
. (9.66)

(8) In summary, for laminar flow over a flat plate with no pressure gradient, the “exact” Blasius solution
is,

δ

x
=

5.0

Re1/2
x

δD
x

=
1.72

Re1/2
x

δM
x

=
0.664

Re1/2
x

cf =
0.664

Re1/2
x

cD =
1.328

Re
1/2
L

Rex < 500, 000

(9.67)

(9.68)

(9.69)
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Air flows over a flat plate as shown below and forms a laminar boundary layer on the surface of the plate.  
Circle the letter of the statement that best represents the variation of the shear stress (force per unit area) at 
the wall with distance along the plate. 
 
A. Shear stress variation A 

B. Shear stress variation B 

C. Shear stress variation C 

D. Shear stress variation D 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
The friction coefficient for a laminar boundary layer is given by, 

. (1) 

Re-arranging to solve for tw in terms of x gives, 

 . (2) 

Thus, as x increases, the wall shear stress will approach a value of zero as the inverse of the square root of 
x.  Hence, the correct answer is curve D. 

Cf ≡
τ w

1
2 ρU

2 =
0.664
Rex

1
2

τ w = 1
2 ρU

2 0.664
Ux

ν( )12
=

1
2 ⋅0.664ρν

1
2U 3

2

x 1
2

Flat plate

Free stream velocity

Boundary layer

Wall
shear
stress

0
0

Distance along plate

Shear stress variation:

A

B

C

D
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A thin flat plate 55 by 110 cm is immersed in a 6 m/s stream of SAE 10 oil at 20 °C.  Compute the total 
skin friction drag if the stream is parallel to (a) the long side and (b) the short side. 
 
SOLUTION: 
 
 
 
 
 
 
 
Determine the Reynolds number at the trailing edge of the plate to see if it’s laminar. 

    (The flow is considered laminar if Re < 1*106.) (1) 

When L = 1.10 m then ReL = 55,200 Þ laminar flow.  When L = 0.55 m then ReL = 27,500 Þ laminar 
flow. 
 
Now determine the drag on the plate using the drag coefficient, cD, for laminar flat plate flow (the Blasius 
solution). 

 

 (2) 

 
When L = 1.10 m, W = 0.55 m, ReL = 55,200, and D = 107 N. 
 
When L = 0.55 m, W = 1.10 m, ReL = 27,500, and D = 152 N. 
 
Note that the drag is greater when the short side is aligned with the flow.  Why?  Because from Eqn. (2) we 
observe that the drag varies with  but is proportional to W.  Hence the drag will increase more rapidly 
with increasing width than with increasing length. 
  
 
 

ReL
UL
n

=

   

D = 1
2 ρU 2( ) 2LW( )

top and bottom
faces

!"#
cD

( )( ) 1
2

21
2

1.3282
ReL

D U LWr
æ ö

\ = ç ÷ç ÷
è ø

L

U = 6 m/s 

L 
W 

nSAE 10 oil = 1.20*10-4 m2/s 
rSAE 10 oil = 870 kg/m3 
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A thin equilateral triangle plate is immersed parallel to a 1 m/s stream of air at standard conditions.  
Estimate the skin friction drag on this plate. 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
Determine the drag acting on thin strips as shown in the figure below.  The total drag will be the sum of 
each of these individual drag forces. 
 
 
 
 
 
 
 
 
 
 
Since the plate is symmetric about the x-axis, consider only the y > 0 portion of the plate.  The equation of 
the line defining the downstream edge of the plate is: 

   where  (L = 2 m, q = 30º) (1) 
Re-arrange to solve for x in terms of y: 

 (2) 

 
Determine if the flow transitions to turbulence at any point on the plate. 

  Þ   (3) 

Using the given data: 
n = 1.5*10-5 m2/s 
U = 1 m/s 
Þ  xcrit  =  7.5 m 

 
Since the longest strip length is only Lcosq = (2 m)cos(30º) = 1.73 m, the flow over the entire plate will be 
laminar.  Hence, we can use the Blasius solution relations to model the boundary layer characteristics.  The 
drag acting on a single strip of length x and width dy is: 

 (4) 

 (5) 
 

The total drag acting on the plate (including the top half, bottom half, and front and back surfaces) is: 

( ) 1
2tany x Lq= - + 0 cosx L q£ £

1
2

tan
L y

x
q
-

=

crit
critRe 500,000

Ux
n

= = crit 500,000x
U
n

=

1
2

21
2

21
2

1.328
Re

D

x

dD c U xdy

U xdy

r

r

=

=

3 1
2 20.664dD U x dyn r\ =

1 m/s 
2 m 

x 

y 

dy 
1/2L 

q 
L 

x 
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  (making use of Eqn. (2)) (6) 

 (7) 

 
Using the given data: 

r  = 1.23 kg/m3 
U = 1 m/s 
L = 2 m 
n = 1.5*10-5 m2/s 
q = 30º 
Þ  D =  1.1*10-2 N 

 
 
 
 
 
 
 
 
 

1 1
2 2

3 1
2 2

11
22

3
2

0 0

1
2

0

4 4 0.664

4 0.664
tan

y L y L

y y

y L

y

D dD U x dy

L y
U dy

n r

n r
q

= =

= =

=

=

= =

æ ö-
= ç ÷ç ÷

è ø

ò ò

ò

( )
3
20.626
tan

D UL nr
q

\ =
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Consider a thin disk of density, rD, diameter, dD, and height, hD, resting on a submerged flat plate as shown 
in the figure below.  Flowing over the plate is a fluid of density, rF, and dynamic viscosity, µF, with a free 
stream velocity, U.  There are no pressure gradients in the flow. 
 
 
 
 
 
 

 
 
 
Assume the flow upstream of the plate is uniform, but then results in a boundary layer when the fluid 
contacts the plate.  The effective static friction coefficient between the disk and the plate is µ (for simplicity 
assume that the static and dynamic friction coefficients are equal).  For the following questions, assume the 
following: 

dD = 2 mm 
hD = 0.5 mm 
rD = 2500 kg/m3 
rF = 1000 kg/m3 
µF = 1.0e-3 kg/(m×s) 
U = 1.5 m/s 
µ = 0.3 
g = 9.81 m/s2 

a. Determine the effective friction force acting to hold the disk in place. 
b. If the disk is released at the leading edge of the plate, at what distance from the leading edge will the 

disk come to rest?  (Neglect the inertia of the disk, i.e. treat the disk movement in a quasi-static 
manner). 

c. Neglecting the flow over the disk, at what distance from the leading edge will the boundary layer 
separate?  Justify your answer. 

 
SOLUTION: 
 
The disk will remain stationary when the shear force acting on it, FS, is less than the friction force holding 
the disk in place, FF, i.e. the disk will remain stationary when 

  (the disk’s inertia has been neglected) (1)  
 
The friction force is the friction coefficient multiplied by the effective weight. 

 (2) 
Using the given data, FF = 6.9e-6 N. 

 
The shear force acting on the disk due to the flowing fluid is (approximately*) the shear stress multiplied 
by the disk’s projected area (when viewed from above): 

 (3) 
 

S FF F£

( ) 2
4F D F D DF d h gpµ r r= -

2
4S w DF dpt=

fluid with free stream velocity, U, density, rF, 
and dynamic viscosity, µF 

disk of diameter, dD, height, hD, and density, rD 

g 

x 

U 

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

C. Wassgren 937 2024-02-01



  BL_29 

Page 2 of 2 

The shear stress may be estimated using the boundary layer relations.  First assume that the boundary layer 
is laminar (i.e. Rex < 500,000) so that the friction coefficient is: 

  Þ   (4) 

where 

 (5) 

 
Combining Eqns. (1) - (5) gives: 

   (when the shear and friction forces just balance) (6) 

 (7) 

Using the given data: 
Rex = 1.2e5  (laminar flow assumption ok) 
Þ x = 0.076 m 
 
 

Since the flow does not have an adverse pressure gradient (in fact the flow has no pressure gradient), the 
boundary layer will not separate. 
 
 
 
*  A more accurate method of calculating the fluid force on the disk is to integrate the shear stress over the 

disk’s surface. 

 (8) 

where 
 (9) 

1
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Determine the expression for the drag force acting on the thin, semi-circular plate immersed in a flow as 
shown below, assuming, 
a. the “tip” faces the flow, and 
b. the base faces the flow. 
Assume the flow is laminar over the entire plate.  You need not solve any integrals you encounter. 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION:  
 
 
 
 
 
 
 
 
 
 
 
 
The drag force on both sides of a thin strip of the plate is,  

, (1) 

where 
 ,  (2) 

Thus, the total drag on the plate is, 

 , (3) 

. (4) 

 
The drag force on the plate will be exactly the same if the plate is reversed since the drag on each strip is 
identical. 

dD = 2cD 1
2 ρU

2ldy = 21.328
Rel

1
2

1
2 ρU

2ldy = 1.328 ν
Ul

ρU 2ldy = 1.328ν 1
2ρU 3

2l 12dy

l = 1
4 D

2 − y2( )12

D = dD
y=− 12D

y= 12D

∫ = 1.328ν 1
2ρU 3

2 1
4 D

2 − y2( )14 dy
y=− 12D

y= 12D

∫ = 1.328ν 1
2ρU 3

2 1
4 D

2 − y2( )14 dy
y=− 12D

y= 12D

∫

D = 1.328ν 1
2ρU 3

2 1
4 D

2 − y2( )14 dy
y=− 12D

y= 12D

∫

(a) 

D 
U 

(b) 

D 
U 

l 

y 

x y 
½D 

dy 
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An engineer studies swimming fish in order to develop bio-inspired designs for boat and submarine hulls.  
These studies focus on a fish known as a “scup” (Stenotomus chrysops), shown in the following photo.  
The speed of the swimming fish, the body area on one side of the fish, and the length of fish from head to 
tail are given in the table adjacent to the photograph.  
 

 
 
 

a. For the given conditions, determine if the flow over the entire length of the fish is laminar, turbulent, 
or a combination of the two.  Show your work supporting your answer. 

b. Estimate the total drag acting on the fish, assuming skin friction drag dominates (a good assumption 
based on experiments) and that the fish shape may be modeled as a thin, flat rectangular plate as shown 
below. 

 
 
 
 
 
 
 
 
 
 
c. Calculate the power required for the fish to swim at the given conditions. 
 
 
SOLUTION: 
 
The Reynolds number based on the fish’s length is: 

. (1) 

Since the Reynolds number is less than 500,000, the boundary layer over the entire fish is laminar.  
 
The total drag acting on the (rectangular) fish may be found using the drag coefficient for a laminar 
boundary layer flow over a flat plate (the Blasius solution), 

, (2) 
where L is the length of the fish (L = 0.195 m) and H is the height of the fish (H = 0.106 m), and cD for a 
laminar flat plate flow is, 

( )( )
( )6 2

0.30 m s 0.195 m
Re 49,200

1.19*10  m s
L
UL
n -

= = =

21
2 sides 1 side 22 2 DD D c U LWr= =

 

swimming speed = 0.3 m/s 
body area on one side = 0.0207 m2 
body length = 0.195 m 
 
salt water density = 1026 kg/m3 
salt water kinematic   
    viscosity = 1.19*10-6 m2/s 

0.30 m/s 

0.195 m 

0.106 m 
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Video solution: https://www.youtube.com/watch?v=HSpF2Zv4dik
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, (3) 

where the Reynolds number based on the fish’s length was found in Eq. (1). 
 
Using the given data, 

ReL = 49,200 
Þ  cD = 5.99*10-3    

Note that experimental measurements provided by Anderson et al. (2001) found that the drag coefficient 
for these conditions is 4.4*10-3.  Hence, the prediction from our simplified model has a relative error of 
about 36%.  
 

r = 1026 kg/m3 
U = 0.30 m/s 
L = 0.195 m 
H = 0.106 m 
Þ D1 side =  5.72*10-3 N 
Þ  D2 sides =  1.14*10-2 N (4)  

 
 
The power required for the fish to swim at a speed of U = 0.30 m/s given the drag found in Eq. (4) is, 

  Þ  P = 3.43*10-3 W = 3.43 mW (5) 
 
 
 
A good resource on boundary layer characteristics over swimming fish is: 

Anderson, E.J., McGillis, W.R., and Grosenbaugh, M.A., 2001, “The boundary layer of swimming 
fish,” The Journal of Experimental Biology, Vol. 204, pp. 81 – 102. 

1
2

1.328
Re

D
L

c =

2 sidesP D U=
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Air, with a density of 1.23 kg/m3 and a kinematic viscosity of 2.5*10-6 m2/s, enters a long horizontal 
ventilation duct of circular cross-section (radius of 0.25 m) with a velocity of 1.0 m/s.  At the entrance it is 
assumed that this velocity is uniform over the entire cross-section.  However, as the flow proceeds down 
the duct a thin laminar boundary develops on the inside wall of the duct. 
 
If we first assume that this is like the boundary layer on a flat plate and that the velocity away from the 
boundary layer remains at 1.0 m/s, find the displacement thickness in meters at a distance x (in meters) 
from the entrance.   

 
Having calculated this displacement thickness we recognize that the velocity outside the boundary layer 
cannot remain precisely constant at 1 m/s.  Using the above calculated displacement thickness, find the 
uniform velocity outside the boundary layer at a point 200 m from the entrance.  What is the pressure 
difference between the entrance and this point 200 m from the entrance?  Describe in words how you might 
now proceed to a more accurate boundary layer calculation which takes this pressure gradient into account. 
 
 
SOLUTION: 
 
The displacement thickness, dD, for a laminar boundary layer is given by the Blasius solution to be: 

 

 (1) 

Using the given data: 
n = 2.5*10-6 m2/s 
U = 1 m/s 
dD = (2.7*10-3 m1/2) x1/2  
 

From conservation of mass and the definition of the displacement thickness, the velocity in the flow outside 
of the boundary layer, U, is: 

 

 (2) 

where U0 is the uniform fluid velocity at the pipe entrance.  Using the given data: 
U0 = 1 m/s 
R = 0.25 m 
x = 200 m 
dD,x=200 m = 3.9*10-2 m 
Ux=200 m = 1.4 m/s 
 

Apply Bernoulli’s equation (neglecting elevation differences) in the outer, irrotational flow region. 
 

 (3) 

Using the given data: 
r = 1.23 kg/m3 
U0 = 1 m/s 
Ux=200 m = 1.4 m/s 
Dpx=200 m =  -0.59 N/m2 
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For a more accurate estimate, one can iterate on the displacement thickness and core flow velocity until a 
converged solution is reached. 

 

 

where n is the number of iterations.  For example, given the previous data: 
n [m2/s] = 2.50E-06   
r [kg/m3] = 1.23   
x [m] = 200   
U0 [m/s] = 1.0   
R[m] = 0.25   
    

n dD,n [m] Un [m/s] Dpn [N/m2] 
1 3.85E-02 1.40 -0.58 
2 3.25E-02 1.32 -0.46 
3 3.35E-02 1.33 -0.48 
4 3.33E-02 1.33 -0.47 
5 3.33E-02 1.33 -0.48 
6 3.33E-02 1.33 -0.48 

 
 

, 1.72D n
n

x
U
nd =

0 2
,

1

1
n

D n

U U

R
d

=
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Flow straighteners are arrays of narrow ducts placed in wind tunnels to remove swirl and other in-plane 
secondary velocities.  They can be idealized as square boxes constructed by vertical and horizontal plates as 
shown in the figure.  The cross-section of the box is a by a and the box length is L.  Assuming laminar flat 
plate flow and an array of N by N boxes, derive a formula for: 
 
a. the total drag on the bundle of boxes. 
b. the effective pressure drop across the bundle. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
Determine the drag acting on one wall due to skin friction.  From the Blasius solution, the drag coefficient 
for laminar, flat plate flow is: 

 (1) 

where 

 (2) 

 (3) 

Note that in writing Eqn. (1) we’ve assumed that there is no pressure gradient in the cell’s core flow.  This 
is not exactly correct since there will, in fact, be a pressure gradient due to the growth of the boundary layer 
along the plate surface and hence an increase in the outer (i.e., cell core) flow velocity (from conservation 
of mass).  However, as a first estimate it is reasonable to assume a constant outer flow velocity and thus a 
Blasius boundary layer profile.  A more precise analysis would account for the growth in the displacement 
thickness and the resulting increase in the outer velocity. 
 
Using Eqns. (1) and (2), the skin friction drag acting on one wall of a cell is: 

 (4) 

The drag acting on a single cell, which consists of four walls, is: 

 (5) 

1
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The total drag acting on a grid of NxN cells is: 

 (6) 

where ReL is given in Eqn. (3). 
 
As stated previously, in deriving Eqn. (1) we’ve assumed that there is no pressure gradient within the cell 
which is not entirely correct but should instead be considered a first-cut estimate.  Regardless, we can still 
determine an effective pressure drop across the flow straightener by dividing the drag force acting on the 
straightener by its area. 

  (The pressure decreases across the flow straightener.) (7) 

 
A more accurate approach to solving this problem involves iteration.  First, determine the velocity in the 
outer flow region using the displacement thickness, dD. 

  

 (8) 

where, from the Blasius solution: 

 (9) 

and 

 (10) 

The pressure in the outer layer can be determined using Bernoulli’s equation. 
 

 (11) 

 
The iterative procedure is as follows: 

1. Assume U ’ = 0. 
2. Evaluate the displacement thickness using Eqns. (9) and (10). 
3. Evaluate the new downstream velocity, U ‘, using Eqn. (8). 
4. Repeat steps 2 and 3 until a converged solution for U ‘ occurs. 
5. Use Eqn. (11) to determine Dp. 
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9.5. Falkner-Skan Boundary Layer Solutions

Recall that a similarity approach was used to find solutions to stagnation point flow (Hiemenz Flow) and
boundary layer flow over a flat plate (Blasius solution). Falkner and Skan (1931) investigated what other
flows could be solved using similarity solutions. In their analysis they assumed that,

u(x, y) = U(x)f ′(η), (9.70)

where,

η :=
y

ξ(x)
. (9.71)

Here, u is the velocity within the boundary layer, U is the outer flow (potential flow) velocity, η is the
similarity variable, and ξ is a distance scaling function. Note that at this point, U and ξ are unknown
functions of x.

It’s convenient to work in terms of a stream function rather than velocity components so let’s re-write the
velocity in terms of a stream function, ψ,

u =
∂ψ

∂y
= U(x)f ′(η) =⇒ ψ =

ˆ
U(x)f ′(η)

∂y

∂η︸︷︷︸
=ξ

dη + constant, (9.72)

∴ ψ = U(x)ξ(x)f(η). (9.73)

The constant in the previous equation has been set to zero since only differences (or derivatives) in the stream
function have any significance. Note also that the stream function automatically satisfies the Continuity
Equation. The stream function must also satisfy the boundary layer momentum equation,

u
∂u

∂x
+ v

∂u

∂y
= U

∂U

∂x
+ ν

∂2u

∂y2
, (9.74)

=⇒ ∂ψ

∂y

∂2ψ

∂x∂y
− ∂ψ

∂x

∂2ψ

∂y2
= U

∂U

∂x
+ ν

∂3ψ

∂y3
, (9.75)

where,

∂ψ

∂x
=
∂U

∂x
ψf + U

dξ

dx
f − Uξf ′ y

ξ2

dξ

dx
=
dU

dx
ξf + U

dξ

dx
f − U dξ

dx
ηf ′, (9.76)

∂ψ

∂y
= Uξf ′

1

ξ
= Uf ′, (9.77)

∂2ψ

∂x∂y
=
dU

dx
f ′ − U y

ξ2

dξ

dx
f ′′ =

dU

dx
f ′ − U

ξ

dξ

dx
ηf ′′, (9.78)

∂2ψ

∂y2
=
Uf ′′

ξ
, (9.79)

∂3ψ

∂y3
=
Uf ′′′

ξ2
. (9.80)

Substituting and simplifying,

(Uf ′)

(
dU

dx
f ′ − U

ξ

dξ

dx
ηf ′′

)
−
(
dU

dx
ξf + U

dξ

dx
f − U dξ

dx
ηf ′
)(

Uf ′′

ξ

)
= U

dU

dx
+ ν

Uf ′′′

ξ2
, (9.81)

U
dU

dx
(f ′)2 −

�
���

��U2

ξ

dξ

dx
ηf ′f ′′ − U

dU

dx
ff ′′︸ ︷︷ ︸

=−Uξ
d
dx (Uξ)ff ′′

+
�

���
��U2

ξ

dξ

dx
ηf ′f ′′ = U

dU

dx
+ ν

Uf ′′′

ξ2
, (9.82)

U
dU

dx
(f ′)2 − U

ξ

d

dx
(Uξ)ff ′′ = U

dU

dx
+ ν

Uf ′′′

ξ2
. (9.83)
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Multiply through by ξ2/(νU) and re-arrange to get,

f ′′′ +
ξ

ν

d

dx
(Uξ)ff ′′ +

ξ2

ν

dU

dx

[
1− (f ′)2

]
= 0. (9.84)

If a similarity solution exists, Eq. (9.84) should be an ODE for the function f in terms of η. Thus, the
coefficients in front of the second and third terms should be, at most, constants, i.e., for a similarity solution
to exist, we must have,

α =
ξ

ν

d

dx
(Uξ) and β =

ξ2

ν

dU

dx
, (9.85)

where α and β are constants. These two equations can be combined to form an expression that is more
convenient to work with later in our analysis,

d

dx
(Uξ2) = U(2ξ)

dξ

dx
+ ξ2 dU

dx
, (9.86)

= 2ξ

(
U
dξ

dx
+ ξ

dU

dx

)
− ξ2 dU

dx
, (9.87)

= 2ξ
d

dx
(Uξ)︸ ︷︷ ︸

=2να

− ξ2 dU

dx︸ ︷︷ ︸
νβ

, (9.88)

∴
d

dx
(Uξ2) = ν(2α− β). (9.89)

Substituting Eq. (9.85) into Eq. (9.84) gives,

f ′′′ + αff ′′ + β
[
1− (f ′)2

]
= 0 . (9.90)

The boundary conditions for this equation are,

u(x, y = 0) = 0 =⇒ f ′(η = 0) = 0,

v(x, y = 0) = 0 =⇒ f(η = 0) = 0,

u(x, y →∞) = U =⇒ f ′(η →∞) = 1.

(9.91)

(9.92)

(9.93)

The procedure for determining the exact solutions to these boundary layer equations is:

(1) Select values for the constants α and β. Note that at this point we don’t know what geometry we’re
investigating. The geometry will be determined in the next step.

(2) Determine the corresponding form for U(x) and ξ(x) using Eq. (9.85), or, more conveniently, part
of Eq. (9.85) and Eq. (9.89) (repeated here for convenience),

d

dx
(Uξ2) = ν(2α− β) and ξ2 dU

dx
= νβ. (9.94)

(3) Determine the function f(η) from the ODE given in Eq. (9.90) subject to the boundary condi-
tions in Eqs. (9.91) - (9.93). This part is usually solved numerically. Repeating the equations for
convenience,

f ′′′ + αff ′′ + β
[
1− (f ′)2

]
= 0, (9.95)

f ′(η = 0) = 0, (9.96)

f(η = 0) = 0, (9.97)

f ′(η →∞) = 1. (9.98)
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(4) Determine the stream function from Eq. (9.73) and velocity components from the stream function.
The wall shear stress may also be determined,

ψ = U(x)ξ(x)f(η), (9.99)

u =
∂ψ

∂y
= Uf ′, (9.100)

v = −∂ψ
∂x

=
dU

dx
ξf + U

dξ

dx
f − U dξ

dx
ηf ′, (9.101)

τw = µ
∂u

∂y

∣∣∣∣
y=0

= µ
∂2ψ

∂y2

∣∣∣∣
y=0

= µ
Uf ′′|η=0

ξ
(Refer to Eq. (9.79)). (9.102)

Notes:

(1) Recall that U(x) is the flow profile for the outer, potential flow and ξ(x) is a distance scaling
parameter.

(2) Consider the case when α = 1 and β is left arbitrary. From Eq. (9.94) we have,

d

dx
(Uξ2) = ν(2− β), (9.103)

=⇒ Uξ2 = νx(2− β) + constant. (9.104)

The scaling factor will be zero at x = 0 so the constant will also be zero. Now divide the equation
by the other equation given in Eq. (9.94),

1

ξ2dU/dx
Uξ2 =

1

νβ
νx(2− β), (9.105)

1

U

dU

dx
=

β

x(2− β)
, (9.106)

=⇒ lnU =
β

2− β
lnx+ c, (9.107)

∴ U(x) = cxβ/(2−β), (9.108)

where c is a constant. This outer flow velocity distribution has the same form as the potential flow
over a wedge (refer back to Chapter 6). Recall that the complex potential for flow over a wedge is
given by,

f(z) = Azn, (9.109)

=⇒ U − iV =
df

dz
= Anzn−1 = An(x+ iy)n−1, (9.110)

where A is a constant and the angle between the walls of the wedge is equal to π/n as shown in
Figure 9.7. Note that this f (the complex potential function) is not the same as the f in Eq. (9.90).
Making use of symmetry we can produce flow over a wedge shape with a wedge angle denoted by,
∆ (Figure 9.8).
Along the surface of the wedge, y = 0, the potential flow horizontal speed is,

U = Anxn−1. (9.111)

Comparing Eq. (9.111) to Eq. (9.108), we find that β and n are related,

β

2− β
= n− 1 =⇒ β =

2

π

(
π − π

n

)
. (9.112)

The full angle of the wedge, ∆, is,

∆ = 2
(
π − π

n

)
= 2π

(
1− 1

n

)
= πβ. (9.113)
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Figure 9.7. Streamlines of the Falkner-Skan boundary layer solution for flow in a corner.

Figure 9.8. Streamlines of the Falkner-Skan boundary layer solution for flow over a wedge.

The scaling function ξ(x) is found using Eqs. (9.94) and (9.111),

ξ2 dU

dx
= νβ =⇒ ξ2 2β

2− β
x( β

2−β−1) = νβ, (9.114)

=⇒ ξ(x) =

√
ν(2− β)

c
x( 1−β

2−β ), (9.115)

τw = µ
Uf ′′|η=0

ξ
= µ

cx
β

2−β√
ν(2−β)

c x
1−β
2−β

f ′′|η=0 =

√
ρµc3

2− β
x

2β−1
2−β f ′′|η=0. (9.116)

Now let’s consider two special cases for α = 1.
(a) Flow over a Flat Plate (Blasius flow): n = 1 (β = 0, α = 1). The outer flow speed is

(Eq. (9.111)),

U(x) = c = U0, (9.117)

where U0 is a constant speed. The scaling function is found from Eq. (9.115) to be,

ξ(x) =

√
2νx

Uo
. (9.118)

This result is precisely the same scaling function found in our previous investigation of the
Blasius solution. The governing ODE is found from Eq (9.90),

f ′′′ + ff ′′ = 0. (9.119)

Again, this result is identical to what was found during our investigation of the Blasius solution.
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Figure 9.9. The dimensionless boundary layer profile plotted as a function of dimensionless
height above the surface for different wedge shapes. Note that m = n− 1 = β/(2− β). This
figure is Figure 20.4 from Panton, R.L., Incompressible Flow, 2nd ed., Wiley.

(b) Stagnation Point Flow (Heimenz flow): n = 2 (β = 1, α = 1): The stagnation point flow
solution can be recovered using α = 1 and β = 1. Using these values, we find,

U(x) = cx, (9.120)

ξ(x) =

√
ν

c
, (9.121)

f ′′′ + ff ′′ +
[
1− (f ′)

2
]

= 0, (9.122)

which are the same results found in our previous analysis of stagnation point flow.

Notes:
(i) Figure 9.9 shows the velocity profile for various flows over wedge shapes (produced by

letting α = 1 and varying β; refer to Figure 9.10). One item of significance observed
from the figure is the fact that for accelerated flows (n > 1 =⇒ dU/dx > 0) there
is no inflection point in the boundary layer profile. When the flow decelerates (n <
1 =⇒ dU/dx < 0) there is an inflection point. Of particular interest is the case when
(n− 1) = −0.0904. For this case we observe that the inflection point occurs at the wall
and, as a result, the corresponding wall shear stress is zero. It is at this point when
boundary layer separation occurs. Thus, we see that a laminar boundary layer is able
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Figure 9.10. Illustrations of the various “wedge” geometries produced by α = 1 and dif-
ferent β values.

to support only a very small deceleration without separation occurring. We will address
the topic of boundary layer separation in Section 9.9.
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The working section of a water tunnel consists of a duct with a rectangular cross-section.  The width of the 
cross-section, b (perpendicular to the sketch), is constant but the height, h(x), may vary with longitudinal 
distance, x, measured along the centerline of the duct: 
 
 
 
 
 
 
 
 
 
 
 
 
 
Laminar boundary layers form on the upper and lower surfaces of the working section and would cause an 
acceleration of the flow outside the layers if the height h were constant (A similar effect would be caused 
by the front and back surfaces but we ignore this for the purposes of this problem and assume that there are 
no boundary layers on the front and back surfaces.)  A water tunnel designer wishes to select the function 
h(x) in order to ensure that the pressure and velocity outside the boundary layer (say, on the centerline) vary 
with distance, x, in a specified way.  The designer decides to use functions of the form: 

  
where h0, H, and k are constants and the boundary layers begin at x=0.  Find: 
a. the value of k which produces zero longitudinal pressure gradient in the tunnel.  Also find the 

expression for H in terms of b, the kinematic viscosity, n, and the velocity of the flow at the centerline, 
U. 

b. The value of k which produces a uniform acceleration, a = dU/dx, along the centerline of the tunnel 
and the relation between a and h0. 

 
 
SOLUTION: 
 
For there to be no pressure gradient, the boundary layer displacement thickness, dD, must grow at the same 
rate as the wall moves away from the centerline.  The mass flow rate in the tunnel is: 

 (1) 

 (2) 

 (3)
  

 (4) 
For a laminar boundary layer with no pressure gradient, the Blasius solution gives: 

  Þ   (5) 

Substitute and simplify. 

 (6) 

Hence, 

  and   (7) 

( ) 0
kh x h Hx= +

   
!m = ρU h− 2δD( )b = constant

( ) 02 D xU h b U h br d r =- =

0 02k
Dh Hx hd+ - =

1
2

k
D Hxd =

1
2

1.72
Re

D

xx
d

= 1.72D
x
U
nd =

1
21.72 kx Hx

U
n

=

1
2k = 2*1.72 3.44H

U U
n n

= =

1/2h(x) 

1/2h(x) 

x 
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A constant acceleration implies that the outer flow velocity, U, is proportional to the position, x, i.e. 

 (8) 

This outer flow velocity corresponds to the case when a = 1 and b = 1 in the Falkner-Skan boundary layer 
solution (which corresponds to stagnation point flow).  The displacement thickness for this case is: 

 (9) 

where for (a, b) = (1, 1), x = (n/a)1/2 = constant.  Thus, we observe that the displacement thickness for this 
case is a constant. 
 
From Eqn. (2) we have: 

 (10) 

 (11)

  
The only way the previous equation can hold true is if k = -1, h0 = 2dD, and H = U0h0/a. 
 

dU a U ax
dx

= Þ =

( ) ( )
0 0 0

1 1 1D
u dy f d f d
U a

nd x h h
¥ ¥ ¥
æ ö ¢ ¢= - = - = -ç ÷
è øò ò ò

( )( ) 0 02 Dax h b U h br d r- =

( )( )0 0 02k
Dax h Hx U hd+ - =
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A uniform stream of incompressible fluid flows over a planar wedge of half-angle, (p/2)b, side length, L, 
and base length, H, as shown in the figure below.  The upstream flow velocity and pressure are U¥ and p¥. 
 
 
 
 
 
 
 
 
 
a. Use a Faulkner-Skan boundary layer solution to determine the skin friction drag acting on the wedge 

assuming laminar flow. 
b. Check your solution to part (a) by calculating the drag for a flat plate (b = 0) and comparing with the 

Blasius solution. 
c. Determine the form drag on the wedge assuming that the pressure at the back of the wedge is the 

same as the free stream pressure. 
 
 
SOLUTION: 
 
Recall that the Faulkner-Skan boundary layer solution for flow over a wedge with total angle, (p/2)b, is: 

 (1) 

 (2) 

 

 (3) 

 (4) 

 (5) 

 (6) 

 (7) 

 
The skin friction drag over both surfaces of length, L, (assuming unit depth into the page), and also taking 
into account the angle of the surfaces, is: 

 (8) 

 (9) 

 (10) 

 

( )21 0f ff fb é ù¢¢¢ ¢¢ ¢+ + - =ë û
( )0 0f h¢ = =

( )0 0f h = =

( ) 1f h¢ ® ¥ =

( ) 2U x cx
b
b-=

( ) ( ) 1
2

2
x x

c

b
b

n b
x

-
-

-
=

( )
y
x

h
x

=

2 1
2

3

02w
c x f

b
b

h
rµt

b

-
-

=
¢¢=

-

( )skin 2
friction 0

2cos
x L

w
x

D dxp b t
=

=

= ò

( )
2 1 2 1
2 2

2 1
2

3 3

skin 2 0 0
friction 0 0

3 1
0 2 1

02

2cos
2 2

1
2 1

x L x L

x x

L

c cD x f dx f x dx

c f x

b b
b b

b
b

p
h h

h b
b

rµ rµb
b b

rµ
b

- -
- -

-
-

= =

= =
= =

+
= -

-

¢¢ ¢¢= =
- -

æ ö
ç ÷¢¢=
ç ÷- +è ø

ò ò

( )
1
2

3

skin 2 0
friction

22cos
2 1
cD f L

b
bp

h
rµ bb

b b

+
-

=
æ ö-¢¢\ = ç ÷- +è ø

(p/2)b 

L 

H 
U¥, p¥ 

 

(p/2)b 

L 

H 
U¥, p¥ 

x y 
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Note that when b = 0, we get Blasius flow over a flat plate. 

 (11) 

   (from Eqn. (4)) (12) 

 (13) 

To determine , we need to solve the ODE: 
 (14) 

numerically.  Performing this calculation (or using Table 4.1 from White, Viscous Fluid Flow, for example) 
gives: 

 (15) 
and thus: 

  (16) 

 
The Blasius drag coefficient (considering two sides of the plate) is: 

   (17) 

This is the same as Eqn. (16)! 
 

The form drag may be found by integrating the pressure force acting on the surface and taking the 
component in the direction of the incoming flow.  Use gage pressures to simplify the calculation.  The 
pressure may be found using Bernoulli’s equation in the outer, potential flow. 

   where   (18) 

(Note that since a gage pressure is being used, the pressure force on the back of the wedge needn’t be 
considered.) 

 (19) 

 (20) 

( ) 1
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3

skin 0
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2 2
2
cD f Lh
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=
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3 2
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8 32
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9.6. The Kármán Momentum Integral Equation (KMIE)

So far we’ve only examined boundary layer flows that lend themselves to similarity solutions. This, of course,
is very restrictive. There are many non-similar boundary layer flows that we would also like to investigate.
Since the majority of fluid mechanics problems are complex, we often have to resort to empirical or semi-
empirical methods for investigating the flows in greater detail. Here we’ll discuss one such semi-empirical
method used for investigating boundary layers called the Kármán Momentum Integral Equation (KMIE).
The idea is straightforward and relies on the Linear Momentum Equation.

Consider a differential control volume as shown in Figure 9.11. The top of the control volume is defined by
the line separating the boundary layer region from the outer flow region (this is not a streamline). Apply the

Figure 9.11. Schematics showing the control volume and free body diagram used in deriv-
ing the KMIE.

Linear Momentum Equation in the x-direction to the control volume, assuming unit depth,

d

dt

ˆ
CV

uxρdV +

ˆ
CS

ux (ρurel · dA) = FB,x + FS,x, (9.123)

where,

d

dt

ˆ
CV

uxρdV = 0 (steady state), (9.124)

ˆ
CS

ux (ρurel · dA) = −
ˆ y=δ

y=0

ρu2dy︸ ︷︷ ︸
left

+

[ˆ δ

0

ρu2dy +
d

dx

(ˆ δ

0

ρu2dy

)
dx

]
︸ ︷︷ ︸

right

−U d

dx

(ˆ δ

0

ρu2dy

)
dx︸ ︷︷ ︸

top

, (9.125)

FB,x = 0, (body forces are negligibly small in boundary layers compared to other terms), (9.126)

FS,x = pδ︸︷︷︸
left

−
[
pδ +

d

dx
(pδ)(dx)

]
︸ ︷︷ ︸

right

+

[
p+

dp

dx
(
1

2
dx)

]
(dδ)︸ ︷︷ ︸

top

−τwdx︸ ︷︷ ︸
bottom

. (9.127)

C. Wassgren 956 2024-02-01



Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

The mass flow rate through the top is found via Conservation of Mass on the same control volume,

−ṁtop︸ ︷︷ ︸
top

−
ˆ δ

0

ρudy︸ ︷︷ ︸
left

+

[ˆ δ

0

ρudy +
d

dx

(ˆ δ

0

ρudy

)
dx

]
︸ ︷︷ ︸

right

= 0, (9.128)

∴ ṁtop =
d

dx

(ˆ δ

0

ρudy

)
dx. (9.129)

Substituting and simplifying, neglecting higher order terms,

− dp

dx
δdx− τwdx =

d

dx

(ˆ δ

0

ρu2dy

)
dx− U d

dx

(ˆ δ

0

ρudy

)
dx, (9.130)

− dp

dx
δ − τw =

d

dx

(ˆ δ

0

ρu2dy

)
− U d

dx

(ˆ δ

0

ρudy

)
. (9.131)

Recall that the pressure at a given x location remains constant with y position so we can find dp/dx in terms
of the outer (potential) flow velocity using Bernoulli’s equation outside of the boundary layer,

p+
1

2
ρU2 = constant =⇒ dp

dx
+ ρU

dU

dx
= 0, (9.132)

dp

dx
= −ρU dU

dx
. (9.133)

In addition, we’ll re-write the boundary layer thickness in terms of an integral so that,

− dp

dx
δ =

(
ρU

dU

dx

)ˆ δ

0

dy =
dU

dx

ˆ δ

0

ρUdy. (9.134)

Additional re-arranging gives,

U
d

dx

(ˆ δ

0

ρudy

)
=

d

dx

(ˆ δ

0

ρuUdy

)
− dU

dx

ˆ δ

0

ρudy. (9.135)

Substituting Eqs. (9.134) and (9.135) into Eq. (9.131) gives,

dU

dx

(ˆ δ

0

ρUdy

)
− τw =

d

dx

(ˆ δ

0

ρu2dy

)
− d

dx

ˆ δ

0

ρuUdy +
dU

dx

(ˆ δ

0

ρudy

)
. (9.136)

Additional re-arranging and simplifying gives,

τw =
d

dx

[ˆ δ

0

ρu(U − u)dy

]
+
dU

dx

ˆ δ

0

ρ(U − u)dy, (9.137)

=
d

dx

ρU2

ˆ δ

0

ρ
u

U

(
1− u

U

)
dy︸ ︷︷ ︸

=δD

+
dU

dx
ρU

ˆ δ

0

(
1− u

U

)
dy︸ ︷︷ ︸

=δD

. (9.138)

(9.139)

Thus, if the fluid has constant density,

τw
ρ

=
d

dx

(
U2δM

)
+ δDU

dU

dx
. (9.140)

This equation is known as the Kármán Momentum Integral Equation (KMIE).

Notes:
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(1) If the pressure remains constant, then dU/dx = 0 and,

τw = ρU2 dδm
dx

. (9.141)

(2) The typical methodology for using the KMIE is as follows.
(a) Obtain an approximate expression for U = U(x) from inviscid flow theory, e.g., potential flow

theory. Recall that Bernoulli’s equation can be used to relate the pressure and U .
(b) Assume a velocity profile in the boundary layer subject to the appropriate boundary conditions,

i.e., assume a form for,
u

U
= f

(y
δ

)
, (9.142)

subject to the boundary conditions,
u

U

(y
δ

= 0
)

= 0 and
u

U

(y
δ

= 1
)

= 1. (9.143)

The form of the approximate velocity profile is typically found based on curve fits to exper-
imental measurements of the boundary layer velocity profile. Higher order profiles will have
additional boundary conditions. For example, a cubic curve fit will also have a boundary
condition that matches the slope of the velocity profile at the free stream boundary.

(c) The shear stress at the wall for a laminar flow can also be determined from the Newtonian
stress-strain rate constitutive relations to be,

τw = µ

(
U

δ

)
d(u/U)

d(y/δ)

∣∣∣∣
y
δ=0

. (9.144)

For a turbulent flow, experimental data for the wall shear stress are used instead since turbulent
flows use time-averaged velocity profiles. This issue is discussed in greater detail later in these
notes. The laminar wall shear stress must be the same shear stress as that found using the
KMIE (Eq. (9.140)). Thus, we can equate the two shear stress expressions. The resulting
differential equation can then be solved for the boundary layer thickness, δ, as a function of x.

(3) This approximate technique can be used for either laminar or turbulent flows. In fact, this method
is especially useful for analyzing turbulent boundary layer profiles (discussed later in these notes).
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Consider laminar flow over a flat plate (U = constant). Approximate the boundary layer velocity profile using a 
parabolic shape, 

!
"
= "

2$#
$
% − $#

$
%
%

0 ≤ #
$
< 1

1 #
$
≥ 1

  

 
Using the KMIE, determine the dimensionless 99% boundary layer thickness, 𝛿/𝑥, as a function of Reynolds 
number based on the distance from the leading edge, Re! = 𝑈𝑥/𝜈.  Compare your result to the Blasius solution. 
 
SOLUTION: 
Evaluate the momentum thickness, δM, 

𝛿" = 𝛿 ∫ #
$
*1 − #

$
-𝑑 *%

&
-'

( = 𝛿 ∫ (2𝜂− 𝜂))(1 − 2𝜂+ 𝜂))𝑑𝜂'
(        (where η = y/δ), (1) 

𝛿" = )
'*
𝛿. (2) 

Now substitute this momentum thickness into the KMIE.  Note that dU/dx = 0 since U = constant, 
+!
,
= -

-!
(𝑈)𝛿") + 𝛿.𝑈

-$
-!⏟
/(

= 𝑈) -&"
-!

, (3) 

𝜏0 = 𝜌𝑈) -&"
-!

= )
'*
𝜌𝑈) -&

-!
. (4) 

This shear stress should be the same as the shear stress found via, 
𝜏0 = 𝜇 -#

-%
8
%/(

= 1$
&
-(# $⁄ )
-5

8
5/(

= 1$
&
(2 − 2𝜂)5/( = 2 1$

&
. (5) 

Equating the two shear stresses and solving the resulting differential equation, 
)
'*
𝜌𝑈) -&

-!
= 2 1$

&
, (6) 

∫ 𝛿𝑑𝛿&
( = 15 1

,$ ∫ 𝑑𝑥!
(     (assuming δ = 0 when x = 0), (7) 

'
)
𝛿) = '*6!

$
, (8) 

&
!
= :7(6!

$!#
= : 7(

89$
    (using Rex = Ux/ν),  (9) 

&
!
≈ *.*

89$
%/# . (10) 

This approximate expression is only 10% different from the exact Blasius expression, 
&
!
≈ *.(

89$
%/#	   (Blasius). 
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Using the momentum integral theorem, determine the friction coefficient, cf, dimensionless boundary layer 
momentum thickness, dM/x, and the dimensionless boundary layer displacement thickness, dD/x, for laminar 
flat plate flow with no pressure gradient assuming a sinusoidal velocity profile: 

 , 

where d is the 99% boundary layer thickness, y is the distance from the plate surface, and U is the outer 
flow speed.  Compare your answers with the Blasius’ exact laminar boundary layer solution. 
 
 
SOLUTION: 
 
Use the Kármán Momentum Integral Equation (KMIE), 

 (1) 

Assuming a flat plate flow with no pressure gradient, 

  (from Bernoulli’s equation applied outside the boundary layer) (2) 

Simplifying Eqn. (1) gives, 

 (3) 

 
The momentum thickness is given by, 

 

 (4) 

 
Substitute Eq. (4) into Eq. (3), 

 (5) 

 
For a laminar flow, the shear stress can also be expressed as, 

 

 (6) 
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Video solution: https://www.youtube.com/watch?v=g2r4KOdA8MQ
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Equate Eqs. (5) and (6) and solve for d, 

 

 (7) 

Equation (7) is only 4% different from the exact Blasius solution of . 
 
From Eq. (4) the momentum thickness is, 

 (8) 

This result is 1% different from the Blasius solution of . 
 

The displacement thickness is given by, 

 

 (9) 

so that, when combined with Eq. (7), 

 (10) 

This result is 1% different from the Blasius solution of . 
 
The friction coefficient can be found using Eq. (6), 

 

 (11) 

This result is 1% different form the Blasius solution of . 
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Video solution: https://www.youtube.com/watch?v=g2r4KOdA8MQ
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A measured dimensionless laminar boundary layer profile for flow past a flat plate is given in the table 
below.  Use the momentum integral equation to determine the 99% boundary layer thickness.  Compare 
your result with the exact (Blasius) result. 
 

y/d u/U 
0.00 0.00 
0.08 0.133 
0.16 0.265 
0.24 0.394 
0.32 0.517 
0.40 0.630 
0.48 0.729 
0.56 0.811 
0.64 0.876 
0.72 0.923 
0.80 0.956 
0.88 0.976 
0.96 0.988 
1.00 1.000 

 
SOLUTION: 
 
Apply the Kármán Momentum Integral Equation: 

 (1) 

Assuming a flat plate flow with no pressure gradient: 

 (2) 

Simplifying Eqn. (1) gives: 

 (3) 

 
The momentum thickness is given by: 

 

Integrating the data numerically using the trapezoidal rule gives: 
 (4) 

 
Substitute into Eqn. (3). 

 (5) 
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For a laminar flow, the shear stress can also be expressed as: 

 (6) 

Differentiating the data numerically using a 1st order finite difference scheme: 

 (7) 

 
Equating Eqns. (5) and (7) gives: 

 

 (8) 

 
Equation (8) is within 1% of the exact Blasius solution of . 
 
Another approach to this problem is to fit a polynomial curve to the given data rather than numerically 
differentiating and integrating the data. 
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The flat plate formulas for turbulent flow over a flat plate assume that turbulent flow begins at the leading 
edge (x = 0).  In reality there is an initial region of laminar flow as shown in the figure. 
 
 
 
 
 
 
 
 
 
1. Derive an expression for the 99% boundary layer thickness in the turbulent region by accounting for 

the laminar part of the flow.   
2. Plot the dimensionless boundary layer thickness, d/x, as a function of Reynolds number (104 £ Rex £ 

108, use a log scale for the Rex axis) for your derived relation and for the turbulent relation that does 
not consider the laminar part.   

Assume a 1/7th power law velocity profile for the turbulent boundary layer and an experimental friction 
coefficient correlation of . 
 
 
SOLUTION: 
 
First determine the boundary layer thickness in the laminar flow region using the Blasius solution: 

    (Rex < 500,000) (1) 

Assume that the transition to turbulence occurs at a Reynolds number of 500,000 so that condition at the 
transition point is: 

   (2) 

where 

 (3) 

 
Now use the Karman Momentum Integral Equation to determine the boundary layer characteristics for the 
turbulent region.  Assume that the velocity profile follows the following form: 

 (4)

  
Using this velocity profile, the momentum thickness is: 

 (5) 

 
To determine the shear stress, recall that from the Karman Momentum Integral Equation, with a constant 
outer velocity: 

  (1.6) 

so that the friction coefficient is: 
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 (1.7) 

 
Using the given experimental wall friction correlation: 

 (1.8) 
where Red = (Ud/n), equate the two friction coefficients to give: 

 (9) 

 (10) 

 (11) 

where Eqns. (2) and (3) are used for dtrans and xtrans, respectively.  Substituting and simplifying results in: 

 (12) 

 (13) 

 (14) 

 (15) 

 
Compare this result to one that assumes that the turbulent boundary layer starts from the leading edge: 

    (Rex > 500,000) (16) 
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Air flows between two parallel flat plates as shown in the figure below.  The upper plate is porous from 
point B to point C and additional air is injected through this surface.  As a result, the free stream speed, 
U(x), varies as: 

 
where U0 is the air speed entering the channel (at point A), a is a constant, and x is the distance 
downstream of the point B.  A boundary layer develops along the lower surface.  Assuming a linear 
velocity distribution in the boundary layer, estimate the rate of boundary layer growth, dd/dx, in terms of d, 
x, U0, a, and the air properties.  
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
Assuming a linear profile in the boundary layer means: 

 (1) 

Note that with this velocity profile: 

  and   (2) 

 
To determine the rate at which the boundary layer thickness grows with x, begin with the Karman 
momentum integral equation: 

 (3) 

where 

 (4) 
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Substitute Eqn. (1) into Eqns. (4) - (6). 

 (8) 

 (9) 

 (10) 

Substitute Eqns. (7), (8) - (10) into Eqn. (3) and simplify. 

 (11) 

 (12) 

 (13) 

 (14) 
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9.7. Approximate Methods: Thwaites’ Correlation

Thwaites’ method (1949) is generally considered the best available one parameter method for describing
laminar boundary layers. The correlation uses the Kármán Momentum Integral Equation along with di-
mensionless experimental laminar boundary layer data. Recall from the previous notes that the momentum
thickness, δM , the displacement thickness, δD, and the shear stress at the wall, τw, can be related via the
Kármán Momentum Integral Equation (KMIE),

τw
ρ

=
d

dx
(U2δm) + δDU

dU

dx
. (9.145)

Note again that U is the outer flow speed, i.e., the flow speed just outside the boundary layer. We can
re-arrange this equation into the following form,

τw
ρ

= 2δMU
dU

dx
+ δDU

dU

dx
, (9.146)

= (2δM + δD)U
dU

dx
+ U2 dδM

dx
. (9.147)

Let’s write the KMIE using two dimensionless shape factors, H and T , defined in the following manner
(following the approach of Holstein and Bohlen, 1940),

H :=
δD
δM

and T :=
τw

µU/δM
=
τW δM
µU

, (9.148)

where H is the shape correlation and T is the shear correlation. These shape factors only depend on the
shape of the velocity profile. Re-writing the KMIE using these shape factors gives,

νUT

δM
= U2 dδM

dx
+ (2 +H)δMU

dU

dx
. (9.149)

Multiplying through by δM/(Uν) and re-writing the dδM/dx term gives,

νUT

δM
= U2 dδM

dx
+ (2 +H)δMU

dU

dx
, (9.150)

T = U
δM
ν

dδM
dx

+ (2 +H)
δ2
M

ν

dU

dx
, (9.151)

0 =
U

2

d

dx

(
δ2
M

ν

)
+

(
δ2
M

ν

)
(2 +H)

dU

dx
− T, (9.152)

U
d

dx

(
δ2
M

ν

)
= 2

[
T − (2 +H)

dU

dx

(
δ2
M

ν

)]
. (9.153)

After plotting several known velocity profiles, researchers found that H and T depend almost entirely on
another dimensionless quantity, λ, where,

λ :=
δ2
M

ν

dU

dx
, (9.154)

so that the shape of the boundary layer velocity profile will be determined entirely by λ. Substituting
Eq. (9.153) into Eq. (9.154) gives,

U
d

dx

(
δ2
M

ν

)
= 2

[
T − (2 +H)

dU

dx

(
δ2
M

ν

)]
, (9.155)

U
d

dx

(
λ

U ′

)
= F (λ) = 2[T − λ(2 +H)]. (9.156)

Figure 9.12 plots F (λ) as a function of λ for a number of known profiles. Thwaites proposed a simple linear
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Figure 9.12. The function F (λ) plotted as a function of λ for several known boundary
layer profiles. This figure is from Figure 4-22 in White, F.M., Viscous Fluid Flow, 2nd ed.,
McGraw-Hill. Note that the θ in the plot is the momentum thickness, δM .

curve fit to the data,

U
d

dx

(
δ2
M

ν

)
= F (λ) = 0.45− 6.0λ, (9.157)

= 0.45− 6.0
dU

dx

(
δ2
M

ν

)
, (9.158)

0.45ν = U
d(δ2

M )

dx
+ 6.0δ2

M

dU

dx
, (9.159)

=
1

U5

d

dx

(
δ2
MU

6
)
, (9.160)

δ2
MU

6 =

ˆ x

0

0.45νU5dx+ constant [δM (x = 0) = 0 =⇒ constant = 0], (9.161)

so that the momentum thickness is related to the outer flow velocity by,

δ2
M =

0.45ν

U6

ˆ x

0

U5dx. (9.162)

Notes:

(1) The functions H(λ) and T (λ) are found from plots of several known velocity profiles. Figure 9.13
shows Thwaites’ correlation data for the shape factors. The following two curve fits to the data are
given by White (Viscous Fluid Flow, 2nd ed., McGraw-Hill),

T (λ) ≈ (λ+ 0.09)0.62, (9.163)

H(λ) ≈ 2.0 + 4.14z − 83.5z2 + 854z3 − 3337z4 + 4576z5 (z = 0.25− λ). (9.164)

(2) The typical procedure for using Thwaites’ method is as follows:
• Determine U = U(x) for the outer potential flow.
• Determine δM using Eq. (9.162).
• Determine λ using Eq. (9.154).
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Figure 9.13. The shape factors T (λ) and H(λ) plotted against λ =
δ2M
ν
dU
dx .

• Determine τw and δD using Eq. (9.148) and the curve fits or using Figure 9.13.
(3) This method is considered one of the best methods for predicting the behavior of laminar boundary

layers. It is accurate to about ±5% for favorable or mild adverse pressure gradients and is accurate
to about ±15% near the separation point. When more accurate calculations are necessary, one
typically turns to numerical methods for solving the boundary layer equations.

(4) Recall that the boundary layer separation point occurs when τw = 0 =⇒ T (λ) = 0 so that,

λat separation pt = −0.090. (9.165)

(5) Thwaites’ method, as presented here, is restricted to laminar, planar flows. A similar type of method
can also be derived for laminar, axi-symmetric flows.

(6) The outer flow velocity, U , may in fact be significantly different than the expected potential flow
velocity profile. For example, for flow around a cylinder (or any bluff body), boundary layer
separation results in a large wake region. Thus, the potential flow prediction (using a uniform
stream and a doublet to model flow around a cylinder, for example) for the outer flow velocity may
be greatly in error. Often we must resort to experimental data to obtain the outer flow velocity
profile.
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Consider the decelerating non-similar outer flow described by, 
𝑈 = 𝑈!#1 − 𝑥 𝐿( ). 
Using Thwaites’ method, determine the point at which flow separation occurs.  
 
 
SOLUTION: 
Using Thwaite’s correlation we have, 

𝛿"# =
!.%&'

(!
")*+, -. /

" ∫ 𝑈!&#1 − 𝑥 𝐿( )&𝑑𝑥,
! , (1) 

𝛿"# = 0.075 '-
(!
1#1 − 𝑥 𝐿( )+0 − 12, (2) 

so that the dimensionless parameter, λ, is, 

𝜆 = 1#
$

'
2(
2,
= −0.075 1#1 − 𝑥 𝐿( )+0 − 12. (3) 

Separation occurs when λ = -0.090, 
 −0.090 = −0.075 1#1 − 𝑥 𝐿( )+0 − 12, (4) 

 
,%&'
-
= 0.123. (5) 

This value is within 3% of the “exact” result of xsep/L, which is found numerically. 
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Consider the boundary layer flow resulting from a sink located at the trailing edge of a thin, flat plate as 
shown in the figure. 
 
 
 
 
 
 
 
 
 
a. Using Thwaites’ method, determine and plot the dimensionless momentum thickness, dM/(a2n/m)1/2 , 

over the top surface of the plate as a function of dimensionless distance along the plate, x/a. 
b. Will boundary layer separation occur on the plate?  If so, determine the location of the separation 

point.  If not, explain why.  [Hint:  No calculations are necessary for this part.] 
 
 
SOLUTION: 
 
Determine the outer flow velocity profile by modeling the outer, potential flow as a single line sink located 
at x = a. 

   (where m > 0) (1) 

The fluid velocity is given by: 

 

 (2) 

 
On the plate surface, y = 0 so that: 

  and     (Note that 0 £ x £ a on the plate surface.) (3) 

 
Use Thwaites’ method to determine the momentum thickness, dM: 
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 (4) 

 
Boundary layer separation will not occur on the plate since there is a favorable pressure gradient along the 
surface.  This can be shown by examining Bernoulli’s equation in the outer flow. 

 

 (5) 

The velocity on the plate surface is given by Eqn. (3) so that: 

 (6) 

Since 0 £ x £ a, ¶p/dx < 0 (a favorable pressure gradient). 
 
Another approach to showing that there will be no boundary layer separation is to use Thwaites’ method 
(applicable to laminar boundary layers).  Boundary layer separation occurs when the wall shear stress is 
zero, i.e. tw = 0.  In Thwaites’ method this occurs when: 

 (7) 

Substituting Eqn. (4) for U gives: 

 (8) 

Noting that the right hand side will always be positive (note that m > 0 as defined in Eqn. (1)), we must 
conclude that boundary layer separation will not occur. 

 

2 6
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Near the minimum pressure point in the steady, planar flow of an incompressible fluid past a body, the 
velocity outside the laminar boundary layer, U, is given by: 

  

where Umax and c are constants and x is a coordinate measured along the body surface from the minimum 
pressure point: 

 
 
 
 
 
 
 
 
 
 

Estimate the distance xsep to the laminar boundary layer separation point assuming that cxsep2 << 1.  Note 
that you should retain first and second order terms until the final result to get an answer accurate to first 
order.  You may also assume that the momentum thickness at the minimum pressure point is negligible. 
 
 
SOLUTION: 
 
Use Thwaites’ correlation to determine the boundary layer separation point.  Thwaites’ correlation is given 
by: 

  Þ   (1) 

Substitute in for U as given in the problem statement. 

 (2) 

Use a binomial expansion to evaluate the terms in parentheses: 
 (3) 

Note that if cxsep2 << 1, then Eqn. (3) for r = 5 and r = -6 simplifies to: 
 (4) 

 (5) 
Substitute into Eqn. (2) and simplify. 

 (6) 

 (7) 

Boundary layer separation occurs when l = -0.090 so that: 

  Þ   (8) 
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Starting with the potential flow around a cylinder, use Thwaite’s method to find the location of laminar 
boundary layer separation from the cylinder.  In the actual flow the boundary layer separation point occurs 
substantially upstream of the result obtained in this problem.  Why? 
 
 
SOLUTION: 
 
The potential function for flow around a non-rotating cylinder of radius R is: 

 

so that the velocity on the surface of the cylinder is: 

  (1) 

 
Using Thwaites’ Method: 

    where s = Rq and ds = Rdq (2) 

and  

 (3) 

so that, after combining Eqns. (2) and (3): 

 (4) 

 
Substituting Eqn. (1) into Eqn. (4) gives:  

 

 (5) 

 
At separation, l = -0.090 so that, solving Eqn. (5) numerically for qsep gives: 

 (6) 
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The separation point in a real laminar flow occurs at qsep » 80.5° (from Hiemenz, 1911 experimental data).  
Our calculation is in error because we have assumed that the outer flow velocity is identical to the potential 
flow solution (the front and back half streamlines are symmetric.)  However, in reality, boundary layer 
separation causes the actual outer flow streamlines to look much different over the downstream side of the 
cylinder as shown below. 
 
 
 
 
 
 
 
A better approximation for the separation point can be found if experimental data for the outer flow 
velocity is used.  For example, Hiemenz (1911) found that a real outer flow laminar velocity profile can be 
fit well with: 

   when  

Other correlations exist for other values of the Reynolds number. 

3 51.814 0.271 0.0471r Ru
U
q q q q=

¥
= - - Re 9500R

U R
n
¥= =

wake 
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Flow emanates from the origin of a wedge and passes over a flat plate as shown in the figure below. 
 
 
 
 
 
 
 
 
 
 
The leading edge of the plate is located a distance a from the origin of the wedge.  At the leading edge, the 
flow speed is U0. 
1. Determine the position on the plate at which the flow separates. 
2. Plot the momentum thickness up to the separation point. 
 
 
SOLUTION: 
 
The outer, potential flow may be modeled as a flow from a source: 

 (1) 

so that 

 (2) 

 (3) 

The source strength m may be found by noting that the flow speed is U0 at r = a: 

 (4) 

Thus, the outer flow velocity over the plate, U, is: 

    (Note that along the plate surface, r = x.) (5) 

 
To find the separation point, use Thwaites’ correlation: 

  (Note that the plate’s leading edge begins at x = a.) (6) 

 (7) 

 (8) 

At separation, l = -0.090 so that 

 (9) 
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The momentum thickness may be found using the definition of l and Eqn. (8). 

 (11) 

   where Rea = U0a/n. (12) 

 

 

4 42 2

0 20.113 1 0.113 1M MdU x a xU
dx a ax

d d
n n

é ù é ù-æ ö æ ö æ ö= - Þ = -ê ú ê úç ÷ ç ÷ ç ÷
è ø è ø è øê ú ê úë û ë û

4

Re 0.113 1M
a

x
x a
d é ùæ ö= -ê úç ÷

è øê úë û

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

1.00 1.02 1.04 1.06 1.08 1.10 1.12 1.14 1.16 1.18

dimesionless position, x /a

di
m

en
si

on
le

ss
 m

om
en

tu
m

 th
ic

kn
es

s,
 ( d

M
/x

)(R
e a

)0.
5

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

C. Wassgren 978 2024-02-01



Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

9.8. Turbulent Boundary Layer over a Flat Plate with No Pressure Gradient

To analyze a turbulent boundary layer we must use the momentum integral approach coupled with experi-
mental data since no exact solutions are known. To approximate the velocity profile in a turbulent boundary
layer, recall the Law of the Wall (refer to Chapter 10),

ū

u∗
=
yu∗

ν
for

yu∗

ν
≤ 5, (9.166)

ū

u∗
=

1

K ′
ln

(
yu∗

ν

)
+ c for

yu∗

ν
> 5, (9.167)

where u∗ =
√
τw/ρ is the “friction velocity”. We could substitute this velocity profile into the KMIE and

solve. This velocity profile is cumbersome to use, however. Instead, Prandtl suggested approximating the
logarithmic turbulent velocity profile using a 1/7th power-law curve fit,

u

U∞
=
(y
δ

) 1
7

for
y

δ
≤ 1, (9.168)

u

U∞
= 1 for

y

δ
> 1. (9.169)

Using this velocity profile, the momentum thickness becomes,

δM =

ˆ ∞
0

u

U∞

(
1− u

U∞

)
dy =

ˆ δ

0

(y
δ

) 1
7

[
1−

(y
δ

) 1
2

]
dy, (9.170)

δM =
7

72
δ. (9.171)

To determine the shear stress, recall that from the Kármán momentum integral equation,

τw = ρU2
∞
dδM
dx

=
7

72
ρU2
∞
dδ

dx
, (9.172)

so the friction coefficient becomes,

cf =
τw

1
2ρU

2
∞

=
7

36

dδ

dx
. (9.173)

Experimental wall friction data for turbulent boundary layers can be fit using,

cf ≈ 0.020Re
− 1

6

δ , (9.174)

where, Reδ = U∞δ/ν. Note that experimental data for the wall shear stress is used instead of τw =
µ(du/dy)y=0, which was used for laminar boundary layers. The reason for the difference is that turbu-
lent boundary layers use time-averaged data rather than instantaneous data. Equating the two friction
coefficients gives,

7

36

dδ

dx
= 0.020

(
U∞δ

ν

)− 1
6

, (9.175)

ˆ δ

δ0

δ
1
6 dδ = 0.103

(
U∞
ν

) 1
6
ˆ x

x0

dx, (9.176)

δ
7
6 − δ

7
6

) = 0.120

(
U∞
ν

)− 1
6

(x− x0). (9.177)
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Assuming δ0 = 0 at x0 = 0, meaning that the boundary layer starts off turbulent at the leading edge (refer
to Figure 9.14), the previous equation becomes,(

δ

x

) 7
6

= 0.120

(
ν

U∞x

) 1
6

, (9.178)

δ

x
≈ 0.163

Re
1
7
x

. (9.179)

From this relation we can also determine the displacement thickness, momentum thickness, friction factor,

Figure 9.14. A sketch showing the boundary condition used in integrating the turbulent
boundary layer thickness equation. The shear stress relationship holds strictly for the part of
the boundary layer that is turbulent. If the laminar boundary layer thickness and distance
downstream are small in comparison to the current thickness and location, then we may
assume that the turbulent boundary layer starts approximately at the leading edge, i.e.,
δ0 = 0 at x0 = 0.

and drag coefficient. These relations are summarized below.

δ

x
≈ 0.16

Re
1
7
x

δD
x
≈ 0.02

Re
1
7
x

δM
x
≈ 0.016

Re
1
7
x

, (9.180)

cf ≈
0.027

Re
1
7
x

cD ≈
0.031

Re
1
7

L

Rex =
U∞x

ν
. (9.181)

Notes:

(1) The boundary layer thickness grows as δ ∼ x
6
7 for a turbulent boundary layer whereas it grows as

δ ∼ x 1
2 for a laminar boundary layer. Hence, a boundary layer grows more rapidly with downstream

distance for turbulent flow than for a laminar flow. The momentum and displacement thicknesses
also increase more rapidly for turbulent boundary layers.

(2) The shear stress decreases more rapidly for laminar flow than for a turbulent flow. The drag does
not increase as rapidly in a laminar flow as compared to a turbulent flow.

(3) Another experimental friction curve fit that is commonly used is:

cf ≈
0.0466

Re
1
4

δ

, (9.182)

which gives,

δ

x
≈ 0.382

Re
1
5
x

δD
x
≈ 0.0478

Re
1
5
x

δM
x
≈ 0.0371

Re
1
5
x

, (9.183)

cf ≈
0.0594

Re
1
5
x

cD ≈
0.0742

Re
1
5

L

Rex =
U∞x

ν
. (9.184)
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White (in White, F.M., Viscous Fluid Flow, 2nd ed., McGraw-Hill) states that the experimental
curve fit given by Eq. (9.182) is based on limited data and is not as accurate as the curve fit given
by Eq. (9.174). This argument is supported by the plot shown in Figure 9.15.

Figure 9.15. Boundary layer friction coefficients plotted against the Reynolds number
based on the boundary layer thickness. Note that in the plot, Eq. (82) is actually Eq. (9.181)
and Eq. (76) is actually Eq. (9.184)). Plot from White, F.M., Viscous Fluid Flow, 2nd ed.,
McGraw-Hill.
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A thin smooth sign is attached to the side of a truck as shown.  Estimate the skin friction drag on the sign 
when the truck speed is 55 mph. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
Assume that the boundary layer forms at the front of the trailer. 
 
 
 
 
 
 
 
 
 
 
To find the drag on the sign, determine the drag on region 2 and subtract the drag from region 1. 

 (1) 
where 

   (i = 1 or 2) (2) 
Substitute and simplify. 

 (3) 
 

The drag coefficients are determined from the Reynolds numbers at each region’s trailing edge. 

  (turbulent!) (4) 

  (turbulent!) (5) 

Assume that the flow is fully turbulent throughout regions 1 and 2 (neglect any laminar flow contribution) 
so that: 

 (6) 

 (7) 
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Substitute into Eqn. (3) and evaluate. 
 

 (8) 

( )( ) ( ) ( )( ) ( )( )23 3 -3 -31
sign 2 2.38*10  slugs/ft 80.7 ft/s 4 ft 2.80*10 25 ft 3.87*10 5 ftD - é ù= -ë û

sign f1.57 lbD\ =
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A vertical stabilizing fin on a land-speed-record car is 1.65 m long and 0.785 m tall.  The automobile is to be driven 
at the Bonneville Salt Flats in Utah, where the elevation is 1340 m and the summer temperature reaches 50 degC.  
The car speed is 560 km/hr.  Calculate the power required to overcome skin friction drag on the fin. 
 

 
 
SOLUTION: 
 
At a temperature of 313 K, the kinematic viscosity of air is n = 2.0*10-5 m2/s.  Thus, the Reynolds number at the 
trailing edge of the vertical fin is: 

  Þ ReL = 1.51*107 (1) 

Clearly the flow is turbulent at the trailing edge of the vertical fin.  At what distance from the leading edge of the fin 
does the flow transition from laminar to turbulent?  To answer this question, calculate the distance at the transition 
Reynolds number, 

  Þ  x = 5.5 cm (2) 

Thus, most of the flow over the fin is turbulent.  Since this is the case, approximate the entire flow over the fin as 
being turbulent.  The drag coefficient for a turbulent boundary layer over a flat plate is, 

  Þ    Þ   (3) 

The power is given by, 

  Þ   (4) 

 
Using the given data, 

r = 1.075 kg/m3 (standard atmosphere at an altitude of 1340 m) 
ReL = 1.51*107 
U  = 560 km/hr = 155.6 m/s 
L = 1.65 m 
H = 0.785 m 
Þ  P = 14.3 kW  

  
 
Note that a speed of 540 km/hr at a temperature of 50 degC result in a Mach number of 0.43.  Thus, a more accurate 
approach to solving this problem would assume relations for a compressible boundary layer, rather than the 
incompressible relations assumed in the previous solution. 
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The U.S. Navy has built the Sea Shadow, which is a small waterplane area 
twin-hull (SWATH) ship with a reduced radar profile.  This catamaran is 160 ft 
long and its twin hulls have a draft of 14 ft.  Assume that ocean turbulence 
triggers a fully turbulent boundary layer on the sides of each hull.  Treat these as 
flat plate boundary layers and calculate the drag on the ship and power required 
to overcome this drag for speeds ranging from 5 to 13 knots. 
 
 
 
SOLUTION: 
Model the twin hulls as two flat plates with turbulent boundary layers as shown in the figure below. 
 
 
 
 
 
 
 
 
Assuming turbulent boundary layer over the full length of the hull, the drag force on one side of a hull is, 

, (1) 

 where . (2)  

The total drag acting on the ship will be four times the drag in Eq. (2) since there are two hulls, each with 
two sides, 

. (3) 

 
Using the given numbers, 

 rseawater = 1025 kg/m3 = 63.99 lbm/ft3, 
U = 5 to 13 kn = 8.44 ft/s to 21.94 ft/s  (1 kt = 1.15 mph = 1.688 ft/s),  
L = 160 ft, 
H = 14 ft, 
µseawater = 1.08*10-3 Pa.s, 
��� n���������� µ�r � 1.05*10-6 m2/s = 1.13*10-5 ft2/s, 
����ReL = 1.19*108 – 3.10*108  (clearly in the turbulent regime), 
=>  Done side of hull = 285 – 1590  lbf  (1 lbf = 32.2 lbm.ft/s2), 
=>  Dtotal = 1140 – 6370 lbf. 
 

The power to overcome this total drag is, 
P = DtotalU, 
=>  P = 17.5 – 254 hp  (1 hp = 550 lbf.ft/s) 

 
Note that the hulls for the Sea Shadow are more complex than the flat 
plates described in this simple problem.  The actual hulls have cylindrical 
elements, which are tapered at the ends, as shown in the figure to the side. 
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The U.S. Navy’s Ohio-class guided-missile submarines have a length of 170.69 m 
(560 ft) and a beam, i.e., width, of 12.8 m (42 ft).  Assume the submarine travels at 
37.0 kph (= 20 kn) when fully submerged. 
a. What percentage of the submarine’s surface has a laminar boundary layer for 

these conditions?  
b. Estimate the power required for the submarine to overcome skin friction drag for 

these conditions.  
 
 
 
SOLUTION: 
Model the submarine as a cylinder with a diameter of d = 12.8 m and a length of L = 170.69 m.  “Unwrap” 
the cylinder and model the flow along its length of the cylinder as flow adjacent to a flat plate as shown in 
the figures below. 
 
 
 
 
 
 
 
First calculate the distance from the leading edge at which the boundary layer transitions from laminar to 
turbulent flow, 

   =>  . (1) 

Using the given numbers, 
U = 37.0 kph = 10.3 m/s,  
rseawater = 1025 kg/m3, 
µseawater = 1.08*10-3 Pa.s, 
��� n���������� µ�r � 1.05*10-6 m2/s, (2) 
��� xcrit =  5.10*10-2 m = 5.1 cm! 

Thus, the fraction of the length that’s laminar is, 
xcrit/L = (5.10*10-2 m)/(170.69 m) = 0.030%. (3) 

Clearly, the flow over the submarine can be assumed turbulent over the entire length without much error. 
 
Assuming a turbulent boundary layer over the full length of the hull, the drag force is, 

, (4) 

 where . (5)  

 
Using the given numbers, 

L = 170.69 m, 
pd = p(12.8 m) = 40.2 m, 
����ReL = 1.67*109, 
=>  D = 3.96*105 N  (= 89,000 lbf!) 
 

The power to overcome this skin friction drag is, 
P = DU, 
=>  P = 4.08*106 W  (= 5470 hp!) 
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A small bug rests on the outside of a car side window as shown in the figure below.  The surrounding air 
has a density of 1.2 kg/m3 and kinematic viscosity of 1.5*10-5 m2/s.  To first order, we can approximate the 
flow as flat plate flow with no pressure gradient and the start of the boundary layer begins at the leading 
edge of the window.  Also assume that the flow is turbulent over the entire length of the window (this isn’t 
a good assumption, but for simplicity, we’ll make it here). 
 
 
 
 
 
 
 
 
 
 
 
a. Determine the minimum speed at which the bug will be sheared off of the car window if the bug can 

resist a shear stress of up to 1 N/m2.  
b. What is the total skin friction drag acting on the window at a speed of U = 20 m/s?   
c. Ignoring the presence of the bug, at what streamwise location will the boundary layer separation 

point occur on the window?  Justify your answer. 
 
SOLUTION: 
 
Assume that the flow over the window is turbulent at the bug location so that: 

, (1) 

, (2) 

. (3) 

Using the given data: 
tw = 1 N/m2 
r = 1.2 kg/m3 
x = 0.4 m 
n = 1.5*10-5 m2/s 
Þ U = 20 m/s 
 

Check the Reynolds number to verify the turbulent flow assumption. 

  Þ  Turbulent flow assumption is ok! (4) 

 
Hence, the minimum required speed to shear off the bug is 20 m/s. 
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The total skin friction drag acting on the car window (assuming turbulent flow throughout) at the given 
velocity is: 

  where , (5) 

. (6) 

Using the given data: 
U = 20 m/s 
r = 1.2 kg/m3 
L = 1 m 
W = 0.7 m 
n = 1.5*10-5 m2/s 
Þ ReL = 1.3*106 
Þ CD = 4.4*10-3 
Þ D = 0.7 N 
 

Boundary layer separation will not occur since there is no adverse pressure gradient in the flow (zero 
pressure gradient was assumed). 
 
 
Note that the distance from the leading edge where the flow transitions from laminar to turbulent flow at U 
= 20 m/s is, 

, (7) 

=>  , (8) 

xcrit =  37.5 cm,  
This distance is a considerable portion of the window length.  Hence, a better approach to solving this 
problem would be to include both the laminar and turbulent portions in the analysis rather than neglecting 
the laminar portion as was done in the previous analysis.  
 
Use the drag coefficient given in Pritchard et al. (8th ed., Eq. 9.37a), which takes into account the skin 
friction drag of the laminar part and the turbulent part, 

. (9) 

For ReL = 1.3*106 (calculated previously), CD = 3.1*10-3, which gives a drag force of D = 0.5 N.  This more 
accurate value for the drag is approximately 42% less than drag calculated assuming turbulent flow over 
the full length.   

 

( ) 1
521

2

0.0742
ReD

L

DC
U LWr

= = ReL
UL
n

=

( ) 1
5

21
2

0.0742
ReL

D U LWr\ =

!!
Rexcrit =

Uxcrit
ν

=500,000

!!
xcrit =500,000

ν
U

⎛
⎝⎜

⎞
⎠⎟

!!
CD =

0.0742
ReL

1
5

− 1740ReL

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

C. Wassgren 988 2024-02-01



  BL_18 

Page 1 of 2 

A four-bladed Apache helicopter rotor rotates at 200 rpm in air (with a density of 1.2 kg/m3 and kinematic 
viscosity 1.5*10-5 m2/s).  Each blade has a chord length of 53 cm and extends a distance of 7.3 m from the 
center of the rotor hub.  To greatly simplify the problem, assume that the blades can be modeled as very 
thin flat plates at a zero angle of attack (no lift is generated). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a. At what radial distance from the hub center is the flow at the blade trailing edge turbulent? 
b. What is the (99%) boundary layer thickness at the blade tip trailing edge? 
c. Assuming that the flow over the entire length of the four blades is turbulent, estimate the power 

required to drive the helicopter rotor (neglecting all other effects besides aerodynamic drag). 
 
 
SOLUTION: 
 
The transition to turbulence occurs when Recrit = 500,000 where 

 (1) 

      

(Note:  ) 

 (2) 
 

To determine the boundary layer thickness at the blade tip trailing edge, first calculate the Reynolds 
number there. 

  (3) 

   Þ  the flow is turbulent 
 

Using the turbulent boundary layer correlations: 

 (4) 
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In order to determine the power required to drive the rotor, first determine the torque resulting from the 
skin friction drag acting on the blades. 

   where   (turbulent BL correlation) (6) 

 (7) 

 

 (8) 

 (9) 
 

For: 
r = 1.2 kg/m3 
n = 1.5*10-5 m2/s 
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Þ T4-blades  =  2790 N×m  Þ  P4-blades = 58.3 kW 
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A wind tunnel has a test section 1 m square by 6 m long with air at 20°C moving at an average velocity of 
30 m/s.  To account for the growing boundary layer, the walls are slanted slightly outward.  At what angle 
should the walls be slanted between x = 2 m and x = 4 m to keep the test-section velocity constant? 
 
 
SOLUTION: 
 
Determine the displacement boundary layer thickness assuming flat plate flow.  First check the flow 
Reynolds number to determine whether or not the flow is laminar. 

 (1) 

 

Thus the flow in the tunnel is turbulent in the range of interest. 
 

Use the following correlation for turbulent flat plate flow to determine the displacement boundary layer 
thickness. 

 (2) 

x = 2 m: Rex = 4.0e6 Þ dD = 4.6e-3 m  
x = 4 m: Rex = 8.0e6 Þ dD = 8.0e-3 m  
 

As an approximation, assume that the boundary layer grows linearly between x = 2 m and x = 4 m so that 
the angle the walls need to be slanted outward is: 

 (3) 

 (4) 
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9.9. Boundary Layer Separation

Consider flow around a cylinder as shown in Figure 9.16. On the front side of the cylinder the boundary layer

Figure 9.16. A sketch of the flow around a cylinder showing boundary layer separation.

grows with increasing distance along the surface, as we might expect. Moving toward the back half of the
cylinder, however, the boundary layer no longer remains “attached” to the surface and, instead of following
the cylinder contour, forms a wake behind the cylinder. The point where the boundary layer no longer follows
the cylinder surface is termed the boundary layer separation point. As part of our examination of boundary
layer separation, it’s helpful to define the following:

an adverse pressure gradient is one in which dp/ds > 0, and (9.185)

a favorable pressure gradient is one in which dp/ds < 0. (9.186)

In an adverse pressure gradient, the pressure increases moving downstream. Thus, the pressure is acting
to decelerate the flow. In a favorable pressure gradient, the pressure decreases moving downstream and the
pressure acts to accelerate the flow.

Now let’s plot the pressure as a function of position on the cylinder surface. Figure 9.17 plots the pressure
determined from potential flow theory as a function of the angle measured from the leading stagnation point.
Imagine a fluid particle near the cylinder surface. It experiences the same pressure as that in the outer
potential flow (recall that the pressure doesn’t vary much in the spanwise direction within a boundary layer).
As the fluid particle moves from point A to point B, it accelerates and gains energy as it’s accelerated by the
favorable pressure gradient. In going from point B to C, however, the fluid particle experiences an adverse
pressure gradient that acts to decelerate the fluid particle. If the flow is inviscid, as is the case in a potential
flow, then the flow on the back half of the cylinder will be symmetric to the flow on the front half and
the fluid particle decelerates to zero speed at the trailing edge stagnation point located at point C. In a
real flow, however, the fluid particle is subject to viscous stresses, which constantly remove energy from the
flow. As a result, on the back half of the cylinder the fluid particle decelerates rapidly due to the adverse
pressure gradient and viscous dissipation. At some point between B and C, the fluid particle loses its forward
momentum and is no longer able to move further into the adverse pressure gradient. It is at this point the
flow separates, with the fluid particle moving downstream and forming a wake rather than following the
cylinder surface.

Figure 9.18 plots the dimensionless pressure on the cylinder surface for a potential (inviscid) flow along with
representative curves for viscous flows with laminar and turbulent boundary layers. The inviscid analysis
works well at predicting the pressure on the upstream side of the cylinder near the leading stagnation point,
but becomes increasingly inaccurate moving toward the downstream side of the cylinder. The reason for
the increasing inaccuracy is due to boundary layer separation, which distorts the flow streamlines so they
no longer match those from a potential flow analysis. Once the boundary layer separates, a wake forms,
within which the pressure remains nearly constant and equal to the pressure on the cylinder surface where
the boundary layer separated.

Notes:
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Figure 9.17. The pressure at the surface of the cylinder plotted as a function of the angle
from the leading stagnation point, assuming potential flow around the cylinder. Over the
front half of the cylinder the pressure gradient is favorable. Over the back half the pressure
gradient is adverse.

(1) Boundary layer separation requires an adverse pressure gradient; however, an adverse pressure
gradient does not necessarily cause boundary layer separation. It’s possible for the boundary layer
to have enough momentum to carry it through the adverse pressure gradient region.

(2) Delaying boundary layer separation results in a wake that is both smaller and with a more symmetric
pressure profile (front and back halves of the cylinder). Both effects act to reduce the cylinder’s
form drag, i.e., the drag due to pressure forces.

(3) A turbulent boundary layer separates later than a laminar boundary layer (and, thus, has smaller
form drag). The reason for the delayed separation is that a turbulent boundary layer has more
momentum than a laminar boundary layer, as shown in Figure 9.19. The larger momentum in the
turbulent boundary layer means that the boundary layer flow can travel further into the adverse
pressure gradient region before separating. The larger momentum in the turbulent boundary layer is
the result of turbulent eddies mixing free stream air, which has large momentum, into the boundary
layer.

(4) Although a turbulent boundary layer results in a smaller form drag, i.e., pressure drag, due to
delayed boundary layer separation, it does increase the skin friction drag, i.e., the drag due to
viscous wall shear stresses on the surface. From Figure 9.19 one can see that the velocity gradient
at the surface is larger for a turbulent boundary layer than for a laminar boundary layer and, thus,
the shear stress will be larger. As is discussed in the following section, one must consider both form
drag and skin friction drag when determining the total drag on an object.

(5) A laminar boundary layer can be “tripped” into becoming a turbulent boundary layer. Common
techniques for inducing a turbulent boundary layer are to add roughness or bumps to a surface.

(6) Examples of flows with boundary layer separation are shown in Figures 9.20 - 9.23. Figure 9.20
provides a schematic of the boundary layer flow in a diverging channel. From Conservation of Mass,
the velocity in the diverging channel decreases moving downstream. From Bernoulli’s equation, the
pressure must increase. Thus, the pressure gradient is adverse and boundary layer separation can
occur. Figure 9.21 shows photographs from a corresponding flow.
Figure 9.22 shows a photograph of a laminar boundary layer separating over the top of a cylinder
(top-most image). This separation point is further upstream than when the boundary layer is
turbulent (image second from the top). The bottom two photographs show flow over a sharp,
obtuse angle. When the boundary layer is laminar (second from the bottom), the flow separates
immediately at the apex; however, when the boundary layer is turbulent, it has enough momentum
to remain attached (bottom). This last photograph demonstrates the point made in the first note:
Just because there’s an adverse pressure gradient, it doesn’t mean the boundary layer must separate.
In this case the boundary layer has enough momentum to flow into the adverse pressure gradient
region.
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Figure 9.18. The pressure coefficient on the surface of a cylinder plotted as a function of
angle from the leading edge stagnation point. The figure includes curves assuming potential
flow (inviscid theory), viscous laminar flow, and viscous turbulent flow. This figure is from
White, F.M., Fluid Mechanics, 3rd ed., McGraw-Hill.

The images shown in Figure 9.23 show bowling balls dropped into water. The ball in the left image
is smooth and the boundary layer is laminar, resulting in separation near the ball’s equator. The
ball in the left image has a roughened surface at the leading edge, inducing a turbulent boundary
layer and delayed separation.

Let’s look at the velocity profile at different points along a flat plate for a flow with an adverse pressure
gradient (dp/dx > 0), as shown in Figure 9.24. In an adverse pressure gradient flow the boundary layer
velocity profile will always have an inflection point. This behavior can be shown by considering the boundary
layer momentum equation,

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

dp

dx
+ ν

∂2u

∂y2
. (9.187)

C. Wassgren 994 2024-02-01



Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

Figure 9.19. Sketches of laminar and turbulent boundary layer velocity profiles. Due
to turbulent mixing, the turbulent boundary layer has more momentum than the laminar
boundary layer.

Figure 9.20. An illustration of flow in a diverging, planar channel. This figure is from
White, F.M., Fluid Mechanics, 3rd ed., McGraw-Hill.

Note that at the wall boundary (y = 0), u = v = 0 so that,

dp

dx
= µ

∂2u

∂y2

∣∣∣∣
y=0

. (9.188)

Thus, at the wall boundary in an adverse pressure gradient (dp/dx > 0),

∂2u

∂y2

∣∣∣∣
y=0

> 0. (9.189)
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Figure 9.21. Flow in a diverging, planar channel. In the top figure, the diverging angle is
small and the adverse pressure gradient is sufficiently small so that boundary layer separation
doesn’t occur. In the bottom figure, the diverging angle is larger resulting in a larger adverse
pressure gradient and separation.

At the free stream (y = δ), however, we have,

∂2u

∂y2

∣∣∣∣
y=δ

< 0, (9.190)
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Figure 9.22. Photographs of a laminar boundary flowing over a cylinder (top), a turbulent
boundary layer flowing over a cylinder (second from top), a laminar boundary layer flowing
over a sharp angle (second from bottom), and a turbulent boundary layer flowing over a
sharp angle (bottom).

in order for the boundary layer profile to merge smoothly with the outer flow velocity. The change in sign of
the boundary layer curvature indicates that somewhere within the boundary layer there must be a point of
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Figure 9.23. Two bowling balls dropped into water. The left image is a smooth bowling ball
and the right image is a bowling ball with the leading edge surface roughened by attaching
sand paper in order to induce a turbulent boundary layer. This figure is from White, F.M.,
Fluid Mechanics, 3rd ed., McGraw-Hill.

Figure 9.24. The boundary layer velocity profile at different downstream locations. Bound-
ary layer separation is defined as occurring where the wall shear stress is zero. Downstream
of this point there is flow recirculation.

inflection. The inflection point moves toward the outer flow boundary as the flow moves downstream in an
adverse pressure gradient flow.

Boundary layer separation is defined as occurring where the shear stress is zero at the wall, i.e.,

τw = 0 =⇒ µ
du

dy

∣∣∣∣
y=0

= 0 =⇒ boundary layer separation (9.191)

Downstream of the separation point, a recirculation zone occurs where the flow reverses direction (being
pushed by the adverse pressure gradient). When recirculation occurs, the boundary layer grows rapidly
in thickness and the fundamental assumption that the boundary layer thickness is small compared to the
downstream distance breaks down. Thus, the boundary layer is considered not to extend beyond the point
of separation.
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A flat plate of length c is placed inside a duct.  By curving the walls of the duct, the pressure distribution on the flat 
plate can be set.  Assume the walls of the duct are contoured in such a way that the outer flow over the plate gives 
the following velocity on the surface of the flat plate: 
 

 

 
 
 

1. Write an expression for the streamwise pressure gradient as a function of x/c. 
2. Determine which portions of the plate have a favorable pressure gradient and which portions have an adverse 

pressure gradient.   
 
 
SOLUTION: 
 
In the outer flow region (the inviscid core), we can use Bernoulli’s equation, 

  Þ    Þ   (1) 

Here, 

  Þ    Þ  

 (2) 

Thus, 

 (3) 

 (4) 

 
An adverse pressure gradient is one in which dp/dx > 0.  A favorable pressure gradient is one in which dp/dx < 0.  
Note also that 0 £ x/c £ 1. 

   (5) 

Thus, there is a favorable pressure gradient for x/c < ½ and adverse pressure gradient for x/c > ½. 
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Video solution: https://www.youtube.com/watch?v=j1W7ylPSv-E
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9.10. Lift and Drag on Immersed Objects

The force acting on an object immersed in a fluid flow is comprised of the force due to pressure over the
surface and the force due to viscous wall shear stresses (Figure 9.25). If we know the pressure (p) and shear
stress (τ) distribution over the object, then,

Fp,i =

ˆ
A

−pdAni, (9.192)

Fs,i =

ˆ
A

τjidAni. (9.193)

where Fp is the force due to the pressure component, Fs is the force due to the shear stress component, A is
the surface area of the object, and ni are the unit normal vector components of the differential surface area.
The component of the resultant force acting in the direction parallel to the incoming flow is known as the
drag force, FD, and the component perpendicular to the incoming flow is known as the lift force, FL.

Figure 9.25. An illustration of the pressure and shear force distributions over an immersed
object. The resultant lift FL and FD forces acting on the object are also shown.

Notes:

(1) The pressure force component of the drag is known as the form drag while the shear stress drag
component is known as the skin friction drag.

(2) A streamlined body is one in which the (skin friction drag) � (form drag) (refer to Figure 9.26).

Figure 9.26. An example of a streamlined body.

A bluff body is one in which the (form drag) � (skin friction drag) (refer to Figure 9.27).

Figure 9.27. An example of a bluff body.
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(3) The lift and drag are often expressed in dimensionless form as lift and drag coefficients, CL and CD,

CL :=
L

1
2ρU

2
∞A

and CD :=
D

1
2ρU

2
∞A

, (9.194)

where A is usually the frontal projected area, i.e., the area seen from the front of the object, for a
bluff body, or the planform area, i.e., the area seen from above, for a streamlined body (Figure 9.28).
To avoid ambiguity, it is best to report what area is used to form the lift and drag coefficients.

Figure 9.28. Illustrations of the frontal projected area (left) and the planform area (right).

9.10.1. Flow around a Sphere at Different Reynolds Numbers

Since flow around spheres is common in practice, it’s worthwhile to examine the flow behavior around a
sphere at different Reynolds numbers,

ReD =
U∞D

ν
, (9.195)

where U∞ is the upstream flow speed, D is the sphere diameter, and ν is the fluid’s kinematic viscosity.
Although we’ll specifically look at flow around a sphere, the general patterns shown here are observed for
many other objects too, although the details may be different.

Figure 9.29 shows sketches of different flow regimes as a function of Reynolds number while Figure 9.30
shows corresponding photographs. At the smallest Reynolds number the flow streamlines are symmetric
between the front and back halves of the sphere since fluid inertia is negligible. This regime is known as
the Stokes or creeping flow regime. As the Reynolds number increases, inertia becomes more significant
and a wake with fixed eddies forms downstream of the sphere. At larger Reynolds numbers, the eddies
no longer remain attached behind the sphere and, instead, detach periodically from the sphere and are
carried downstream. This phenomenon is known as a Kármán Vortex Street. Figure 9.31 shows striking
photographs of Kármán vortex streets. At even larger Reynolds numbers the flow structure around the
sphere becomes even more complex. A laminar boundary layer forms on the front half of the sphere and then
separates at an angle of approximately 80° from the leading stagnation point. A laminar wake forms near
the sphere downstream surface, which transitions to turbulence further downstream. At a Reynolds number
of approximately 200,000 the flow undergoes what’s referred to as the drag crisis. At this Reynolds number
the boundary layer transitions from laminar to turbulent on the sphere surface and, thus, separates further
downstream. The form drag on the sphere, which is the primary contributor to the overall drag, decreases as
a result and the drag coefficient drops significantly. This decrease in drag coefficient is discussed further in
the following notes. Reynolds numbers larger than 200,000 result in a nearly fully turbulent boundary layer.

Notes:

(1) The periodic shedding of vortices off an object results in periodic forces exerted on the object in the
spanwise direction. The Tacoma Narrows bridge disaster from 1940 (Figure 9.32) occurred because
a structural natural frequency of the bridge matched the frequency of the shedding vortices, causing
the bridge to resonant and eventually collapse.
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(2) Experimental measurements have shown that the dimensionless frequency of the shedding vortices,
f , expressed as a Strouhal number, i.e., St = fD/V , remains relatively constant at 0.2 for 100 <
ReD < 1× 106. The fact that the Strouhal number is insensitive to the Reynolds number over a
wide range of Reynolds numbers has been used to design a type of flow velocity meter known as a
vortex flow meter (Figure 9.34). By measuring the frequency of the forces acting on the obstruction
(of known size) and knowing that the Strouhal number is approximately equal to 0.2, the flow
velocity can be estimated.

(3) The drag coefficient acting on a sphere is shown in Figure 9.35. Commonly-used curve fits for the
drag coefficient are,

ReD < 1 : CD =
24

ReD
(Stokes’ drag law), (9.196)

ReD < 5 : CD =
24

ReD

(
1 +

3

16
ReD

)
(Oseen’s approximation), (9.197)

0 ≤ ReD ≤ 2× 105 : CD =
24

ReD
+

6(
1 +
√

ReD
) + 0.4, (9.198)

0 ≤ ReD < 2× 105 : CD = 0.44 (Newton’s Law). (9.199)

The only analytically-derived expression for the drag coefficient is for the Stokes flow regime and
Oseen’s approximation. The remainder of the drag coefficient relations are empirical curve fits.
Note the abrupt decrease in the drag coefficient at the drag crisis, which occurs at a Reynolds
number of 200,000. This is where the boundary layer transitions to turbulence, delaying separation
and decreasing the form drag. The onset of the drag crisis is dependent on the surface roughness
(Figure 9.36). Increasing roughness causes the transition to turbulence to occur sooner and moves
the drag crisis to a smaller Reynolds number. The dimples on a golf ball serve this same purpose.
By decreasing the drag coefficient on the ball, the ball will travel further (and make golf ball
manufacturers more money!).

Notes:
(a) Interestingly, the Reynolds numbers for a 95 mph baseball, a 170 mph golf ball, a 100 mph

cricket ball, and a 140 mph tennis ball are all near the drag crisis.
(4) Drag coefficients for irregular shapes are usually found experimentally or, in some cases, computa-

tionally. Figures 9.37 and 9.38 give drag coefficients for a variety of objects.

C. Wassgren 1002 2024-02-01



  liftdrag_01 

Estimate the wind force on your hand when you hold it out of your car window while driving 55 mph.  
What would the force be if you held your hand out of the window of a jet flying at 550 mph? 
 
 
SOLUTION: 
Model your hand as a rectangular flat plate oriented normal to the flow as shown in the following figure. 
 
 
 
 
 
 
 
 
The drag force on your hand (the plate) is, 

𝐷 = 𝑐!
"
#
𝜌𝑈$#𝐴, (1) 

where, 
ρair = 2.38*10-3 slug/ft3, 
μair = 3.737*10-7 slug/(ft.s),  
U∞,1 = 55 mph = 80.7 ft/s, 
U∞,2 = 550 mph = 807 ft/s, 
A = WH = (4 in.)(7 in.) = 28 in.2 = 0.19 ft2, 
cD,flat plate ≈ 1.2  (obtained from a drag coefficient table for a flat plate), 

for H/W = 1.75, 
ReDh = U∞Dh/ν   (Reynolds number based on a hydraulic diameter), 
Dh = 4LW/[2(W+H)] = 5.1 in. = 0.42 ft     (hydraulic diameter),  
=>  ReDh,1 = 217,000, ReDh,2 = 2,170,000  (these values aren’t used in the calculation other than to 

ensure the drag coefficient in the table is in the correct range), 
=>  D = 1.80 lbf at 55 mph  and  D = 180 lbf at 550 mph. 
 
Note that at 550 mph compressibility of the air would be significant and should be included in the drag 
calculations.  Furthermore, the upstream air density would be smaller than the sea level value since the jet 
would be at an elevation higher than sea level.  Thus, the drag estimate at 550 mph is questionable. 

H = 7 in. 

W = 4 in. 

U∞  
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A parachute was used during part of the landing sequence to deposit the Spirit rover on the Martian surface.  The 
parachute had a fully-open, projected diameter of 14.1 m and was designed to slow the landing package (lander and 
rover) to a terminal speed of 65 m/s (retro-rockets were used to bring the landing package to a near zero vertical 
velocity).  If the mass of the landing package was 544 kg, what was the drag coefficient for the parachute?  Assume 
the gravitational acceleration on Mars is 3.72 m/s2 and that the density of the Martian atmosphere near the surface is 
0.016 kg/m3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
At terminal speed, the weight of the landing package must be balanced by the drag acting on the parachute 
(neglecting the drag on the landing package itself), 

, (1) 
where, 

, (2) 
. (3) 

Substitute and re-arrange to solve for the drag coefficient, 
 (4) 

 (5) 

Using the given data, 
m = 544 kg 
g = 3.72 m/s2 
r = 0.016 kg/m3 
VT = 65 m/s 
A = 156.1 m2 (=p/4*(14.1 m)2) 
Þ  cD = 0.38 

 
 

0yF D W= = -å
21

2D TD c V Ar=
W mg=

21
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In the book/movie The Martian, the mission of a crew of 
astronauts is derailed by a massive Martian windstorm.  If the 
Martian atmosphere has a density of 0.016 kg/m3 and the wind 
speed is 26.8 m/s (= 60 mph), what is the drag force acting on 
astronaut Mark Watney?  Based on wind tunnel testing, assume 
that the drag coefficient multiplied by the frontal projected area 
of a typical person is CDA = 0.84 m2 (see, for example, Table 7.3 
in White, F.M., Fluid Mechanics, 7th ed., McGraw-Hill). 
 
What wind speed on Earth would produce an equivalent drag force? 
 
 
SOLUTION: 
The drag force is given by, 

, (1) 
where, 

CDA = 0.84 m2 (given), 
rMars = 0.016 kg/m3, 
V = 26.8 m/s, 
=> D = 4.8 N (= 1.1 lbf) 

Thus, we see that the author took considerable artistic liberty in portraying the damage caused by a Martian 
windstorm. 
 
To determine the wind speed on Earth that would cause the same drag force, set the drag forces for Mars 
and Earth equal, 

, (2) 

. (3) 

Using rEarth = 1.23 kg/m3, VEarth = 3.1 m/s (= 6.8 mph), which corresponds to a light breeze. 
 
  

!!D=CD
1
2ρMarsV

2A

!!CD
1
2ρMarsVMars

2 A=CD
1
2ρEarthVEarth

2 A

!!
VEarth =VMars

ρMars
ρEarth
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Video solution: https://www.youtube.com/watch?v=hQ69_0ybIys
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Gravity settling tanks are sometimes used to separate particles from a fluid stream.  Estimate the critical 
length, L, for capturing a particle by gravity settling in the channel shown below.  Express your answer in 
terms of the channel height, H, the fluid velocity, U, the fluid density, rf,, the fluid dynamic viscosity, µf, 
particle density, rp, the particle diameter, d, and the acceleration due to gravity, g.  You may assume that 
the particle diameter is very small and that the fluid velocity profile in the channel is uniform.  How will 
the length L change if the particle diameter is doubled? 
 

 
   

 
 
 
 
 
 
SOLUTION: 
 
In order to capture the particle, we want the particle to settle on the base before passing through the device, 
i.e., 

tsettling < tresidence  
where, 

tresidence time = L/U  (chamber length / fluid velocity) 
tsettling time = H/Upt (settling height / particle terminal velocity) 
 
 

The particle terminal velocity can be determined by considering a free body diagram acting on the particle.  
The forces acting on the particle include a drag force, FD, a buoyant force, FB, and a gravitational force, FG. 
 

 

 

 
Note that Stokes drag has been assumed for the particle drag force since the particle Reynolds number is 
assumed to be very small.  Solving the previous equation for the terminal velocity, Upt, gives, 

 

Since the settling time must be less than the residence time, 
 

  Þ   

 
The length of the settling chamber, L, will decrease by a factor of four if the particle size doubles. 
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Video solution: https://www.youtube.com/watch?v=w-uheRu1QEk
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A heavy sphere attached to a string will hang at an angle, q, when immersed in a stream of velocity U¥ as 
shown in the figure.   
a. Derive an expression for q as a function of the sphere and flow properties.   
b. What is q if the sphere is steel (SG=7.86) of diameter 3 cm and the flow is sea-level standard air at U¥ 

= 40 m/s?  Neglect the string drag. 
c. For the same parameters as in part (b), at what velocity will the angle be 45°? 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
Draw a free body diagram for the sphere and balance forces in the vertical and horizontal directions. 
 
 
 
 
 
 
 
 
 

  Þ   (1) 

  Þ   (2) 

Set the tensions equal in Eqs. (1) and (2) and simplify. 

  Þ   (3) 

 (4) 

where the drag coefficient, cD, is a function of the Reynolds number based on the sphere diameter, i.e., Red 
= U∞d/na. 
 
For the given data, 

SG = 7.86  Þ  rS = 7860 kg/m3 
U∞ = 40 m/s 
d = 0.03m 
ra = 1.23 kg/m3 
g  = 9.81 m/s2 
na = 1.1*10-5 m2/s 
Þ  Red = 110,000  Þ  cD = 0.44 
Þ  q = 74°
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To find the wind speed corresponding to the given angle, we need to iterate to a solution since the drag 
coefficient is a complex function of the flow speed.  The following algorithm can be used for iteration.  
Note that other algorithms may also be possible. 

 
1. Guess a value for the speed U∞,guess. 
2. Calculate the Reynolds number, Re = U∞d/n. 
3. Use the plot shown above to determine the drag coefficient, cD. 
4. Calculate the speed U∞,calc using a re-arranged Eq. (4) and the given angle, 

. (5) 

5.  If U∞,calc = U∞,guess (to within some acceptable tolerance), then stop the iterations because the solution 
has been found.  If U∞,calc ≠ U∞,guess, then let U∞,guess = U∞,calc and repeat steps 2 – 5. 
 

  
U∞ = 4

3
1

cD

gd
tanθ

ρS
ρa

⎛

⎝⎜
⎞

⎠⎟
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For example, starting with U∞,guess = 1.0 m/s. 

 
 
Thus, the flow speed for this case is U∞ = 82.7 m/s. 
 

ρs"[kg/m3]"= 7860
d"[m]"= 0.03
ρa"[kg/m3]"= 1.23
g"[m/s2]"= 9.81
νa"[m2/s]"= 0.000011
θ"[deg]"= 45

Uinf,guess"[m/s] Re"[?] cD"[?] Uinf,calc"[m/s]
1.00 2727 0.42 77.21
77.21 210578 0.40 79.51
79.51 216841 0.39 80.68
80.68 220025 0.38 81.36
81.36 221890 0.37 81.79
81.79 223065 0.37 82.07
82.07 223837 0.37 82.26
82.26 224357 0.37 82.40
82.40 224715 0.37 82.49
82.49 224964 0.37 82.55
82.55 225138 0.37 82.60
82.60 225261 0.37 82.63
82.63 225348 0.37 82.65
82.65 225410 0.37 82.67
82.67 225453 0.37 82.68
82.68 225485 0.37 82.69
82.69 225507 0.37 82.69
82.69 225523 0.37 82.70
82.70 225534 0.37 82.70
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A buoyant ball of specific gravity, SG< 1, dropped into water at an impact speed, V0, penetrates a distance, 
h, into the water and pops out again.  Assuming a constant drag coefficient, derive an expression for h as a 
function of the system properties.  How deep will a 5 cm diameter ball with SG=0.5 and CD= 0.47 penetrate 
if it enters water at a speed of 10 m/s?  You may neglect splashing, air entrainment, and added mass effects 
in your analysis. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
Apply Newton’s 2nd Law to the ball: 

 (1) 

where m is the ball mass, y is the depth of the ball from the free surface, FW is the ball weight, FB is the 
buoyant force acting on the ball, and FD is the drag force acting on the ball. 

 (2) 
   (3) 

 (4) 

 (5) 
where rS and rF are the ball and fluid densities, respectively, d is the ball diameter, g is the acceleration due 
to gravity, and CD is the drag coefficient.  Substitute Eqs. (2) - (5) into Eq. (1) and simplify. 

 (6) 

 (7) 

 (8) 

 (9) 

where 

 (10) 

 (11) 
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Make Eq. (9) dimensionless using a dimensionless velocity and time: 

 (12) 

 (13) 
Substituting Eqs. (12) and (13) into Eq. (9) gives:  

 (14) 

 (15) 

 
The initial condition for Eq. (9) is: 

 (16) 
where 

 (17) 

   
Solving Eq. (9) using an integration table or a symbolic ODE solver (e.g., MAPLE) gives: 

 (18) 

 (19) 

 (20) 
 
Note that the maximum depth of the ball, h, occurs when V’(t ‘= T’) = 0. 

 (21) 
 
The maximum dimensionless depth of the ball, h’ (= bh) is found by integrating Eq. (19) in time. 

 (22) 

 (23) 

 (24) 

 
A plot of the dimensionless velocity and position as functions of dimensionless time are shown in Fig. 1 
using the data given in the problem statement. 

SG = 0.5 
d = 0.05 m 
g = 9.81 m/s2 
CD = 0.47 
V0 = 10 m/s 
Þ  a = 9.81 m/s2  and  b = 14.1 m-1  and  V0’ = 11.99 

 
  

V Vb
a

¢ =

t tab¢ =

( )
2d V

V
d t

a
b aa b

bab

æ ö
¢ç ÷ç ÷ é ùæ öè ø ê ú¢= - + ç ÷ç ÷ê ú¢ è øë û

( )21dV V
dt
¢

¢= - +
¢

( ) 00V t V¢ ¢ ¢= =

0 0V Vb
a

¢ =

0

2
01

V V t t

V V t

dV dt
V

¢ ¢ ¢ ¢= =

¢ ¢ ¢= =

¢
¢=

¢-ò ò

( ) ( )1 1
0tan tanV V t- -¢ ¢ ¢- + =

( )1
0tan tanV V t-¢ ¢ ¢é ù= -ë û

( )1
0tanT V-¢ ¢=

( )1
0

0 0

tan tan
y h t T

y t

dy V t dt
¢ ¢= ¢ ¢=

-

¢ ¢= =

¢ ¢ ¢ ¢é ù= -ë ûò ò

( ){ }( ) ( )21 2
0 0

1 1ln 1 tan tan ln 1
2 2

h V T V-¢ ¢ ¢ ¢é ù= - + + + +ë û

( ){ }
2
0

21
0

11 ln
2 1 tan 2 tan

V
h

V-

æ ö
¢+ç ÷¢\ = ç ÷ç ÷¢é ù+ ë ûè ø

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

C. Wassgren 1011 2024-02-01



  liftdrag_02 

Page 3 of 3 

 
Using the given data, the time at which the ball achieves its maximum depth is: 

T’ =  1.49  Þ  T = 0.13 s (25) 
 

The maximum depth is: 
h’ = 2.47 Þ h = 0.18 m (26) 

 

 
Figure 1.  The dimensionless velocity, V’, and dimensionless position, y’, plotted as a function of 

dimensionless time, t’, for a = 9.81 m/s2, b = 14.1 m-1, and V0’ = 11.99. 
 
 
In this analysis a constant drag coefficient was assumed.  This is a reasonable assumption over the range 
1000 < Red < 200,000.  A more accurate analysis would take into account the variation in drag coefficient 
with speed (and would also require a computational solution).  In addition to splashing and air entrainment 
effects (air entrained into the wake of the ball), added mass effects should also be taken into account. When 
accelerating (or decelerating) an object in a fluid, we must also accelerate (or decelerate) the surrounding 
fluid.  This extra force required to accelerate the surrounding fluid can be incorporated into the object mass 
and is known as an “added mass” or “virtual mass.” 
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A barge weighing 8820 kN that is 10 m wide, 30 m long, and 7 m tall has 
come free from its tug boat in the Mississippi River.  It is in a section of river 
that has a current of 1 m/s.  In addition, there is a wind blowing straight 
upriver at 10 m/s . Assume that the drag coefficient is 1.3 for both the part of 
the barge in the wind as well as the part below the water.  The drag 
coefficients for the water-exposed and air-exposed portions of the barge are 
based on the water and air wetted areas, respectively.  Determine the speed at 
which the barge will be steadily moving.  Is it moving upriver or downriver?  
 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
First determine the wetted areas above and below the waterline.  Balancing forces in the vertical direction on the 
barge, 

, (1) 

where W is the barge weight and the second term on the right hand side is the buoyant force, with h being the draft 
of the barge (the depth below the water).  Solving for h gives, 

. (2) 

Using the given values, 
W = 8820 kN, 
rH2O = 1000 kg/m3, 
g = 9.81 m/s2, 
L = 30 m, 
w = 10 m, 
=>  h = 3.00 m. 

 
Now determine the wetted areas below and above water, 

, (3) 

. (4) 

Using the given values, 
Awetted,below = 540 m2, 
Awetted,above = 620 m2. 
 

Now balance forces in the horizontal direction.  These forces include the drag caused by the river and the drag 
caused by the wind.  Assume that the barge is moving in the same direction as the river (downstream), as shown in 
the figure below. 
 
 
 
 
 
 

!! Fvert∑ =0= −W + ρH2OgLwh

!!
h= W

ρH2OgLw

!!
Awetted,
below

= Lw+2Lh+2wh

!!
Awetted,
above

= Lw+2L H −h( )+2w H −h( )

 

H - h 

L 

h 

w 

water line 

Vwind 

Vbarge 

Vriver 

x 
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,  (5) 

Solve for Vbarge, noting that the drag coefficients are the same above and below the waterline (given in the problem 
statement), 

, (6) 

, (7) 

, (8) 

, (9) 

. (10) 

Using the give data, 
rair = 1.23 kg/m3, 
Vriver = 1 m/s, 
Vwind = 10 m/s, 
=>  c = 1.41*10-3, A = 1, B = -2.03 m/s, C = 8.60*10-1 m2/s2 
=>  Vbarge = 1.43 m/s, 0.601 m/s. 
 

Note that it’s not possible for the barge to move faster than the river’s speed of 1 m/s, so Vbarge ≠ 1.43 m/s.  Thus, the 
correct answer is Vbarge = 0.601 m/s (downstream). 
 
 
If we had assumed that Vbarge was moving upstream (same direction as Vwind), then Eq. (5) would be, 

,  (11) 

which would simplify to, 

. (12) 

Solving this equation gives, 
Vbarge = -0.601 m/s, -1.43 m/s. 
 

Thus, we see that the original choice of direction for Vbarge (upstream) was incorrect and the barge is actually moving 
downstream.  As in the previous discussion, the barge cannot move faster than the river speed so the correct speed is 
0.601 m/s. 

!!
Fx∑ =0= cD ,below 1

2ρH2O Vriver −Vbarge( )2 Awetted,
below

− cD ,above
1
2ρair Vwind +Vbarge( )2 Awetted,

above

!!
ρH2O Vriver −Vbarge( )2 Awetted,

below
= ρair Vwind +Vbarge( )2 Awetted,

above

!! 

Vriver
2 −2VriverVbarge +Vbarge2 =

ρair
ρH2O

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Awetted,
above

Awetted,
below

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

=c
! "## $##

Vwind
2 +2VwindVbarge +Vbarge2( )

!! 1− c( )Vbarge2 −2 Vriver + cVwind( )Vbarge +Vriver2 − cVwind
2 =0

!! 

1
=A
! Vbarge

2 +
−2 Vriver + cVwind( )

1− c( )
=B

" #$$ %$$

Vbarge +
Vriver
2 − cVwind

2( )
1− c( )

=C
" #$$ %$$

=0

!!
Vbarge =

−B ± B2 −4AC
2A

!!
Fx∑ =0= cD ,below 1

2ρH2O Vriver +Vbarge( )2 Awetted,
below

− cD ,above
1
2ρair Vwind −Vbarge( )2 Awetted,

above

!!
Vbarge
2 +

2 Vriver + cVwind( )
1− c( ) Vbarge +

Vriver
2 − cVwind

2( )
1− c( ) =0
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Some cars come with a rear “spoiler” (actually an upside-down 
airfoil) mounted on the rear of the vehicle that is supposed to 
increase the down force on the car and improve traction.  
Calculate a typical down force caused by a rear wing used on a 
passenger vehicle. 
 
 
 
 
SOLUTION: 
The lift force is given by, 

, (1) 
where, 

A = 2 ft2 (= 0.186 m2), assuming a span of 4 ft and a chord length of 0.5 ft (note that this is a planform 
area), 

r = 1.23 kg/m3, 
V = 24.6 m/s (= 55 mph), 
CL = 1.4, (a typical value based on Fig. 9.17 from Pritchard et al., Introduction to Fluid Mechanics, 8th 

ed., Wiley), 

 
 
=> L = 96.9 N (= 21.8 lbf) 

Thus, we see the spoiler produces very little down force on the vehicle. 
 
To produce a down force of 200 lbf (= 890 N), the car would need to travel at a speed of 70.7 m/s (= 158 
mph). 
 
Note that rear spoilers are sometimes used to direct airflow downward to help reduce the size of the trailing 
wake and thus reduce drag. 
 
 
 
  

!!L=CL
1
2ρV

2A
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Video solution: https://www.youtube.com/watch?v=OWJzjsObeNE
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9.11. Review Questions

(1) What scaling arguments are used in deriving the boundary layer equations?
(2) What are the appropriate boundary conditions for the boundary layer equations?
(3) What restrictions are there on the Reynolds number for using the boundary layer equations?
(4) Describe how the pressure within a boundary layer is determined.
(5) Describe, in words, the approach used in deriving the Blasius solution to the boundary layer equa-

tions.
(6) What assumptions are made in the Blasius boundary layer solution? (e.g., Reynolds number limi-

tations, pressure gradients, free stream conditions, surface curvature, etc.)
(7) At what Reynolds number (an engineering rule of thumb estimate) does a laminar boundary layer

transition to a turbulent boundary layer?
(8) How does the boundary layer thickness vary with the distance from the leading edge of the boundary

layer for a flat plate, no pressure gradient boundary layer flow?
(9) What is the expression for the 99% boundary layer thickness resulting from the Blasius solution?

(10) What do the Falkner-Skan boundary layer solutions represent?
(11) What are the boundary conditions used in the Falkner-Skan boundary layer solution?
(12) Give two examples of practical boundary layer solutions that are embedded within the Falkner-Skan

general solution.
(13) Can the Kärmän momentum integral equation (KMIE) be used for flows with non-uniform pressure

gradients? Turbulent flows? Compressible flows? Unsteady flows?
(14) How might one find the outer flow velocity, U , when using the KMIE?
(15) Describe the typical methodology used when applying the KMIE.
(16) What is the 1/7th power law profile for a turbulent boundary layer?
(17) In which type of boundary layer flow does the shear stress decrease most rapidly? Laminar or

turbulent? In which type of flow does the drag increase most rapidly?
(18) Give a physical description of why boundary layer separation occurs.
(19) What defines the point at which boundary layer separation occurs?
(20) Why can’t the boundary layer equations be used downstream of boundary layer separation point?
(21) Why do turbulent boundary layers separate further downstream than laminar boundary layers?
(22) What is meant by “favorable” and “adverse” pressure gradients?
(23) Can a boundary layer separate in a favorable pressure gradient flow?
(24) Must boundary layers always separate in an adverse pressure gradient flow?
(25) What are the restrictions in using Thwaites’ correlation?
(26) Describe the flow behavior as a function of Reynolds number for flow over a cylinder.
(27) Sketch a plot of drag coefficient as a function of Reynolds number for flow over a sphere. Indicate

points of particular interest on the plot. Identify whether the axes are linear or logarithmic.
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Figure 9.29. Drawings of the different regimes of flow around a sphere as a function of
Reynolds number.
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Figure 9.30. Photographs showing the different regimes of flow around a sphere as a func-
tion of Reynolds number (R). These photographs are from Batchelor, G.K., An Introduction
to Fluid Dynamics, Cambridge University Press.
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Figure 9.31. Photographs showing Kármán vortex streets downstream of an immersed
object. These photos are from Van Dyke, M., An Album of Fluid Motion, Parabolic Press.
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Figure 9.32. Photographs of the Tacoma Narrows Bridge prior to failure.

Figure 9.33. The Strouhal number based on the vortex shedding frequency from a cylinder
plotted as a function of the Reynolds number. This figure is from White, F.M., Fluid
Mechanics, McGraw-Hill.
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Figure 9.34. A photograph of a vortex flow meter.

Figure 9.35. The drag coefficient for a sphere based on the sphere’s frontal projected area
plotted against the Reynolds number.
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Figure 9.36. The drag coefficient on a cylinder plotted as a function of the Reynolds
number for different degrees of surface roughness. Increasing roughness causes the drag
crisis to occur at a smaller Reynolds number.
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Figure 9.37. Drag coefficients for a variety of two-dimensional objects. This table is from
White, F.M., Fluid Mechanics, 3rd ed., McGraw-Hill.

C. Wassgren 1023 2024-02-01



Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

Figure 9.38. Drag coefficients for a variety of three-dimensional objects. This table is from
White, F.M., Fluid Mechanics, 3rd ed., McGraw-Hill.
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CHAPTER 10

Introduction to Turbulence

10.1. Introduction

Let’s consider the following simple experiment (this thought experiment is similar to the famous dye injection
experiment performed by Osbourne Reynolds). At a particular point in a circular pipe flow, let’s measure
a velocity component of the fluid as a function of time for varying Reynolds numbers (Figure 10.1). At

Figure 10.1. An illustration of the Reynolds laminar/turbulent pipe flow experiment.

Reynolds numbers less than approximately ReD < 2300, we would find that the measured speed remains
nearly constant, as shown in Figure 10.2. For 2300 < ReD < 4000 we would find a slightly different behavior,

Figure 10.2. Fluid velocity plotted as a function of time for a laminar flow.

as shown in Figure 10.3. For ReD > 4000 we find a very different behavior, as shown in Figure 10.4.

Notes:

(1) Turbulence is a difficult phenomenon to analyze. It is typically studied using semi-empirical anal-
yses, i.e., analyses that combine theory and experimental data. The transition region is even more
difficult to analyze.

(2) The uncertainties associated with the transitional regime are also reflected in the value for the
friction factor, f , shown in the Moody chart (Figure 10.5). Note that for 2300 < ReD < 4000 the
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Figure 10.3. Fluid velocity plotted as a function of time for a transitional flow.

Figure 10.4. Fluid velocity plotted as a function of time for a turbulent flow.

value for the friction factor is not well defined since the friction factor varies considerably as the
flow transitions between laminar and turbulent behavior.

10.2. Time-Averaged Continuity and Navier-Stokes Equations

Since the time-varying velocity data shown in the previous section example appears to consist of a fluctuating
part superimposed on a mean value, let’s make the following definitions. First, express the instantaneous
velocity component, ui, as the sum of a mean velocity, ūi, and a fluctuating velocity, u′i, i.e.,

ui = ūi + u′i, (10.1)

where the mean velocity over the time interval from t0 to t0 + T is given by,

ūi =
1

T

ˆ t0+T

t0

uidt. (10.2)

Note that the time average of the fluctuating velocity will be zero,

u′i =
1

T

ˆ t0+T

t0

(ui − ūi)dt =
1

T

ˆ t0+T

t0

uidt︸ ︷︷ ︸
=ūi

− 1

T

ˆ t0+T

t0

ūidt︸ ︷︷ ︸
=ūi

= 0. (10.3)

However, the mean of the square of the fluctuating velocities will, in general, be greater than zero,

(u′i)
2 =

1

T

ˆ t0+T

t0

(ui − ūi)2dt ≥ 0. (10.4)

Similarly,

(u′iu
′
j) =

1

T

ˆ t0+T

t0

(ui − ūi)(uj − ūj)dt 6= 0 (in general) (i 6= j). (10.5)
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Figure 10.5. The Moody diagram, which plots the friction factor as a function of Reynolds
number. Note the uncertainty in the transitional regime between laminar flow (ReD < 2300)
and turbulent flow (ReD > 4000). This figure is from Fox, R.W. and McDonald, A.T.,
Introduction to Fluid Mechanics, 5th ed., Wiley.

Now let’s look at the governing equations for an incompressible, Newtonian fluid, i.e., the Continuity and
Navier-Stokes Equations, where we’ll use the mean and fluctuating parts for our unknown variables,

ui = ūi + u′i, (10.6)

p = p̄+ p′. (10.7)

Substituting into the Continuity Equation gives,

∂ui
∂xi

= 0 =
∂(ūi + u′i)

∂xi
=
∂ūi
∂xi

+
∂u′i
∂xi

. (10.8)

Now take the time-average of the Continuity Equation,

1

T

ˆ t0+δT

t0

(
∂ūi
∂xi

+
∂u′i
∂xi

)
dt = 0. (10.9)

where,

1

T

ˆ t0+δT

t0

∂ūi
∂xi

dt =
∂

∂xi

(
1

T

ˆ t0+T

t0

ūidt

)
=
∂ūi
∂xi

, (10.10)

1

T

ˆ t0+δT

t0

∂u′i
∂xi

dt =
∂

∂xi

(
1

T

ˆ t0+T

t0

u′idt

)
= 0 (10.11)

(10.12)

Thus, the time-averaged Continuity Equation becomes,

∂ūi
∂xi

= 0 . (10.13)
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The time-averaged Continuity Equation looks the same as the instantaneous continuity equation except it is
in terms of time-averaged velocities.

Now let’s take the same approach with the Navier-Stokes equations,

ρ

(
∂ui
∂t

+ uk
∂ui
∂xk

)
= − ∂p

∂xi
+ µ

∂2ui
∂x2

k

+ ρfi. (10.14)

To help with the upcoming analysis, let’s re-write the left-hand-side using the Continuity Equation,

ρ
∂ui
∂t

+ ρuk
∂ui
∂xk

+ ρui
∂uk
∂xk︸︷︷︸
=0︸ ︷︷ ︸

=ρ
∂(uiuk)

∂xk

= − ∂p

∂xi
+ µ

∂2ui
∂x2

k

+ ρfi. (10.15)

Write the velocities and pressure in terms of mean and fluctuating parts,

ρ
∂(ūi + u′i)

∂t
+ ρ

∂[(ūi + u′i)(ūk + u′k)]

∂xk
= −∂(p̄+ p′)

∂xi
+ µ

∂2(ūi + u′i)

∂x2
k

+ ρfi, (10.16)

ρ
∂ūi
∂t

+ ρ
∂u′i
∂t

+ ρ
∂

∂xk
(ūiūk + ūiu

′
k + ūku

′
i + u′iu

′
k) = − ∂p̄

∂xi
− ∂p′

∂xi
+ µ

∂2ūi
∂x2

k

+ µ
∂2u′i
∂x2

k

+ ρfi. (10.17)

Time-average the entire previous equation noting that for any term F :

∂F

∂x
=
∂F̄

∂x
, (10.18)

and,

∂u′i
∂t

= ūiu′k = ūku′i =
∂p′

∂xi
=
∂2u′i
∂x2

k

, (10.19)

so that we have,

ρ
∂ūi
∂t

+ ρ
∂

∂xk
(ūiūk + u′iu

′
k) = − ∂p̄

∂xi
+ µ

∂2ūi
∂x2

k

+ ρfi. (10.20)

We can further simplify this equation by using the time-averaged Continuity Equation,

∂

∂xk
(ūiūk) = ūi

∂ūk
∂xk︸︷︷︸
=0

+ūk
∂ūi
∂xk

. (10.21)

Thus, the time-averaged Navier-Stokes equations become,

ρ

(
∂ūi
∂t

+ ūk
∂ūi
∂xk

)
= − ∂p̄

∂xi
+

∂

∂xk

[
µ
∂2ūi
∂x2

k

− ρ
(
u′iu
′
k

)]
+ ρfi . (10.22)

If we compare Eq. (10.22) to the instantaneous Navier-Stokes equation (Eq. (10.14)), we see that an extra
term appears on the right-hand side with the same dimensions as the laminar shear stress term,

−ρ ∂

∂xk

(
u′iu
′
k

)
. (10.23)

These terms are referred to as Reynolds “stresses”, although they are, in fact, momentum fluxes.

Notes:
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(1) There are both Reynolds normal and shear stresses. For example, the x-component of the time-
averaged Navier-Stokes equations is given by:

ρ
Dū

Dt
= −∂p̄

∂x
+ ρfx

+
∂

∂x

µ∂ū∂x −ρ(u′)2︸ ︷︷ ︸
Reynolds

“normal stress”

+
∂

∂y

µ∂ū∂y −ρ(u′v′)︸ ︷︷ ︸
Reynolds

“shear stress”

+
∂

∂z

µ∂ū∂z −ρ(u′w′)︸ ︷︷ ︸
Reynolds

“shear stress”

 (10.24)

(2) What, physically speaking, is a Reynolds “stress”? First let’s examine what causes viscosity in a
laminar flow. Recall that a fluid is comprised of a collection of molecules. In a flow with a velocity
gradient, the molecules in a particular layer will have an average velocity in addition to some random,
thermal motion. Since there is a velocity gradient in the fluid (u 6= constant), molecules in adjacent
layers will not have the same average velocity. Due to their random motion, molecules starting in
a particular layer with a particular average velocity will move into layers with a different average
velocity. When a molecule moves into a region of larger velocity, the molecules in that layer must
accelerate the incoming molecule up to the new speed. In order to accelerate the new molecule, the
molecules already in the layer must exert a force on the new molecule (via molecular collisions).
From Newton’s Third law, the new molecule exerts an equal, but opposite force, on the layer. An
identical process happens when a particle moves into a region of slower average velocity. Thus, we
see that the laminar shear stress is a result of the random flux of molecules into neighboring layers
with different average velocities.
In a turbulent flow, this microscopic effect occurs, but there is also a macroscopic flux due to the
random motion of the fluid (Figure 10.6). This macroscopic random fluid motion into regions of
differing average speed gives rise to Reynolds “stresses”.

Figure 10.6. An illustration showing how turbulent mixing results in Reynolds “stresses”.

(3) Near a wall, the Reynolds shear stresses are small due to the wall restricting the random motion of
the fluid. This region is termed the viscous sub-layer and,

τviscous sub-layer ≈ τlaminar. (10.25)

Far from the wall, turbulent motion dominates. This region is termed the turbulent core and,

τturbulent core ≈ τturbulent. (10.26)

The region between the laminar sub-layer and the turbulent core is referred to as the transition
region where the laminar and turbulent shear stresses are of the same order of magnitude. These
regions are shown in Figure 10.7.

(4) The relative turbulence intensity is defined as the magnitude of the Reynolds stresses relative to
some characteristic flow speed, U , e.g., an outer flow velocity,

TI :=

√
u′iu
′
j

U
. (10.27)
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Figure 10.7. An illustration showing a time-averaged turbulent boundary layer and the
corresponding shear stress profile.

(5) If the turbulence intensity is the same in all directions, then the turbulence is considered isotropic.
Otherwise, the turbulence is anisotropic. As shown in Figure 10.8 for turbulent flow over a flat plate
with no pressure gradient and Rex = 107, the turbulence near the wall is found to be anisotropic
with the relative turbulence intensity normal (v′) to the wall being smaller than the streamwise (u′)
and lateral (w′) turbulence intensities. This effect is the result of the geometric constraint posed
by the wall. Farther from the wall at approximately y/δ = 0.8, the turbulence becomes nearly
isotropic.

Figure 10.8. A plot of the turbulence intensities as a function of dimensionless distance
from the wall. This is Figure 6.4 from White, F.M., Viscous Fluid Flow, McGraw-Hill, 3rd
ed.
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(6) The turbulent kinetic energy, K, is defined as the kinetic energy of the normal turbulent fluctuations,

K :=
1

2
u′iu
′
i. (10.28)

The turbulent kinetic energy is used in models that examine the balance of energy associated with
turbulent motion (beyond the scope of these notes).

10.3. Law of the Wall

Let’s write the quantities that affect the mean velocity profile, ū, near the wall,

ū = f(y, ρ, ν, τw) (10.29)

where y is the distance from the wall, ρ and ν are the fluid density and kinematic viscosity, respectively,
and τw is the shear stress that the wall exerts on the fluid. By performing a dimensional analysis on these
variables we find a relation termed the Law of the Wall,

ū

u∗
= g

(
yu∗

ν

)
, (10.30)

where g is an unknown function and,

u∗ :=

√
τw
ρ
, (10.31)

where u∗ is referred to as the “friction velocity”.

Nearest the wall, in the region known as the laminar sub-layer (0 ≤ yu∗/δ < 5), the wall stress is given by:

τw = µ
dū

dy
. (10.32)

Dividing through by the density and integrating, the mean velocity profile in the vicinity of the wall,ˆ y

0

τw
ρ︸︷︷︸

=(u∗)2

dy =

ˆ ū

0

νdū =⇒ (u∗)
2
y = νū, (10.33)

ū

u∗
=
u∗y

ν
. (10.34)

This is the time-averaged velocity profile in the laminar sub-layer (0 ≤ yu∗/ν < 5).

Now let’s examine the turbulent core region. One simple model, known as Prandtl’s Mixing Length Hypothesis,
assumes that the fluctuating velocities, e.g., u′ and v′, are approximately equal to some typical eddy length,
l, multiplied by the velocity gradient, dū/dy (Figure 10.9),

u′, v′ ≈ l dū
dy
. (10.35)

Thus, the Reynolds shear stress in the turbulent core is,

τ = ρu′v′ ≈ ρl2
(
dū

dy

)2

. (10.36)

Note that l cannot be constant since u′, v′ → 0 as y → 0. This stipulation implies that l→ 0 as y → 0. Let’s
assume a simple relation that satisfies this condition,

l = Ky (10.37)

where the constant K is known as Karman’s Universal Mixing Length Constant.
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Figure 10.9. An illustration of a turbulent eddy in Prandtl’s mixing length hypothesis.

Substituting Eq. (10.37) into Eq. (10.36) and simplifying gives,

τ = ρl2
(
dū

dy

)2

= ρK2y2

(
dū

dy

)2

, (10.38)

ρu∗2 = ρK2y2

(
dū

dy

)2

since u∗ =

√
τw
ρ
, (10.39)

u∗ = Ky

(
dū

dy

)
, (10.40)

ˆ
dy

y
=

ˆ
K

u∗
dū =⇒ ln y =

K

u∗
ū+ c =⇒ ū

u∗
=

1

K
ln y + c, (10.41)

(10.42)

ū

u∗
=

1

K ′
ln

(
yu∗

ν

)
+ c (for

yu∗

ν
> 70, i.e., in the turbulent core) (10.43)

In summary, the Law of the Wall states:

ū

u∗
= g

(
yu∗

ν

)
(10.44)

0 ≤ yu∗
ν

< 5 :
ū

u∗
=
u∗y

ν
(laminar sub-layer) (10.45)

5 ≤ yu∗

ν
< 70 : (often use Eq. (10.43) here) (transition region) (10.46)

yu∗

ν
> 70 :

ū

u∗
=

1

K ′
u∗y

ν
+ c (turbulent core). (10.47)

Notes:

(1) Experimental curve fits indicate that K ′ ≈ 0.41 and c = 5.0.
(2) Comparing laminar and turbulent pipe flows (Figure 10.10), we observe that the turbulent velocity

profile (a logarithmic curve) is blunter than the laminar profile (a parabolic curve). The blunter
profile of the turbulent flow is due to mixing of the different velocity regions, which results in most
of the flow having approximately the same speed.

(3) A plot of the Law of the Wall velocity relations and corresponding experimental data is shown in
Figure 10.11.
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Figure 10.10. Representative velocity profiles for laminar and turbulent flows in a pipe.
The laminar velocity profile is a paraboloid for flow in a circular pipe. The turbulent profile is
blunter and approaches a nearly uniform profile, except near the pipe walls, as the Reynolds
number increases.

Figure 10.11. A plot comparing experimental data and Law of the Wall models. Figure
20.4 from Schlichting, H., Boundary Layer Theory, McGraw-Hill.)
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CHAPTER 11

Pipe Flows

11.1. Entrance Region

The flow in the entrance region is complex (Figure 11.1) and will not be investigated here. Experiments have
shown that the dimensionless length of the entrance region depends on whether the entering flow is laminar
or turbulent, with,

laminar flow:
L

D
≈ 0.06ReD, (11.1)

turbulent flow:
L

D
≈ 4.4Re

1/6
D , (11.2)

where L is the length of the entrance region and D is the pipe diameter. For many engineering flows,
1× 104 < ReD < 1× 105 =⇒ 20 < L/D < 30. The shorter entrance region length for turbulent flows is
due to the fact that turbulent mixing rapidly averages the flow speeds across the pipe cross-section.

Figure 11.1. The structure of a pipe flow entrance region.

11.2. Fully Developed Laminar Circular Pipe Flow (Poiseuille Flow)

The derivation in this section was previously covered in Chapter 8 and is repeated here, in a slightly condensed
form, for convenience. Consider the steady flow of an incompressible, constant viscosity, Newtonian fluid
within an infinitely long, circular pipe of radius, R (Figure 11.2).

Make the following assumptions,

(1) The flow is axi-symmetric and there is no “swirl” velocity. =⇒ ∂
∂θ (. . . ) = 0 and uθ = 0

(2) The flow is at steady state. =⇒ ∂
∂t (. . . ) = 0

(3) The flow is fully-developed in the z-direction. =⇒ ∂ur
∂z = ∂uz

∂z = 0
(4) There are no body forces. =⇒ fr = fθ = fz = 0
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Figure 11.2. A schematic of flow through a circular pipe.

Let’s first examine the Continuity Equation,

1

r

∂(rur)

∂r
+

1

r

∂uθ
∂θ

+
∂uz
∂z

= 0. (11.3)

From assumptions #1 and #3,

rur = constant. (11.4)

Since there is no flow through the walls, the constant must be zero and, thus,

ur = 0 (Call this condition # 5.) (11.5)

Now let’s examine the Navier-Stokes equation in the z-direction,

ρ

(
∂uz
∂t

+ ur
∂uz
∂r

+
uθ
r

∂uz
∂θ

+ uz
∂uz
∂z

)
= −∂p

∂z
+ µ

[
1

r

∂

∂r

(
r
∂uz
∂r

)
+

1

r2

∂2uz
∂θ2

+
∂2uz
∂z2

]
+ ρfz. (11.6)

We can simplify this equation using our assumptions,

ρ

 ∂uz
∂t︸︷︷︸

=0(#2)

+ ur︸︷︷︸
=0(#5)

∂uz
∂r

+
uθ
r

∂uz
∂θ︸ ︷︷ ︸

=0(#1)

+uz
∂uz
∂z︸︷︷︸

=0(#3)

 = −∂p
∂z

+ µ

1

r

∂

∂r

(
r
∂uz
∂r

)
+

1

r2

∂2uz
∂θ2︸ ︷︷ ︸

=0(#1)

+
∂2uz
∂z2︸ ︷︷ ︸

=0(#3)

+ ρ fz︸︷︷︸
=0(#4)

,

(11.7)

=⇒ d

dr

(
r
duz
dr

)
=
r

µ

dp

dz
, (11.8)

=⇒ r
duz
dr

=
r2

2µ

dp

dz
+ c1, (11.9)

=⇒ uz =
r2

4µ

dp

dz
= c1 ln r + c2. (11.10)

Note that in the previous derivation the fact that uz is a function only of r has been used to change the
partial derivatives to ordinary derivatives. Furthermore, examining the Navier-Stokes equations in the r and
θ directions demonstrates that the pressure, p, is a function only of z and, thus, ordinary derivatives can be
used when differentiating the pressure with respect to z.

Now let’s apply boundary conditions to determine the unknown constants c1 and c2. First, note that the fluid
velocity in a pipe must remain finite as r → 0 so the constant c1 must be zero (this is a type of kinematic
boundary condition). Also, the pipe wall is fixed so we have uz(r = R) = 0 (no-slip condition). After
applying boundary conditions we have,

uz =
R2

4µ

(
−dp
dz

)[
1−

( r
R

)2
]
. (11.11)

This is known as Poiseuille Flow in a Circular Pipe.

Notes:
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(1) The velocity profile is a paraboloid with the maximum velocity occurring along the centerline. The
average velocity in the pipe is found from,

ū =
1

πR2

ˆ r=R

r=0

uz(2πrdr) =
R2

8µ

(
−dp
dz

)
=

D2

32µ

(
−dp
dz

)
=

1

2
umax, (11.12)

where umax is the maximum fluid speed and D is the pipe diameter.
(2) The volumetric flow rate through the pipe is,

Q = ū
(π

4
D2
)

=
πD4

128µ

(
−dp
dz

)
. (11.13)

(3) We can determine stresses using the constitutive relations for a Newtonian fluid. The shear stress
that the pipe walls apply to the fluid, τw, is,

τw =
R

2

(
dp

dz

)
=
−4µū

R
, (11.14)

where ū is the average speed in the pipe. Note that an alternate method for determining the average
wall shear stress, which in this case is equal to the exact wall shear stress, is to balance shear forces
and pressure forces on a small slice of the flow as shown in Figure 11.3.

Figure 11.3. A free body diagram showing the forces on a thin disk of fluid in the pipe.

In engineering applications, it is common to express the average shear stress in terms of a dimen-
sionless (Darcy) friction factor, fD, which is defined as,

fD :=

∣∣∣∣ 4τw
1
2ρū

2

∣∣∣∣ = 64

(
µ

ρūD

)
=

64

ReD
, (11.15)

where D = 2R is the pipe diameter and ReD is the Reynolds number based on the pipe diameter.
The Darcy friction factor appears in the Moody chart for incompressible, viscous pipe flow. Note
again that this solution is only valid only for a laminar flow. The condition for the flow to remain
laminar is found experimentally to be,

ReD =
ρūD

µ
< 2300. (11.16)

(4) Re-write Eq. (11.12),

ū =
D2

32µ

(
−dp
dz

)
=⇒ |ū| = D2

32µ

(
∆p

L

)
, (11.17)

where, in the fully developed region, the pressure gradient remains constant and we may write dp/dz
as ∆p/L where ∆p is the pressure drop over a length L of the pipe (Figure 11.4). Re-arranging
Eq. (11.17) and dropping the absolute value symbol for convenience,

∆p =
32µūL

D2
. (11.18)
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Make the previous equation dimensionless by dividing through by the dynamic pressure based on
the average flow speed,

∆p
1
2ρū

2
=

64µ

ρūD

(
L

D

)
=

(
64

ReD

)(
L

D

)
. (11.19)

The dimensionless pressure drop is also referred to as a loss coefficient, k. Hence, for a laminar flow,
the loss coefficient corresponding to the viscous stresses at the pipe walls is,

k laminar,
wall stresses

=

(
64

ReD

)(
L

D

)
= fD

(
L

D

)
. (11.20)

Figure 11.4. A schematic showing the change in pressure over the pipe length.
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  pipe_13 

A liquid with a specific gravity of 0.95 flows steadily at an average velocity of 10 m/s through a horizontal, 
smooth tube of diameter 5 cm.  The fluid pressure is measured at 1 m intervals along the pipe as follows: 

x [m] 0 1 2 3 4 5 6 
p [kPa] 304 273 255 240 226 213 200 

a. Estimate the average wall shear stress, in Pa, in the fully developed region of the pipe.   
b. What is the approximate wall shear stress between stations 1 and 2?  State any significant assumptions 

you make. 
 
 
SOLUTION: 
 
First determine the fully developed region by examining the pressure gradient in the pipe.  The pressure 
gradient is constant in the fully developed region. 
 

x [m] 0 1 2 3 4 5 6 
p [kPa] 304 273 255 240 226 213 200 

dp/dx [kPa/m]  -31 -18 -15 -14 -13 -13  
 
 
Hence, the fully developed region starts at x = 4 m where the pressure drop remains constant at dp/dx = -13 
kPa/m. 
 
To determine the average wall shear stress in the pipe, apply the linear momentum equation in the x 
direction to the control volume shown in the figure below. 
 
 
 
 
 
 
 

, (1)  

where, 

  (steady flow), (2) 

 (no body forces in x-direction), (3)  

, (4) 

    (5) 

(since for a fully-developed flow, the inlet and outlet velocity profiles are identical) 
 

Substitute and simplify, 

, (6) 

 . (7)  

 

d
dt

uxρ dV
CV
∫ + ux ρurel ⋅dA( )

CS
∫ = FS,x + FB,x

d
dt

uxρ dV
CV
∫ = 0

FB,x = 0

FS,x = pπR2 − p + dp
dx
dx⎛

⎝⎜
⎞
⎠⎟ πR

2 −τ w 2πRdx( ) = − dp
dx
dxπR2 −τ w 2πRdx( )

ux ρurel ⋅dA( )
CS
∫ = 0

0 = − dp
dx
dxπR2 −τ w 2πRdx( )

τ w = − R
2
dp
dx

x ppR2 

[p + (dp/dx)dx]pR2 

tw(2pRdx) 

dx 
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Video solution: https://www.youtube.com/watch?v=5IRg1q_BIQI
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  pipe_13 

Using the given data, 
R = (0.05/2) m = 0.025 m 
dp/dx = -13 kPa/m 

  
 
 
For part (b), apply the same linear momentum equation, except that between stations 1 and 2, the velocity 
profile is not fully developed, hence the momentum flux term in the linear momentum equation (Eq. (5)) 
won’t be zero.  However, if the flow is turbulent, as would be expected for such a large velocity and 
assuming a liquid viscosity similar to that of water, the velocity profile will not change considerably as the 
flow continues downstream in the entrance region.  The reason for this is that a turbulent velocity profile 
already looks like an average velocity profile due to the radial mixing associated with turbulence.  Hence, 
although the momentum flux term isn’t exactly zero, it is expected to be small in comparison to the 
pressure gradient term.  As a result, even in the entrance region the average wall shear stress may be found 
using, 

 . (8) 

Using the given data between stations 1 and 2, 
R = (0.05/2) m = 0.025 m 
dp/dx = -18 kPa/m 

  
 

⇒τ w = 163 Pa

τ w ≈ − R
2
dp
dx

⇒τ w = 225 Pa

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

Video solution: https://www.youtube.com/watch?v=5IRg1q_BIQI
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11.3. Fully Developed Turbulent Circular Pipe Flow

11.3.1. Turbulent Flow in a Smooth, but Frictional, Pipe

The volumetric flow rate in a smooth pipe for turbulent flow may be estimated by integrating the time
averaged velocity profile, modeled using the Law of the Wall, over the cross-sectional area of the pipe. As an
engineering approximation, we’ll neglect the influence of the pipe curvature and the presence of the opposite
side of the pipe in this estimation,

Q =

ˆ r=R

r=0

ū(2πrdr) = 2π

ˆ R

0

u∗
[

1

K
ln

(
yu∗

ν

)
+ c

]
(R− y)dy, (11.21)

where K ≈ 0.41 and c = 5.0. Note that we’ve switched coordinates so we can integrate out from the wall to
the centerline (Figure 11.5). Also, we’re neglecting the laminar sub-layer velocity profile since it is typically
very thin.

Figure 11.5. The coordinate system used in turbulent pipe flow analysis.

The average velocity in the pipe is,

ū =
Q

πR2
=⇒ ū

u∗
≈ 2.44 ln

(
Ru∗

ν

)
+ 1.34. (11.22)

Recall that,

fD =
8τw
ρū2

=
8(u∗)2

ū2
since u∗ =

√
τw
ρ
. (11.23)

Thus,

ū

u∗
=

√
8

fD
. (11.24)

Also note that,

Ru∗

ν
=
R

ν

√
τw
ρ

=
R

ν

√
fDū2

8
=

1

2

2Rū

ν

√
fd
8
. (11.25)

Thus,

Ru∗

ν
=

1

2
ReD

√
fd
8
. (11.26)

Substituting Eqs. (11.24) and (11.26) into Eq. (11.22) gives,√
8

fD
≈ 2.44 ln

(
1

2
ReD

√
fD
8

)
+ 1.34, (11.27)√

1

fD
≈ 1.99 log10

(
ReD

√
fD

)
− 1.02. (11.28)

where a “log10” is used in place of the “ln” in the previous equation. Prandtl derived Eq. (11.28), but altered
the constants slightly to better fit the data,

1

fD
≈ 2.0 log10

(
ReD

√
fD

)
− 0.8 . (11.29)

This equation relates the friction factor and Reynolds number for turbulent flow in a smooth, circular pipe.
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Equation (11.29) is implicit in fD, which means that an iterative approach must be used to solve for fD as
a function of ReD. A number of approximations to this relation have been proposed that are easier to solve.
For example, Blasius, a student of Prandtl’s, suggested the following approximation,

fD ≈
0.316

Re
1/4
D

, (11.30)

which is valid for 4000 < ReD < 1× 105.

11.3.2. Turbulent Flow in a Very Rough Pipe

The roughness of the pipe walls can significantly affect the friction factor for turbulent flows (roughness has
a negligible effect on the friction factor for laminar flows). Recall from the Law of the Wall that the time
averaged velocity in the laminar sub-layer is,

ū

u∗
=
yu∗

ν
for 0 ≤ yu∗

ν
≤ 5. (11.31)

Thus, the thickness of the laminar sub-layer, δLSL, is,

δLSLu
∗

ν
= 5 =⇒ δLSL =

5ν

u∗
. (11.32)

Since,

u∗ =

√
τw
ρ

= ū

√
fD
8

(refer to Eq. (11.24)), (11.33)

we have,

δLSL =
5ν

ū

√
8

fD
=⇒ δLSL

D
=

5ν

ūD

√
8

fD
=

5

ReD

√
8

fD
, (11.34)

∴
δLSL

D
=

14.1

ReD
√
fD

. (11.35)

Thus, if the wall roughness, ε, is much smaller than the laminar sub-layer thickness, then we’ll still have a
laminar sub-layer and the flow won’t be significantly affected by the wall roughness, i.e., we may treat the
wall as being smooth (but still frictional). However, if ε� δLSL, then the laminar sub-layer will be destroyed
and the wall roughness becomes the new length scale for use in the Law of the Wall, i.e.,

ū

u∗
= f

(y
ε

)
. (11.36)

Following the same analysis as that for turbulent flow in a smooth pipe, but using y/ε in place of yu∗/ν, we
obtain, √

1

fD
≈ −2.0 log10

(
ε/D

3.7

)
. (11.37)

This is the friction factor for turbulent flow in a very rough pipe. The term ε/D is known as the relative
roughness. Note that this equation is independent of the Reynolds number.

11.3.3. Turbulent Flow in a Rough Pipe

For the transitional regime where ε/D is between “smooth” and “very rough”, empirical formulas in which
the friction factor is a function of both ε/D and ReD have been developed,√

1

fD
≈ −2.0 log10

(
ε/D

3.7
+

2.51

ReD
√
fD

)
ReD > 4000 Colebrook Formula, (11.38)
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which is implicit in fD, or the explicit empirical formula,√
1

fD
≈ −1.8 log10

[
6.9

ReD
+

(
ε/D

3.7

)1.11
]

ReD > 4000 Haaland Formula. (11.39)

The Haaland formula isn’t as accurate as the Colebrook formula, but it’s easier to calculate since it’s explicit
in fD. To solve the Colebrook formula for fD, an iterative algorithm must be used. An initial first guess
for fD using the Haaland formula usually results in convergence in the Colebrook formula within one or two
iterations.

11.4. The Moody Plot

The previous friction factor relations have been summarized into a single plot known as the Moody Plot,
which is shown in Figure 11.6.

Figure 11.6. The Moody plot, which plots the (Darcy) friction factor as a function of
Reynolds number for different relative roughnesses. This figure is from Pritchard, P.J. and
Mitchell, J.W., Fox and McDonald’s Introduction to Fluid Mechanics, 9th ed., Wiley.

Notes:

(1) For Reynolds numbers less than 2,300, one may use either the analytical expression for the friction
factor,

fD =
64

ReD
, (11.40)

or the Moody plot.
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(2) Reynolds numbers between approximately 2,300 and 4,000 correspond to the transitional regime
between laminar and turbulent flow. The gray region in the Moody plot reflects the fact that the
friction factor can vary significantly in this region. At best, bounds can be determined for the
friction factor in this region rather than a specific value.

(3) The fully rough zone (aka wholly turbulent zone, fully turbulent zone) in the Moody plot is a region
where the friction factor is a weak function of the Reynolds number, but a strong function of the
relative roughness. If the Reynolds number of a flow is unknown, but is expected to be large, it is
often helpful to assume that the flow is in the fully rough zone as an initial first guess.

(4) The roughnesses of various types of pipe materials have been compiled into tables such as Table 11.1.
Note that “smooth” in the table does not mean frictionless.

Table 11.1. A table of pipe material wall roughnesses.

Material (new) ε (ft) ε (mm)
riveted steel 0.003 - 0.03 0.9 - 9.0

concrete 0.001 - 0.01 0.3 - 3.0
wood stave 0.0006 - 0.003 0.18 - 0.9
cast iron 0.0085 0.26

galvanized iron 0.0005 0.15
asphalted cast iron 0.0004 0.12

commercial steel or wrought iron 0.00015 0.046
drawn tubing 0.000005 0.0015

glass smooth smooth
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Page 1 of 1 

1. Using the Moody chart, determine the friction factor for a Reynolds number of 105 and a relative roughness 
of 0.001. 

2. What is the friction factor for a Reynolds number of 1000? 
3. What is the friction factor for a Reynolds number of 106 in a smooth pipe? 
 
 
SOLUTION: 
 
1. The friction factor is fD » 0.0225 (Follow the red lines in the following figure.) 
2. Since the Reynolds number is less than 2300, we can use the exact laminar flow relation: 

  Þ  fD = 0.064.  

Alternately, we could use the Moody chart by following the blue lines in the following figure. 
3. The friction factor is fD » 0.012.  (Follow the green lines in the following figure.) 
 

 
 

64
ReD

D

f =

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics
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Page 1 of 3 

Create a computer program that uses the Colebrook formula to calculate a friction factor.  The program inputs 
should be the Reynolds number and the relative roughness.  The output should be the friction factor.   
 
Use your program to create a copy of the Moody plot.  Plot the friction factor for Reynolds numbers between 4000 
and 1*108 for 10 relative roughness values between 1*10-6 and 1*10-2.  Use logarithmic horizontal and vertical 
axes. 
 
 
SOLUTION: 
The Colebrook formula is, 

!!
"
≈ −2.0 log!# *

$ %⁄
'.)

+ *.+!
,-!."

,. (1) 

This function is implicit in f so an iterative scheme must be used to solve it.  There are various algorithms that can 
be used to solve for f.  In this solution, the following algorithm is used: 

1. Guess a value for the friction factor f.  Use the Haaland formula for this first guess, 

!!
"
≈ −1.8 log!# /

/.0
,-!

+ 0$ %⁄
'.)
1
!.!!

2. (2) 

2. Solve for the friction factor on the left-hand side of the Colebrook formula (Eq. (1)), call this f’, using the 
guessed value for f on the right-hand side. 

3. Is the value of f’ equal to f within an acceptable tolerance (tol), i.e., 

Is	 1"
"2"1
"

< 𝑡𝑜𝑙? (3) 

If not, then let f = f’ and repeat step 2.  If so, then we now have our value for f.  A counter is also included 
in the program to ensure that we don’t iterate an unacceptably large number of times.  Usually this 
algorithm solve for f within a few iterations, but the counter is a fail-safe measure since the iterative 
scheme isn’t guaranteed to converge. 

 
This algorithm is implemented here using the Python programming language.  The plot is shown at the end of this 
document. 
 

# pipe_50.py 
 
# Import some helpful Python libraries. 
import numpy as np  # used for numerical routines 
import matplotlib.pyplot as plt  # used for making plots 
 
# Create a function for the Haaland formula. 
def f_Haaland(Re, e_D): 
    return (-1.8*np.log10(6.9/Re+(e_D/3.7)**1.11))**-2 
 
# Create a function for solving the Colebrook formula. 
def f_Colebrook(Re, e_D): 
    # The first guessed value for the friction factor uses the Haaland formula. 
    fprime = f_Haaland(Re, e_D) 
     
    # Set the relative difference between f and fprime large initially 
    # to start the loop. 
    freldiff = 1 
     
    # Set the acceptable tolerance to be <= 0.1 percent. 
    tol = 0.001 
     
    # Only go up to 1000 iterations. 
    max_counter = 1000 
     
    # Initialize the counter. 
    counter = 0    
 
    # Loop until the relative difference is less than the tolerance or 
    # until the maximum number of iterations is reached. 
    while ((freldiff > tol) and (counter < max_counter)): 
        counter = counter + 1  # Update the counter. 

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics
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Page 2 of 3 

        f = fprime  # Set f equal to fprime for solving the Colebrook formula. 
         
        # Colebrook formula. 
        fprime = (-2.0*np.log10(e_D/3.7 + 2.51/Re/np.sqrt(f)))**-2 
         
        # Calculate the relative difference 
        freldiff = np.absolute((fprime-f)/f) 
 
         
    # The maximum number of iterations was reached.  Print a warning 
    # and exit the program. 
    if (counter == max_counter):   
        print("The maximum number of iterations was reached.  Did not converge on a value for 
f.") 
        exit(1) 
 
    # Return the converged value for the friction factor. 
    return f   
 
 
# Make arrays of Reynolds numbers and relative roughnesses values.   
Re = np.geomspace(4e3, 1e8, num=100) 
e_D = np.geomspace(1e-6, 1e-2, num=10) 
 
# Create an array of friction factor values the same size as the 
# Reynolds number array.  Initialize the array with zero values. 
f = np.full_like(Re,0) 
 
# Calculate the friction factor for all combinations of the Reynolds 
# numbers and relative roughnesses. 
for j in range(len(e_D)): 
    for i in range(len(Re)): 
        f[i] = f_Colebrook(Re[i], e_D[j]) 
    # Create some text for the plot legend. 
    legendtext = '$\epsilon/D = %.3e$' % e_D[j] 
    # Plot these friction factors as a function of Reynolds number for 
    # this particular relative roughness. 
    plt.plot(Re, f, "-", label=legendtext) 
 
# Label the plot, change the axes to be logarithmic, and show the legend. 
plt.xlabel(r"Reynolds number, $Re_D$") 
plt.ylabel(r"friction factor, $f$") 
plt.xscale("log") 
plt.yscale("log") 
plt.legend() 
plt.show() 
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11.5. Other Losses

The loss due to the viscous resistance caused by the pipe walls is referred to as a major loss (aka the
straight-run headloss). Pressure losses may occur due to viscous dissipation resulting from fluid interactions
with other parts of a pipe system such as valves, bends, contractions/expansions, inlets, and connectors.
These losses are known as minor losses (aka the fittings headloss). The names can be misleading since it’s
not uncommon in pipe systems to have most of the pressure loss resulting from the minor losses, e.g., a pipe
system with a large number of bends and valves, but short sections of straight pipe. What causes these minor
losses? The pressure loss results primarily from viscous dissipation in regions with large velocity gradients,
such as in a recirculation zone as shown in Figure 11.7.

Figure 11.7. A sketch showing where viscous losses occur in a sudden pipe expansion.

A closely related phenomenon known as the vena contracta acts to effectively reduce the diameter at entrances
and bends (Figure 11.8). The recirculation zone also results in a pressure loss.

Figure 11.8. A sketch illustrating a vena contracta.

Although minor loss coefficients can be determined analytically for certain situations, most frequently the
loss coefficient for a particular device is found experimentally. Essentially, one measures the pressure drop
across the device, ∆p, and forms the loss coefficient, k, using,

k =
∆p

1
2ρū

2
, (11.41)

where ρ is the fluid density and ū is the average speed through the device. Many tables with experimentally
determined loss coefficients are available, for example in Perry’s Chemical Engineers’ Handbook.

Notes:

(1) When using a loss coefficient, it is important to know what velocity has been used to form the coeffi-
cient. For example, the loss coefficient for a contraction is typically based on the speed downstream
of the contraction, while the loss coefficient for an expansion is based on the speed upstream of the
expansion.

(2) Minor losses are sometimes given in terms of equivalent lengths of pipe. An equivalent minor loss
of 10 pipe diameters worth of a particular type of pipe means that the major loss caused by a pipe
of that type, 10 diameters in length will give the same pressure loss as the minor loss. Thus, a loss
coefficient and equivalent pipe length, Le, can be related by,

k = fD

(
Le
D

)
. (11.42)
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(3) For non-circular pipes or pipes that are not completely filled, the same methods of determining the
friction factor and loss coefficients are used, except that a hydraulic diameter, Dh, is used in place
of the diameter. The hydraulic diameter is defined as,

Dh :=
4A

Pw
, (11.43)

where A and Pw are the cross-sectional flow area (not necessarily the pipe cross-sectional area) and
wetted perimeter of the pipe, i.e., the part of the pipe that is in contact with the fluid. For example,
consider a completely filled square pipe of side length L (Figure 11.9). The hydraulic diameter for
such a pipe is,

Dh =
4(L2)

4L
= L. (11.44)

Now consider a completely filled annular pipe with outer diameter Do and inner diameter Di

Figure 11.9. A square cross-sectioned pipe filled with fluid.

(Figure 11.10). The hydraulic diameter for this case is,

Dh =
4
(
π
4D

2
o − π

4D
2
i

)
πDo − πDi

=
D2
o −D2

i

Do +Di
= Do −Di. (11.45)

Now consider a half-filled circular pipe of diameter D (Figure 11.11). The hydraulic diameter for

Figure 11.10. An annular cross-sectioned pipe filled with fluid.

this case is,

Dh =
4
(

1
2
π
4D

2
)(

1
2πD

) = D. (11.46)

Notes:

Figure 11.11. A circular cross-sectioned pipe half filled with fluid.

(a) Often a hydraulic radius, Rh, is used instead of a hydraulic diameter for flows in conduits with
a free surface. The hydraulic radius is defined as,

Rh :=
A

Pw
. (11.47)

Using this definition, Dh 6= 2Rh, but is instead, Dh = 4Rh, which can be confusing. The
Manning Formula (not covered in these notes) is frequently used in the analysis of free surface
conduit flows.
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11.6. The Extended Bernoulli Equation

Recall from Section 4.6 that the First Law of Thermodynamics may be written as,(
p

ρg
+ α

V̄ 2

2g
+ z

)
2

=

(
p

ρg
+ α

V̄ 2

2g
+ z

)
1

−HL,12 +HS,12, (11.48)

where each of the terms in the equation has dimensions of length. The “1” and “2” subscripts refer to the
inlet and outlet conditions, respectively. Note that in writing this form of the Extended Bernoulli Equation
(EBE), it has been assumed that z points in the direction opposite to gravitational acceleration. If z pointed
in the same direction as gravity, then there would be a − sign in front of the z in the EBE.

The various terms in the equation are referred to as “head” quantities:
p

ρg
:= pressure head, (11.49)

α
V̄

2g
:= velocity or dynamic head, (11.50)

z := elevation head, (11.51)

HL := head loss, (11.52)

HS := shaft head. (11.53)

(11.54)

Recall that the α in the velocity head term is the kinetic energy correction factor, which accounts for the fact
that an average speed is used in the EBE rather than the real velocity profile (again, refer to Section 4.6). A
value of α = 2 is used for laminar flows while α = 1 is typically assumed for turbulent flows (actually, α→ 1
as ReD →∞).

The head loss term (HL) accounts for both major and minor losses and may be written as,

HL,12 =
∑
∀i

ki
V̄ 2
i

2g
, (11.55)

where the subscript “i” accounts for every loss in the pipe system. Recall that the major loss coefficient may
be written as,

kmajor = fD

(
L

D

)
. (11.56)

The shaft head term (HS) accounts for the pressure addition (or reduction) resulting from the inclusion of
devices such as pumps, compressors, fans, turbines, and windmills. Those devices that add head to the flow
are positive (e.g., pumps), while those that extract head are negative (e.g., turbines). The shaft head term

may be written in terms of shaft power, ẆS , as,

HS,12 =
ẆS,12

ṁg
, (11.57)

where ṁ is the mass flow rate through the device.

Notes:

(1) One can visualize head quantities using manometers. For example, consider Figure 11.12, which
shows a straight section of pipe with manometers at upstream (1) and downstream (2) locations. The
pressure heads at the inlet and outlet are given by, respectively, H1 = p1/(ρg) and H2 = p2/(ρg).
The major head loss between these two points is simply HL = H1 −H2 = (p1 − p2)/(ρg). A minor
head loss through a device such as a valve can be shown in a similar way, as in Figure 11.13. The
shaft head rise across a pump is shown in Figure 11.14. Reporting an equivalent length for a minor
head loss can be thought of as replacing the device, e.g., the valve with the head loss shown in
Figure 11.13, with a straight section of pipe (Figure 11.12) that produces the same head loss as the
valve.
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Figure 11.12. A schematic illustrating the major head loss in a pipe.
.

Figure 11.13. A schematic illustrating the minor head loss through a valve.
.

Figure 11.14. A schematic illustrating the shaft head rise across a pump.
.

(2) One often must make a number of assumptions at the beginning of a pipe flow solution, e.g., the
flow is laminar, the flow is turbulent, or the flow is in the fully rough zone. For example, for flow
through a hypodermic needle, it’s reasonable to assume that the flow will be laminar since the
needle diameter is so small. Having experience with pipe flow systems helps one to make good
assumptions. Regardless of what assumptions are made, it is important that one verifies that the
calculated flow conditions are consistent with the assumptions that were made. For example, if one
assumes laminar flow in the hypodermic needle then solves for the flow velocity, then the Reynolds
number should be checked to verify that a laminar flow assumption was correct. If so, then the
solution procedure is consistent. If not, then the laminar flow assumption was incorrect and a
turbulent flow assumption should be made and the problem re-solved.
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(3) Pipe manufacturers will often provide nomographs to quickly determine the volumetric flow rate,
average speed, and, often, pressure drop due to major head losses in their pipes. A nomograph is a
type of visual calculator, an example of one is shown in Figure 11.15.

Figure 11.15. An example nomograph for relating the volumetric flow rate, average flow
speed, and pipe inner diameter (figure from ). To use the nomograph, locate two known
quantities on the plots, then draw a straight line between them and read off the third
quantity from the plot. In this figure, the flow rate is known to be 400 l/min with an inner
pipe diameter (i.e., bore) of 55 mm. The average flow speed is then 2.8 m/s.

.

11.7. Pipe Systems

Pipe flow systems can be classified as being of one of three types:

• Type I: The desired flow rate is specified and the required pressure drop must be determined.
• Type II: The desired pressure drop is specified and the required flow rate must be determined.
• Type III: The desired flow rate and pressure drop are specified and the required pipe diameter must

be determined.

Type I pipe systems are the easiest to solve. Since the flow velocity and diameter are known, calculation
of the major loss coefficient, and the friction factor in particular, is straightforward. Type II and Type III
problems are more challenging to solve since the friction factor is unknown. These types of pipe systems
usually require iteration to solve.

Notes:

(1) There is no unique iterative scheme that must be used to solve Type II and Type III pipe flow
problems. Different people may propose different algorithms. In addition, there is no guarantee
that a particular iterative scheme will converge to a solution.
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(2) When using an iterative scheme, choose an initial flow rate or diameter that is reasonable. Don’t
start with an exceedingly small or large value. For example, for a Type II pipe system, choose a
starting flow rate that corresponds to the fully turbulent zone region.

(3) It’s often worthwhile to first assume that a Type II and Type III flow system is operating in the
fully rough zone of the Moody plot. Using this assumption will often avoid the need for iteration.
However, one must verify at the end of the solution that the assumption of fully rough flow was
correct. If not, then an iterative solution should be considered with the fully rough zone conditions
used as a starting point for the iterations.

(4) Following are typical flow speeds for different flow scenarios, but keep in mind that the actual speeds
will depend on the specific geometry under consideration. These speeds can be used for initial speed
guesses in an iterative calculation.
• pumped liquids: 1.5 m/s,
• gravity-fed liquids: 1 m/s,
• gases: 20 m/s.
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A homeowner plans to pump water from a stream in their backyard to water their lawn.  A schematic of the 
pipe system is shown in the figure.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Details of the system are given in the following table.  The design flow rate for the system is 2.5*10-4 m3/s.  
 

Item Value 
water density 1000 kg/m3 
water dynamic viscosity 1*10-3 kg/(m.s) 
inlet pipe length 2 m 
inlet pipe diameter 2.5 cm 
inlet pipe material drawn tubing 
hose length two 15.25 m lengths 
hose diameter 1.3 cm 
hose roughness smooth 
pipe inlet loss coefficient 0.8 
inlet pipe-to-pump coupling loss 
coefficient 

0.1 

pump-to-hose coupling loss coefficient 0.2 
hose-to-hose coupling loss coefficient 0.5 
pressure drop across the sprinkler 210 kPa at 2.5*10-4 m3/s flow rate 
sprinkler nozzle exit diameter 4 mm 

 
For the following questions, circle the answer that is most correct. 
 
1. What is the loss coefficient for the sprinkler at design conditions?  Base the sprinkler loss coefficient 

on the velocity just upstream of the sprinkler. 
2. What is the friction factor for the hose? 
3. What is the velocity head, including the kinetic energy correction factor, at the sprinkler exit? 
 
For the next two questions, assume that the loss coefficient for the sprinkler is 100 and the friction 
factor for the hose is 0.01. 
4. What is the total minor head loss in the system? 
5. What is the total major head loss in the system? 
 
For the next question, assume that the velocity head at the sprinkler exit, including the kinetic energy 
correction factor, is 10 m and the total head loss is 10 m. 
6. What is the shaft head required to operate the system at the design flow rate? 
 
For the next question, assume that the shaft head required to operate the system at the design flow 
rate is 100 m. 
7. What power must be supplied to the pump if the pump is 65% efficient? 
 
 

sprinkler 
hose-to-hose coupling 

pump stream 

re-entrant 
pipe inlet 

3 m 

1 m 

2 m of 2.5 cm 
diameter drawn tubing 

two 15.25 m lengths of 1.3 
cm diameter garden hose 

pump-to-hose coupling 

inlet pipe-to-pump 
coupling 

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

C. Wassgren 1054 2024-02-01



  pipe_02 
 

Page 2 of 3 
 

SOLUTION: 
 
1. The loss coefficient for the sprinkler may be found using the definition of a loss coefficient. 

 (1) 

where 

 (2) 

Using the given parameters, 
  and  Ksprinkler = 118 (3) 

 
2. The friction factor for the hose may be found using the Moody plot.  The Reynolds number for the 

flow in the hose is: 

 (4) 

Using the given parameters, the hose Reynolds number is ReD = 24500.  From the Moody chart and 
using the smooth curve (we’re told to consider the hose to be “smooth”), the friction factor for the hose 
is fhose = 0.0244. 
 

3. The velocity head, including the kinetic energy correction factor, at the sprinkler’s exit is: 

 (5) 

where  

  Þ   (6) 

and 
a = 1 (7) 

since 

  Þ  ReD = 79600 > 2300 Þ Turbulent flow at the exit! (8) 

Thus,  

 (9) 

 
4. The total minor head loss for the system includes minor losses at the pipe inlet, the pump couplings, 

the hose coupling, and the sprinkler. 

 (10) 

Using the given parameters, 
HL,minor = 21.5 m 
 

5. The total major head loss for the system includes the major losses in the inlet pipe and the hoses. 

 (11) 

HL,major = 10.4 m 
 

sprinkler
sprinkler 21

hose2

p
K

Vr
D

=

hose 2
hose4

QV
Dp

=

hose 1.88 m sV =

hose hoseReD
V Dr
µ

=

2

sprinkler
exit

2
V
g

a

sprinkler 2
exit sprinkler4

exit

QV
Dp

= sprinkler
exit

19.9 m sV =

sprinkler sprinkler
exit exitReD
V Dr

µ
=

2

sprinkler
exit

20.2 m
2
V
g

a =

2 2
pipe hose

,minor inlet inlet pipe-pump pump-hose hose-hose sprinkler
coupling coupling coupling2 2L

V V
H K K K K K

g g
é ù é ù

= + + + +ê ú ê ú
ë û ë û

2 2

,major
pipe hoses2 2L
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æ ö æ ö= +ç ÷ ç ÷
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Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

C. Wassgren 1055 2024-02-01



  pipe_02 
 

Page 3 of 3 
 

6. The required shaft head may be found by applying the Extended Bernoulli Equation from the free 
surface of the stream to the outlet of the sprinkler. 

 (12) 

 (13) 

where 
p1 = p2 = patm (14) 

 (15) 
 (16) 

HL = HL,minor + HL,major (17) 
Using the given parameters, HS = 55.1 m. 
 

7. The power that must be supplied to the pump with the given efficiency is: 

 (18) 

where, using the given parameters, 
 

2 2

2 12 2 L S
p V p Vz z H H
g g g g

a a
r r

æ ö æ ö
+ + = + + - +ç ÷ ç ÷

è ø è ø

( )
1 1

2 1 2 1
2 12 2S L

p p V VH z z H
g g g

a a
r

æ öæ ö-
= + - + - +ç ÷ç ÷
è ø è ø

1 0V »

2 sprinkler
exit

V V=

   
Winto

pump
=
Winto

water

η
=
mgHS

η
=
ρQgHS

η

   
Winto

pump
= 210 W
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It rains during the construction of a building and water fills a recently excavated pit to a depth 0.5 m.  In 
order to continue construction, the water must first be pumped out of the pit.  A hose with a length of 50 m, 
a diameter of 2.5*10-2m, and a surface roughness of 5.0*10-5m is attached to a pump.   Note that the 
kinematic viscosity of the water is 1.005*10-6 m2/s and the density is 1000 kg/m3. 
 
a. If the pump is placed at the pit’s surface (figure A), what is the maximum depth of the pit, H, for which 

water can be pumped out at a velocity of 1 m/s without causing cavitation in the pipe?  The vapor 
pressure of water for the current temperature is 2.337 kPa (abs) and atmospheric pressure is 101 kPa 
(abs). 

b. If the pump is placed at the bottom of the pit (figure B), what is the maximum depth of the pit, H, for 
which water can be pumped out at a velocity of 1 m/s?  Assume that the pump supplies a power of 200 
W to the fluid. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Apply the Extended Bernoulli Equation from point 1 to point 2, 

 (1) 
2 2

,1 2 ,1 2
2 12 2 L S

p V p Vz z H H
g g g g

a a
r r ® ®

æ ö æ ö
+ + = + + - +ç ÷ ç ÷

è ø è ø

H = ? 

hose of length, L,  
diameter, D, and 
surface roughness, e 

h 

pump 

H = ? 

hose of length, L,  
diameter, D, and 
surface roughness, e 

h 

water velocity, V pump water velocity, V 

Figure A Figure B 

H = ? 

hose of length, L,  
diameter, D, and 
surface roughness, e 

h 

pump water velocity, V 

1 

2 
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where, 
p1 = patm, 
p2 = pv   (point 2 is located just before the pump; the lowest pressure that can be reached is vapor 

pressure), 
z1 = h, 
z2 = H = ?, 

, 
𝑉"! = 𝑉, 
a2 » 1  (assuming turbulent flow), 
HS,1®2 = 0  (there’s no pump between points 1 and 2), 
𝐻",$! = ∑ 𝐾%

&'!
"

!(% = '𝐾)*+,- +𝐾)./,-)
&'"

!(
. (2) 

 
Now determine the flow Reynolds number, 

  Þ  turbulent flow assumption is justified! (2) 

Also determine the relative roughness of the pipe, 

 (3) 

Use the Moody chart to determine the pipe’s friction factor, 
Þ f = 0.0289 (4) 
 

The major loss coefficient, Kmajor  = f(L/D) is, 
𝐾)./,- = 57.7. 

Since the major loss coefficient is so large, it’s reasonable to neglect the minor loss coefficients.   
 
Substituting into the EBE and simplifying, 

0#
1(
+ &"

!(
+𝐻 = 0$%&

1(
+ ℎ − 𝐾)./,-

&"

!(
, (6) 

𝐻 = 0$%&'(#
1(

+ ℎ − /1 + 𝐾)./,-1
&"

!(
. (7) 

Using the given parameters, 
patm = 101*103 Pa (abs), 
pv = 2.337*103 Pa (abs), 
ρ = 1000 kg/m3, 
g = 9.81 m/s2, 
h = 0.5 m, 
Kmajor = 57.7, 
V = 1 m/s, 
=> H = 7.57 m. 

The height is short because we’re relying on atmospheric pressure to push the water up through the hose. 
  

1 0V »

( )( )
( )

2
2

1 m s 2.5e-2 m
Re 25,000

1.005e-6 m sD
V D
n

= = =

5.0e-5 m 0.002
2.5e-2 mD

e
= =
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Now consider the case when the pump is in the pit. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Apply the Extended Bernoulli Equation from point 1 to point 2, 

 (8) 

where, 
p1 = patm, 
p2 = patm  (flow exits to the atmosphere), 
z1 = h, 
z2 = H = ?, 

, 
𝑉"! = 𝑉, 
a2 » 1  (turbulent flow, as before), 
𝐻2,$! =

3
4̇(

   (there’s a pump between points 1 and 2), 

𝐻",$! = ∑ 𝐾%
&'!
"

!(% = 𝐾)./,-
&'"

!(
   (neglecting minor losses, as before) (9) 

 
Substitute and solve for the height, 

0$%&
1(

+ &"

!(
+𝐻 = 0$%&

1(
+ ℎ − 𝐾)./,-

&"

!(
+ 3

4̇(
, (10) 

𝐻 = ℎ − '1 + 𝐾)./,-)
&"

!(
+ 3

4̇(
. (11) 

 
Using the given values, 

h = 0.5 m, 
Kmajor = 57.7, 
V = 1 m/s, 
g = 9.81 m/s2, 
P = 200 W, 
=>  �̇� = 𝜌𝑉 67"

8
= 0.491 kg/s, 

=>  H = 39.0 m. 
The height in part (b) is much higher than the height in part (a) because in part (b) the pump is used to 
increase the pressure beyond atmospheric pressure, which pushes the fluid up the hose. 
 
  

2 2

,1 2 ,1 2
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p V p Vz z H H
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Following is python code used to perform the calculations. 
# pipe_03.py 
 
import numpy as np 
 
def f_Haaland(Re, e_D):  # Calculate the friction factor using the Haaland formula 
    return (-1.8*np.log10(6.9/Re+(e_D/3.7)**1.11))**-2 
     
def f_Colebrook(Re, e_D):  # Calculate the friction factor using the Colebrook formula 
    fprime = f_Haaland(Re, e_D) 
    freldiff = 1 
    tol = 0.001 
    while (freldiff > tol): 
        f = fprime 
        fprime = (-2.0*np.log10(e_D/3.7 + 2.51/Re/np.sqrt(f)))**-2 
        freldiff = np.absolute((fprime-f)/f) 
    return f 
 
# Initialize variable values. 
g = 9.81 # m/s^2; gravitational acceleration 
rho = 1000 # kg/m^3; water density 
nu = 1.005e-6  # m^2/s; water kinematic viscosity 
h = 0.5  # m; water free surface height 
V = 1 # m/s; average flow speed 
L = 50 # m; hose length 
D = 2.5e-2  # m; hose diameter 
e = 5.0e-5  # m; hose roughness 
patm = 101e3  # Pa; atmospheric pressure 
pv = 2.337e3  # Pa; vapor pressure 
P = 200 # W; pump power 
 
# Calculate the Reynolds number. 
Re = V*D/nu 
print("Re = %.3e" % Re) 
 
# Calculate the relative roughness. 
e_D = e/D 
print("e/D = %.3e" % e_D) 
 
# Determine the friction factor. 
f = f_Colebrook(Re, e_D) 
print("f = %.3e" % f) 
 
# Calculate the viscous loss coefficient. 
K_major = f*(L/D) 
print("K_major = %.3e" % K_major) 
 
# Calculate the height in part (A). 
H = (patm-pv)/rho/g + h - (1 + K_major)*(V**2)/2/g 
print("H = %.3e m" % H) 
 
# Calculate the mass flow rate. 
mdot = rho*V*np.pi*D*D/4 
print("mdot = %.3e kg/s" % mdot) 
 
# Now calculate the height in part (B). 
H = h - (1 + K_major)*(V**2)/2/g + P/mdot/g 
print("H = %.3e m" % H) 
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Determine the power, in kW, extracted by the turbine in the system shown below.  The pipe entrance is 
sharp-edged and the volumetric flow rate is 0.004 m3/s.  The density of water is 998 kg/m3 and the 
kinematic viscosity is 1.005*10-6 m2/s. 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
 
Apply the Extended Bernoulli Equation from point 1 to point 2, 

! !
"#
+ 𝛼 $%!

&#
+ 𝑧%

&
= ! !

"#
+ 𝛼 $%!

&#
+ 𝑧%

'
−𝐻(,'& +𝐻*,'&, (1) 

where, 
p1 = p2 = patm, 
𝑉*' ≈ 0, 
𝑉*& =

+
,-! .⁄

, (2) 
𝑧& − 𝑧' = −𝐻, (3) 
𝐻(,'& = ∑ 𝐾0

$%"
!

&#0 = /𝐾123456	89:6; +𝐾<4:<6 +𝐾=4>?50
$%!!

&#
, (4) 

𝐻*,'& =
@
Ȧ#

. (5) 
Substitute and solve for the power, 

𝛼&
$%!
!

&#
+𝐻 = −/𝐾123456	89:6; +𝐾<4:<6 +𝐾=4>?50

$%!!

&#
+ @

Ȧ#
, (6) 

𝑃 = �̇�𝑔 5𝐻 + /𝛼& +𝐾123456	89:6; +𝐾<4:<6 +𝐾=4>?50
$%!!

&#
6. (7) 

Using the given data, 
ρ = 998 kg/m3   and   ν = 1.005*10-6 m2/s, 
D = 0.05 m, 
L = 125 m, 
Q = 0.004 m3/s  =>  �̇� = 𝜌𝑄=3.992 kg/s  and 𝑉*& = 2.037 m/s, (8) 
g = 9.81 m/s2, 
H = 40 m, 
Ksquare inlet = 0.5  (from minor loss table), 
Kvalve = 10  (from minor loss table), 
ϵ = 0.26*10-3 m (cast iron pipe)  =>  ϵ/D = 0.0052, 

fluid discharges into  
the atmosphere water 

turbine fully open globe valve 

cast iron pipe 
diameter = 5 cm 
length = 125 m 

40 m 
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the atmosphere water 

turbine fully open globe valve 

cast iron pipe 
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length = 125 m 
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2 
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Re- =
$%!-
C
= 101,400  (turbulent flow => α2 ≈ 1), (9) 

f = 0.0316  (from Moody plot or Colebrook Formula), 
Kmajor = f(L/D) = 79.0  (The inlet loss coefficient is much smaller than the valve and major loss 

coefficients and, thus, could be reasonably neglected.) 
=>  P = 2.32 kW.  This is the power extracted by the turbine. 

 
Following is a python code used to perform the calculations. 

# pipe_04.py 
 
import numpy as np 
 
def f_Haaland(Re, e_D):  # Calculate the friction factor using the Haaland formula 
    return (-1.8*np.log10(6.9/Re+(e_D/3.7)**1.11))**-2 
     
def f_Colebrook(Re, e_D):  # Calculate the friction factor using the Colebrook formula 
    fprime = f_Haaland(Re, e_D) 
    freldiff = 1 
    tol = 0.001 
    while (freldiff > tol): 
        f = fprime 
        fprime = (-2.0*np.log10(e_D/3.7 + 2.51/Re/np.sqrt(f)))**-2 
        freldiff = np.absolute((fprime-f)/f) 
    return f 
 
# Initialize variable values. 
g = 9.81 # m/s^2; gravitational acceleration 
rho = 998 # kg/m^3; water density 
nu = 1.005e-6  # m^2/s; water kinematic viscosity 
H = 40  # m; water free surface height 
Q = 0.004 # m^3/s; volumetric flow rate 
L = 125 # m; pipe length 
D = 0.05  # m; pipe diameter 
e = 0.26e-3  # m; pipe roughness (cast iron) 
K_inlet = 0.5  # square-edged pipe inlet 
K_valve = 10  # fully open globe valve 
alpha2 = 1  # kinetic energy correction factor 
 
# Calculate the mass flow rate. 
mdot = rho*Q 
print("mdot = %.3e kg/s" % mdot) 
 
# Calculate the average flow speed. 
V2 = Q/(np.pi/4*D*D) 
print("V2 = %.3e m/s" % V2) 
 
# Calculate the Reynolds number. 
Re = V2*D/nu 
print("Re = %.3e" % Re) 
 
# Calculate the relative roughness. 
e_D = e/D 
print("e/D = %.3e" % e_D) 
 
# Determine the friction factor. 
f = f_Colebrook(Re, e_D) 
print("f = %.3e" % f) 
 
# Calculate the viscous loss coefficient. 
K_major = f*(L/D) 
print("K_major = %.3e" % K_major) 
 
# Calculate the power extracted from the turbine. 
P = mdot*g*(H + (alpha2 + K_inlet + K_valve + K_major)*(V2**2)/2/g) 
print("P = %.3e kW" % (P/1000)) 
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For straightening and smoothing an air flow in a 50 cm diameter duct, the duct is packed with a 
“honeycomb” of 30 cm long, 4 mm diameter thin straws.  The inlet flow is air moving at an average 
velocity of 6 m/s.  Estimate the pressure drop across the honeycomb.  The density of the air is 1.2 kg/m3 
and the kinematic viscosity is 1.5e-5 m2/s.   You may neglect inlet and outlet minor losses. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
Apply the Extended Bernoulli’s Equation from point 1 to point 2. 
 
 
 
 
 
 
 
 
 
 

 

 (1) 

where 

  (This is what we’re trying to find.) (2) 

 (3) 

 (4) 
  (There is no shaft work between points 1 and 2.) (5) 

  (where the subscript “S” refers to the conditions in the straw) (6) 

Note that minor losses have been neglected. 
 

Substitute and re-arrange. 

 (7) 
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Now determine the average flow velocity in the straw, .  Note that the flow rate through the pipe must be 
the same as the flow rate through all of the straws. 

 (8) 

where the number of straws, NS, is: 

  Þ   (9) 

and thus: 
 (10) 

 
Now determine the friction factor for the flow through the straw.   First calculate the straw’s Reynolds 
number. 

  Þ  laminar flow in the straws (11) 

Þ   (12) 

 
Substitute Eqn. (12) into Eqn. (7) and solve for the pressure drop. using the given data. 

  (LS = 0.30 m; r = 1.2 kg/m3) (13) 

\Dp = -64.8 Pa 
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A train travels through a tunnel as shown in the figure.  The train and tunnel are both circular in cross 
section.  The tunnel has a diameter of D = 3 m, a total length of L = 2000 m, and walls comprised of 
concrete.  The clearance between the train and the tunnel wall is small so that it may be assumed that the air 
in front of the train is pushed through the tunnel with the same speed as the train, V = 20 m/s.   
 
1. Determine the pressure difference between the front and rear of the train when the train is a distance, x, 

from the tunnel entrance. 
2. Determine the power, P, required to produce the air flow in the tunnel when the train is a distance, x, 

from the tunnel entrance. 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
Apply the Extended Bernoulli Equation from 1 to 2 and from 3 to 4 to obtain the pressures on the front and 
back faces of the train, 

! !
"#
+ 𝛼 $%!
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+ 𝑧%
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= ! !
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,
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where, 
p1 = p3 = patm, (3) 
𝑉*' = 𝑉*+ = 0, (4) 
𝑉*& = 𝑉*, = 𝑉   (same speed as the train), (5) 
𝛼& ≈ 𝛼, ≈ 1  (turbulent flow, ReD = VD/ν = (20 m/s)(3 m)/(1.5*10-5 m2/s) = 4.00*106), (6) 
𝑧' ≈ 𝑧& ≈ 𝑧, ≈ 𝑧+  (the train is moving through air so the elevation differences are negligible), (7) 
𝐻(,'& = 𝑓-,'& !

.
-
% $
%!!

&#
   (neglecting minor losses since the tunnel is long), (8) 

𝐻(,,+ = 𝑓-,,+ !
(/.
-
% $
%"!

&#
   (neglecting minor losses since the tunnel is long), (9) 

𝐻*,'& = 𝐻*,,+ = 0   (no fluid machinery),  (10) 
 
Substitute and solve for the pressures on the front and back faces of the train. 
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Note that the friction factor will be the same along both paths.  Subtract Eq. (11) from Eq. (12), 
!"/!!
"#

= 𝑓- !
(
-
% $

!

&#
  =>  𝑝, − 𝑝& = 𝑓- !

(
-
% '
&
𝜌𝑉&. (13) 

 
Find the friction factor from the Moody plot or the Colebrook Formula.  The Reynolds number was 
calculated previously in Eq. (6).  The relative roughness is, 

ϵ/D = (1.7*10-3 m)/(3 m) = 5.67*10-4    (the wall material is concrete), (14) 
=>  fD = 0.0173. 

 
Using the given and previously calculated values,  

ρ = 1.23 kg/m3, 
L = 2000 m, 
D = 3 m, 
V = 20 m/s, 
=>  p3 – p2 = 2.84 kPa. 

Thus, there is a net pressure force acting on the train to resist its motion.  The force is, 
𝐹 = (𝑝, − 𝑝&)

0-!

+
. (15) 

The power required to overcome this force at the given speed is, 
𝑃 = 𝐹𝑉 = (𝑝, − 𝑝&)

0-!

+
𝑉. (16) 

Using the given and previously calculated values, 
F = 20.1 kN, 
P = 402 kW. 

 
The following python code was used to perform the calculations. 

# pipe_08.py 
 
import numpy as np 
 
def f_Haaland(Re, e_D):  # Calculate the friction factor using the Haaland formula 
    return (-1.8*np.log10(6.9/Re+(e_D/3.7)**1.11))**-2 
     
def f_Colebrook(Re, e_D):  # Calculate the friction factor using the Colebrook formula 
    fprime = f_Haaland(Re, e_D) 
    freldiff = 1 
    tol = 0.001 
    while (freldiff > tol): 
        f = fprime 
        fprime = (-2.0*np.log10(e_D/3.7 + 2.51/Re/np.sqrt(f)))**-2 
        freldiff = np.absolute((fprime-f)/f) 
    return f 
 
# Initialize variable values. 
g = 9.81 # m/s^2; gravitational acceleration 
rho = 1.23 # kg/m^3; air density 
nu = 1.5e-5  # m^2/s; air kinematic viscosity 
V = 20 # m/s; train speed 
L = 2000 # m; tunnel length 
D = 3  # m; tunnel diameter 
e = 1.7e-3  # m; roughness of concrete 
 
# Calculate the Reynolds number. 
Re = V*D/nu 
print("Re = %.3e" % Re) 
 
# Calculate the relative roughness. 
e_D = e/D 
print("e/D = %.3e" % e_D) 
 
# Determine the friction factor. 
f = f_Colebrook(Re, e_D) 
print("f = %.3e" % f) 
 
# Determine the pressure difference. 
Delta_p = f*(L/D)*rho*(V**2)/2 
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print("Delta p = %.3e kPa" % (Delta_p/1000)) 
 
# Determine the pressure force on the train. 
F = Delta_p*np.pi/4*D**2 
print("F = %.3e kN" % (F/1000)) 
 
# Determine the power required to overcome the pressure force at this speed. 
P = F*V 
print("P = %.3e kW" % (P/1000)) 
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Gasoline at 20 °C is being siphoned from a tank through a rubber hose having an inside diameter of 25 mm.  
The roughness for the hose is 0.01 mm.   
1. What is the volumetric flow rate of the gasoline through the hose? 
2. What is the minimum pressure in the hose and where does it occur? 
You may neglect minor losses.  The kinematic viscosity of gasoline is 4.294e-7 m2/s. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
Apply the Extended Bernoulli Equation from points 1 to 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (1) 

where 
p1 = p3 = patm (2) 

  (surface of a large tank) (3) 
   (a3 » 1, assuming turbulent flow in the hose) (4) 

 
z1 – z3 = 3.5 m (5) 
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HS = 0 (6) 

   (Neglecting minor losses.) (7) 

where f may be found from the Moody diagram.  The relative roughness is 

 (8) 

Assuming fully turbulent flow so that f is not a function of the Reynolds number, the Moody diagram 
gives, f = 0.016. 
 

Substitute into Eq. (1) and solve for . 

 (9) 

 (10) 

Using the given data, 
g = 9.81 m/s2 
z1 – z3 = 3.5 m 
f = 0.016 
L = 1 m + 1.5 m + 1.5 m + 5 m = 9 m 
D = 0.025 m 
Þ   

Check the Reynolds number to verify the fully turbulent assumption. 

 (11) 

The given relative roughness and this Reynolds number puts the flow in the fully turbulent range so the 
assumptions made in the problem are consistent. 
 
The flow rate is given by, 

Þ  Q = 1.57*10-3 m3/s (12) 

 
 

The minimum pressure occurs near point 2 in the figure shown previously.  Apply the Extended Bernoulli 
Equation from points 2 to 3. 

 (13) 

where 
p2 = ? 

p3 = patm  (14) 
  (a2 » a3 » 1 (15) 

z2 – z3 = 0.48 m + 5 m = 5.48 m (16) 
HS = 0 (17) 

 (18) 

where f = 0.016 was found previously. 
 

Substitute into Eq. (13) and solve for p2. 
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 (19) 

Using the given data, 
p3 = 101 kPa (abs) 
r = 0.6(1000 kg/m3) = 600 kg/m3 
g = 9.81 m/s2 
z3 – z2 = -5.48 m 
f = 0.016 
L = (1.5 m)/2 + 5 m = 5.75 m 
D = 0.025 m 

 
Þ  p2 = 80.0 kPa (abs) 
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Water flows from a container as shown in the figure.  Determine the loss coefficient needed in the valve if 
the water is to “bubble up” a distance h above the outlet pipe. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Apply the Extended Bernoulli Equation from point 1 to point 2, 
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where, 
p1 = p2 = patm, (2) 
𝑉*' ≈ 0, (3) 
𝑉*& = ?, (4) 
α& ≈ 1 (assume turbulent flow), (5) 
𝑧' = 𝐻'  and  𝑧& = 𝐻&   (6) 
𝐻(,'& = ∑ 𝐾+
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!
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, (7) 

𝐻*,'& = 0. (8) 
Substitute and solve for the valve loss coefficient, 
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𝐾45.4/ =

&9(;#<;!)
$%!!

− 1 − 𝐾,-./0 − 2𝐾/.123 −𝐾65728. (10) 
The major loss coefficient is, 

𝐾65728 = 𝑓 !(#>(!>;!
?

%, (11) 
where the friction factor is found using the Moody plot or the Colebrook formula using, 

Re? =
$%!?
@

, (12) 
and the relative roughness ϵ/D. 
 
The velocity in the pipe (and at location 2) can be found by applying Bernoulli’s equation from point 2 to 
point 3, 
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A
= ! !
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&#
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&
, (13) 

where, 
p3 = patm, 
𝑉*A ≈ 0, 
𝑧A = 𝐻& + ℎ. 

Substitute and solve for the average velocity at 2, 
𝑉*& = 92𝑔ℎ. (14) 

Note that the “ordinary” Bernoulli’s equation was used from 2 to 3 since these points are outside the pipe. 
 
Using the given parameters, 

g = 32.2 ft/s2, 
ν = 1.21*10-5 ft2/s, 
H1 = 45 in. = 3.75 ft, 
H2 = 2 in. = 0.167 ft, 
h = 3 in. = 0.25 ft, 
L1 = 18 in. = 1.5 ft, 
L2 = 32 in. = 2.67 ft, 
D = 0.5 in. = 0.0417 ft, 
ϵ  = 0.0005 ft  (galvanized iron pipe)  =>  ϵ/D = 0.0120, 
Kinlet = 0.05  (rounded inlet; from minor loss table), 
Kelbow = 1.5  (90 deg threaded elbow; from minor loss table). 
=>  𝑉*& = 4.012 ft/s, 
=> ReD = 13,820   (turbulent flow assumption is ok!) 
=>  f = 0.04387, 
=>  Kmajor = 4.562, 
=>  Kvalve = 5.72. 

 
The following python code was used to perform the computations. 

# pipe_12.py 
 
import numpy as np 
 
def f_Haaland(Re, e_D):  # Calculate the friction factor using the Haaland formula 
    return (-1.8*np.log10(6.9/Re+(e_D/3.7)**1.11))**-2 
     
def f_Colebrook(Re, e_D):  # Calculate the friction factor using the Colebrook formula 
    fprime = f_Haaland(Re, e_D) 
    freldiff = 1 
    tol = 0.001 
    while (freldiff > tol): 
        f = fprime 
        fprime = (-2.0*np.log10(e_D/3.7 + 2.51/Re/np.sqrt(f)))**-2 
        freldiff = np.absolute((fprime-f)/f) 
    return f 
 
# Initialize variable values. 
g = 32.2 # ft/s^2; gravitational acceleration 
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nu = 1.21e-5  # ft^2/s; water kinematic viscosity 
H1 = 45/12  # ft; tank free surface height 
H2 = 2/12  # ft; exit pipe height 
h = 3/12  # ft; fountain height 
L1 = 18/12 # ft; vertical pipe length 
L2 = 32/12 # ft; horizontal pipe length 
D = 0.5/12  # ft; pipe diameter 
e = 0.0005  # ft; pipe roughness (galvanized iron) 
K_inlet = 0.05  # rounded pipe inlet 
K_elbow = 1.5  # 90 deg threaded elbow 
 
# Print the lengths in feet. 
print("H1 = %.3e ft, H2 = %.3e ft, h = %.3e ft, L1 = %.3e ft, L2 = %.3e ft, D = %.3e 
ft" % (H1, H2, h, L1, L2, D)) 
 
# Calculate the average velocity in the pipe. 
V2 = np.sqrt(2*g*h) 
print("V2 = %.3e ft/s" % V2) 
 
# Calculate the Reynolds number. 
Re = V2*D/nu 
print("Re = %.3e" % Re) 
 
# Calculate the relative roughness. 
e_D = e/D 
print("e/D = %.3e" % e_D) 
 
# Determine the friction factor. 
f = f_Colebrook(Re, e_D) 
print("f = %.3e" % f) 
 
# Calculate the viscous loss coefficient. 
K_major = f*((L1+L2+H2)/D) 
print("K_major = %.3e" % K_major) 
 
# Calculate the valve loss coefficient. 
K_valve = 2*g*(H1-H2)/V2/V2 - 1 - K_inlet - 2*K_elbow - K_major 
print("K_valve = %.3e" % K_valve) 
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According to an appliance manufacturer, the 4 in diameter 
galvanized iron vent on a clothes dryer is not to contain more than 
20 ft of pipe and four 90° elbows.  Under these conditions, determine 
the air flow rate if the gage pressure within the dryer is 1.04 psf.  
You may assume the following: 
 

kinematic viscosity of air:  1.79e-4 ft2/s 
density of air:  2.20e-3 slugs/ft3 
K90° bend = 1.5 
Kentrance = 0.5 

 
 

 
SOLUTION: 
 
Apply the Extended Bernoulli Equation from point 1 to point 2 as shown in the figure below. 
 
 
 
 
 
 
 
 
 
 

 (1) 

where 
p2 = 0 (gage)  and  p1 = 1.04 psfg 

  (Assume turbulent flow so that a2 » 1.) 
  (The air in the dryer is relatively stagnant compared to the outflowing air.) 

z2 – z1 » 0   
HS = 0 

 (2) 

Note that  since the pipe and exit diameters are the same.  Also, there is no exit loss since point 2 is 
located just at the exit of the pipe.  The air has not undergone any exit losses at this point. 

 
Substitute and simplify. 

 (3) 

It’s given that 
L = 20 ft 
D = 4 in. = 0.33 ft 
Kelbow = 1.5 
Kentrance = 0.5 
p1,g = 1.04 lbf/ft2 
r = 2.20*10-3 slug/ft3 

Using these parameters, Eq. (3) becomes, 
 (4) 
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Note that f is dependent on the Reynolds number and relative roughness, 

 (5) 

where nair = 1.79*10-4 ft2/s and .  The roughness of galvanized iron pipe is e = 0.0005 ft so that the 
relative roughness is, 

 (6) 

 
To solve for  , we must iterate to a solution since f is also a (complex) function of  because of the 
Reynolds number dependence.  One iterative procedure that can be used is given below. 
 

1. Choose a value for f. 
2. Calculate  using Eq. (4). 
3. Calculate ReD using Eq. (5). 
4. Use the Moody diagram with the ReD calculated from Step 3 and the relative roughness given in 

Eq. (6) to find f’. 
5. Is f’ = f?  If so, then the iterations are complete and  is the value found in Step 2.  Otherwise, 

use f’ as the new value for f and go to Step 2. 
 
Using this iterative algorithm and an initial guess of f = 0.025, 
 

1. f = 0.025 
a.  = 10.25 ft/s 
b. ReD = 19,000 
c. f’ = 0.029  (This value is different than our original guess, must continue iterations.) 

2. f = 0.029 
a.  = 10.11 ft/s 
b. ReD = 18,800 
c. f’ = 0.029   (This value matches our initial guess!  Iterations complete!) 

 
 
Note that the flow is turbulent, which is consistent with the assumption that a2 » 1. 
 
The volumetric flow rate may be found using, 

  Þ  Q = 0.882 ft3/s (7) 

where  = 10.11 ft/s and D = 0.33 ft. 
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Water at 10 °C (kinematic viscosity of 1.307*10-6 m2/s) is to flow from a roof-top reservoir to a tanker 
truck through a cast iron pipe (roughness of 0.26 mm) of length 20 m at a flow rate of 0.0020 m3/s.  The 
roof-top tank water level is located 2 m above the tanker truck fluid level.  The system contains a sharp-
edged entrance, six threaded 90° elbows, and a sharp-edged exit.    Determine the required pipe diameter 
for the given flow conditions. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

tanker truck 

rooftop reservoir 

2 m 
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SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Apply the Extended Bernoulli Equation from point 1 to point 2, 

! !
"#
+ 𝛼 $%!

&#
+ 𝑧%

&
= ! !

"#
+ 𝛼 $%!

&#
+ 𝑧%

'
−𝐻(,'& +𝐻*,'&, (1) 

where, 
p1 = p2 = patm, 
𝑉*' ≈ 𝑉*& ≈ 0, 
𝑧& − 𝑧' = −𝐻, (2) 
𝐻(,'& = ∑ 𝐾+

$%"
!

&#+ = /𝐾,-./01	34516 + 4𝐾15789 +𝐾1:36 +𝐾;/<801
$%!

&#
, (3) 

𝐻*,'& = 0, (4) 
𝑉* = =

>?!/A
  (relating the average flow speed in the pipe to the volumetric flow rate). (5) 

 
Substitute and simplify, 

𝐻 = /𝐾,-./01	34516 + 4𝐾15789 +𝐾1:36 +𝐾;/<801
$%!

&#
, (6) 

𝐻 = /𝐾,-./01	34516 + 4𝐾15789 +𝐾1:36 +𝐾;/<801
B=!

>!?##
, (7) 

𝐷A = /𝐾,-./01	34516 + 4𝐾15789 +𝐾1:36 +𝐾;/<801
B=!

>!#C
. (8) 

 
The major loss coefficient is, 

𝐾;/<80 = 𝑓 !(
?
%, (9) 

where the friction factor is a function of the relative roughness and the Reynolds number, 
𝑓 = 𝑓 !D

?
, Re?%, (10) 

where, 
Re? =	

$%?
E

. (11) 
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Since the velocity, Reynolds number, and relative roughness are all functions of the pipe diameter, Eq. (5) 
cannot be solved explicitly for the pipe diameter.  Instead, an iterative solution must be used.  The 
following algorithm is implemented in the python code at the end of this solution. 

1. Choose a value for the diameter, D. 
2.  Calculate the average pipe speed using Eq. (5). 
3. Calculate the Reynolds number using Eq. (11). 
4. Calculate the relative roughness. 
5. Determine the friction factor using the Colebrook Formula (or use the Moody plot). 
6. Calculate the major loss coefficient using Eq. (9). 
7. Use the EBE (Eq. (8)) to solve for the pipe diameter, D’. 
8. Is D’ equal to D?  If so, then the iterations are complete.  If not, let D = D’ and return to step 2. 

 
The given parameters are, 

ν = 1.307*10-6 m2/s, 
g = 9.81 m/s2, 
H = 2.0 m, 
L = 20 m, 
Q = 0.0020 m3/s, 
ϵ = 0.26 mm (cast iron pipe), 
Kinlet = 0.5 (sharp-edge entrance; from a minor loss table), 
Kelbow = 1.5  (90 deg, threaded elbow; from a minor loss table), 
Kexit = 1. 

 
Running the python code generates the following output, 
Iterating:  D= 4.000e-02 m, Re= 4.871e+04, e/D= 6.500e-03, f= 3.451e-02, K_major= 1.725e+01, D' = 4.497e-02 m 
Iterating:  D= 4.497e-02 m, Re= 4.332e+04, e/D= 5.781e-03, f= 3.364e-02, K_major= 1.496e+01, D' = 4.389e-02 m 
Iterating:  D= 4.389e-02 m, Re= 4.439e+04, e/D= 5.924e-03, f= 3.381e-02, K_major= 1.541e+01, D' = 4.411e-02 m 
Iterating:  D= 4.411e-02 m, Re= 4.417e+04, e/D= 5.895e-03, f= 3.378e-02, K_major= 1.531e+01, D' = 4.406e-02 m 
Final:  D = 4.411e-02 m, Re = 4.417e+04, e/D = 5.895e-03, f = 3.378e-02, D' = 4.406e-02 m 

Thus, the pipe diameter should be D = 4.41 cm. 
 
Following is the python code used for the computations. 

# pipe_11.py 
 
import numpy as np 
 
# Initialize variable values. 
g = 9.81  # m/s^2, gravitational acceleration 
H = 2.0  # m, height difference 
L = 20  # m, pipe length 
Q = 0.0020  # m^3/s, volumetric flow rate 
K_inlet = 0.5  # sharp-edge entrance loss coefficient 
K_elbow = 1.5  # 90 deg threaded elbow loss coefficient 
K_exit = 1.0  # exit loss coefficient 
nu = 1.307e-6  # m^2/s, kinematic viscosity 
e = 0.26e-3  # m, roughness (cast iron pipe) 
 
def Re_fcn(D):  # Calculate the Reynolds number given the diameter 
    return 4*Q/np.pi/nu/D 
 
def f_Haaland(Re, e_D):  # Calculate the friction factor using the Haaland formula 
    return (-1.8*np.log10(6.9/Re+(e_D/3.7)**1.11))**-2 
     
def f_Colebrook(Re, e_D):  # Calculate the friction factor using the Colebrook formula 
    fprime = f_Haaland(Re, e_D) 
    freldiff = 1 
    tol = 0.001 
    while (freldiff > tol): 
        f = fprime 
        fprime = (-2.0*np.log10(e_D/3.7 + 2.51/Re/np.sqrt(f)))**-2 
        freldiff = np.absolute((fprime-f)/f) 
    return f 
 
def D_fcn(f, K_major):  # Calculate the diameter from the EBE 
    D = ((K_inlet + 4*K_elbow + K_exit + K_major)*8*Q*Q/np.pi/np.pi/g/H)**(1/4) 
    return D 
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# Initial guess for D and set the iteration tolerance. 
Dprime = 0.04  # m, first guess at the diameter 
Dreldiff = 1  # a large number to start with 
tol = 0.001  # tolerance 
countmax = 1000  # maximum number of iterations before giving up 
 
# Iterate until D and Dprime are nearly equal or we reach the maximum 
# number of iterations. 
count = 0 
while ((Dreldiff > tol) and (count < countmax)): 
    count = count + 1 
    D = Dprime 
    Re = Re_fcn(D) 
    e_D = e/D 
    f = f_Colebrook(Re, e_D) 
    K_major = f*(L/D) 
    Dprime = D_fcn(f, K_major) 
    Dreldiff = np.absolute((D-Dprime)/D)  # find the relative difference 
    print("Iterating:  D= %.3e m," % D, "Re= %.3e," % Re, "e/D= %.3e," % 
e_D,"f= %.3e," % f, "K_major= %.3e," % K_major, "D\' = %.3e m" % Dprime) 
 
 
if (count == countmax): 
    print("Didn't converge to a solution after %d iterations." % countmax) 
else: 
    print("Final:  D = %.3e m," % D, "Re = %.3e," % Re, "e/D = %.3e," % e_D,"f 
= %.3e," % f, "D\' = %.3e m" % Dprime) 
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The tailrace (discharge pipe) of a hydro-electric turbine installation is at an elevation, h, below the water 
level in the reservoir: 
 
 
 
 
 
 
 
 
 
 
 
 
 
The losses in the penstock (the pipe leading to the turbine) and the tailrace are represented by the loss 
coefficient, K, based on the mean velocity, U, in those pipes, which have the same cross-sectional area, A.  
The flow discharges to atmospheric pressure at the exit from the tailrace.  The water density is denoted by 
r and the acceleration due to gravity by g.  Assume turbulent flow conditions. 
 
a. What is the drop in total head across the turbine? 
b. What is the power developed by the turbine assuming that it has an efficiency η? 
c. What is the optimum velocity, Uopt, that will produce the maximum power output from the turbine 

assuming that h, K, A, r, and g are constant? 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
 
Apply the Extended Bernoulli Equation from 1 to 2, 

! !
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'
−𝐻(,'& +𝐻*,'&, (1) 

where, 
p1 = p2 = patm, (2) 
𝑉*' ≈ 0, (3) 
𝑉*& = 𝑈   (assume α2 ≈ 1), (4) 
𝑧& − 𝑧' = −ℎ, (5) 
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Substitute and simplify, 
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Note that since it’s a turbine, we expect the right-hand side of Eq. (9) to be negative.  Thus, the total drop in 
head across the turbine is equal to the absolute value of the right-hand side of Eq. (9). 
 
The power developed by the turbine, assuming an efficiency of η is, 

𝑃 = 𝜂𝜌𝑔𝑈𝐴 9(1 + 𝐾) ,
!

&#
− ℎ:. (10) 

 
To optimize the power output, take the derivative of Eq. (10) and set it equal to zero, 

0-
0,
= 0 = 𝜂𝜌𝑔𝐴 0

0,
9(1 + 𝐾) ,

#

&#
− ℎ𝑈:, (11) 

0 = 3(1 + 𝐾) ,
!
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− ℎ, (12) 

𝑈1!2 = < &#3
4('67)

. (13) 
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In the water flow system shown, reservoir B has variable elevation, x.  Determine the water level in 
reservoir B so that no water flows into or out of that reservoir.  The speed in the 12 in. diameter pipe is 10 
ft/s.  Assume the pipes are constructed of cast iron and that the entrances are sharp-edged. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
 
 
Apply the Extended Bernoulli Equation from point 1 to point 2, 

! !
"#
+ 𝛼 $%!

&#
+ 𝑧%

&
= ! !

"#
+ 𝛼 $%!

&#
+ 𝑧%

'
−𝐻(,'& +𝐻*,'&, (1) 

where, 
p1 = patm, (2) 
𝑉*' ≈ 0, (3) 
𝑉*& is given, (4) 
𝑧& − 𝑧' is given, (5) 
𝐻(,'& = ∑ 𝐾+

$%"
!

&#+ = /𝐾,-./0 +𝐾123450
$%!!

&#
, (6) 

𝐻*,'& = 0. (7) 
 
The pressure at point 2 can be found using hydrostatics since there is no flow from point 3 to point 2, 

𝑝& = 𝑝678 + 𝜌𝑔(𝑥 − 𝑧&). (8) 
 
Substitute and solve for x, 

!#$%
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$%!!
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, (10) 
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Using the given parameters, 
z1 = 100 ft, 
Kinlet = 0.5  (sharp-edge inlet; from a minor loss table), 
𝑉*& = 10 ft/s, 
ν = 1.08*10-5 ft2/s, 
g = 32.2 ft/s2, 
D = 12 in. = 1 ft, 
L12 = 100 ft, 
ϵ = 0.00085 ft  (cast iron)  =>  ϵ/D = 0.00085, 
Re9 = 𝑉*&𝐷/𝜈 = 925,900   (turbulent flow  =>  α2 ≈ 1), 
=>  f =  0.01924  (from the Moody plot or the Colebrook formula), 
=>  Kmajor = f(L12/D) = 1.924, 
=>  x = 94.7 ft. 

 
The following python code was used for the computations. 

# pipe_15.py 
 
import numpy as np 
 
def f_Haaland(Re, e_D):  # Calculate the friction factor using the Haaland formula 
    return (-1.8*np.log10(6.9/Re+(e_D/3.7)**1.11))**-2 
     
def f_Colebrook(Re, e_D):  # Calculate the friction factor using the Colebrook formula 
    fprime = f_Haaland(Re, e_D) 
    freldiff = 1 
    tol = 0.001 
    while (freldiff > tol): 
        f = fprime 
        fprime = (-2.0*np.log10(e_D/3.7 + 2.51/Re/np.sqrt(f)))**-2 
        freldiff = np.absolute((fprime-f)/f) 
    return f 
 
# Initialize variable values. 
g = 32.2 # ft/s^2; gravitational acceleration 
nu = 1.08e-5  # ft^2/s; kinematic viscosity 
z1 = 100  # ft; free surface height 
V2 = 10 # ft/s; flow rate 
L12 = 100 # ft; pipe length 
D = 12/12  # ft; pipe diameter 
e = 0.00085  # ft; pipe roughness (cast iron) 
K_inlet = 0.5  # square-edged pipe inlet 
 
# Calculate the Reynolds number. 
Re = V2*D/nu 
print("Re = %.3e" % Re) 
 
# Calculate the relative roughness. 
e_D = e/D 
print("e/D = %.3e" % e_D) 
 
# Determine the friction factor. 
f = f_Colebrook(Re, e_D) 
print("f = %.3e" % f) 
 
# Calculate the viscous loss coefficient. 
K_major = f*(L12/D) 
print("K_major = %.3e" % K_major) 
 
# Calculate the elevation x. 
x = z1 - (K_inlet + K_major + 1)*(V2**2)/2/g 
print("x = %.3e ft" % x) 
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Consider the process of donating blood.  Blood flows from a vein in which the 
pressure is greater than atmospheric, through a long small-diameter tube, and into a 
plastic bag that is essentially at atmospheric pressure.  Based on fluid mechanics 
principles, estimate the amount of time it takes to donate a pint of blood.  List all 
assumptions and show calculations. 
 
 
 
 
 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
First, a few assumptions: 

1. Treat blood as a Newtonian fluid.  Blood is actually slightly non-Newtonian with shear-thinning 
behavior, but we’ll model it as Newtonian here for simplicity.  Assume the density of blood is r = 
1060 kg/m3 and its dynamic viscosity is µ = 3.5 cP = 3.5*10-3 kg/(m.s).  Hence, the kinematic 
viscosity is n = µ/r = 3.30*10-6 m2/s. 

2. Steady flow through the needle and tube.  In fact, the real flow will be pulsatile due to the 
fluctuating pressure in the vein. 

3. Constant pressure in the arm and collection bag.  Again, the real flow will have periodic pressure 
variations in the arm. 

4. The mean arterial pressure in the arm is at 93.3 mm Hg (gage).  In practice, there are two values 
given for blood pressure:  a systolic pressure and a diastolic pressure.  The systolic pressure is the 
pressure when the heart is contracted while the diastolic pressure is when the heart is relaxed.  A 
value of (systolic/diastolic) 120/80 mm Hg (gage) is within the normal range of blood pressures.  
The mean arterial pressure (MAP) is the average pressure over a cardiac cycle and can be 
approximated as:  MAP = pdiastolic + (1/3)*(psystolic – pdiastolic). 

5. The pipe system consists of a needle, plastic tubing, and a plastic collection bag.  A 17 gauge 
(1.07 mm inner diameter) needle diameter is often used for collecting blood.  These needles are 
approximately 2.54 cm (1 in.) in length.  The plastic tubing is assumed to be approximately 2.0 m 
in length with an inner diameter of 3.0 mm. 

6. The flow in the needle and tube is laminar since the diameters are small. 
7. The collection bag is located below the person’s arm.  We’ll assume an elevation difference of 0.5 

m. 
 
Apply the Extended Bernoulli Equation from point 1 (in the vein) to point 2 (just upstream of the tube exit 
leading into the bag), 

, (1) 

where 
p1 = parm = 93.3 mm Hg (gage)  (use the mean arterial pressure in the arm) 
p2 = 0 (gage)  (discharging into a bag that is at atmospheric pressure) 

p
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1 

tube (T) 
LT = 2.0 m 
DT = 3.0 mm 

needle (N) 
LN = 25.4 mm 
DN = 1.07 mm (17 gauge) 
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  (blood speed in the vein is small compared to the speed in the needle and tube) 
  (blood speed just before the exit of the tube) 

a2 = aT = 2  (because the tube diameter is small, assume the flow is laminar at the tube exit) 
z1 = 0.5 m  (assume the person’s arm is 0.5 m above the bag) 
z2 = 0  
HS,1→2 = 0  (no fluid machinery in the process) 

 (2) 

(major losses in the needle and tube and a minor loss at the inlet and at the transition from the 
need to the tube)  

 
Note that, 

   and   (3) 

   and    (since the flow is laminar) (4) 

 
Substitute and simplify, 

, (5) 

, (6) 

, (7) 

, (8) 

. (9) 

Using the given data, 
g = 9.81 m/s2 
Kentrance = 0.78 (re-entrant inlet) 
Kexpansion = 0.8  (area ratio = (DN/DT)2 = 0.126) 
DN = 1.07*10-3 m 
aT = 2  (laminar flow at tube exit) 
DT = 3.0*10-3 m 
n = 3.30*10-6 m2/s 
LN = 2.54*10-2 m 
LT = 2.0 m 
pg,arm = rgH = (13.6*1000 kg/m3)(9.81 m/s2)(93.3*10-3 m Hg) = 12.5*103 Pa 
r = 1060 kg/m3 
z1 = 0.5 m 
Þ  A = 1.03*1011 s2/m5, B = 6.07*105 s/m2, C = -1.70 m 
Þ  Q = 2.07*10-6 m3/s  Þ  = 2.31 m/s, = 0.29 m/s Þ ReDN = 748, ReDT = 266 Þ The laminar 
flow assumptions are good ones! 
 
One pint is equivalent to Vcollect = 4.73*10-4 m3, thus the expected time required to collect one pint of 
blood is, 
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  Þ  T = 229 s = 3.8 min. 

 
In practice, the time required to donate a pint of blood is approximately 8 – 10 minutes, so this prediction, 
although in the right ballpark, is too small when compared to reality.  Two assumptions likely factor into 
this error.  First, we’ve assumed fully developed flow in the needle, which is most likely not the case.  The  
pressure drop in the needle will be larger than what we’ve predicted from our fully developed flow model 
and thus the flow rate will decrease and the predicted donation time will increase.  Secondly, there will be 
additional losses due to the bends in the tubing and, especially, due to the clamp located on the tubing to 
make it easier to stop the flow, if needed.  These additional minor losses aren’t negligible and will 
contribute to make the flow rate smaller. 

 

T = Vcollect
Q
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A hypodermic needle, with an inside diameter of 0.1 mm and a length of 25 mm is used to 
inject saline solution with a dynamic viscosity five times that of water.  The plunger 
diameter is 10 mm and the maximum force that can be exerted by a thumb on the plunger is 
45 N.  Estimate the volume flow rate of saline that can be produced. 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
For a viscous, laminar, fully developed flow in a circular pipe (Poiseuille flow), the average velocity is 

 (1) 

and the volumetric flow rate is: 

  (2) 

 
The pressure gradient, assuming fully developed flow in the needle, is: 

 (3) 

where pplunger,gage is: 

 (4) 

 
Using the given data: 

d = 0.1e-3 m 
D = 10e-3 m 
L = 25e-3 m 
F = 45 N 
µ = 5e-3 N×m/s 
Þ  pplunger,gage = 5.73e5 Pa 
Þ  dp/dz = -2.29e7 Pa/m 
Þ  = 1.43 m/s 
Þ  Q = 1.13e-8 m3/s = 11.3 mm3/s 
 

Check the Reynolds number to verify that the laminar flow assumption is ok. 

   (Use r » 1000 kg/m3.) (5) 

Þ  Re = 28.8 < 2300 Þ The laminar flow assumption is justified! 
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The average flow speed in a constant-diameter section of the Alaskan pipeline is 8.27 ft/s.  At the inlet, the 
pressure is 1200 psig and the elevation is 150 ft; at the outlet, the pressure is 50 psig and the elevation is 
375 ft.  Calculate the head loss in this section of pipeline. 
 
 
SOLUTION: 
 
 
 
 
Apply the Extended Bernoulli’s Equation from 1 to 2. 

 (1) 

where 

 (2) 

    (since the flow is fully developed and mass is conserved) (3) 

 (4) 
  (This is what we’re trying to find.) (5) 
  (There is no shaft work between points 1 and 2.) (6) 

Substitute and solve for HL. 

 (7) 

 (8) 
 

2 2

,1 2 ,1 2
2 12 2 L S

p V p Vz z H H
g g g g

a a
r r ® ®

æ ö æ ö
+ + = + + - +ç ÷ ç ÷
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2 2

2 12 2
V V
g g

a a
æ ö æ ö
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( )2 1
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p pH z z
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= - - -ç ÷

è ø

,1 2 2940 225 ft 2720 ftLH ®\ = - =

1 2 
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Consider the pipe system shown below in which water (with a density of 1.0E3 kg/m3 and a dynamic 
viscosity of 1.3E-3 Pa×s) flows from the tank A to tank B.  If the required flow rate is 1.0E-2 m3/s, what is 
the required gage pressure in tank A? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Apply the Extended Bernoulli Equation from the free surface of tank A (point 1) to the end of the pipe 
leading into tank B (point 2). 

 (1) 

where 
  and    (given) 

  (large tank)          (Assume turbulent flow.) 
 and    (given) 

  (no fluid machinery between points 1 and 2) 

   

 (2) 

(Note that there are no exit losses at point 2 since no mixing occurs there.) 
 

2 2

,12 ,12
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2 2 L S
p V p Vz z H H
g g g g
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r r

æ ö æ ö
+ + = + + - +ç ÷ ç ÷ç ÷ ç ÷

è ø è ø
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2 2 2 2
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B 

A 
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15 m 
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pA = ? 
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A 
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2 
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The mean velocity in the pipe is determined from the volumetric flow rate and the pipe area. 

 

Using the given data: 

 

 
The friction factor, f, is determined from the Moody chart using the Reynolds number in the pipe, Re, and 
the relative roughness, e/D. 

  (Turbulent flow assumption ok.) 

 

 
 

Hence, the major loss coefficient for the system is: 

 

 
The minor loss coefficients are found from minor loss tables to be: 

 

 

 

 
Using the given data, the total head loss (from Eqn. (2)) is: 

 

 
 

Re-arranging Eqn. (1) to solve for p1 gives: 
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Now let’s solve the problem using points 2’ and 2’’ as shown in the figure below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Apply the Extended Bernoulli Equation from the free surface of tank A (point 1) to the end of the stream at 
the surface of the free jet (point 2’). 

 (3) 

where 
  and    (given) 

  (large tank)   

   (using Bernoulli’s Eqn applied from the end of the pipe to the surface of tank B) 

 

  (Assume turbulent flow.) 

 and    (given) 

  (no fluid machinery between points 1 and 2) 

   

 (4) 

(Note that there are no exit losses from point 2 to point 2’ since the kinetic energy in the stream 
hasn’t been dissipated.) 
 

Using the same data as in the previous solution, except for the velocity at 2’ and the elevation at 2’, 

 
  (Same answer as found previously!)
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Now apply the Extended Bernoulli Equation from the free surface of tank A (point 1) to the surface of the 
tank (point 2’’). 

 (5) 

where 
  and    (given) 

  (large tank)   
   (surface of large tank) 

 and    (given) 

  (no fluid machinery between points 1 and 2) 

   

 (6) 

(Note that the kinetic energy in the stream is dissipated when going from point 2’ to point 2’’.  
Thus, the correct velocity to use in the velocity head term is the velocity at 2’.) 
 

Using the same data as in the previous solution, except for the velocity at 2’ and the elevation at 2’, 

 

  (Same answer as found previously!) 
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You purchase a cottage at a lake and need to install a pump to feed water to the house. You plan to pump 
water at night to fill a storage tank you’ve installed next to the cottage. The pipes and fittings you have 
chosen to use for the installation are listed in the table below.  
a. What is the minimum head rise across a pump that is capable of providing a flow rate of 18.93 liters 

per minute (= 5 gpm) of water to the tank?  
b. What power should be supplied to the pump assuming the pump efficiency is 65%. 
 

 

 

 

 

 

System Component Amount 
straight, smooth plastic pipe, 5.08 cm (= 2 in.) diameter 28.96 m (=95 ft) 

re-entrant inlet 1 
regular 90º flanged elbow 10 

union 8 
fully open globe valve 1 
fully open gate valve 4 

 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
 
 
Apply the Extended Bernoulli Equation from point 1 to point 2. 

 (1) 

where 
 (2) 

 (3) 

   and  a2 » 1 (assuming turbulent flow) (4) 

z2 – z1 = 15.24 m (5) 
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 (6) 

(where ) 

 (7) 
 
Substitute into the Extended Bernoulli Equation and re-arrange. 

 (8) 

 (9) 

 (10) 

 
Use the given data to determine HS,1®2. 

z2 – z1 = 15.24 m 
L = 28.96 m  
D = 5.08 cm = 5.08e-2 m 
Kinlet = 0.8 
Kelbow = 0.3 
Kthreaded union = 0.06 
Kglobe valve = 10 
Kgate valve = 0.15 
Q = 18.93 L/min = 3.154e-4 m3/s  (= 5 gpm) 
g = 9.81 m/s2 (= 32.2 ft/s2) 

The friction factor is found using the Moody chart for a smooth pipe and a Reynolds number of: 

   

(The turbulent flow assumption is valid!) (11) 
Þ  f » 0.033  (from the Moody diagram) (12) 

  (= 50.14 ft) (13) 
Note that the head loss is much smaller than the elevation head. 

 
The power is related to the shaft head by: 

 (14) 

 (15) 
 

Using the given data (r = 1000 kg/m3): 
(= 0.06 hp) (16) 

Since the efficiency is h = 65%, the power that must be supplied to the pump is: 

  Þ    (= 0.1 hp) (17) 
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A hot tub sits on a deck as shown in the figure below.  A homeowner plans to fill the hot tub with water from a 1.91 
cm (0.75 in.) diameter, 7.62 m (25 ft) length of old garden hose attached to an outdoor spigot (aka faucet) located 
underneath the deck.  The hose has an internal roughness of 0.5 mm (1.97*10-2 in.) and the gage water pressure just 
upstream of the spigot valve is 379 kPa (55 psig).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The minor losses due to the bends in the hose are much smaller than the minor loss due to the valve, which has a 
loss coefficient of 2.  
 
Determine the volumetric flow rate of water into the hot tub.  Clearly state and justify all significant assumptions. 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Apply the Extended Bernoulli Equation from 1 to 2. 

 (1) 

where 
p1,g = 3.79*103 Pa  and  p2,g = 0  (2) 

  and   (3) 
z2 – z1 = Dz = 3.05 m (4) 

     (5) 

 (6) 
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Assume the flow in the hose is fully turbulent so that, 

, (7) 
and the friction factor is solely a function of the relative roughness, 

 (8) 

Using the Moody diagram, the friction factor is, 
 (9) 

 
Substitute into Eq. (1) and solve for the average water speed in the hose. 

 (10) 

Note that the major loss coefficient of, 

, (11) 

is larger than the valve and exit losses (recall that from the problem statement, Kbends <<  Kvalve, and thus the bend 
losses may be neglected), with Kvalve/Kmajor = 0.09 and Kexit/Kmajor = 0.05.   We should retain these minor losses since 
they are not small enough to be neglected. 
 
Solving Eq. (10) for the hose average velocity gives, 
 

  Þ   (12) 

The volumetric flow rate is, 
  Þ  Q = 1.6*10-3 m3/s (13) 

 
Verify that the flow is indeed in the fully turbulent zone. 

 (14) 

This value of the Reynolds number is in the fully turbulent zone, so the assumption of fully turbulent flow was a 
good one. 
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Consider the pipe system shown in the figure below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Determine the power the pump must provide to the water to maintain the given conditions. 
 
 
SOLUTION: 
 
Apply the Extended Bernoulli Equation from point 1 to point 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (1) 

Re-arrange to solve for the shaft head term, 

 (2) 

where 
g = 9.81 m/s2  and  r = 1000 kg/m3 (3) 
p1 = 100 kPa (abs)  and   p2 = 200 kPa (abs) (4) 

  and   (5) 
z1 = 1 m  and  z2 = 2 m (6) 

 (7) 
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and 
L = 50 m  and  D = 0.02 m (8) 
Kminor = 5 (9) 

 (10) 

 (11) 

Use the Moody diagram to find the friction factor for this Reynolds number and relative roughness, 
f = 0.024 (12) 
 

Using the given data, 
HS = 31.7 m (13) 
 

The power may be found from the shaft head term using, 
 (14) 

Thus, 
 (15) 
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11.7.1. Serial Pipe Systems

Serial pipe systems have multiple pipes that have the same inlet conditions and the same outlet conditions
(Figure 11.16). For these systems one simply applies the EBE separately for each pipe.

Figure 11.16. An example of a serial pipe system, which has multiple pipes, but the same
inlet and outlet conditions.

11.7.2. Parallel Pipe Systems

Parallel pipe systems involve pipes that have intersections, i.e., nodes (Figure 11.17). These pipe systems are
more challenging to solve. The EBE can be used between nodes and between nodes and inlets and outlets.
Conservation of Mass should be applied at each node. The result will be a system of non-linear equations
(due to velocity squared terms that appear in the EBE) that must be solved simultaneously. Often these
systems of equations are solved computationally using iterative techniques.

Interestingly, pipe networks have many similarities with electrical networks, with pipe resistances corre-
sponding to electrical resistances, flow rates corresponding to current, and head differences (due to elevation
differences or pumps) corresponding to voltage differences. There are other electrical analogies too. For
example surge tanks have properties similar to capacitors, heavy paddle wheels have properties similar to
inductors, and ball and check valves act as diodes.

Figure 11.17. An example of a parallel pipe system, which has multiple, interconnecting
pipes. The location at which pipes intersect is known as a “node”.
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Two water reservoirs are connected by galvanized iron pipes.  Assume DA = 75 mm, DB = 50 mm, and h = 10.5 
m.  The length of both pipes is 100 m.  Compare the head losses in pipes A and B.  Compute the volume flow rate 
in each pipe. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
Apply the Extended Bernoulli Equation from point 1 to point 2 traveling through each pipe. 
 
 
 
 
 
 
 
 
 
 
 
 

 

where 
  (free surfaces) 

  (surface of large tanks) 
  (given) 

  (no fluid machines between points 1 and 2) 

 

 

and 

  and    
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Substituting into the Extended Bernoulli Equation gives: 

 (1) 

 (2) 

 
From Eqns. (1) and (2) we observe that the head loss in each pipe is the same and equal to 10.5 m. 
 
The pipes are made of galvanized iron so the roughness of the pipes is e = 0.15 mm (found from an average 
roughness table).  Hence, the relative roughness in each pipe is: 

   and    

 
Since we don’t yet know the velocity in each pipe, assume that the flows are in the wholly turbulent flow region 
so that the friction factor is independent of the Reynolds number.  For this case, the Moody chart (or the 
Colebrook relation) indicates that the friction factors corresponding to the relative roughnesses determined above 
are: 

  and   
 

Substitute the given data into Eqns. (1) and (2). 
h = 10.5 m 
Kentrance = 0.5 (assuming a sharp-edged entrance) 
Kelbow = 1.5 (assuming 90° threaded elbows) 
Kexit = 1.0 
g = 9.81 m/s2 
LA = 100 m 
LB = 100 m 
DA = 75 mm = 7.5*10-2 m 
DB = 50 mm = 5.0*10-2 m 
fA = 0.0234 (from above) 
fB = 0.0262 (from above) 
nH20 = 1.01*10-6 m2/s (water at 20 °C) 
 

Note that the sum of the minor loss coefficients (= 4.5 = 0.5 + 2*1.5 + 1) are not insignificant compared to the 
major loss coefficients so the minor losses cannot be neglected without significant error. 

  and    
 

Solving for the average velocities gives: 
  and   

The corresponding Reynolds numbers are: 

  and   (3) 

 
Unfortunately, these Reynolds numbers do not put us in the wholly turbulent zone on the Moody chart (although 
it’s very close) so we must try iterating to a solution instead.  For a new choice of friction factors, use the 
Reynolds number given in Eqn. (3) and consult the Moody chart (or the Colebrook formula). 

  and   
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Using these friction factors we find: 
  and   

and 

  and   

Fortunately these Reynolds numbers give the same friction factors that we started with.   
 
Thus, the volumetric flow rate through each pipe is: 
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In the five-pipe horizontal network shown in the figure, assume that all pipes have a friction factor f = 
0.025.  For the given inlet and exit flow rate of 2 ft3/s of water at 20 °C, determine the flow rate and 
direction in all pipes.  If pA=120 lbf/in2 (gage), determine the pressures at points B, C, and D. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
Apply the Extended Bernoulli Equation around the loops ABCA and DBCD. 

 (1) 

 (2) 

Note that the shaft head terms (HS,ABCA and HS,DBCD) are zero since there are no fluid machines in the loops.  
Simplifying Eqns. (1) and (2) gives: 

 (3) 
 (4) 

 
Expanding the head loss term and neglecting minor losses since the pipes are very long gives: 

 (5) 

 (6) 

Note that particular velocity directions have been assumed in the head loss expressions. 
 

At each pipe node the volumetric flow rate must be conserved (conservation of mass).  Hence: 

at node A:  Þ  (7) 

at node B:  Þ  (8) 

at node C:  Þ  (9) 

at node D:  Þ  (10) 
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Simplify and summarize Eqns. (5) - (10). 

 (11) 

 (12) 

 (13) 

 (14) 

 (15) 

 (16) 

Note that Eqn. (16) is not independent since it can be formed by adding Eqns. (13) and (14), subtracting 
Eqn. (15) and noting that QD = QA.  Hence, Eqns. (11) - (15) represent five equations with five unknowns 
( , , , , and ) .  Note that fAB, fBC, fAC, fBD, and fCD are given in the problem statement 
along with each pipe’s length and diameter and the volumetric flowrate QA. 
 
Using the given data: 

fall pipes = 0.025 
LAB = LCD = 4000 ft 
LAC = LBD = 3000 ft 
LBC  = 5000 ft (from the Pythagorean theorem) 
DAB = DCD =  8/12 ft 
DAC = 6/12 ft 
DBD = 3/12 ft 
DBC = 9/12 ft 
QA = 2 ft3/s 

 
The system of non-linear algebraic equations (Eqns. (11) - (15)) can be solved iteratively.  One approach is 
given below. 

1. Assume a value of . 
2. Solve for  using Eqn. (13). 
3. Solve for  using Eqn. (11).  
4. Solve for  using Eqn. (15). 
5. Solve for  using Eqn. (12). 
6. Solve for  using Eqn. (14). 
7. Are the s from step 6 and step 1 equal?  If so, then the iterations are finished.  If not, then 

choose a new value for  and go to step 2. 
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After some iteration.   
 = 3.40*100 ft/s Þ QAB = 1.19*100 ft3/s 
 = 4.14*100 ft/s Þ QAC = 8.13*10-1 ft3/s 
 = 2.24*100 ft/s Þ QBC = 9.90*10-1 ft3/s 
 = 5.17*100 ft/s Þ QCD = 1.80*100 ft3/s 
 = 4.02*100 ft/s Þ QBD = 1.97*10-1 ft3/s 

 
To find the pressure at the various nodes, apply the Extended Bernoulli Equation between the nodes. 

 

where 
pA = 120 psig 
pB = ? 
VA = VB  (the velocity just upstream of point B is equal to the velocity just downstream of point A) 
zA = zB  
HS,AB = 0 
rH20 @ 20 °C = 1.94 slug/ft3  (Note:  1 lbf = 1 slug×ft/s2) 

 

Þ   

pB = 1.08*102 psig 
 

Using a similar approach from A to C (or from B to C): 
pC  = 1.03*102 psig 
 

Using a similar approach from B to D (or from C to D): 
pD  = 7.57*101 psig 
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CHAPTER 12

Fluid Machinery

12.1. Introduction

There are two categories of fluid machines.

(1) Those that do work on the fluid:
(a) pumps (used for liquids),
(b) fans (used for gases/vapor; ∆p < a few inches of H2O),
(c) blowers (used for gases/vapor; a few inches of H2O < ∆p < 1 atm),
(d) compressors (used for gases/vapor; ∆p > 1 atm)

(2) Those that extract work from the fluid:
(a) turbines

Fluid machines that do work on the fluid will be the focus of this chapter. These fluid machines may be
further categorized into two types:

(1) Positive Displacement Pumps (PDPs)
(a) Fluid movement is generated by using changes in volume.
(b) Examples include reciprocating piston engines, the heart, gear pumps, rotating screw pumps,

and bellows.
(c) PDPs typically produce a periodic flow rate since the volume changes occur periodically.
(d) PDPs can produce large ∆p (pressure rise), but usually have a small Q (flow rate).

(2) Dynamic Pumps
(a) Dynamic pumps do not have closed volumes like PDPs. Dynamic pumps move the fluid by

changing the fluid’s momentum.
(b) Examples include axial flow and radial flow pumps (aka turbomachines), jet pumps, and elec-

tromagnetic pumps.
(c) The pressure change across dynamic pumps is usually smaller than the pressure change across

a PDP, i.e., ∆pdynamic pumps typically < ∆pPDP. However, the flow rate through a dynamic
pump is usually larger than the flow rate through a PDP, i.e., Qdynamic pumps typically > QPDP.

These notes will only serve as an introduction to pumps and focus mainly on centrifugal pumps, which are
one of the most common pump types found in engineering applications. There are many different pump
types and numerous books and online resources are available describing their operation.

12.2. Some Examples of Positive Displacement Pumps

Positive displacement pumps (PDPs) operate by using changes in a cavity’s volume to move fluid downstream.
Large pressure changes can be achieved across a PDP, but the flow rates are typically small compared to
dynamic pumps and the flow rates are often periodic since the volume changes occur periodically.

A large number of PDP designs have been proposed. The following figures (Figures 12.1 - 12.15) provide just
a few examples.
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(a) An external gear pump. Image from http://www.

pumpschool.com/principles/external.htm.

(b) An internal gear pump. Image from
http://media-2.web.britannica.com/eb-media/56/

3656-004-5CA4041D.gif.

Figure 12.1. Examples of gear pumps. Gear pumps are often used in automatic transmissions.

Figure 12.2. An example of a lobe pump. Lobe pumps often have two or three lobes and
are often used in in diesel superchargers. Image from http://www.megator.co.uk/lobe_

pump.htm.
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Figure 12.3. An example of a vane pump. Centrifugal force or springs are used to push out
the vanes. These are often used as power steering pumps and in automatic transmissions.
Image from http://www.pumpschool.com/principles/vane.htm.

Figure 12.4. An example of a screw pump. Archemiedes screw pumps were first used
more than 2000 years ago. They’re still in use for irrigation purposes. Image from http:

//en.wikipedia.org/wiki/File:Archimedes_screw.JPG.
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(a) Image from http://www.animatedsoftware.com/

pumpglos/progrssv.htm.

(b) Image from http://www.roymech.co.uk/Related/

Pumps/Rotary%20Positive%20Displacement.html.

Figure 12.5. Examples of cavity pumps.

Figure 12.6. An example of a wobble plate piston pump. Image from http://www.

roymech.co.uk/Related/Pumps/Rotary%20Positive%20Displacement.html.
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Figure 12.7. An example of a Wolfhart Principle pump. Image from http://www.

allstar.fiu.edu/aero/wolfhart_pump_principle.htm.

Figure 12.8. An example of a ball piston pump. Image from http://www.

animatedsoftware.com/pumpglos/ballpist.htm.

Figure 12.9. An example of a bent axis piston pump. Image from http://www.roymech.

co.uk/Related/Pumps/Rotary%20Positive%20Displacement.html.
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Figure 12.10. An example of a radial piston pump. Image from http://www.roymech.

co.uk/Related/Pumps/Rotary%20Positive%20Displacement.html.

Figure 12.11. An example of a rotary cam pump. Image from http://www.labpump.co.

kr/data/aboutpump.htm.
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Figure 12.12. An example of a swash plate piston pump. Image from http://www.

roymech.co.uk/Related/Pumps/Rotary%20Positive%20Displacement.html.

Figure 12.13. An example of a diaphragm pump. Image from http://en.wikipedia.

org/wiki/File:Bomba_diafragma.jpg.

Figure 12.14. An example of a finger pump. Image from http://www.animatedsoftware.

com/pumpglos/fingerpu.htm.
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(a) Image from http://en.wikipedia.org/wiki/File:

Eccentric_pump.gif.

(b) Image from http://www.roymech.co.uk/Related/

Pumps/Rotary%20Positive%20Displacement.html.

Figure 12.15. Examples of peristaltic pumps. Peristaltic pumps are used in a wide variety
of applications, including fuel pumps.
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12.3. Some Examples of Dynamic Pumps

Dynamic pumps operate by using momentum changes to increase the fluid pressure. The pressure changes
across dynamic pumps are generally smaller than what can be achieved by PDPs, but the flow rates are
typically larger and not periodic.

Like PDPs, there are a large number of dynamic pump designs. The following figures (Figures 12.16 - 12.21)
provide just a few examples.

Figure 12.16. An example of a propeller pump. Image from http://www.sulzerpumps.

com/Portaldata/9/Resources/brochures/power/vertical/JP_Vertical_E00635.pdf.
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(a) Image from http://commons.wikimedia.org/wiki/

File:CetriFugal_Pump.jpg.

(b) Image from http://www.motorera.com/dictionary/

pics/r/Radial-flow_pump.gif.

Figure 12.17. Examples of radial dynamic pumps.
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Figure 12.18. An example of a mixed pump. Image from http://www.fao.org/docrep/

010/ah810e/AH810E07.htm.

Figure 12.19. An example of a jet pump. Image from http://www.fao.org/docrep/010/

ah810e/AH810E07.htm.
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Figure 12.20. An example of a ram pump. Image from http://www.lifewater.ca/ram_

pump.htm.

Figure 12.21. Examples of air lift pumps. Image from http://www.airliftpump.com/

index.htm.
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12.4. Elementary Dynamic Pump Theory for Rotating Pumps

To determine the work that a dynamic, rotating pump does on the fluid passing through it, we’ll use the
Moment of Momentum Equation, which relates torque to momentum fluxes.

Figure 12.22. A sketch of a pump impeller. The right-hand figure presents velocity vectors
and angles for an individual impeller blade.

Figure 12.23. A sketch of the flow into and out of the pump impeller. The velocities V1

and V2 are measured relative to a fixed coordinate system.

Consider flow through the rotating pump impeller shown in Figures 12.22 and 12.23. In these figures, define
the following variables,

β1, β2 := entrance/exit blade angles w/r/t the hub
V1,V2 := fluid velocities w/r/t a coordinate system fixed to the ground
U1,U2 := blade velocities w/r/t a coordinate system fixed to the ground

Vrb1,Vrb2 := fluid velocities w/r/t the blade

From geometry we have,

V1 = U1 + Vrb1, (12.1)

V2 = U2 + Vrb2. (12.2)

To determine the torque, T , that must be applied to the shaft in order to rotate the impeller at angular
velocity, ω, we use the Moment of Momentum Equation,

Mon CV =
d

dt

ˆ
CV

(r × u)ρdV +

ˆ
CS

(r × u) (ρurel · dA) . (12.3)
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When simplifying this equation, assume the following,

(1) steady-state conditions,
(2) uniform flow between blades,
(3) incompressible flow,
(4) the only moment applied to the CV is the shaft torque, Ton CV, which points in the same direction

as the shaft rotation, ω,
(5) the fluid velocities are measured with respect to an inertial coordinate system.

Using these assumptions, the Moment-of-Momentum Equation simplifies to,

Ton CV = ṁ (r2Vt2 − r1Vt1) Euler’s Turbomachinery Equation (12.4)

where Vt1 and Vt2 are the fluid velocities tangent to the impeller hub measured with respect to a fixed
coordinate system.

Notes:

(1) The power required to drive the impeller is,

Ẇon CV = Ton CV · ω, (12.5)

Ẇon CV = ṁω (r2Vt2 − r1Vt1) , (12.6)

but U1 = r1ω and U2 = r2ω so that,

Ẇon CV = ṁ (U2Vt2 − U1Vt1) . (12.7)

In terms of the shaft head added to the fluid,

Hadded to CV =
Ẇ

ṁg
=

(U2Vt2 − U1Vt1)

g
. (12.8)

(2) Only the absolute fluid velocity tangential to the impeller contributes to the increase in fluid head.
(3) For an ideal centrifugal pump, the incoming flow has no tangential component =⇒ Vt1 = 0,

Hadded =
U2Vt2
g

. (12.9)

Figure 12.24. The fluid vector geometry at the exit of the blade. This figure is a zoomed-in
version of the blade outlet tip shown in Figure 12.22.

(4) Figure 12.24 shows the fluid velocity vector geometry at the exit of the blade. From the geometry,

tanβ2 =
vn1

U2 − Vt2
, (12.10)

Vt2 = U2 − Vn2 cotβ2. (12.11)

Substituting into the shaft head relation for an ideal centrifugal pump (Eq. (12.9)),

Hadded =
U2 (U2 − Vn2 cotβ2)

g
=
U2

2

g
− U2Vn2 cotβ2

g
. (12.12)
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Figure 12.25. The control volume surrounding the pump impeller used when applying
Conservation of Mass.

Note that the volumetric flow rate through the pump is related to the radial fluid velocity from
Conservation of Mass (Figure 12.25),

Q = Vn2

 2πr2︸︷︷︸
impeller

circumference

b2︸︷︷︸
impeller
thickness

 , (12.13)

Substituting and noting that U2 = r2ω gives,

Hadded =
(r2ω)2

g
− r2ωQ cotβ2

g2πr2b2
, (12.14)

Hadded =
(r2ω)2

g
−
(
ω cotβ2

g2πb2

)
Q . (12.15)

This is the theoretical head rise across an idealized centrifugal pump.

Notes:
(a) Equation (12.15) is an equation of a line (Figure 12.26).

Figure 12.26. Theoretical head rise across a pump plotted as a function of volumetric flow
rate for an idealized centrifugal pump.

(b) In an actual flow, losses occur within the pump due to viscous gradients created by the blades,
which scale as Q2, flow separation, impeller blade-shroud clearance flows, and other 3D flow
effects (Figure 12.27). A quadratic curve is often used to fit experimental pump head curves,

H = H0 +AQ2. (12.16)
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Figure 12.27. Effects of losses on the theoretical head rise across an idealized centrifugal pump.

(5) Pump efficiency is defined as,

ηP :=
ṁgH

ωT
, (12.17)

where ṁgH is the known as the water or hydraulic horsepower, i.e., the power that makes it into
the fluid, and ωT is known as the brake horsepower, i.e., the power put into the pump.
(a) Typical pump efficiencies are between ηP = 60%−85%. If you do not know know the efficiency,

a value of ηP = 70% is a reasonable estimate.
(b) As pump size decreases, the ratio of surface area to volume increases =⇒ frictional losses

increase and the pump efficiency decreases.
(6) The head rise, brake horsepower, and efficiency for a pump are provided in a pump performance

plot, as shown in Figure 12.28. The top figure shows the Best Efficiency Point (BEP) for the pump,
which is the flow rate at which the efficiency is a maximum. Ideally, the pump would operate at
this flow rate since it has the highest efficiency of converting the shaft work into an increase in fluid
pressure, but the pump can operate at other flow rates.
The top figure also shows the shut-off head (aka dead-head), which is the head rise across the pump
when there is no flow through the pump. One would have this situation if a valve placed downstream
of the pump was closed, but the pump was still operating. The pump would continue to do work on
the fluid, but that work would go mainly into increasing the fluid pressure (and the temperature)
rather than increasing kinetic energy.
The bottom chart in Figure 12.28 shows a different, and more common, pump performance plot
style. Here, there are three different head curves: one for three different impeller diameters. In
practice, it’s common to make available several pump impellers that can fit within the same pump
housing to expand the range of operation of a pump. There are three different head curves for
this particular pump housing corresponding to the three different impellers. The solid lines with
numbers along the top are the efficiency curves and the dashed lines with numbers along the bottom
right are the brake horsepower curves. The dashed line at the very bottom with the label ”NPSHR”
is discussed in the next section.
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An idealized centrifugal water pump is shown below.  The volumetric flow rate through the pump is 0.25 
ft3/s and the angular speed of the impeller is 960 rpm.  Calculate the power required to drive the pump. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
Apply the Moment of Momentum Equation to the fixed control volume shown below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  

55° 

960 rpm 3 in. 11 in. 

0.25 ft3/s 

0.75 in. 

b2 

w r1 

r2 

V2 

b2 

z 

T w 
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!
!" ∫ (𝒓 × 𝒖)𝜌𝑑𝑉#$ + ∫ (𝒓 × 𝒖)(𝜌𝒖%&' ⋅ 𝑑𝑨)#( = 𝑴)*	#$, (1) 

where, 
!
!" ∫ (𝒓 × 𝒖)𝜌𝑑𝑉#$ = 𝟎     (steady-state), (2) 
 

∫ (𝒓 × 𝒖)(𝜌𝒖%&' ⋅ 𝑑𝑨)#( = 0𝑟,𝒆3% × [𝑉,(sin 𝛽, 𝒆3% − cos𝛽, 𝒆3-) + 𝜔𝑟,𝒆3-]>??????????@??????????A
./01023	45607	8.59:01;	<.5=108.	19	3<9627	

B 𝜌 (𝑉, sin 𝛽,)>??@??A
45607	8.59:01;
./01023	1>.	?@

(2𝜋𝑟,𝑏,)>??@??A
./01	=<.=

 (3) 

= (𝜔𝑟,, − 𝑟,𝑉, cos 𝛽,)𝜌𝑉, sin 𝛽, (2𝜋𝑟,𝑏,)𝒆3A (4) 
(Note that at the inlet r1 and V1 are parallel so the cross-product is zero.) 
 

𝑴)*	#$ = 𝑇𝒆3A. (5) 
 
Substitute and simplify. 

𝑇 = (𝜔𝑟,, − 𝑟,𝑉, cos 𝛽,)𝜌𝑉, sin 𝛽, (2𝜋𝑟,𝑏,). (6) 
 

The velocity V2 can be related to the volumetric flow rate, Q, by considering the flow at the impeller exit, 
𝑄 = 𝑉, sin 𝛽, (2𝜋𝑟,𝑏,), (7) 
𝑉, =

B
C02D!(,F%!G!)

. (8) 
 
Substitute Eq. (8) into Eq. (6) and simplify, 

𝑇 = H𝜔𝑟,, − 𝑟,
B

C02D!(,F%!G!)
cos 𝛽,I𝜌

B
C02D!(,F%!G!)

sin 𝛽, (2𝜋𝑟,𝑏,), (9) 

𝑇 = H𝜔𝑟,, −
B

,FG! 1=2D!
I IJB

J
. (10) 

 
Using the given data: 

(rg)H20 = 62.4 lbf/ft3 
g = 32.2 ft/s2 
Q = 0.25 ft3/s 
b2 = 0.75 in = 6.25*10-2 ft 
w = 960 rpm = 100.5 rad/s 
b2 =  55° 
r2 = 5.5 in = 4.58*10-1 ft 
 Þ T = 10.0 ft×lbf 

 
The power required to drive the impeller is, 

�̇� = 𝑇𝜔.  (11) 
 

Using the given data: 
 �̇� =1005 ft×lbf/s = 1.83 hp 
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The problem could have also been worked out using velocity polygons.  Since the absolute inlet velocity 
has no tangential component, 

  where  (12) 

and, 
 (13) 

Þ  . (14) 

 
Use a velocity polygon at the exit to determine Vt2. 
 
 
 
 
 
 
 
 
 
From the geometry: 

, (15) 
where Vn2 is found from Conservation of Mass, 

. (16) 

 
Using the given data: 

U2 =  46.3 ft/s 
Vn2 = 1.39 ft/s 
H = 65.1 ft 

 1005 ft×lbf/s = 1.83 hp  (Same answer as before!) 
 

 

2 2tU V
H

g
= 2 2U rw=

W mgH=! !

2 2tmg r V
W

g
w

=
!

!

2 2 2 2cott nV U V b= -

2
2 22n
QV
r bp

=

W =!

U2 = wr2 

Vrb2 V2 

b2 b2 

Vn2 

Vt2 

Vrb2 

U2-Vt2 
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Data measured during tests of a centrifugal pump at 3500 rpm are given in the table below: 
 

Parameter Inlet Section Outlet Section 
gage pressure, p [kPa] 95.2 412 
elevation above datum, z [m] 1.25 2.75 
avg speed of flow, V [m/s] 2.35 3.62 

 
The working fluid is water.  The flow rate is 11.5 m3/hr and the torque applied to the pump shaft is 3.68 
N×m.  Evaluate the head rise across the pump, the hydraulic power input to the fluid, and the pump 
efficiency.  If the electric motor efficiency is 85%, calculate the electric power requirement. 
 
 
SOLUTION: 
 
First determine the total heads at the inlet and outlet to the pump.  The total head is given by, 

. (1) 

Using the given data (and noting that D = [Q/(p/4V)]1/2 and Re = VD/n so that Reinlet = 9.78e4 and Reoutlet = 
1.21e5 Þ ainlet » aoutlet » 1) and using absolute pressures when calculating the head: 

Hinlet = 21.6 m 
Houtlet = 55.7 m 
DH = 34.1 m  
 
 

The hydraulic power input to the fluid is given by, 
, (2) 

 = 1.07 kW 
 

The power required to drive the pump is, 
, (3) 

 = 1.35 kW 
 

The efficiency of the pump is given by, 

, (4) 

hpump = 79.4% 
 

The electric power required is, 

, (5) 

= 1.59 kW 

2

2
p VH z
g g

a
r

= + +

   
Wfluid = mg Houtlet − Hinlet( )

   
Wfluid

   
Wshaft = Tω

   
Wshaft

   
ηpump =

Wfluid
Wshaft

   
Wrequired
for motor

=
Wshaft

ηmotor

   
Wrequired
for motor
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Data measured during tests of a centrifugal pump at 3500 rpm are given in the table below. 
 

Parameter Inlet Section Outlet Section 
gage pressure, p [kPa] 85.2 412 
elevation above datum, z [m] 1.25 2.75 
avg speed of flow, V [m/s] 2.35 3.62 

 
The flow rate is 11.5 m3/hr and the torque applied to the pump shaft is 3.68 N×m.  Evaluate the total heads 
at the pump inlet and outlet, the hydraulic power input to the fluid, and the pump efficiency.  Specify the 
electric motor size needed to drive the pump.  If the electric motor efficiency is 85%, calculate the electric 
power requirement. 
 
 
SOLUTION: 
At the outlet, 

𝐻!"#$%# = # &
'(
+ 𝛼 )*!

+(
+ 𝑧'

!"#$%#
, (1) 

where, 
poutlet = 85.2 kPa (gage), 
ρ = 1000 kg/m3, 
g = 9.81 m/s2, 
αoutlet ≈ 1  (assuming turbulent flow), 
𝑉)!"#$%# = 2.35 m/s, 
zoutlet = 1.25 m, 
=>  Houtlet = 10.2 m. 

 
At the inlet, 

𝐻,-$%# = # &
'(
+ 𝛼 )*!

+(
+ 𝑧'

,-$%#
, (2) 

where, 
pinlet = 412 kPa (gage), 
ρ = 1000 kg/m3, 
g = 9.81 m/s2, 
αinlet ≈ 1  (assuming turbulent flow), 
𝑉),-$%# = 3.62 m/s, 
zinlet = 2.75 m, 
=>  Hinlet = 45.4 m. 

 
The rate at which energy is put into the fluid is, 

�̇�!-	/$",0 = 𝜌𝑔𝑄𝐻, (3) 
where, 

Q = 11.5 m3/hr = 3.19*10-3 m3/s, 
H = Houtlet – Hinlet = 35.2 m  (head rise across the pump), 
=>  �̇�!-	/$",0 = 1100 W. 

 
The rate at which energy is put into the pump is, 

�̇�!-	1"21 = 𝜔𝑇, (4) 
where, 

ω = 3500 rpm = 366.5 rad/s, 
T = 3.68 N.m, 
=> �̇�!-	1"21 = 1349 W. 
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Video solution: https://www.youtube.com/watch?v=yh5RIZT6t1A
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The pump efficiency is, 
𝜂1"21 =

3̇"#	%&'()
3̇"#	*'+*

, (5) 

Using the previously calculated values, ηpump = 0.82 = 82%. 
 

The electric motor size required for operation is 1350 W = 1.8 hp.   
 
If the motor is 85% efficient, then we need to supply the motor with, 

�̇�!-	2!#!5 =
3̇"#	*'+*

6+","-
  =>  �̇�!-	2!#!5 = 1590 W = 2.1 hp. (6)
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Video solution: https://www.youtube.com/watch?v=yh5RIZT6t1A
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Brine, with a specific gravity of 1.2, passes through an 85% efficient pump at a flow rate of 125 L/s.  The centerlines 
of the pump’s 300 mm diameter inlet and 200 mm diameter outlet are at the same elevation.  The inlet suction 
gage pressure is 150 mm of mercury (specific gravity of 13.6) below atmospheric pressure.  The discharge pressure 
is measured 1.2 m above the centerline of the pump’s outlet and indicates 138 kPa (gage).  Neglecting losses in the 
pipes, what is the input power to the pump? 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
The power into the pump may be found from the head rise across the pump, the flow rate through the pump, the 
brine properties, and the pump efficiency, 

, (1) 

where, 
, (2) 

and, 

. (3) 

 
Using the given data: 

h = 85% 
r = (1.2)(1000 kg/m3) = 1200 kg/m3 (4) 
g = 9.81 m/s2 
zoutlet – zinlet = 1.2 m 
poutlet = 138*103 Pa (gage) 
pinlet = rHggh = -(13.6)(1000 kg/m3)(9.81 m/s2)(0.150 m) = -20000 Pa (gage) (5) 
Q = 125 L/s = 0.125 m3/s 
Doutlet = 0.200 m 
Dinlet = 0.300 m 
Voutlet =  = 3.98 m/s (6) 

Voutlet =  = 1.77 m/s (7) 

 
Þ H = 15.3 m 
Þ  

\  
 
 

 
 
 

into fluid into fluid
into pump

into pump

W W
W

W
h

h
= Þ =
! !

!
!
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2 2
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outlet inlet2g

p p V V
H z z

gr
æ ö- -æ ö

= + + -ç ÷ç ÷
è ø è ø
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into pump 26.4 kWW =!
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-150 mmHg (gage) 

outlet pressure = 138 kPa (gage) 

1.2 m 
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Video solution: https://www.youtube.com/watch?v=lcHilo5jyeg
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(a) This figure is from Munson, B.R., Young, D.F., and
Okiishi, T.H., Fundamentals of Fluid Mechanics, 3rd ed.,
Wiley.

(b) This figure is from Munson, B.R., Young, D.F., and Okiishi, T.H., Fundamentals of Fluid
Mechanics, 3rd ed., Wiley.

Figure 12.28. Two examples of pump performance plots.

12.5. Net Positive Suction Head (NPSH)

Along the suction side of the impeller blade near the pump inlet are regions of low pressure (Figure 12.29).

Figure 12.29. A sketch showing the region of low pressure on the suction side of an impeller
blade.
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If the local pressure is less than the vapor pressure of the liquid, then cavitation will occur: p ≤ pv =⇒
cavitation. Recall that cavitation is “boiling” (liquid turning to vapor) that occurs when the pressure is less
than the liquid’s vapor pressure. Cavitation can not only decrease the performance of a pump, but it can also
cause pump damage, vibration, and noise. Vapor bubbles caused by cavitation move into regions of higher
pressure, collapse violently, and produce localized regions of very high pressure or high speed jets of water
that can chip away at surfaces. The result is that the pump material erodes away. One can often hear when
cavitation occurs because of the noise generated by the collapsing vapor bubbles.

Let’s define a quantity that will aid us in determining when cavitation in a pump will occur,

Net Positive Suction Head, NPSH :=

(
p

ρg
+
V̄ 2

2g

)
S

− pv
ρg
. (12.18)

Notes:

(1) The first term in NPSH is the head at the suction side of the pump near the impeller inlet. This
region is where we expect to have the smallest head. Note that we define our reference plane for
elevation along the centerline of the pump: z = 0.

(2) The second term in NPSH is the vapor pressure head. This head is when the liquid turns to vapor.
The vapor pressure is typically given in terms of an absolute pressure so the suction pressure should
also be an absolute pressure. Note that vapor pressure increases as temperature increases.

(3) NPSHR := Net Positive Suction Head Required to avoid cavitation. This quantity is a pump prop-
erty and is determined experimentally.

(4) NPSHA := Net Positive Suction Head Available to the pump. This quantity is a system property
and can be determined via analysis or experiments. NPSHA is related to the total head available
to the pump at the pump inlet (minus the vapor head).

(5) We must have NPSHA > NPSHR to avoid cavitation. Regulations typically recommend at least
a 10% margin for safety. For critical applications such as for power generation or flood control, a
100% margin is often used.

(6) NPSHR increases with increasing flow rate since the pressure at the suction side of the pump
blade near the pump inlet will decrease (consider Bernoulli’s equation). Similarly, the pressure will
decrease with increasing blade rotation speed resulting in an increased NPSHR.

(7) The vapor pressure may be estimated using the Antoine Equation,

log10 pv = A− B

C + T
, (12.19)

where pv is the vapor pressure in bar (abs), A, B, and C are constants for the particular liquid of
interest, and T is the fluid’s absolute temperature in Kelvin. For example, for pure water in the
temperature range 379 - 573 K, A = 3.55959, B = 643.748, and C = −198.043. Constants for other
temperature ranges and other liquids are available from the National Institute of Standards and
Technology (NIST) Chemistry WebBook.
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Determine the NPSHA for the following system. 

 
 
SOLUTION: 
Choose point 1 to be on the surface of the tank and point 2 to be just upstream of the pump.  Apply the EBE from 1 
to 2, 

! !
"#
+ 𝛼 $%!

&#
+ 𝑧%

&
= ! !

"#
+ 𝛼 $%!

&#
+ 𝑧%

'
−𝐻(,'& +𝐻*,'&, (1) 

where, 
p2 = ps, 
p1 = patm, 
𝑉*& = 𝑉*+  (assume turbulent flow =>  α1 ≈ 1), 
𝑉*& = 0, 
𝑧& = 𝑧' +𝐻, 
𝐻(,'& = 𝐻(,'&, 
𝐻*,'& = 0. 

 
Substitute and simplify, 

! !
"#
+ $%!

&#
%
+
= !"#$

"#
+ (𝑧' − 𝑧&).//0//1

,-.

−𝐻(,'&. (2) 

 
From the definition of NPSH we have, 

𝑁𝑃𝑆𝐻𝐴 = ! !
"#
+ $%!

&#
%
+
− !%

"#
= !"#$-!%

"#
−𝐻 −𝐻(,'& . (3) 

 
Notes:  

1. Increasing H, HL12, or pv decreases NPSHA and increases the likelihood of cavitation since the difference 
between NPSHA and NPSHR is reduced.  

2. Increasing patm increases NPSHA and decreases the likelihood of cavitation.  
3. The vapor pressure pv varies with temperature. 
4. The vapor pressure pv is usually given in terms of absolute pressure and, thus, the atmospheric pressure 

should also be an absolute pressure. 
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A pump station is used to fill a tank on a hill using water from a lake.  The flow rate is 10.5 L/s and atmospheric 
pressure is 101 kPa (abs).  The pump is located 4 m above the lake, and the tank surface level is 115 m above the 
pump.  The suction and discharge lines are 10.2 cm diameter commercial steel pipe.  The equivalent length of the 
inlet line between the lake and the pump is 100 m.  The total equivalent length between the lake and the tank is 
2300 m, including all fittings, bends, screens, and valves.  The overall efficiency of the pump and motor set is 70%. 
 
 
 
 
 
 
 
 
 
 
 
What is the net positive suction head available for this pump? 
 
 
SOLUTION: 
 
Apply the Extended Bernoulli Equation between the lake surface (1) and the pump inlet (2). 

 (1) 

where 
r  = 1000 kg/m3 
µ = 1*10-3 Pa.s 
pV = 1820 Pa (abs) 
g  = 9.81 m/s2 
p1  = patm = 101 kPa (abs) 
V1 » 0 
z2 – z1 = 4 m 
HS = 0  (Point 2 is located upstream of the pump.) 
D = 0.102 m 
Q = 10.5 L/s = 0.0105 m3/s 
V2 = Q/(p/4D2) = 1.28 m/s (2) 
ReD = rV2D/µ = 131,000 (3) 
a2  »  1 (turbulent flow)  
e = 0.045*10-3 m (commercial steel) 

HL =  = 1.61 m (4) 

where ReD = 131,000 and e/D = 0.0004 Þ f = 0.0195 (from the Moody chart) (5) 
and Le = 100 m 

 
Re-arrange Eqn. (1) to solve for the NPSHA: 

 (6) 

\NPSHA = 4.5 m  

2 2

2 12 2 L S
p V p Vz z H H
g g g g

a a
r r

æ ö æ ö
+ + = + + - +ç ÷ ç ÷

è ø è ø

  
f

Le

D
⎛
⎝⎜

⎞
⎠⎟

V2
2

2g

  
NPSHA = p

ρg
+ V 2

2g
⎛
⎝⎜

⎞
⎠⎟ S

−
pV

ρg
=

patm − pV

ρg
+ z1 − z2 − HL

115 m 

4 m lake 

tank 

pump 

water density = 1000 kg/m3 
water dynamic viscosity = 1*10-3 Pa.s 
water vapor pressure = 1820 Pa (abs) 

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

Video solution: https://www.youtube.com/watch?v=gM2LenfYuLE
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A Peerless Model 16A 18B pump is proposed as the supply unit for the Purdue Engineering Mall fountain.  
The following requirements have been provided by the architectural firm: 
• The pump outlet is to be located 3 feet below ground level. 
• The water flow is to reach a peak height of 30 feet above ground level. 
• The discharge from the pump is 6 inches in diameter. 
 
The pump characteristics are given in the following plot. 
 

 
 
a. What head must be supplied by the pump?  Report your answer in ft. 
b. What flow rate must be supplied by the pump?  Report your answer in gal/min (gpm). 
c. What pump impeller diameter should be used?  (either 15.00, 16.00, 17.00, or 18.00 inch diameter) 
d. What is the pump efficiency?  Report your answer in terms of a percentage. 
e. What power is required to drive the pump?  Report your answer in horsepower (hp). 
f. What range of NPSH is acceptable at the pump inlet?  Report your answer in ft.  
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
 
 
The head that must be supplied by the pump is: 

  Þ  HS = 33 ft (1) 
 
 

 

SH H h= +

P 

H = 30 ft 

h = 3 ft 
D = 0.5 ft 

z 

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

Video solution: https://www.youtube.com/watch?v=9UnZ6V66k_4
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The flow rate may be found using the pump outlet diameter and the velocity required to achieve the desired height. 
Apply Bernoulli’s Equation from point 1 to point 2. 

 (2) 

where 
p1 = p2 = patm 
V1 = 0 
z1 = -h 
z2 = H 

  Þ      (using the given data:  V1 = 46.1 ft/s) (3) 

The flow rate is thus: 
  (using the given data:  Q = 9.05 ft3/s = 4060 gpm) (4) 

 
The appropriate pump impeller diameter may be determined using the given pump characteristics plot. 

 
 
 
The nearest impeller diameter is the 15.00 inch. 
 
The pump efficiency may also be found from the pump characteristic plot and is ~80%. 
 
The power required to drive the pump is: 

 (5) 

 

 
The required NPSH to avoid cavitation at this flow rate is (from the pump plot) ~9 ft so the range of 
acceptable NPSH is > ~9 ft. 

2 2

2 12 2
p V p Vz z
g g g gr r

æ ö æ ö
+ + = + +ç ÷ ç ÷

è ø è ø

2
1

2 12
V z z
g
= - ( )1 2 12V g z z= -

2
1 4Q V Dp=

( )
3

m f
input into 3 2
pump m f

2

lb lb1 ft ft hp62.4 9.05 32.2 33 ft
lb ft ft lb0.80 sft s 32.2 550 

ss

QgHW r
h

æ öæ ö
ç ÷ç ÷æ öæ ö æ ö= = ç ÷ç ÷ç ÷ç ÷ç ÷ × ×è øè øè ø ç ÷ç ÷ç ÷ç ÷

è øè ø

!

input into
pump

42.4 hpW\ =!
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Video solution: https://www.youtube.com/watch?v=9UnZ6V66k_4
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12.6. Pump Similarity

Most pump performance data (H -Q curves) are given only for one value of the pump rotational speed and
one pump impeller diameter. Is there some way to determine the pump performance data for other speeds
and diameters without requiring additional testing? There is...using dimensional analysis! Recall that we
typically are interested in knowing the head rise across a pump, H (= h/g where h is the specific energy rise

across the pump), power required to operate the pump, Ẇ (bhp), and pump efficiency, η, as a function of
the volumetric flow rate through the pump, Q:

h, Ẇ , η = fcns(Q, ρ, µ,D, ω), (12.20)

where ρ and µ are the fluid density and dynamic viscosity, D is the pump impeller diameter, and ω is the
pump rotational speed.

Performing a dimensional analysis we find the following,

Ψ,Π, η = fcns(Φ,Re), (12.21)

where,

Ψ := dimensionless head coefficient =
gH

ω2D2
, (12.22)

Π := dimensionless power coefficient =
Ẇ

ρω3D5
, (12.23)

η := efficiency =
ρQgH

Ẇ
, (12.24)

Φ := dimensionless flow coefficient =
Q

ωD3
, (12.25)

Re := Reynolds number =
ρωD2

µ
. (12.26)

Notes:

(1) In most pump flows, Re is very large =⇒ the variations in viscous effects from one flow to another
are small =⇒ Re similarity can be neglected.
(a) If Re is considerably different from one flow to another, e.g., pump water vs. pumping molasses,

then Re effects cannot be ignored. The flow physics for large Re, where viscous forces� inertial
forces, are different than for small Re where viscous forces � inertial forces.

(b) Thus, for large Re:

Ψ,Π, η = fcns(Φ). (12.27)

(2)

η =
ρQgH

Ẇ
=

ΨΦ

Π
. (12.28)

(3) For similarity between geometrically similar flows (assuming large Re), we have the following pump
scaling laws:

Φ1 = Φ2 =⇒
(

Q

ωD3

)
1

=

(
Q

ωD3

)
2

, (12.29)

Ψ1 = Ψ2 =⇒
(

gH

ω2D2

)
1

=

(
gH

ω2D2

)
2

, (12.30)

Π1 = Π2 =⇒

(
Ẇ

ρω3D5

)
1

=

(
Ẇ

ρω3D5

)
2

, (12.31)

η1 = η2 (since Φ1 = Φ2, Ψ1 = Ψ2, Π1 = Π2 and η = ΨΦ/Π). (12.32)
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(a) For a given pump (D = constant) using the same fluid (ρ, µ =constants) and the same gravity
(g =constant), (

Q

ω

)
1

=

(
Q

ω

)
2

, (12.33)(
H

ω2

)
1

=

(
H

ω2

)
2

, (12.34)(
Ẇ

ω3

)
1

=

(
Ẇ

ω3

)
2

. (12.35)

The efficiency remains relatively constant when only changing the pump rotational speed (as
given at the start of this note).

(b) For a given pump speed (ω =constant), but varying diameters (assuming a geometrically
similar family of pumps), and using the same fluid (ρ, µ =constants) and the same gravity
(g =constant), (

Q

D3

)
1

=

(
Q

D3

)
2

, (12.36)(
H

D2

)
1

=

(
H

D2

)
2

, (12.37)(
Ẇ

D5

)
1

=

(
Ẇ

D5

)
2

. (12.38)

Note that we are assuming that all length scales within the pump are scaled in the same
way to maintain geometric similarity. This is not true in practice since pump impellers with
different diameters are often put in the same pump casing. Also, surface roughness isn’t scaled
proportionally. The result is that the pump scaling laws are only approximations.
Since geometric scaling isn’t completely satisfied, researchers have proposed the following em-
pirical scaling rules that produce more accurate predictions than the ones given previously,(

Q

D2

)
1

=

(
Q

D2

)
2

, (12.39)(
H

D2

)
1

=

(
H

D2

)
2

, (12.40)(
Ẇ

D4

)
1

=

(
Ẇ

D4

)
2

. (12.41)

Since the scaling isn’t perfect, the efficiency does not remain the same when scaling impeller
size. As was done with the other dimensionless quantities, an empirical relationship can be
used to scale the pump efficiencies, such as the one proposed by Moody,

1− η2

1− η1
=

(
D1

D2

)1/5

. (12.42)
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A centrifugal pump with a 12 in. diameter impeller requires a power input of 60 hp when the flowrate is 
3200 gpm against a 60 ft head.  The impeller is changed to one with a 10 in. diameter.  Determine the 
expected flowrate, head, and input power if the pump speed remains the same. 
 
 
SOLUTION: 
Since the pump speed remains the same and assuming geometrically similar pumps, the pump scaling laws 
are, 

!!
!"
= ""!

""
#
#
 $!

$"
= ""!

""
#
%
 &̇!

&̇"
= ""!

""
#
(
 

 
Using the given parameters, 

Q1 = 3200 gpm, 
D1 = 12 in, 
D2 = 10 in, 
H1 = 60 ft, 

 = 60 hp, 
Q2 = 1850 gpm 
H2 = 41.7 ft 

 = 24.1 hp 
 

If the empirical (and more accurate) scaling laws are used, 
!!
!"
= ""!

""
#
%
 $!

$"
= ""!

""
#
%
 &̇!

&̇"
= ""!

""
#
)
 

 
Q2 = 2220 gpm 
H2 = 41.7 ft 

 = 28.9 hp 
 
 
 

1W!

2W!

2W!
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Video solution: https://www.youtube.com/watch?v=CFdbil1WQ4o
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Typical performance curves for a centrifugal pump, tested with three different impeller diameters in a 
single casing, are shown in the figure below.  Specify the flow rate and head produced by the pump at its 
best efficiency point with a 12 in. diameter impeller.  Scale these data to predict the performance of this 
pump when tested with 11 in. and 13 in. impellers.  Comment on the accuracy of the scaling procedure. 
 

 
 
 
SOLUTION: 

 

 
 

From the pump performance diagram, 
Q12 in.,BEP = 2200 gpm 
H12 in.,BEP = 130 ft 
h12 in., BEP = 86% 

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

Video solution: https://www.youtube.com/watch?v=wvRz_63C4Bk
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Using the geometric scaling rule, 

 (1) 

For D2 = 11 in. and D1 = 12 in., Q12 in. = 2200 gpm, Q11 in.= 1690 gpm. 
For D2 = 13 in. and D1 = 12 in., Q12 in. = 2200 gpm, Q13 in. = 2800 gpm. 
 
Using the alternate scaling rule that takes into account imperfect geometric similarity, 

, (2) 

Q11 in. = 1850 gpm 
Q13 in. = 2580 gpm 

 
From the pump performance diagram, Q11 in. » 2000 gpm. 
From the pump performance diagram, Q13 in. » 2500 gpm. 
 
The alternate scaling predicts the volumetric flow rate much better than the geometric scaling rule.  Indeed, 
the alternate scaling rule predictions are off by approximately 8% (11 in.) and 3% (13 in.) while the 
geometric scaling rule is off by 16% (11 in.) and 12% (13 in.). 
 
From the pump scaling rules, 

 (3) 

For D2 = 11 in. and D1 = 12 in., H1 = 130 ft, H11 in.= 109 ft. 
For D2 = 13 in. and D1 = 12 in., H1 = 130 ft, H13 in. = 153 ft. 
 
From the pump performance diagram, H11 in. » 110 ft. 
From the pump performance diagram, H13 in. » 150 ft. 
 
The geometric scaling rule predictions are excellent with errors of only 1% (11 in.) and 2% (13 in.). 
 
The best efficiencies may be found via the Moody empirical formula, 

, (4)  

For D2 = 11 in. and D1 = 12 in., h1,BEP = 86%, h11 in.,BEP = 86%. 
For D2 = 13 in. and D1 = 12 in., h1,BEP = 86%, h13 in.,BEP = 86%. 
 
From the pump performance diagram, h11 in.,BEP ≈ 82% and h11 in.,BEP ≈ 87%.  The Moody formula does a 
good job of predicting the best efficiency values for both impeller (5% and 1% relative errors for the 11 in. 
and 13 in. impellers, respectively).  
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Video solution: https://www.youtube.com/watch?v=wvRz_63C4Bk
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12.7. Specific Speed

The first step in pump selection is to decide what class of pump (radial, mixed, or axial) will be most efficient
for the given application. We usually know the flow rate Q, head rise H, and shaft rotational speed ω for
the application, but not the pump size. We can form a useful dimensionless group from these quantities
(including gravitational acceleration g since that’s also known),

Ns := specific speed =
Φ1/2

Ψ3/4
=

ωQ1/2

(gH)3/4
. (12.43)

This dimensionless parameter is known as the specific speed. It’s customary to characterize a fluid machine
by its specific speed at the design point, i.e., Ns is only given for the Best Efficiency Operating (BEP)
conditions. Thus, by calculating the specific speeds for a variety of different pump types, we can create a
plot that allows us to select what class of pump would be most efficient early in the design stage when we
only know the desired flow rate, head rise, and shaft speed.

Notes:

(1) low Q, high H =⇒ low Ns =⇒ centrifugal pumps,
(2) high Q, low H =⇒ high Ns =⇒ axial pumps.
(3) In practice (especially in the U.S.), a combination of units are used to describe ω, Q, and H such

that Ns is dimensional (signified by Nsd),

Nsd :=
ω(rpm)

√
Q(gpm)

[H(ft)]3/4
(12.44)

The specific speed (Ns) and dimensional specific speed (Nsd) have the same physical meaning, but
are different in magnitude by a constant factor,

Nsd = (2733 rpm · gpm1/2/ft3/4)Ns. (12.45)

(4) Given ω, Q, and H, we can calculate Ns (or Nsd) and, using the chart shown in Figure 12.30,
determine which type of pump would be most efficient for the given conditions.

Figure 12.30. A plot of pump type as a function of specific speed. This plot is from
Munson, B.R., Young, D.F, and Okiishi, T.H., Fundamentals of Fluid Mechanics, 3rd ed.,
Wiley.

Following are some rules of thumb:
(a) Positive displacement pumps are used for small flow rates (Q) and large head rises (H).
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(b) Centrifugal pumps are for moderate H and large Q. Axial flow pumps are for larger Q and
small H.

(c) For very large head rises, pumps are often combined in series (aka multi-stage pumps).
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A small centrifugal pump, when tested at 2875 rpm with water, delivered a flowrate of 252 gpm and a head 
of 138 ft at its best efficiency point (efficiency is 76%).  Determine the specific speed of the pump at this 
test condition.  Sketch the impeller shape you expect.  Compute the required power input to the pump. 
 
 
SOLUTION: 
 
The dimensional specific speed is given by: 

 

Using the given data: 
Nsd = 1130 rpm×gpm1/2/ft3/4 
 

The dimensionless specific speed is: 

 

Ns = 0.414 
 

The expected impeller shape is radial as shown in the figure below. 

 
(Figure from Munson, B.R., Young, D.F., and Okiishi, T.H., Fundamentals of Fluid Mechanics, 3rd ed., 
Wiley.) 
 
 
The power input to the pump is given by: 

 

where 
    (Note:  1 ft3 = 7.48 gal, 1 hp = 550 lbf×ft/s, and 1 lbf = 1 slug×ft/s2.) 

 = 8.80 hp 

 = 11.6 hp 
  

( ) ( )
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Video solution: https://www.youtube.com/watch?v=XvYR2q3RgPc
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12.8. System Operating Point (aka Duty Point)

How do we select a pump for a given system? Analyze the system to determine the shaft head required to
give a specified volumetric flow rate. Compare this equation to a pump performance curve (H -Q curve) to
determine if the pump operates efficiently at this Q. If so, then the choice of pump is appropriate.

For example, consider the system shown in Figure 12.31. Apply the Extended Bernoulli Equation from point
1 to point 2, (

p

ρg
+ α

V̄ 2

2g
+ z

)
2

=

(
p

ρg
+ α

V̄ 2

2g
+ z

)
1

−HL,12 +HS,12, (12.46)

where p1 = p2 = patm and V̄1 ≈ V̄2 ≈ 0. Thus, the head required from the pump is,

HS,12 = (z2 − z1) +HL,12. (12.47)

Recall that,

HL,12 =
∑
i

Ki
V̄ 2
i

2g
=
∑
i

Ki
Q2
i

2gA2
i

, (12.48)

so that,

HS,12 ≈ (z2 − z1) + cQ2, (12.49)

where c is a constant that incorporates the loss coefficients and area ratios, and an “≈” is used since the loss
coefficient may depend on the flow speeds.

Figure 12.31. The system used in the operating point example.

The flow rate at which the system operates is at the intersection of the system head curve with the pump
performance curve, as shown in Figure 12.32.

Notes:

(1) Ideally we would want the operating point to occur near the Best Efficiency Point for the pump.
(2) For laminar flow,

Kmajor =
64

Re

(
L

D

)
=

64ν

V̄ D

L

D
=

c

Q
, (12.50)

where c is a constant. Thus,

HL ∼ Q, (12.51)

=⇒ system curve is: HS = c1 + c2Q (a line instead of a parabola). (12.52)
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Figure 12.32. The head (H) required for the system to operate at a given flow rate (Q),
i.e., the system head curve, and the head rise generated by the pump (H) at a given flow
rate (Q), i.e., the pump performance curve. The flow rate at which the two curves intersect
is the system operating flow rate.

Figure 12.33. An illustration of the original system head curve and the system head curve
after fouling.

Figure 12.34. An illustration of the original pump head curve and the pump head curve
after wear.

(3) The system curve may change over time due to fouling of the pipes and other factors =⇒ increased
losses =⇒ the system curve becomes steeper, as shown in Figure 12.33. The pump curve may also
change due to wear on the bearings, impeller, etc., as shown in Figure 12.34.
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(4) Stability issues become significant when the pump has a flat or falling performance curve, which is
defined as a performance curve in which H decreases as Q decreases (Figure 12.35). For example,
Figure 12.36 shows the system curve intersecting the pump curve at two different flow rates. The
flow rate in the falling portion of the pump curve (the left point in the figure) is unstable since a
slight perturbation results in the flow rate diverging way from the point. The operating point in
the rising portion of the pump curve (right point in the figure), however, is stable since conditions
resulting from a small perturbation from this point will drive the flow rate back to the operating
point.

Figure 12.35. An illustration of a “falling” pump performance curve.

Figure 12.36. An illustration showing stable and unstable operating points.

Figure 12.37 shows a more complex pump curve with two rising sections and one falling section.
The operating points in the rising sections are stable while the operating point in the falling portion
is unstable. Usually this type of situation is undesirable since in engineering we typically prefer to
have an unambiguous, stable operating point rather than the possibility that the operating point
might suddenly change if a sufficiently large perturbation occurs.
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Figure 12.37. An illustration showing a pump curve resulting in two stable operating
points and one unstable operating point.

Figure 12.38 shows a situation in which the system and pump curves remain close to each other for
a range of flow rates. This condition is also undesirable since a perturbation from the operating
point will take a long time to come back to equilibrium and, as a result, the flow rate will drift over
a range of values. Instead, it is better to have a situation in which the system and pump curves
intersect with a large angle between the curves so there’s a large potential (i.e., head difference)
driving the system back into equilibrium if there’s a perturbation.

Figure 12.38. An illustration demonstrating that the operating flow rate for a flat pump
performance curve can vary considerably.
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Water is to be pumped from one large open tank to a second large open tank.  The pipe diameter throughout 
is 6 in. and the total length of the pipe between the pipe entrance and exit is 200 ft.  Minor loss coefficients 
for the entrance, exit, and the elbow are shown on the figure and the friction factor can be assumed constant 
and equal to 0.02.  A certain centrifugal pump having the performance characteristics shown is suggested 
as a good pump for this flow system.   
a. With this pump, what would be the flow rate between the tanks?   
b. Do you think this pump would be a good choice? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
SOLUTION: 
 
Apply the extended Bernoulli’s equation from point 1 to point 2. 
 
 
 
 
 
 
 
 
 
 
 
 

pump 

Kentrance = 0.5 

Kelbow = 1.5 

Kexit = 1.0 

10 ft 

pipe diameter = 6 in 
total pipe length = 200 ft 

pump 

1 
z 

H 

2 

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

Video solution: https://www.youtube.com/watch?v=cRyrC2u8bV8
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 (1) 

where 
  (free surface) 

  (large tanks) 
 

  (where  is the mean velocity in the pipe) (2) 

Note that the mean pipe velocity can be expressed in terms of the volumetric flow rate. 

 

Substitute and simplify. 

 (3) 

For the given problem: 
H = 10 ft 
g = 32.2 ft/s2 
f = 0.02 
D = 6 in = 0.5 ft  
L = 200 ft (Note:  Kmajor = f(L/D) = 8.0) 
Kentrance = 0.5 
Kexit = 1.0 
Kelbow = 1.5 
Þ HS = (10 + 4.43Q2) ft Note that [Q] = ft3/s. (4)  

This is the head that must be added to the fluid by the pump in order to move the fluid at the 
volumetric flow rate Q. 
 
With [Q] = gpm, Eqn. (4) becomes: 
HS = (10 + 2.25*10-5Q2) ft Note that [Q] = gpm. (5) 
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Plot Eqn. (5) on the pump performance curve to determine the operating point. 

 
From the figure we observe that the operating point occurs at: 

Q » 1600 gpm 
corresponding to a head rise and efficiency of 

H » 67 ft 
h » 84% 
 

The operating efficiency is close to the optimal efficiency of 86% so this is a good pump to use. 
 
The power required to operate this pump is, 

  

 
		 
!W = ρQgH

η
=
62.4	 lbfft3( ) 1600	 galmin( ) min

60	s( ) ft3
7.48	gal( ) 66.5	ft( ) hp

550	ft.lbf s( )
0.84

		 !W =32.0	hp

system curve (Eqn. (5)) 
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Consider the pipe/pump system shown in the figure below. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The pump performance head curve is approximated as: 

H = (3.23*101 m) + (1.65*102 s/m2)Q - (4.82*103 s2/m5)Q 2  
where [H] = m and [Q] = m3/s. 

 
a. Determine the system head curve for the pipe system. 
b. Determine the operating point for the system. 
c. How will the flow rate within the pipe change over time if the pipe carries “hard” water and lime 

deposits form on the interior pipe walls?  Explain your answer.  You should assume that the deposits do 
not significantly affect the pipe diameter. 

d. Calculate the net positive suction head available at the pump inlet. 
e. If we wanted to add a valve to control the flow rate in the pipe, would it be better to put the valve 

upstream or downstream of the pump?  Explain your answer. 

H 

D 

P 

h 

h = 0.5 m 
H  =  2 m 
D = 0.2 m 
L1 = 10 m 
L2 = 20 m 
The pipe is made of concrete 
with a roughness of 3 mm. 

90° rounded pipe bend 
(equivalent length of 30 pipe diameters) 

 

water with density of 1000 kg/m3, kinematic viscosity of 1.0*10-6 m2/s, and vapor pressure of 2.34 kPa 
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SOLUTION: 
 
Apply the Extended Bernoulli Equation from points 1 to 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (1) 

where 
p1 = p2 = patm (2) 

   and     (Also assume turbulent flow, a2 » 1.) (3) 

z2 – z1 = H (4) 

 (5) 

Solve for HS. 

 (6) 

Here, 
H = 2 m 
L = L1 + L2 = 30 m 
D = 0.2 m 
Kinlet = 0.78 (re-entrant inlet) 
Le/D = 30 
g = 9.81 m/s2 

The relative roughness is: 
e/D = (3*10-3 m)/(0.2 m) = 0.015 (7) 

Assume the flow Reynolds number is large enough so that it is in the fully rough zone and the friction 
factor is independent of the Reynolds number. 

e/D = 0.015 in fully rough zone (Re > 70,000) Þ  f » 0.044 (8) 
 

Substitute and simplify. 

     (9) 

(Note that the minor losses are not negligible compared to the major loss.) 

  (This is the system head curve.) (10) 
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with a roughness of 3 mm. 
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(equivalent length of 30 pipe diameters) 

 

water with density of 1000 kg/m3, kinematic viscosity of 1.0*10-6 m2/s, and vapor pressure of 2.34 kPa 

L1 L2 
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The operating point occurs where the system and pump curves intersect. 
 (11) 

 (12) 

 (13) 
 

Verify the Reynolds number assumption. 

 (14) 

  Þ  The assumption of fully turbulent flow is ok! (15) 

 
As lime deposits collect, the relative roughness will increase resulting in an increase in the friction factor.  
Thus, the system curve will steepen over time and the operating flow rate will decrease. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Apply the Extended Bernoulli Equation from points 1 to 2 in the figure below. 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

( ) ( ) ( ) ( )5 2 5
2 2 1 2 3 2s s s

m m m

system curve pump curve

2 m 5.01*10  3.23*10  m 1.65*10 4.82*10  Q Q Q+ = + -
!""""#""""$ !""""""""""#""""""""""$
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3 2 2 1s s

m m
5.32*10  1.65*10 3.03*10  m 0Q Q- - =
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s9.26*10  Q -=

( )
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33 m
s m

2 s2 2

4 9.26*10  4 2.95 
0.2 m

QV
Dp p
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( )( )

( )2

m
s2

6 m
s

2.95 0.2 m
Re 590,000

1*10  

V D
n -

= = =

H 

Q 

pump curve 

clean system curve 

rough system curve 

Qclean Qrough 

H 

D 

P 

h 

h = 0.5 m 
H  =  2 m 
D = 0.2 m 
L1 = 10 m 
L2 = 20 m 
The pipe is made of concrete 
with a roughness of 3 mm. 

90° rounded pipe bend 
(equivalent length of 30 pipe diameters) 

 

water with density of 1000 kg/m3, kinematic viscosity of 1.0*10-6 m2/s, and vapor pressure of 2.34 kPa 

L1 L2 

1 
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 (16) 

where 
p1 = patm  (17) 

   (The flow has been shown to be turbulent Þ a2 » 1.) (18) 
z2 – z1 = H  (19) 

 (20) 

HS = 0  (There is no pump between points 1 and 2.) (21) 
Re-arrange to put in terms of NPSHA. 

    (22) 

(Note that the major loss is based on L1.)  
Here, 

p1 = patm = 101 kPa (abs) 
pv = 2.34 kPa (abs) 
r  = 1000 kg/m3 

g = 9.81 m/s2 
H = 2 m 
f » 0.044  (from previous work) 
L1 = 10 m 
D = 0.2 m 
Kinlet = 0.78 (re-entrant inlet) 
Le/D = 30 
Q = 9.26*10-2 m3/s   

Substitute and simplify. 
NPSHA = 6.16 m (23) 

 
We would be better off putting the valve downstream of the pump so that the NPSHA remains as large as 
possible to avoid cavitation in the pump. 
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Consider the pipe system shown in the figure below.  The fluid to be pumped is water with a density of 
1.0E3 kg/m3, a kinematic viscosity of 1.0E-6 m2/s, and a vapor pressure of 2.3E3 Pa. 
 
 
 
 
 
 
 
 
 
 
 
The pump used in this system has the performance plot shown below. 

 
Curve fits to the pump performance data are given below: 

H [m] = (-3.25E1 s2/m5) Q2 + (1.23E0 s/m2) Q + (2.78E1 m) 
hP = (-3.74E0 s2/m6) Q2 + (3.60E0 s/m3) Q  
 

a. Determine the operating volumetric flow rate of the system. 
b. Is the given pump a good choice for this system?  Explain your answer. 
c. Determine the NPSHA to the pump for the flow rate determined in part (a). 
d. Give one specific modification to the pipe system that could be employed to decrease the likelihood 

that cavitation will occur in the pump. 
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SOLUTION: 
 
Apply the Extended Bernoulli Equation from point 1 to point 2. 
 
 
 
 
 
 
 
 
 
 
 

 (1) 

where 
  (free surfaces exposed to the atmosphere) 

  (large tanks) 
 (given) 

 

 
Re-arrange Eqn. (1) to solve for HS,12. 

 (2) 

 
 

Assume that the flow is in the fully rough zone where the friction factor is independent of the Reynolds 
number.  The pipe roughness, e, is e = 0.0450E-3 m so that the relative roughness is: 

 

From the Moody chart in the fully rough zone: 
 1.41E-2 
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Substitute in the given data into Eqn. (2): 
z2-z1 = 7.00E0 m 
L = 2.00E1 m 
D = 2.00E-1 m 
Kinlet =  5.00E-1 
Kelbow = 1.50E0 
Kexit = 1.00E0 
g = 9.81E0 m/s2 

 

 (3) 

 
Equate the system head curve (Eqn. (3)) to the given curve fit for the pump head curve to solve for the 
operating point flow rate. 

 

 

 
 

Check that the Reynolds number is in the fully rough zone as assumed. 

 

 

The Reynolds number and the relative roughness put the flow in the fully rough zone so the assumption 
was a good one. 
 
The efficiency is determined using the given curve fit for the efficiency and the calculated volumetric flow 
rate. 

 
This efficiency is not near the Best Efficiency Point for the pump (BEP = 90%) so this is not a good pump 
to use for this application. 
 
The NPSHA to the pump is found by applying the Extended Bernoulli Equation between points 1 and 3 and 
utilizing the definition of NPSH. 

 (4) 

where 
  (free surface exposed to the atmosphere) 

  (large tank) 
 (given) 

 (turbulent flow based on the Reynolds number calculated previously) 
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Substitute into the definition of NPSH. 

 

 

Using the given data: 
patm = 1.01E5 Pa 
pv = 2.30E3 Pa 
r = 1.00E3 kg/m3 
g = 9.81E0 m/s2 
z1-z3 = 1.00E0 m 
f = 1.41E-1  (found previously) 
L13 = 1.0E1 m 
D = 2.0E-1 m 
Kinlet = 5.0E-1 
Q = 2.85E-1 m3/s (found previously) 
Þ NPSHA = 6.01E0 m 
 

In order to avoid cavitating the pump, we would need to make sure that NPSHA > NPSHR for the pump. 
 
If NPSHA < NPSHR, then the following could be easily implemented to increase NPSHA: 
1. Decrease the elevation of the pump inlet so that z1 – z3 increases. 
2. Decrease the losses from 1 to 3 by: 

a. decreasing the pipe length from 1 to 3 and 
b. using a rounded inlet into the pipe. 

  
Note that increasing the pipe diameter from 1 to 3 or changing the pipe material from 1 to 3 might be 
difficult to implement and would also change the system operating point.  Although they would be difficult 
to implement, increasing the pressure in tank 1 or decreasing the flow temperature to decrease the vapor 
pressure would also act to increase NPSHA.  
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Consider the pipe/pump system shown below in which water (with a density of 1.0E3 kg/m3 and dynamic 
viscosity of 1.3E-3 Pa×s) is pumped from tank A to tank B.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The pump to be used in the system has the following pump performance curve. 

 
Curve fits to the pump performance data are given below: 

H [m] = (-1.5E3 s2/m5) Q2 + (2.8E1 s/m2) Q + (6.3E1 m) 
hP = (-5.6E1 s2/m6) Q2 + (1.2E1 s/m3) Q + (2.1E-1) 
 

a. Determine the operating point for the system. 
b. Is the given pump efficient for this application?  Explain your answer. 
c. Do you anticipate that cavitation in the pump will be an issue?  Explain your answer.   
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SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Apply the Extended Bernoulli Equation from the free surface of tank A (point 1) to the end of the pipe 
leading into tank B (point 2). 

 (1) 

where 
(gage)  and    (given) 

  (large tank) 

  and    (assuming turbulent flow) 

 and    (given) 

   

 (2) 

(Note that there are no exit losses at point 2.) 
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The friction factor, f, is determined from the Moody chart using the Reynolds number in the pipe, Re, and 
the relative roughness, e/D.  Since the Reynolds number is unknown at this point (since the flow rate and 
hence velocity are unknown), assume that the flow occurs in the fully rough zone.  The pipe has a 
roughness of 0.9 mm.  Hence: 

 

 
 

Hence, the major loss coefficient for the system is: 

 

 
The minor loss coefficients are found from minor loss tables to be: 

 

 

 

 
Re-arrange Eqn. (1) to solve for HS,12 and substitute the values given above. 

 

 

 
Equate the system head curve with the given pump head curve to determine the operating point. 
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C. Wassgren 1160 2024-02-01

https://www.youtube.com/watch?v=a9-0Clyq8kE


  pump_14 

Page 4 of 4 

 
 
The velocity corresponding to this flow rate is: 

 

and the corresponding Reynolds number is: 

 

Hence, the assumption of fully rough turbulent flow is ok. 
 
The pump efficiency at this flow rate is found using the given pump efficiency curve. 

 

  
Since this efficiency is very close to the best efficiency point, this is an efficient pump for this application. 
 
To determine if cavitation will occur in the pump, we would need to compare the NPSH available at the 
pump inlet to the NPSH required by the pump (need NPSHA > NPSHR to avoid cavitation).  The NPSHA 
can be determined by apply the Extended Bernoulli Equation from point 1 to a point at the inlet of the pump 
and using the definition of NPSH. 

 

 

where 
         

 

Since patm > pv, z1 > z2, and HL,1-inlet will be relatively small since there are few loss mechanisms occurring 
upstream of the pump, cavitation in the pump will most likely not be an issue. 
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Consider the pipe system containing a pump shown in the figure below.  The fluid being pumped from the 
lake to the tank is water (density = 1000 kg/m3, kinematic viscosity = 1.0*10-6 m2/s). 
 
 
 
 

 
 

 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
a. Determine the operating flow rate for the system. 
b. What power must be supplied to the pump by the motor to operate at the flow rate found in part (a)? 
 
 
 
 
  

 

pump 

H2 

H1 

diameter of both lengths of pipe, D1 = D2 = 10 cm 
length of pipe upstream of pump, L1 = 5 m 
length of pipe downstream of pump, L2 = 15 m 
roughness of both lengths of pipe, e1 = e2 = 1.5*10-4 m 
total minor loss upstream of pump, Kminor,1 = 1.0 
total minor loss downstream of pump, Kminor,2 = 2.0 
H1 = 3 m 
H2 = 10 m 
pump head rise curve:  H [m] = (-1.5*103 s2/m5)Q2 + (2.8*101 s/m2)Q + (6.3*101 m) 
pump efficiency curve:  h = (-5.6*101 s2/m6)Q2 + (1.2*101 s/m3)Q + (2.1*10-1) 

length of pipe 
upstream of 

pump, L1 

length of pipe 
downstream of 

pump, L2 
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SOLUTION: 
To determine the operating flow rate, first determine the system head curve by applying the extended 
Bernoulli equation from point 1 to point 2. 
 
 
 
 
 
 

 
 
 

 

 , (1) 

where 
p1 = patm p2 = patm 

   
z1  =  -H1 z2 = H2 

 . (2) 

The friction factor may be found from the Moody diagram.  Since the flow rate is unknown, try assuming 
that the flow is in the fully turbulent region of the Moody diagram (this assumption will need to be 
verified).  In this region, the friction factor is only a function of the pipe’s relative roughness, 

     (3)  

From the Moody diagram, f = 0.022. 
 
Combining these relations gives the system head curve, 

 , (4) 

where, 
 , and    (5) 

 . (6) 

 
Determine the operating point by equating the system head curve to the pump head curve, 

 ,    (7) 

,   (8) 
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Using the given data, 
s0 = 13 m 
s2 = 6.08*103 s2/m5 

p0 = 6.30*101 m 
p1 = 2.80*101 s/m2 
p2 = -1.50*103 s2/m5 

 
Q = 8.3*10-2 m3/s 
 

Check the Reynolds number assumption of fully turbulent flow, 

   Þ   ,   (10) 

   Þ  Re = 1.1*106    (11) 

Checking the Moody diagram shows that the flow is in the fully rough zone for this Reynolds number and 
relative roughness.  Thus, our assumption of fully rough flow was a good one. 
 
 
The power input to the fluid by the pump at these conditions is, 

,    (12) 

where H = 55.0 m at the operating flow rate of 8.3*10-2 m3/s (found using either the system or pump head 
curves).  Hence, 

Þ  .    (13) 

Since the pump isn’t 100% efficient, the power that must be supplied to the pump is, 

  Þ  . (14)    (15) 

where the pump efficiency at the operating point is h = 82% (using the given efficiency curve for the 
pump, h = (-5.6*101 s2/m6)Q2 + (1.2*101 s/m3)Q + (2.1*10-1)). 

V = Q
π
4 D
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Re = VD
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Winto
fluid

= ρQgH

 

Winto
fluid

= 44.8 kW

 

Winto
pump

=
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η  

Winto
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= 54.6 kW
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12.9. Review Questions

(1) What class of pumps generates large ∆ps? What class of pumps generates large Q?
(2) What is the fundamental principle for the operation of positive displacement pumps?
(3) Describe the fundamental principle behind the operation of dynamic pumps.
(4) What information is presented on a pump performance plot?
(5) Why do some pump performance plots have different impeller diameter curves?
(6) What is meant by the “Best Efficiency Point”?
(7) Can a pump operate at a flow rate different from the BEP?
(8) Assuming the same diameter inlet and outlet pipe, how does the average flow speed change across

a pump? How does the pressure change?
(9) Describe the various components in a centrifugal pump.

(10) What is meant by the “shut-off head”?
(11) How does one determine the operating flow rate for a pump in a pipe system?
(12) What is the definition of NPSH and how is it used?
(13) What is the difference between NPSHA and NPSHR?
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CHAPTER 13

Compressible Flow (aka Gas Dynamics)

13.1. Introduction to Gas Dynamics

13.1.1. What is Gas Dynamics?

Gas dynamics is a branch of fluid mechanics that examines the dynamics of compressible fluid flows and of
gases in particular.

13.1.2. What is the motivation for studying compressible fluids?

Although topics regarding compressible fluid mechanics have been studied since the 1800s, few scientists and
engineers were interested in the topic apart from those studying ballistics and steam turbine design. It wasn’t
until WW II with the development of high speed planes, rockets, and energetic explosives that the study
of compressible flows became widespread. Ever since, the understanding of compressible fluid mechanics
has been important in the development of not only the previously mentioned topics, but also of jet engines,
rocketry, re-entry spacecraft, gas pipelines, combustion, and gas turbines.

13.1.3. What is special about compressible fluids?

Compressibility of a fluid results in several important phenomena that are not observed in incompressible
fluids. Two of the most significant of these phenomena are shock waves and “choked” flow conditions. Both
of these phenomena are the result of the fact that in compressible fluids, pressure disturbances propagate
at a finite speed. For example, if one claps their hands, the pressure disturbance caused by the colliding
hands propagates into the surrounding atmosphere with a finite speed (equal to the speed of sound). Thus,
a finite amount of time passes before the surrounding air recognizes the effects of the clapping hands. In
contrast, in a truly incompressible fluid, pressure disturbances propagate at an infinite speed. Thus, pressure
disturbances are felt instantly everywhere in the fluid domain.

The fact that disturbances travel at finite speed raises the question of what happens if the cause of the
pressure disturbance travels faster than the pressure disturbance itself? As an example, let’s consider an
aircraft flying in the atmosphere. When the aircraft moves slower than the disturbances propagate, pressure
disturbances travel ahead of the aircraft and “inform” the air in front that the aircraft is about to arrive.
Thus, the air can move smoothly out of the way as the aircraft approaches. However, if the aircraft travels
faster than the speed of propagation, then the air in front of the aircraft can’t move out of the way and
begins to “pile up” in front of the aircraft. The result is the formation of a shock wave across which there is
a rapid change in the air pressure, temperature, density and velocity.

Now let’s consider a different situation. Imagine a large, pressurized tank with a converging nozzle that
empties into another large tank (refer to the Figure 13.1). While holding the pressure in the left tank
constant, let’s begin to reduce the pressure in the right-hand tank.

When we lower the pressure in the right-hand tank, a pressure disturbance propagates upstream to the
constant pressure tank and “informs” the fluid upstream that the pressure in the right-hand tank has dropped.
As a result, the flow rate between tanks increases. As we continue to lower the pressure in the right-hand
tank, the flow rate continues to increase until we reach a speed in the converging nozzle where the fluid speed
is equal to the speed at which pressure disturbances propagate. Now if we continue to lower the pressure in
the right hand tank, that pressure information can no longer propagate upstream since the fluid is flowing in
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Figure 13.1. Discharge from a pressurized tank.

the opposite direction at the same speed. Thus, we have a “choked” flow condition where we can no longer
increase the flow rate between the tanks.

In addition to these two phenomena, compressible flows have other counter-intuitive behaviors regarding how
the fluid velocity varies with the area through which the fluid flows and how the speed is affected by frictional
effects. We’ll investigate all of these phenomena in this chapter.

13.1.4. What tools are required to study compressible fluid mechanics?

Several basic concepts are used in studying compressible fluid mechanics. These include:

• Conservation of Mass,
• The Linear Momentum Equations,
• The First Law of Thermodynamics,
• The Second Law of Thermodynamics,
• equations of state, e.g., the ideal gas law, and
• various concepts from thermodynamics.

In addition, we’ll require knowledge of calculus, vector calculus, and differential equations (ODEs and PDEs).
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13.2. Equations of State

Rather than duplicate what has been previously presented, the reader is encouraged to review Chapter 3
and, specifically, the sections on thermodynamic properties applied to ideal gases. Since compressibility
effects become significant when the flow speed is larger than approximately one-third the speed of sound
in the fluid, the compressibility of liquids is rarely considered. The speed of sound in water, for example,
is nearly 1500 m s−1 and, thus, a flow speed of larger than approximately 500 m s−1 would be needed for
compressibility to become a factor. Such high speed flows for liquids are uncommon. In contrast, the speed
of sound in air at typical conditions is 340 m s−1 and so the compressibility of air becomes significant when
the flow speed is larger than approximately 100 m s−1. A 100 m s−1 flow speed is easily achieved in normal
engineering applications. Thus, compressible flow analyses typically focus on gases, which we generally model
as ideal gases. Indeed, the study of compressible flow is sometimes referred to as “gas dynamics”, reflecting
the emphasis on gases.

13.3. One-dimensional Flow

The reader is encouraged to review the section on flow dimensionality in Chapter 1. Much of our analysis of gas
dynamics in conduits, e.g., pipes and converging and diverging ducts, will assume one-dimensional flow as an
engineering approximation. Of course the flow of a real fluid through a pipe is not one-dimensional due to the
no-slip condition at the pipe walls. If the Reynolds number of the flow is large enough, however, the flow may
be approximated to be 1D with reasonable accuracy. As a flow’s Reynolds number increases, the velocity
profile becomes more blunt-shaped and more closely approaches that of a uniform profile (Figure 13.2).
Compressible flows are typically high speed so the Reynolds numbers are large and the 1D assumption is a
good one.

Figure 13.2. Example velocity profiles in a channel flow.

13.3.1. Governing Equations for 1D, Steady Flow

In this section we’ll write the governing equations (Conservation of Mass, Linear Momentum, and the First
and Second Laws) for a 1D, steady flow. Most of what we’ll cover in this chapter will make these two
assumptions, which are reasonable ones to make in many practical engineering situations.

Conservation of Mass: Apply Conservation of Mass to the control volume shown in Figure 13.3,

d

dt

ˆ
CV

ρdV +

ˆ
CS

(ρurel · dA) = 0, (13.1)

where,

d

dt

ˆ
CV

ρdV = 0 (steady flow), (13.2)

ˆ
CS

(ρurel · dA) = (−ρV A) + [ρV A+ d (ρV A)] = d (ρV A) . (13.3)
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Figure 13.3. The control volume for applying Conservation of Mass.

Substituting and simplifying,

d (ρV A) = 0 or ṁ = constant . (13.4)

Linear Momentum Equations: Apply the Linear Momentum Equation in the x direction to the control volume

Figure 13.4. The control volume for applying the Linear Momentum Equation in the x direction.

shown in Figure 13.4,

d

dt

ˆ
CV

uxρdV +

ˆ
CS

ux (ρurel · dA) = FB,x + FS,x, (13.5)

where,

d

dt

ˆ
CV

uxρdV = 0 (steady flow), (13.6)

ˆ
CS

ux (ρurel · dA) =
(
−ρV 2A

)
+
[
ρV 2A+ d

(
ρV 2A

)]
= d

(
ρV 2A

)
, (13.7)

FB,x = 0 (most compressible flows involve gases and, thus, the body forces are negligible), (13.8)

FS,x = (pA)− [pA+ d (pA)] +

[(
p+

1

2
dp

)
dA

]
− τPdx = −d (pA) + pdA− τPdx = −Adp− τPdx.

(13.9)

Note that higher-order terms have been neglected in the previous expression and that the friction force acts
only in the x-direction since the boundaries vary smoothly (the slope is small, no discontinuities).

Re-write the friction force term using a hydraulic diameter, DH , defined as,

DH :=
4A

P
, (13.10)
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and friction factor,

τ = fF

(
1

2
ρV 2

)
fF is known as a Fanning friction factor, (13.11)

τ =
1

4
fD

(
1

2
ρV 2

)
fD is known as a Darcy friction factor (fF = 4fD), (13.12)

so that the Linear Momentum Equation becomes,

dp+ ρV dV +

(
1

2
ρV 2

)(
4fF
DH

)
dx = 0, (13.13)

or,

dp

ρ
+ V dV +

(
1

2
V 2

)(
4fF
DH

)
dx = 0 . (13.14)

Notes:

(1) Gravitational effects have been neglected in the previous analysis since, when dealing with gases,
gravitational effects are typically very small compared to other terms in the Momentum Equation.

(2) The Darcy friction factor, fD, is the friction factor used in the Moody diagram for pipe flows.
(3) For a frictionless flow, Eq. (13.14) integrates to,ˆ

dp

ρ
+

1

2
V 2 = constant. (13.15)

The integral appears because the pressure can, in general, be a function of the density.
(4) For an incompressible fluid, ρ = constant so that after integration along a streamline (recall this is

1D flow), ˆ
dp

ρ
=
p

ρ
+ constant. (13.16)

(5) For an ideal gas (p = ρRT ) undergoing an isothermal process (T = constant),ˆ
dp

ρ
=

ˆ
d(ρRT )

ρ
= RT0

ˆ
dρ

ρ
, (13.17)

∴
ˆ
dp

ρ
= RT0 ln

(
ρ

ρ0

)
, (13.18)

where T0 and ρ0 are a reference temperature and density, respectively.
(6) For an ideal gas undergoing an isentropic process (s = constant),

ds = 0 = cp(T )
dT

T
−Rdp

p
, (13.19)

dp =
cp(T )

R
(ρRT )

dT

T
, (13.20)

dp = ρcp(T )dT. (13.21)

Thus, ˆ
dp

ρ
=

ˆ
cp(T )dT =

ˆ
dh = h+ constant, (13.22)

where h is the specific enthalpy. Note that if the ideal gas has constant specific heats, i.e., is a
“perfect” gas, then ∆h = cp∆T .

First Law of Thermodynamics Apply the First Law of Thermodynamics to the control volume shown in
Figure 13.5,

d

dt

ˆ
CV

eρdV +

ˆ
CS

(
h+

1

2
V 2 + gz

)
(ρurel · dA) = δQ̇into CV + Ẇother,on CV, (13.23)
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Figure 13.5. The control volume for applying the First Law of Thermodynamics.

where,

d

dt

ˆ
CV

eρdV = 0 (steady flow), (13.24)

ˆ
CS

(
h+

1

2
V 2 + gz

)
(ρurel · dA) =

{
−
(
h+

1

2
V 2

)
+

[(
h+

1

2
V 2

)
+ d

(
h+

1

2
V 2

)]}
ṁ

= d

(
h+

1

2
V 2

)
ṁ (gz is negligible for gases), (13.25)

ˆ
CS

δQ̇into CV = δq̇into CV (δq̇into CV is the rate of energy addition via heat transfer per unit volume), (13.26)

Ẇother,on CV = 0 (assuming no work other than pressure work). (13.27)

Substitute and simplify,

d

(
h+

1

2
V 2

)
ṁ = δq̇into CV or d

(
h+

1

2
V 2

)
= δqinto CV, (13.28)

where δqinto CV is the rate of energy transfer via heat transfer into the control volume per unit mass of the
fluid.

Notes:

(1) For an adiabatic flow (δqinto CV = 0), the First Law becomes,

h+
1

2
V 2 = constant, (13.29)

which is the same expression as what is obtained from the Linear Momentum Equation for an ideal
gas undergoing an isentropic process (refer to Eqs. (13.15) and (13.22)).

Second Law of Thermodynamics Apply the Second Law of Thermodynamics to the control volume shown in
Figure 13.6,

d

dt

ˆ
CV

sρdV +

ˆ
CS

s (ρurel · dA) =

ˆ
CS

δQ̇into CV

T
+ σ̇, (13.30)
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Figure 13.6. The control volume for applying the Second Law of Thermodynamics.

where,

d

dt

ˆ
CV

sρdV = 0 (steady flow), (13.31)

ˆ
CS

s (ρurel · dA) = [−s+ (s+ ds)] ṁ = (ds)ṁ, (13.32)

ˆ
CS

δQ̇into CV

T
=
δq̇into CV

T
, (13.33)

σ̇ = σ̇. (13.34)

Substitute and simplify,

(ds)ṁ =
δq̇into CV

T
+ σ̇ or ds =

δqinto CV

T
+ σ, (13.35)

where δqinto CV is the heat added to the control volume per unit mass of the flowing gas and σ is the rate of
entropy generation per unit mass of the flowing gas.

Notes:

(1) For an adiabatic flow, δq̇into CV = 0, and so,

ds = σ ≥ 0. (13.36)

The equality in this equation only holds if the flow is internally reversible.
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13.4. Speed of Sound

The speed of sound, c, in a substance is the speed at which infinitesimal pressure disturbances propagate
through the surrounding substance. To understand how the speed of sound depends on the substance
properties, let’s examine the following model.

Consider a wave moving at velocity, c, through a stagnant fluid. Across the wave, the fluid properties such as
pressure, p, density, ρ, temperature, T , and the velocity, V , can all change as shown in Figure 13.7. Now let’s

Figure 13.7. Flow across a pressure wave viewed from a frame of reference fixed to the ground.

change our frame of reference such that it moves with the wave, as shown in Figure 13.8. Apply Conservation

Figure 13.8. Flow across a pressure wave viewed from a frame of reference fixed to the wave.

of Mass and the Linear Momentum Equation to a thin control volume of cross-sectional area A surrounding
the wave (Figure 13.9). From Conservation of Mass,

d

dt

ˆ
CV

ρdV +

ˆ
CS

(ρurel · dA) = 0, (13.37)

where,

d

dt

ˆ
CV

ρdV = 0 (the flow is steady in the frame of reference fixed to the wave), (13.38)

ˆ
CS

(ρurel · dA) = −ρcA+ (ρ+ ∆ρ)(c−∆V )A. (13.39)
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Figure 13.9. A thin control volume applied across the pressure wave.

Substitute and simplify,

ρcA = (ρ+ ∆ρ)(c−∆V )A, (13.40)

ρc = ρc− ρ∆V + ∆ρc−∆ρ∆V, (13.41)

∆V =
c∆ρ

ρ+ ∆ρ
. (13.42)

From the Linear Momentum Equation applied in the streamwise direction,

d

dt

ˆ
CV

uxρdV +

ˆ
CS

ux (ρurel · dA) = FB,x + FS,x, (13.43)

where,

d

dt

ˆ
CV

uxρdV = 0 (the flow is steady in the frame of reference fixed to the wave), (13.44)

ˆ
CS

ux (ρurel · dA) = −ṁc+ ṁ(c−∆V ) = −ṁ∆V = −ρcA∆V, (13.45)

FB,x = 0, (13.46)

FS,x = pA− (p+ ∆p)A = −∆pA. (13.47)

Substituting and simplifying,

− ρcA∆V = −∆pA, (13.48)

c =
∆p

ρ∆V
. (13.49)

Making use of the relation derived from Conservation of Mass (Eq. (13.42)),

c =
∆p(ρ+ ∆ρ)

ρc∆ρ
, (13.50)

c2 =
∆p

∆ρ

(
1 +

∆ρ

ρ

)
. (13.51)

For a sound wave, the changes across the wave are infinitesimally small (sound waves are defined as being
infinitesimally weak pressure waves) so the previous equation becomes,

c2 = lim
∆→d

∆p

∆ρ

(
1 +

∆ρ

ρ

)
=
∂p

∂ρ
. (13.52)

We also need to specify the process by which these changes occur since pressure, in general, is a function of
not only the density, but other properties as well, such as temperature. Since the changes across the wave
are infinitesimally small and, thus, the velocity and temperature gradients are infinitesimally small, we can
regard the wave as an internally reversible process. Additionally, the temperature gradient on either side of
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the wave is small so there is negligible heat transfer into the control volume. Hence, the process is adiabatic.
As a result, the changes across a sound wave occur isentropically (an adiabatic, internally reversible process
is isentropic),

c2 =
∂p

∂ρ

∣∣∣∣
s

speed of sound in a continuous substance (13.53)

Notes:

(1) Note that Eq. (13.53) is the speed of sound in any substance. It’s not limited to just fluids.
(2) If the wave is not “weak”, i.e., the changes in the flow properties across the wave are not infinitesimal,

then viscous effects and temperature gradients within the wave will be significant and the process
can no longer be considered isentropic. We will discuss this situation later when examining shock
waves (Section 13.17).

(3) Note that according to Eq. (13.51) the stronger the wave, i.e., the greater ∆ρ, the faster the wave
will propagate. This effect will also be examined when discussing shock waves.

(4) For an ideal gas undergoing an isentropic process (ds = 0),

ds = 0 = cp
dT

T
−Rdp

p
= cv

dT

T
−Rdρ

ρ
, (13.54)

R

cv

dρ

ρ
=
R

cp

dp

p
=⇒ ∂p

∂ρ

∣∣∣∣
s

=
cp
cv

p

ρ
= k

p

ρ
= kRT. (13.55)

Substituting into Eq. (13.53), the speed of sound for an ideal gas is,

c =
√
kRT speed of sound in an ideal gas. (13.56)

(a) The absolute temperature must be used when calculating the speed of sound since the Ideal
Gas Law was used in its derivation.

(b) The speed of sound in air (k = 1.4, R = 287 J kg−1 K−1) at standard conditions (T = 288 K)
is 340 m s−1 (= 1115 ft s−1 ≈ 1/5 mi s−1). This value helps explain the rule of thumb whereby
the distance to a thunderstorm in miles is roughly equal to the number of seconds between a
lightening flash and the corresponding thunder clap divided by five.

(c) It is not unexpected that the speed of sound is proportional to the square root of the temper-
ature. Since disturbances travel through the gas as a result of molecular impacts, we should
expect the speed of the disturbance to be proportional to the speed of the molecules. The
temperature is equal to the random kinetic energy of the molecules and so the molecular speed
is proportional to the square root of the temperature. Thus, the speed of sound is proportional
to the square root of the temperature.

(5) Equation (13.53) can also be written in terms of the bulk modulus. The bulk modulus, Ev, of
a substance is a measure of the compressibility of the substance. It is defined as the ratio of a
differential applied pressure to the resulting differential change in volume of a substance at a given
volume (refer to Figure 13.10),

Ev :=
∂p

(−∂V/V )
= ρ

∂p

∂ρ
. (13.57)

Notes:

(a) dp > 0 =⇒ dV < 0 =⇒ Ev > 0.
(b) From Conservation of Mass, dV/V = −dρ/ρ.
(c) Ev ↑ =⇒ compressibility ↓.

The isentropic bulk modulus, Ev|s, is defined as,

Ev|s :=
∂p

−(dV/V )

∣∣∣∣
s

= ρ
∂p

∂ρ

∣∣∣∣
s

. (13.58)
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Figure 13.10. A schematic illustrating the concept of the bulk modulus.

Thus, the speed of sound can also be written as,

c2 =
Ev|s
ρ

alternate speed of sound expression. (13.59)

Notes:

(a) The isentropic bulk modulus for air is Ev|s = kρRT .
(b) The isentropic bulk modulus for water is 2.19 GPa. Thus, the speed of sound in water (ρ =

1000 kg/m3) is 1480 m s−1 (= 4900 ft s−1 ≈ 1 mi s−1 ≈ 5X faster than the speed of sound in air
at standard conditions).

(c) For solids, the bulk modulus, Ev, is related to the modulus of elasticity, E, and Poisson’s ratio,
ν, by,

Ev
E

= 3(1− 2ν). (13.60)

For many metals, e.g., steel and aluminium, the Poisson’s ratio is approximately ν ≈ 1/3 so
that Ev/E ≈ 1. The speed of sound in stainless steel (E = 163 GPa; ρ = 7800 kg/m3) is
4570 m s−1 (= 15 000 ft s−1 ≈ 3 mi s−1 ≈ 3X faster than the speed of sound in water).

(6) The Mach number, Ma is a dimensionless parameter that is commonly used in the discussion of
compressible flows. The Mach number is defined as,

Ma :=
V

c
, (13.61)

where V is the flow speed and c is the speed of sound in the flow.

Notes:
(a) Compressible flows are often classified by their Mach number:

Ma < 1 subsonic
Ma = 1 sonic
Ma > 1 supersonic

Additional sub-classifications include:
Ma < 0.3 incompressible
Ma ≈ 1 transonic
Ma > 5 hypersonic

(b) The square of the Mach number, Ma2, is a measure of a flow’s macroscopic kinetic energy to
its microscopic kinetic energy.

(7) The change in the properties across a sound wave can be found from the following analysis. From
Conservation of Mass applied to the control volume shown in Figure 13.9 and Eq. (13.42), making
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use of the fact that the property changes across the sound wave are infinitesimally small,

dV

c
=
dρ

ρ
. (13.62)

For an ideal gas,

p = ρRT =⇒ dp

p
=
dρ

ρ
+
dT

T
. (13.63)

Combining Eqs. (13.53), (13.56), and (13.62) and simplifying,

ρ

p
c2 =

dp

p

ρ

dρ
=⇒ kRT

RT
=
dp

p

c

dV
, (13.64)

dV

c
=
dρ

ρ
=

1

k

dp

p
. (13.65)

Now combine Eqs. (13.63) and (13.65),

dp

p
=

1

k

dp

p
+
dT

T
, (13.66)

dT

T
=

(
k − 1

k

)
dp

p
. (13.67)

Thus, across a compression sound wave (dp > 0): dV > 0, dρ > 0, and dT > 0. Across a rarefaction
sound wave, also known as an expansion wave (dp < 0): dV < 0, dρ < 0, and dT < 0.
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Example:
Refer to https://www.youtube.com/watch?v=9R4xhCoBz9Y for a video demonstration that shows how a
distance is calculated using a speed of sound analysis and temperature and transit time measurements.
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A weak compression pressure wave of magnitude Dp propagates through still air.  Discuss the type of 
reflected wave that occurs (compression or expansion) and the boundary conditions that must be satisfied 
when the wave strikes normal to, and is reflected from: 
a. a solid wall and 
b. a free surface boundary (i.e., a surface where the pressure remains constant). 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
At a solid boundary the incident compression wave reflects as a compression wave in order to maintain 
zero air velocity at the wall.  The pressure behind the reflected wave will be p + 2Dp (two compressions). 
 
 
 
 
 
 
 
 
 
 
 
 
At a free surface boundary the incident compression wave reflects as an expansion wave in order to 
maintain the free surface pressure.  The velocity behind the reflected wave will be 2DV in the direction 
opposite the wave. 

p  
V = 0 

p + Dp 
V = DV 

incident 
compression wave 

p + 2Dp 
V = 0 

p + Dp 
V = DV 

reflected 
compression wave 

p 
V = 0 

p + Dp 
V = DV 

incident 
compression wave 

p 
2DV  

p + Dp 
V = DV 

reflected 
expansion wave 

free surface 
(p = constant) 

free surface 
(p = constant) 

solid wall 
(V = 0) 

solid wall 
(V = 0) 
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Consider a straight pipe filled with an incompressible liquid.  The walls of the pipe are elastic so that the 
cross-sectional area, A, changes with the internal pressure, p, according to the relation: 
 

A = A0 + A1p 
 
Thus, the pipe may have different cross-sectional areas at different axial positions depending on the internal 
pressure at each position.  Find the speed of propagation, c, of a small pressure wave traveling along the 
pipe assuming A0 and A1 are known constants and that A1p is always small compared with A0.  Give your 
answer in terms of A0, A1, and the density, r, of the liquid. 
 
 
SOLUTION: 
 
Apply conservation of mass and the linear momentum equation to the thin control volume shown below.  
Use a frame of reference that is fixed to the wave so that the flow appears steady. 
 
 
 
 
 
 
 
 
 
Conservation of mass: 

 

where 

  (steady flow) 

 (1) 

Note that the area is a function of the pressure. 
     and      (2) 

 
Substitute and simplify. 

 

 

 

 

 

   (Note that dp << p.) (3) 

rel
CV CS

0d dV d
dt

r r+ × =ò ò u A

CV

0d dV
dt

r =ò
( )( )rel

CS

d cA c dV A dAr r r× = - + - +ò u A

0 1A A A p= + ( )0 1A dA A A p dp+ = + +

( )( ) 0cA c dV A dAr r- + - + =

( ) ( ) ( )0 1 0 1 0c A A p c dV A A p dpr r- + + - + + =é ùë û
( ) ( )0 1 0 1 0 1 0cA cA p cA cA p dp A dV dVA p dp- - + + + - - + =

( )1 0 1 0cA dp A dV dVA p dp- - + =

( )
1

0 1

cA dpdV
A A p dp

=
+ +

1

0 1

cA dpdV
A A p

=
+

c 
p 
A 
r 

c - dV 
p + dp 
A + dA 
r 

wave 

x 
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Now apply the linear momentum equation in the x-direction to the same control volume. 

 

where 

  (steady flow) 

 (4) 

  (no body forces since the control volume is infinitesimally thin) 

(5) 

 
Substitute and simplify. 

 
 (6) 

Substitute in for dV using Eqn. (3). 

 

 (7) 

 (8) 
Since A1p << A0 (given in the problem statement), Eqn. (8) becomes: 

 (9) 

 

( )rel , ,
CV CS

x x B x S x
d u dV u d F F
dt

r r+ × = +ò ò u A

CV

0x
d u dV
dt

r =ò
( ) ( ) ( )rel 0 1

CS
xu d mc m c dV mdV cAdV c A A p dVr r r× = - - = = = +ò u A ! ! !

, 0B xF =

( )( ) ( ) ( ) ( ) ( )1
, 0 1 0 1 12

1 0 1 1

1 0

S xF pA p dp A dA p dp dA p A A p p dp A A p dp pA dp

pA dp dpA pA dp pA dp
pA dp dpA

= - + + + - + = - + + + + + -é ùë û
= + + -

= +

( ) ( )0 1 1 0 0 1c A A p dV pA dp dpA dp A A pr + = + = +

cdV dpr =

1

0 1

cA dpc dp
A A p

r
æ ö

=ç ÷+è ø

2 0 1

1

A A p
c

Ar
+

=

2 0

1

A
c

Ar
=

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

C. Wassgren 1181 2024-02-01



Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

13.5. The Mach Cone

Consider the propagation of infinitesimal pressure waves, i.e., sound waves, emanating from an object at rest
(Figure 13.11). The waves will travel at the speed of sound, c, and form circles (spheres in 3D) with radii
depending on the time when the sound wave was emitted.

Figure 13.11. Sound waves emanating from an object at rest.

Now consider an object moving at a subsonic speed, V < c =⇒ Ma < 1 (Figure 13.12). For this case the
pressure pulses are more closely spaced in the direction of the object’s motion and more widely spaced behind
the object. Thus, the frequency of the sound in front of the object increases, while the frequency behind the
object decreases. This phenomenon is known as the Doppler Shift.

Figure 13.12. Sound waves emanating from an object moving to the right at a subsonic
speed (V < c =⇒ Ma < 1).

Now consider an object traveling at a sonic speed, V = c =⇒ Ma = 1. Since no wave fronts propagate
ahead of the object, an observer standing in front of the object won’t hear it approaching until the object
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reaches the observer. Note that the infinitesimal pressure changes in front of the object begin to “pile up”
on one another, producing a sudden, finite pressure change, also known as a shock wave.

Figure 13.13. Sound waves emanating from an object moving to the right at the sonic
speed (V = c =⇒ Ma = 1).

Figure 13.14. Sound waves emanating from an object moving to the right at a supersonic
speed (V > c =⇒ Ma > 1).

Lastly, consider an object travelling at supersonic speeds, V > c =⇒ Ma > 1 (Figure 13.14). For this case,
the object outruns the pressure pulses it generates. The locus of wave fronts forms a cone, which is known as
the Mach Cone. The object cannot be heard outside of the Mach Cone and, thus, this region is termed the
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zone of silence. Inside the cone, which is known as the zone of action, the object can be heard. The angle of
the cone, known as the Mach angle, α, is given by,

sinα =
c∆t

V∆t
=

c

V
=

1

Ma
. (13.68)
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A projectile in flight carries with it a more or less conical-shaped shock front.  From physical reasoning it 
appears that at great distances from the projectile this shock wave becomes truly conical and changes in 
velocity and density across the shock become vanishingly small. 
 
Photographs of a bullet in flight show that at a great distance from the bullet the total included angle of the 
cone is 50.3°.  The pressure and temperature of the undisturbed air are 14.62 psia and 73 °F, respectively.  
Calculate:   
 
a. the velocity of the bullet, in ft/sec, and 
b. the Mach number of the bullet relative to the undisturbed air. 
 
 
SOLUTION: 

2a  =  50.3° 
patm =  14.62 psia 
Tatm = 73 °F = 533 °R 
gair = 1.4 
Rair = 53.3 (ft×lbf)/(lbm×°R) 
 

 
 
 

  Þ  Ma = 2.35 

 

  Þ    Þ  V = 2660 ft/s 

 
 
 

1sin
Ma

a =

Ma V V
c RTg

= = atmMaV RTg=

2a 
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Determine the Mach number of the .22 caliber bullet shown below.  Note that the plate in the figure has 
holes through which weak pressure disturbances can propagate. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
If the temperature of the air at which the test is conducted is 70 °F, determine the speed of the bullet. 
 
 
SOLUTION: 
 
Determine the Mach angle from the photograph.  Note that since the waves above the plate are very weak, 
they will be Mach waves. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The angle of the Mach waves is related to the Mach number via: 

  and µ = 60° Þ  Ma = 1.2  (1) 

 
Now determine the speed of the bullet from the definition of the Mach number. 

  Þ   (2) 

 (3) 
 

For air at 70 °F (530 °R) and Ma = 1.2, g = 1.4, R = 53.3 (lbf×ft)/(lbm×°R)  Þ  V = 1350 ft/s 

1sin
Ma

µ =

Ma V
c

= MaV c=

MaV RTg\ =

 

 

µ = 60° 
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Video solution: https://www.youtube.com/watch?v=0wf2oeEk9go
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13.6. Adiabatic, Steady, 1D Compressible Flow of a Perfect Gas

Now let’s consider the 1D, steady, adiabatic flow of a compressible gas. Recall that from the Energy Equation
we have,

dh+ V dV = 0. (13.69)

For an ideal gas we can re-write the specific enthalpy in terms of the specific heat at constant pressure, cp,
which is a function of temperature, in general, and the absolute temperature, T ,

dh = cp(T )dT. (13.70)

Substituting,
cp(T )dT + V dV = 0. (13.71)

Integrating along a stream tube, ˆ Tout

Tin

cp(T )dT +
1

2
V 2 = constant. (13.72)

If the gas can be assumed perfect, i.e., cp = constant, then the previous equation becomes,

cpT +
1

2
V 2 = constant, (13.73)

T +
V 2

2cp
= constant . (13.74)

We can re-write this equation in terms of the Mach number,

Ma =
V

c
=

V√
kRT

=⇒ V 2 = (kRT )Ma2 =⇒ T +
kRTMa2

2cp
= constant. (13.75)

Substituting the following ideal gas relation,

R

cp
=
k − 1

k
, (13.76)

results in,

T

(
1 +

k − 1

2
Ma2

)
= constant adiabatic, 1D, steady flow of a perfect gas. (13.77)

If the flow can also be considered internally reversible, making the flow isentropic, then we can use the
isentropic relations for a perfect gas,

p = (constant)T
k
k−1 and ρ = (constant)T

1
k−1 , (13.78)

to give,

p

(
1 +

k − 1

2
Ma2

) k
k−1

= constant and ρ

(
1 +

k − 1

2
Ma2

) 1
k−1

= constant . (13.79)

These relations are for isentropic, 1D, steady flow of a perfect gas.
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A steady flow of air passes through the elbow-nozzle assembly shown.  At the inlet (1), the pipe diameter is 
D1 = 0.1524 m and the air properties are p1 = 871.7 kPa (abs), T1 = 529.0 K, and V1 = 230.4 m/s.  The air is 
expanded through a converging-diverging nozzle discharging into the atmosphere where patm = 101.3 kPa 
(abs).  At the nozzle exit (2), the nozzle diameter is D2 = 0.3221 m and the air properties are T2 = 475.7 K 
and V2 = 400.0 m/s. 
 
 
 
 
 
 
 
 
 
 
a. Is the flow through the elbow-nozzle assembly adiabatic? 
b. Determine the components of the force in the attachment flange required to hold the elbow-nozzle 

assembly in place.  You may neglect the effects of gravity. 
 
 
SOLUTION: 
 
If the flow is adiabatic in going from 1 to 2, then the energy equation will give: 

 (1) 

Using the given data: 
T1 = 529.0 K 
V1 = 230.4 m/s 
cP = 1004 J/(kg×K) 
T2 = 475.7 K 
V2 = 400.0 m/s 

Þ  555.4 K and  555.1 K 

Since the stagnation temperatures are approximately the same, the flow can be considered adiabatic in 
going from 1 to 2. 

 
To determine the force components, apply the linear momentum equation to the control volume shown 
below using the indicated fixed frame of reference. 

 
 
 
 
 
 
 
 
 

2 2
1 2

1 22 2P P

V VT T
c c

+ = +

2
1

1 2 P

VT
c

+ =
2
2

2 2 P

VT
c

+ =

1 

2 

patm 

attachment flange 

1 

2 

patm 

attachment flange 
Fy 

Fx x 

y 
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Video solution: https://www.youtube.com/watch?v=NB1hk506Ejc
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where 

  (steady flow) 

 

 

 

Substitute and simplify. 

 

 (2) 

Using the given numerical data: 
r1  =  p1/(RT1) = (871.7 kPa)/[287 J/(kg×K) ×529 K] = 5.738 kg/m3 
V1 =  230.4 m/s 
D1 =  0.1524 m 
p1 =  871.7 kPa (abs) 
patm = 101.3 kPa (abs) 
Þ  Fx  =  -19.60 kN   

Also note that: 

 =  24.11 kg/s (3) 

 
Now consider the y-direction. 

 

where 

  (steady flow) 

 

 

 

 
Substitute and simplify. 

 

 (4) 

Note that from conservation of mass on the same control volume: 

 (5) 

 

( )rel , ,
CV CS

x x B x S x
d u dV u d F F
dt

r r+ × = +ò ò u A

CV

0x
d u dV
dt

r =ò

( ) ( )
2 2

21 1
rel 1 1 1 1 1

CS 4 4x
D Du d V V Vp p

r r r
æ ö

× = - = -ç ÷
è ø

ò u A

, 0B xF =

( )
2
1

, 1 atm 4S x x
DF p p Fp

= - +

( )
2 2

2 1 1
1 1 1 atm4 4 x

D DV p p Fp p
r- = - +

( )
2 2

2 1 1
1 1 1 atm4 4x

D DF V p pp p
r= - - -

   
!m1 = ρ1V1

πD1
2

4

( )rel , ,
CV CS

y y B y S y
d u dV u d F F
dt

r r+ × = +ò ò u A

CV

0y
d u dV
dt

r =ò

( ) ( )
2 2

22 2
rel 2 2 2 2 2

CS 4 4y
D Du d V V Vp p

r r r
æ ö

× = - = -ç ÷
è ø

ò u A

, 0B yF =

( )
2
2

, 2 atm 4S y y
DF p p Fp

= - +

( )
2 2

2 2 2
2 2 2 atm4 4 y

D DV p p Fp p
r- = - +

( )
2 2

2 2 2
2 2 2 atm4 4y

D DF V p pp p
r= - - -

   
!m1 = !m2 = ρ2V2

πD2
2

4
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Video solution: https://www.youtube.com/watch?v=NB1hk506Ejc
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The pressure at point 2 will depend on whether the flow at that point is subsonic or supersonic. 

 (6) 

Using the given data: 
V2 =  400.0 m/s 
g =  1.4 
R =  287 J/(kg×K) 
T2 = 475.7 K 
Þ  c2 = 437.2 m/s  Þ  Ma2 = 0.9148  Þ  The flow at point 2 is subsonic.  Þ  The pressure at point 2 is 
equal to atmospheric pressure, i.e.,  p2 = 101.3 kPa (abs). 
 

Substituting the given numerical data in Eq. (4) gives  Fy  =  -9.644 kN. 
  

2 2
2

2 2

Ma V V
c RTg

= =

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

Video solution: https://www.youtube.com/watch?v=NB1hk506Ejc

C. Wassgren 1190 2024-02-01

https://www.youtube.com/watch?v=NB1hk506Ejc


Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

13.7. Stagnation and Sonic Conditions

It’s convenient to choose some useful reference points in the flow where we can evaluate the constants in
Eqs. (13.77) and (13.79). Two such reference points are commonly used in compressible flows: stagnation
conditions and sonic conditions.

Stagnation Conditions: Stagnation conditions are those conditions that would occur if the fluid is brought to
rest (V = 0 =⇒ Ma = 0). These conditions are typically indicated by the subscript “0”. Equations (13.77)
and (13.79) can be written in terms of stagnation conditions as,

T

T0
=

(
1 +

k − 1

2
Ma2

)−1

adiabatic, steady, 1D flow of a perfect gas, (13.80)

p

p0
=

(
1 +

k − 1

2
Ma2

) k
1−k

isentropic, steady, 1D flow of a perfect gas, (13.81)

ρ

ρ0
=

(
1 +

k − 1

2
Ma2

) 1
1−k

isentropic, steady, 1D flow of a perfect gas. (13.82)

We can also determine the speed of sound at stagnation conditions using the fact that c =
√
kRT ,

c

c0
=

(
1 +

k − 1

2
Ma2

)− 1
2

adiabatic, steady, 1D flow of a perfect gas. (13.83)

These various stagnation ratios are plotted in Figure 13.15 as a function of Mach number for air.

Figure 13.15. Various stagnation ratios, referring to Eqs. (13.80) - (13.83), plotted as a
function of the Mach number. These ratios are for a specific heat ratio of k = 1.4, which
corresponds to air.
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Notes:

(1) Stagnation conditions are also commonly referred to as total conditions, given by the subscript “T”.
(2) Stagnation conditions can be determined even for a moving fluid. The fluid doesn’t necessarily have

to be at rest to state its stagnation conditions. To determine stagnation conditions we only need to
imagine the conditions if the flow is brought to rest.

(3) Equations (13.81) and (13.82) are for a flow brought to rest isentropically. Equations (13.80) and
(13.83) are for a flow brought to rest adiabatically.

(4) Tables listing the values of Eqs. (13.80) - (13.83) for various Mach numbers are typically given in
the back of most textbooks concerning compressible flows.

(5) Note that the stagnation temperature is greater than the flow temperature since when the flow
is decelerated to zero velocity, the macroscopic kinetic energy is converted into internal energy
(microscopic kinetic energy) and, thus, the temperature increases.

(6) The stagnation pressure is a significant property for a flow because it’s directly related to the amount
of work that can be extracted from the flow. For example, imagine bringing a flow to rest so we have
stagnation conditions within the tank shown in Figure 13.16. The larger the stagnation pressure in
the tank, the greater the force we can exert on the piston that can be used to perform useful work.

Figure 13.16. An illustration showing how stagnation pressure is related to the ability to
do work.

Sonic Conditions: Another convenient reference point is where the flow has a Mach number of one (Ma = 1).
Conditions where the Mach number is one are known as sonic conditions and are typically specified using
the superscript “*”.

Equations (13.80) - (13.83) evaluated at sonic conditions are:

T ∗

T0
=

(
1 +

k − 1

2

)−1

adiabatic, steady, 1D flow of a perfect gas, (13.84)

p∗

p0
=

(
1 +

k − 1

2

) k
1−k

isentropic, steady, 1D flow of a perfect gas, (13.85)

ρ∗

ρ0
=

(
1 +

k − 1

2

) 1
1−k

isentropic, steady, 1D flow of a perfect gas, (13.86)

c∗

c0
=

(
1 +

k − 1

2

)− 1
2

adiabatic, steady, 1D flow of a perfect gas. (13.87)

Notes:
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(1) For air (k = 1.4), Eqs. (13.84) - (13.87) become,

T ∗

T0
= 0.8333 adiabatic, steady, 1D flow of air as a perfect gas, (13.88)

p∗

p0
= 0.5283 isentropic, steady, 1D flow of air as a perfect gas, (13.89)

ρ∗

ρ0
= 0.6339 isentropic, steady, 1D flow of air as a perfect gas, (13.90)

c∗

c0
= 0.9129 adiabatic, steady, 1D flow of air as a perfect gas. (13.91)

The p∗/p0 ratio value is a useful one to memorize since differences in pressure are what drive most
compressible flows.

On the assumption of isentropic flow: In many engineering gas dynamics flows, the assumption that the
entropy of the fluid remains constant (an isentropic process) is a good one. If viscous and heat transfer
effects can be neglected, then we can reasonably assume that the flow is isentropic (isentropic = internally
reversible + adiabatic). This situation is often the case for flows through short, insulated ducts or through
stream tubes not passing through a boundary layer or a shock wave (strong viscous effects occur in both
cases). Experiments have verified that the isentropic assumption under these conditions is reasonable.

13.8. Mollier (aka h-s) Diagrams

Mollier diagrams are diagrams that plot the enthalpy (h) as a function of entropy (s) for a process. They are
often useful in visualizing trends.

Notes:

(1) Sketches of constant pressure and constant volume (or density) curves are shown in Figure 13.17.

Figure 13.17. An example Mollier plot showing isobars (curves of constant pressure) and
isochores (curves of constant specific volume). The curves become steeper as the specific
enthalpy increases. The pressure and specific volume increase as one moves to curves ap-
proaching the upper left of the plot.
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(2) For a perfect gas, curves of constant volume (or density) and constant pressure have slopes given,
respectively, by,

Tds = du+ pdv, (13.92)

Tds =
cv
cp

(cpdT )︸ ︷︷ ︸
=dh

+pdv, (13.93)

∴
dh

ds

∣∣∣∣
v

= kT, (13.94)

and,

Tds = dh− vdp, (13.95)

∴
dh

ds

∣∣∣∣
p

= T. (13.96)

Thus, larger temperatures (and, thus, larger specific enthalpies) will result in steeper slopes for
curves of constant pressure and constant volume.

(3) From the Energy Equation (refer to Eq. (13.69)), the difference between the flow specific enthalpy
and the stagnation specific enthalpy for an isentropic process is equal to the specific kinetic energy,

h0 = h+
1

2
V 2. (13.97)

Figure 13.18 shows this relationship specifically for an isentropic process, but the relationship holds
for non-isentropic processes too.

Figure 13.18. A Mollier plot showing the difference between the flow specific enthalpy and
specific stagnation enthalpy, in this case for an isentropic process. The difference between
the different specific enthalpies is equal to the specific kinetic energy in the flow. This
relationship is true even for non-isentropic processes.

(4) For perfect gases, the h-s plots are usually shown as T -s plots since ∆h = cp∆T .

C. Wassgren 1194 2024-02-01



  comp_24 

Page 1 of 2 

A pitot tube is used to measure the velocity of air.  At low speeds, we can reasonably treat the air as an 
incompressible fluid; however, at high speeds this assumption is not very good due to compressibility 
effects.  At what Mach number does the incompressibility assumption become inaccurate for engineering 
calculations?  Justify your answer with appropriate calculations.  
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
First use the incompressible form of Bernoulli’s equation to determine the incoming velocity. 

 (1) 

 (2) 

 
Now consider the pressure difference for a perfect gas brought to rest isentropically (a reasonable model as 
long as a shock wave does not form in front of the tube). 

 (3) 

where 

 (4) 

Substitute and simplify. 

 

 (5) 

 
Note that for an ideal gas: 

 (6) 

Substitute and simplify. 

  

 (7)  
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Define the relative error as: 

 (8) 

 
Thus, the error is a function only of the upstream Mach number and the specific heat ratio.  Plotting the 
error as a function of upstream Mach number (for air, g = 1.4) shows that, if we consider <1% error 
acceptable, the incompressibility assumption is valid for Ma∞ <» 0.3. 
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An air blower takes air from the atmosphere (100 kPa (abs) and 293 K) and ingests it through a smooth 
entry duct so that the losses are negligible.  The cross-sectional area of the entry duct just upstream of the 
blower and that of the exit duct are both 0.01 m2. 
 
 
 
 
 
 
 
 
 
 
The pressure ratio, p2/p1, across the blower is 1.05 and the exit pressure is equal to atmospheric pressure.  
The air is assumed to behave isentropically upstream of the blower.  Find: 
a. the velocity of the air entering the blower, and 
b. the mass flow rate of air through the system. 
 
 
SOLUTION: 
 
Apply the First Law between points 0 and 1 (refer to the figure below).  Assume 1D, steady, isentropic (Þ 
adiabatic) flow.  Also neglect potential energy changes since a gas is the working fluid. 
 
 
 
 
 
 
 
 
 
 

 (1) 

The velocity far upstream is negligible (V0 » 0) and .  Substitute and simplify. 

 (2) 
Assume that the air behaves as a perfect gas (Dh = cPDT) and solve for V1. 

 (3) 
 
Express the temperature at point 1 in terms of a pressure ratio making use of the fact that the flow is 
isentropic. 

 (4) 

 
The pressure rise across the blower is specified in the problem statement.  Furthermore, the pressure at 
point 2 is equal to atmospheric pressure, i.e., p2 = p0.  Re-write Eq. (4) using this information. 

 (5) 

 

   
!m1 h+ 1

2 V 2( )
1
− !m0 h+ 1

2 V 2( )
0
= 0

   !m1 = !m0
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Combine Eqs. (3) and (5). 

 

 (6) 

 
Using the given numerical data: 

cP = 1004.5 J/(kg×K)  (for air) 
g = 1.4  (for air) 
T0 = 293 K 
p2/p1 = 1.05 
Þ V1 = 90 m/s 
 

The mass flow rate can be found from the conditions at point 1: 

 (7) 

where the ideal gas law has been used.  The pressure at point 1 can be found from the blower pressure ratio 
and the fact that p2 is equal to atmospheric pressure. 

 (8) 

The temperature at point 1 can be found using Eq. (5).  Using the given numerical data: 
p0 = 100 kPa (abs) 
p2/p1 = 1.05 
p1 = 95.2 kPa (abs) 
T0 = 293 K 
T1 = 289 K 
R = 287 J/(kg×K)  (for air) 
V1 = 90 m/s 
A1 = 0.01 m2 

Þ  = 1.03 kg/s 
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A force of 500 N pushes a piston of diameter 12 cm through an insulated cylinder containing air at 20 °C.  
The exit diameter is 3 mm and the atmospheric pressure is 1 atm (abs).  Estimate: 
1. the exit velocity, 
2. the velocity near the piston (Vp), and 
3. mass flow rate out of the device. 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
The pressure at the piston face may be found from the piston force and piston diameter. 

 (1) 

 
Assume the flow through the piston is isentropic.  The velocity at the exit may be found by applying the 
First Law to the air inside the piston with 1 signifying the location adjacent to the piston face and 2 
signifying the device’s exit. 

 (2) 

Assuming perfect gas behavior, adiabatic conditions, and that V2 >> V1 (since the areas are so different):  
 (3) 

 (4) 
Also assume that the flow is isentropic so that: 

 (5) 

Using the given data: 
cP = 1004 J/(kg×K) 
T1 = (20 + 273) K = 293 K 
p1 = 145*103 Pa  (from Eq. (1)) 
p2 = 101*103 Pa  (discharging into the atmosphere, assuming the exit Mach number is subsonic) 
Þ T2  = 264 K 
\V2 = 241 m/s 

Check that the exit Mach number is subsonic. 
  Þ  c2 = 326 m/s (6) 

Since V2 < c2, the exit flow is subsonic and the assumption that p2 = patm is a good one. 
 

From conservation of mass applied to the same control volume: 

 (7) 

\V1 = 0.116 m/s   Clearly the assumption that V2 >> V1 was a good one. 
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The mass flow rate is: 

 (8) 
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A small, solid fuel rocket motor is tested on a horizontal thrust stand at atmospheric conditions.  The 
chamber (essentially a large tank) absolute pressure and temperature are maintained at 4.2 MPa (abs) and 
3333 K, respectively.  The rocket’s converging-diverging nozzle is designed to expand the exhaust gas 
isentropically to an absolute pressure of 69 kPa.  The nozzle exit area is 0.056 m2.  The gas may be treated 
as a perfect gas with a specific heat ratio of 1.2 and an ideal gas constant of 300 J/(kg·K).  Determine, for 
design conditions: 
 
a. the mass flow rate of propellant gas, and 
b. the thrust force exerted on the test stand. 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
Determine the mass flow rate using the conditions at the exit.  The Mach number at the exit may be found 
from the isentropic stagnation pressure ratio: 

   (1) 

Using pexit = 69e3 Pa (abs), p0 = 4.2e6 Pa (abs), and k = 1.2: 
 (2) 

 
The exit temperature may be found using the stagnation temperature ratio: 

 (3) 

Using T0 = 3333 K, Maexit = 3.136, and k = 1.2: 
 (4) 

 
The exit density may be found using the ideal gas law: 

 (5) 
Using pexit = 69e3 Pa, Texit = 1680 K, and R = 300 J/(kg·K): 

 (6) 
 

The exit velocity may be found using the speed of sound at the exit and the Mach number definition: 
 (7) 
 (8) 

Using k = 1.2, R = 300 J/(kg·K), Texit = 1680 K, and Maexit = 3.136: 
 (9) 
 (10) 

 
The mass flow rate through the nozzle is: 

 (11) 
Using rexit = 0.1369 kg/m3, Vexit = 2439 m/s, and Aexit = 0.056 m2: 

 (12) 

1
2exit
exit

0

11 Ma
2

k
kp k

p

--æ ö= +ç ÷
è ø

exitMa 3.136\ =

1
2exit
exit

0

11 Ma
2

T k
T

--æ ö= +ç ÷
è ø

exit 1680 KT\ =

exit exit exitp RTr=

3
exit 0.1369 kg/mr\ =

exit exitc kRT=

exit exit exitMaV c=

exit 777.8 m/sc\ =

exit 2439 m/sV\ =

   !m = ρexitVexit Aexit

   ∴ !m = 18.69 kg/s

patm = 101 kPa (abs) 
p0 = 4.2 MPa 
T0 = 3333 K 

Aexit = 0.056 m2 
pexit = 69 kPa (abs) x 

T 

 
(pexit – patm)Aexit 
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The thrust force, T, acting on the stand may be determined using the Linear Momentum Equation in the x-
direction for the control volume shown in the figure. 

 (13) 

where, 

  (steady flow) (14) 

 (15) 

 (16) 

 (17) 
Substitute and simplify. 

 (18) 

 (19) 
Using 18.69 kg/s, Vexit = 2439 m/s, pexit = 69e3 Pa (abs), patm = 101e3 Pa (abs), and Aexit = 0.056 m2: 

 (20) 
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∴T = !mVexit + pexit − patm( )Aexit

  !m =
4.380e4 NT\ =
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Air flows isentropically in a converging-diverging nozzle, with exit area of 0.001 m2.  The nozzle is fed 
from a large plenum where the stagnation conditions are 350 K and 1.0 MPa (abs).  The nozzle has a design 
back pressure of 87.5 kPa (abs) but is operating at a back pressure of 50.0 kPa (abs).  Assuming the flow 
within the nozzle is isentropic, determine: 
a. the exit Mach number, and  
b. the mass flow rate through the nozzle. 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
The exit Mach number may be found using the isentropic pressure ratio at the exit.  Since the back pressure 
is less than the design pressure (underexpanded conditions), the exit pressure will be equal to the design 
pressure. 

 (1) 

Using pE = 87.5 kPa, p0 = 1.0 MPa, and k = 1.4, the exit Mach number is:  MaE = 2.24. 
 
The mass flow rate through the nozzle may be found using the exit conditions.  First, determine the 
temperature at the exit using the adiabatic stagnation temperature ratio: 

 (2) 

Using T0 = 350 K, k = 1.4, and MaE = 2.24, the exit temperature is:  TE = 174.5 K. 
 
 The speed of sound at the exit is: 

 (3) 
Using k = 1.4, R = 287 J/(kg×K), and TE = 174.5 K, the speed of sound at the exit is:  cE = 264.8 m/s. 
 
The velocity of the air at the exit is: 

 (4) 
Using cE = 264.8 m/s and MaE = 2.24:  VE = 593.8 m/s. 
 
The density at the exit may be found using the ideal gas law: 

 (5) 

With pE = 87.5 kPa, R = 287 J/(kg×K), and TE = 174.5 K:  rE = 1.747 kg/m3. 
 
The mass flow rate through the nozzle is: 

 (6) 

Using the previous data, . 
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Oxygen (not air) enters a device with a cross-sectional area of 1 ft2 (refer to this location as section 1) with 
a stagnation temperature of 1000 °R, stagnation pressure of 100 psia, and Mach number of 0.2.  There is no 
heat transfer, work transfer, or losses as the gas passes through the device and expands to a pressure of 14.7 
psia (section 2). 
a. Determine the density, velocity, and mass flow rate at section 1. 
b. Determine the Mach number, temperature, velocity, density, and area at section 2. 
c. What force does the fluid exert on the device? 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
First determine the properties at section 1. 

 (1) 

where 

 (2) 

Using p0 = 100 psia = 14400 lbf/ft2, T0 = 1000 °R, R = 48.291 (ft×lbf)/(lbm×°R) = 1553.7 ft2/(s2×°R), r0 = 
0.298 lbm/ft3.  In addition, with g = 1.395, and Ma1 = 0.2, r1 = 0.292 lbm/ft3. 

 
 (3) 

where, 

 (4) 

Using the given values, T1 = 992.2 °R and V1 = 293.3 ft/s. 
 

 (5) 
Using the given values,  = 85.6 lbm/s. 
 
Now use the isentropic relations to determine the properties at section 2. 

  Þ   (6) 

Using p2 = 14.7 psia and p0 = 100 psia, Ma2 = 1.91. 
 

 (7) 

Using the given data, T2 = 581.2 °R. 
 

 (8) 
Using the given data, V2 = 2144 ft/s. 

0
0

0

p
RT

r =

1
1

2
1 0 1

11 Ma
2

ggr r
--æ ö= +ç ÷

è ø

1 1 1 1 1Ma MaV c RTg= =

1
2

1 0 1
11 Ma
2

T T g --æ ö= +ç ÷
è ø

   !m = ρ1V1A1

  !m

1
2

2 0 2
11 Ma
2

p p
g
gg --æ ö= +ç ÷

è ø

1
1 2

2
2

0

2Ma 1
1

p
p

g
g

g

-ì üé ùæ öï ïê ú= -í ýç ÷ê ú- è øï ïë ûî þ

1
2

2 0 2
11 Ma
2

T T g --æ ö= +ç ÷
è ø

2 2 2 2 2Ma MaV c RTg= =

1 2 

x 

F 

device 

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

C. Wassgren 1204 2024-02-01



  isentropic1D_11 

Page 2 of 2 

 (9) 

Using the given data, r2 = 0.0754 lbm/ft3. 
 

 (10) 

Using the given data, A2 = 0.53 ft2. 
 

To determine the force the fluid exerts on the device, apply the Linear Momentum Equation in the x-
direction to the control volume shown in the figure, 

 (11) 

where, 

  (steady flow) (12) 

 (13) 

 (14) 
 (15) 

 
Substitute and simplify. 

 

 (16) 
Substitute the given values to find F = -7950 lbf.  Note that this is the force that the device exerts on the 
fluid.  Hence, the force the fluid exerts on the device is 7950 lbf acting in the +x-direction. 

2
2

2

p
RT

r =

   
!m = ρ2V2 A2 ⇒ A2 =

!m
ρ2V2
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CV CS

x x B x S x
d u dV u d F F
dt

r r+ × = +ò ò u A

CV
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d u dV
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r =ò
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CS
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, 0B xF =

, 1 1 2 2S xF F p A p A= + -
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F = !m V2 −V1( )− p1A1 + p2 A
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The Concorde aircraft flies at Ma»2.3 at 11 km standard altitude.  Estimate the temperature in °C at the 
front stagnation point.  At what Mach number would it have a front stagnation point temperature of 450 
°C? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
The temperature at the stagnation point is determined using: 

 (1) 

where 
g = 1.4 
Ma∞ = 2.3 
T∞ = 217 K (from standard atmosphere tables at an altitude of 11 km) 
Þ T0 = 447 K = 174 °C 
 

For the next part of the problem, re-arrange Eqn. (1): 

 (2) 

Using the given data: 
g = 1.4 
T∞ = 217 K  
T0 = 450 °C = 723 K 
Þ Ma∞ = 3.4 
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A steady flow of air passes through a converging nozzle.  At the nozzle inlet, the static pressure and 
temperature are p1 = 150 kPa (abs), T1 = 500 K, and V1 = 150 m/s.  At the nozzle exit, p2 = 98.32 kPa (abs), 
T2 = 453.2 K, and V2 = 341.4 m/s.  Assume steady, uniform flow, and that the air behaves as a perfect gas 
with g = 1.4, R = 287 J/(kg×K), and cp = 1005 J/(kg×K). 
a. Is the flow through the nozzle adiabatic? 
b. Is the flow through the nozzle isentropic? 
c. Is the flow through the nozzle frictionless? 
Support all of your answers. 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
If the flow is adiabatic then the stagnation temperature will remain constant, i.e., T02 = T01, where: 

 (1) 

Using the given data: 
T1 = 500 K 
V1 = 150 m/s 
T2 = 453.2 K 
V2 = 341.4 m/s 
cp = 1005 J/(kg×K) 
Þ T01 = 511.2 K  and T02 = 511.2 K 

Since the stagnation temperatures are equal, the flow must be adiabatic. 
 
If the flow is isentropic, then the stagnation pressure will remain constant, i.e., p02 = p01 (the stagnation 
density will also remain constant, i.e., r02 = r01). 

 (2) 

Using the given data: 
p1 = 150 kPa (abs) 
V1 = 150 m/s 
T1 = 500 K 

Þ  Ma1 = 0.34    where    

p2 = 98.32 kPa (abs) 
V2 = 341.4 m/s 
T2 = 453.2 K 
Þ  Ma2 = 0.80 
Þ p01 = 162.1 kPa (abs) and p02 = 149.9 kPa (abs) 

Since the stagnation pressures are not equal, the flow is not isentropic. 
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Since the flow is adiabatic but non-isentropic, then some other irreversible process must take place.  Two 
common irreversible processes that occur in gas dynamics are frictional effects and shock waves.  Shock 
waves cannot be the source of the entropy since shock waves only occur in supersonic flows and the flow 
in this converging nozzle remains subsonic throughout.  Hence, we can conclude that 
the flow in this nozzle is not frictionless. 
 
 

s 

T 

T1 

T2 

T01 = T02 

p01 p02 

p2 

p1 
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A supersonic wind tunnel test section is designed to have a Mach number of 2.5 at a temperature of 60 °F 
and 5 psia.  The fluid is air.   
a. Determine the required inlet stagnation temperature and pressure.   
b. Calculate the required mass flow rate for a test section area of 2.0 ft2. 
 
 
SOLUTION: 
 
The stagnation properties may be found using the isentropic relations: 

 (1) 

 (2) 

where 
pTS = 5 psia = 720 lbf/ft2 
TTS = (60 + 459) °R = 519 °R 
MaTS = 2.5 
gair = 1.4 
\p0 = 85.4 psia and T0 = 1170 °R 
 

The mass flow rate may be found using: 

 (3) 

where the speed of sound in the test section, cTS, is: 
 (4) 

 
Using the given data: 

Rair = 53.3 (ft×lbf)/(lbm×°R) 
ATS = 2 ft2 
Þ cTS = 1120 ft/s 
rTS = 0.0260 lbm/ft3 

 

1
2
TS

0

11 Ma
2

TSp
p

g
gg --æ ö= +ç ÷

è ø
1

2
TS

0

11 Ma
2

TST
T

g --æ ö= +ç ÷
è ø

   
!mTS = ρTSVTS ATS =

pTS

RTTS

⎛

⎝⎜
⎞

⎠⎟
cTS MaTS( )ATS

TS TSc RTg=

   !mTS = 145 lbm s

T 

s 

T0 

p0 

pTS 

TTS 

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

C. Wassgren 1209 2024-02-01



Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

13.9. Effects of Area Change on Steady, 1D, Isentropic Flow

Mass conservation states that for a steady, 1D, incompressible flow, a decrease in the area will result in an
increase in speed (and visa-versa). This behavior is not necessarily true, however, for a compressible flow as
will be shown in this section.

Consider Conservation of Mass for a steady, 1D flow,

ṁ = ρV A = constant, (13.98)

d(ρV A) = 0, (13.99)

V Adρ+ ρV dA+ ρAdV = 0, (13.100)

dρ

ρ
+
dA

A
+
dV

V
= 0. (13.101)

Notes:

(1) If the flow is incompressible, then dρ = 0 and we see that: dV/V = −dA/A. Thus, if the area
decreases (dA < 0), then the speed must increase (dV > 0).

(2) For a compressible fluid, the density may change so we need an additional relationship between
density and either area or speed to draw any conclusions about how changes in area affect changes
in speed.

Recall that the speed of sound is,

c2 =
∂p

∂ρ

∣∣∣∣
s

. (13.102)

Let’s concern ourselves with an isentropic flow (assume the flow is internally reversible and adiabatic so that
s = constant) so we can re-write this expression as,

dρ =
dp

c2
. (13.103)

We’ll also make use of Bernoulli’s equation (which comes from the Linear Momentum Equation; refer to
Eq. (13.14)),

dp

ρ
+ V dV = 0. (13.104)

Substituting Eqs. (13.103) and (13.104) into (13.101) and simplifying,

1

c2
dp

ρ
+
dA

A
+
dV

V
= 0, (13.105)

− V 2

c2
dV

V
+
dA

A
+
dV

V
= 0, (13.106)(

V 2

c2
− 1

)
dV

V
=
dA

A
, (13.107)

(
Ma2 − 1

) dV
V

=
dA

A
. (13.108)

Note that the trends for pressure and density are opposite to the trends for speed. From Bernoulli’s equation
(Eq. (13.104)),

dp

ρV 2
= −dV

V
, (13.109)

and from Eqs. (13.108) and (13.101),

dρ

ρ
= −Ma2 dV

V
. (13.110)
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Thus,

dV < 0 =⇒ dp > 0 and dρ > 0, (13.111)

dV > 0 =⇒ dp < 0 and dρ < 0. (13.112)

The changes in temperature and Mach number can also be related to changes in the speed. Recall that for
an ideal gas undergoing an isentropic process,

ds = 0 = cv
dT

T
−Rdρ

ρ
, (13.113)

dT

T
=
R

cv

dρ

ρ
, (13.114)

dT

T
= (1− k)Ma2 dV

V
(k > 1). (13.115)

Thus,

dV < 0 =⇒ dT > 0 =⇒ d(Ma) < 0, (13.116)

dV > 0 =⇒ dT < 0 =⇒ d(Ma) > 0. (13.117)

where the change in Mach number is found by considering Ma = V/c = V/
√
kRT .

Let’s interpret Eq. (13.108) more closely. Consider the following cases:

Ma < 1 (subsonic flow):
dA < 0 =⇒ dV > 0 =⇒ d(Ma) > 0 (as A ↓ =⇒ V ↑ and Ma ↑)
dA > 0 =⇒ dV < 0 =⇒ d(Ma) < 0 (as A ↑ =⇒ V ↓ and Ma ↓)

Notes:

(1) A subsonic nozzle should have a decreasing area.
(2) A subsonic diffuser should have an increasing area.
(3) The area-speed relationships for subsonic flow are identical to those for incompressible flow.

Ma > 1 (supersonic flow):
dA < 0 =⇒ dV < 0 =⇒ d(Ma) < 0 (A ↓ =⇒ V ↓ and Ma ↓)
dA > 0 =⇒ dV > 0 =⇒ d(Ma) > 0 (A ↑ =⇒ V ↑ and Ma ↑)

Notes:

(1) A supersonic nozzle should have an increasing area.
(2) A supersonic diffuser should have a decreasing area.
(3) The area-speed relationships for supersonic flow are the opposite to those for subsonic flow.

Ma = 1 (sonic flow):
dA = 0 (sonic conditions must occur at an inflection point in the area)

Based on the previous relationships for subsonic and supersonic flow, the area at which Ma = 1 must be
a minimum. Referring to Figure 13.19, if the flow starts off subsonic and the area is decreasing, then the
flow will accelerate and approach Ma = 1. Similarly, if the flow is initially supersonic, a decreasing area will
decelerate the flow and it will again approach sonic conditions. The Mach number conditions downstream of
the minimum area are ambiguous. In both cases the downstream flow could either be subsonic or supersonic,
depending on the downstream boundary conditions. This topic is addressed in this chapter when discussing
converging-diverging nozzles (Section 13.18).

Notes:
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Figure 13.19. An illustration demonstrating that sonic flow occurs at a minimum area.

(1) Nothing can be said about how the speed changes when the Ma = 1 using Eq. (13.108). The speed
can either decrease, remain constant, or increase. As mentioned in the previous paragraph, the flow
downstream of Ma = 1 depends on the downstream boundary condition.

(2) From Eq. (13.108), a minimum area (dA = 0) does not necessarily imply that the Mach number is
one. It could be that Ma = 1 or simply that the speed doesn’t change (dV = 0). Thus,

Ma = 1 =⇒ minimum area,

minimum area 6=⇒ Ma = 1

(13.118)

(13.119)

Now let’s examine some other consequences resulting from mass conservation. Since the mass flow rate must
remain constant in 1D, steady flow, we can write,

ṁ = ρV A = ρ∗V ∗A∗, (13.120)

where the “∗” quantities are the sonic conditions. Let’s re-arrange this equation and substitute the isentropic
relations derived in the previous section,

A

A∗
=
ρ∗

ρ

V ∗

V
, (13.121)

=
ρ∗

ρ

ρ

ρ0

c∗

cMa
, (13.122)

=
ρ∗

ρ

ρ

ρ0

c∗

c0

c0
c

1

Ma
, (13.123)

where, from the previous section,

ρ∗

ρ0
=

(
1 +

k − 1

2

) 1
1−k

, (13.124)

ρ

ρ0
=

(
1 +

k − 1

2
Ma2

) 1
1−k

, (13.125)

c∗

c0
=

(
1 +

k − 1

2

)− 1
2

, (13.126)

c

c0
=

(
1 +

k − 1

2
Ma2

)− 1
2

. (13.127)

Substituting and simplifying (the algebra isn’t shown here),

A

A∗
=

1

Ma

(
1 + k−1

2 Ma2

1 + k−1
2

) k+1
2(k−1)

. (13.128)

Notes:
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(1) Equation (13.128) tells us what area we would need to contract to to get sonic conditions (Ma =
1, A = A∗) given the current Mach number, Ma, and area, A.

(2) We could also interpret Eq. (13.128) as saying, given the area for sonic conditions, A∗, the Mach
number, Ma, and area, A, are directly related for an isentropic flow. Recall that this relationship
results from Conservation of Mass and the assumption of an isentropic flow.

(3) Values for A/A∗ as a function of Mach number are typically included in compressible flow tables
found in the appendices of most fluid mechanics textbooks.

(4) What happens if we constrict the area to a value less than A∗? For a subsonic flow, the new area
information can propagate upstream and downstream and, as a result, the conditions everywhere
change (i.e., the Mach numbers change according to Eq. (13.128) where the new area would be A∗).
If the upstream flow is supersonic, then some non-isentropic process must occur upstream (a shock
wave) so that the constricted area is no longer less than A∗.

(5) A plot of Eq. (13.128) is shown in Figure 13.20. Two important features can be observed in the
plot. First, the minimum value of A/A∗ is equal to one and this minimum occurs at Ma = 1, as
expected. Second, there are two values of Mach number for a given value of A/A∗ – a subsonic
value and a supersonic value.

Figure 13.20. A plot of the sonic area ratio A/A∗ as a function of Mach number for k = 1.4.

13.10. Choked Flow

Consider the flow of a compressible fluid from a large reservoir into the surroundings, as shown in Figure 13.21.
Let the pressure of the surroundings, called the back pressure, pB , be controllable.

When pB = p0 there will be no flow from the reservoir since there is no driving pressure gradient. When
the back pressure, pB , is decreased, a pressure wave, i.e., a sound wave, propagates through the fluid in the
nozzle and into the tank (Figure 13.22). Thus, the fluid in the tank “is informed” that the pressure outside
has been lowered and a pressure gradient is established resulting in fluid being pushed out of the tank.
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Figure 13.21. An illustration showing flow from a large tank through a converging nozzle
into the surroundings.

Figure 13.22. An illustration showing sound waves propagating upstream from the sur-
roundings into the tank.

Thus, when pB < p0, the fluid will begin to flow out of the reservoir. Furthermore, as pB/p0 ↓, Vth ↑, and
the mass flow rate increases. Note that the flow through the nozzle will be subsonic (Ma < 1) since the
fluid starts from stagnation conditions and doesn’t pass through a minimum area until reaching the throat.
Additionally, since the flow is subsonic, the pressure at the throat will be the same as the back pressure, i.e.,
pth = pB . That this is so can be seen by noting that if pth > pB , then the flow would expand upon leaving
the nozzle and as a result, the jet velocity would decrease and the pressure would increase. Thus, the jet
pressure would diverge from the surrounding pressure. But the jet must eventually reach the surrounding
pressure so the assumption that pth > pB must be incorrect. A similar argument can be made for pth < pB .

As we continue to decrease pB/p0, we’ll eventually reach a state where the velocity at the throat will reach
Ma = 1 (Vth = V ∗ = c∗). The pressure ratio at the throat will then be,

pth
p0

=
pB
p0

=
p∗

p0
=

(
1 +

k − 1

2

) k
1−k

, (13.129)

and the fluid speed will be,

Vth = V ∗ = c∗ =
√
kRT ∗. (13.130)

Any further decrease in pB has no effect on the speed at the throat since the pressure information can no
longer propagate upstream into the reservoir. The fluid speed out of the tank is the same as the speed of
the sound wave into the tank so the pressure information can’t propagate upstream of the throat. Thus, all
flow conditions upstream of the throat will remain unchanged. As a result, we can no longer increase the
mass flow rate from the tank by changing the back pressure. This condition is referred to as choked flow
conditions. The maximum, or choked, mass flow rate will be the same as the mass flow rate at the throat
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where sonic conditions occur,

ṁchoked = ρ∗V ∗A∗ =
p∗

RT ∗
V ∗A∗, (13.131)

= p∗
√

k

RT ∗
A∗, (13.132)

where Eq. (13.130) has been used. Substituting the following relations,

p∗ =
p∗

p0
p0 =

(
1 +

k − 1

2

) k
1−k

p0, (13.133)

T ∗ =
T ∗

T0
T0 =

(
1 +

k − 1

2

)−1

T0, (13.134)

(13.135)

and simplifying results in,

ṁchoked =

(
1 +

k − 1

2

) 1+k
2(1−k)

p0

√
k

RT0
A∗ . (13.136)

Notes:

(1) The choked mass flow rate (Eq. (13.136)) is the maximum mass flow rate that can be achieved from
the reservoir.

(2) A quick check to see if the flow will be choked or not for the converging nozzle case is to check if
the back pressure is less than or equal to the sonic pressure, i.e.,

If
pB
p0
≤ p∗

p0
=

(
1 +

k − 1

2

) k
1−k

, then the flow will be choked and
pth
p0

=
p∗

p0
. (13.137)

Note that the criterion for checking for choked flow in a converging-diverging nozzle is different, as is
discussed in Section 13.18. The key concept to keep in mind is, if the flow anywhere in the channel
is equal to or greater than the speed of sound, then sound waves cannot propagate upstream into
the reservoir.

(3) What happens outside of the nozzle if the back pressure is less than the sonic pressure? In that
case the flow must eventually adjust to the surrounding pressure. It does so by expanding in a two-
dimensional process known as an expansion fan, a topic addressed in Section 13.24 (Figure 13.23).

Figure 13.23. Illustration and photograph showing an expansion fan downstream of the
exit of a converging nozzle. For this case, the back pressure is less than the sonic pressure
and, thus, the flow rapidly expands from sonic conditions at the throat to the surrounding
(lower) back pressure after leaving the nozzle.
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Figure 13.24. Plots showing how mass flow rate in a converging nozzle varies with the back
pressure to stagnation pressure ratio (upper left), throat pressure ratio varies with the back
pressure ratio (upper right), and pressure ratio within the nozzle to the position (bottom).

(4) The previously described processes are sketched in the plots shown in Figure 13.24. The upper left
plot shows that, as the back pressure ratio decreases from one, the mass flow rate decreases until
the back pressure reaches sonic conditions. At this point the mass flow rate equals, and remains, at
the choked mass flow rate since further decreases in back pressure can’t propagate upstream of the
throat, where the Mach number equals one.

The upper right plot shows that the pressure at the throat equals the back pressure as the back
pressure decreases (since the flow at the nozzle exit is subsonic) until the back pressure reaches the
sonic pressure. At this point the Mach number at the nozzle exit equals one. Further decreases in
the back pressure no longer change the conditions at or upstream of the throat since the pressure
information can’t propagate upstream of where the Mach number equals one (at the throat).

The bottom plot shows the pressure profile within the (converging) nozzle. As the back pressure
decreases, the pressure decreases moving toward the throat since for a subsonic flow, a decreasing
area results in an increasing speed and, from Bernoulli’s equation, a decreasing pressure. At the
nozzle exit the exit pressure equals the back pressure when the exit flow is subsonic. When the
back pressure is equal to the sonic pressure, the pressure at the nozzle exit is also equal to the sonic
pressure and the flow becomes choked. Further decreases in the back pressure aren’t propagated
upstream of the throat (where the Mach number is one) and, thus, the flow in the converging section
remains unchanged. However, once the flow leaves the nozzle exit, it must expand in order to come
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into equilibrium with the smaller back pressure. It does so through a phenomenon known as an
expansion fan, which is a topic covered in Section 13.24.
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A CO2 cartridge is used to propel a small rocket cart.  Compressed CO2, stored at a pressure of 41.2 MPa 
(abs) and a temperature of 20 °C, is expanded through a smoothly contoured converging nozzle with a 
throat area of 0.13 cm2.  Assume that the cartridge is well insulated and that the pressure surrounding the 
cartridge is 101 kPa (abs).  For the given conditions, 
a. Calculate the pressure at the nozzle throat.   
b. Evaluate the mass flow rate of carbon dioxide through the nozzle.   
c. Determine the force, F, required to hold the cart stationary. 
d. Sketch the process on a T-s diagram. 
e. For what range of cartridge pressures will the flow through the nozzle be choked? 
f. Will the mass flow rate from the cartridge remain constant for the range of cartridge pressures you 

found in part (e)?  Explain your answer. 
g. Write down (but do not solve) the differential equations describing how the pressure within the tank 

varies with time while the flow is choked. 
 
Note:  For CO2, the ideal gas constant is 189 J/(kg-K) and the specific heat ratio is 1.30. 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
First check to see if the flow is choked upon leaving the cartridge. 

 (1) 

Since 

  Þ  The flow is choked! (2) 

Because the flow is choked, the throat (exit) pressure will be the sonic pressure: 
 (3) 

 (4) 
 

The mass flow rate will be the choked flow mass flow rate: 

 (5) 

 (6) 
where 

g = 1.3 
p0 = 41.2 MPa 
R = 189 J/(kg×K) 
T0 = 20 °C = 293 K 
A* = 0.13 cm2 = 1.3*10-5 m2 (The throat area is the sonic area since the flow is choked there.) 
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The force required to hold the cart stationary may be found using the linear momentum equation in the x-
direction applied to the control volume shown below using a fixed frame of reference.   
 
 
 
 
 
 
 
  

 
 

 (7) 

where 

  (The CV is stationary so the fluid essentially has zero velocity in the CV.) (8) 

 (9) 

  (No gravity in the X-direction.) (10) 

  (Need to include pressure forces in the surface force balance.) (11) 
Substitute and simplify. 

 (12) 

 (13) 
 (14) 

where 
 = 1.52 kg/s (from part b) 

pE = 22.5*106 Pa (from part a) 
patm = 101*103 Pa 
AE = 0.13 cm2 = 1.3*10-5 m2 

and 
  (using g = 1.3, R = 189 J/(kg×K), and (15) 

 (16) 

 
The T-s diagram for the process is: 

 
 
 
 
 
 
 
 
 
 
 
 

( )rel , ,
CV CS

X X B X S X
d u dV u d F F
dt

r r+ × = +ò ò u A

CV

0X
d u dV
dt

r »ò
( )rel

CS
X Eu d V mr × =ò u A !

, 0B XF =

( ), atmS X E EF F p p A= + -

( )atmE E EV m F p p A= + -!

( )atmE E EF V m p p A= + -!

671 NF\ =

m!

!
1

Ma 250 m sE E E EV c RTg
=

= = =

( ) ( )( )
11*

0 21 293 K 0.8696 255 KET T T g --= = + = =

CO2 
41.2 MPa (abs) 
20 °C 
  

surrounding pressure = 
101 kPa (abs) 

 
F 

throat area = 
0.13 cm2 

X 

Y 

s 

T 

T* 

T0 

p0 

p* 

Tsurr 

psurr 

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

Video solution: https://www.youtube.com/watch?v=yCge25EldjY

C. Wassgren 1219 2024-02-01

https://www.youtube.com/watch?v=yCge25EldjY


  comp_02 

Page 3 of 3 

The flow will be choked when the back pressure is less than or equal to the sonic pressure: 

  (using g = 1.3) (17) 

  (using pback = 101 kPa) (18) 
 

The mass flow rate from the cartridge will not, in general, be constant since the choked flow mass flow rate 
depends both on the stagnation pressure and stagnation temperature, i.e. 

 (19) 

The stagnation pressure and temperature in the cartridge will vary in time (as shown below). 
 

From conservation of mass on the previously shown control volume: 

 (20) 

 
From conservation of energy on the same control volume: 

  (the cartridge is insulated so there is no heat transfer) (21) 

where perfect gas behavior has been assumed and 

 (22) 

 (23) 
 
Equations (19) - (23) present a coupled set of ordinary differential equations which would be solved 
numerically subject to the initial conditions: 

T0(t = 0) = 293 K (24) 
M0(t = 0) = r0V0 = p0V0/(RT0) (25) 
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Air flows isentropically through a converging nozzle.  At a section where the nozzle area is 0.013 ft2, the 
local pressure, temperature, and Mach number are 60 psia, 40 °F, and 0.52, respectively.  The back pressure 
is 30 psia.  Determine: 
a. the Mach number at the throat, 
b. the mass flow rate, and  
c. the throat area. 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
First determine if the flow is choked by checking the pressure ratio at the exit. 

  Þ  p0 = 72.15 psia (1) 

using p = 60 psia, g = 1.4, and Ma = 0.52. 
 

  Þ  The flow is choked! (2) 

 
Since the flow is choked, MaT = 1 and the throat area will equal the sonic area: 

  Þ  AT = A* = 9.97*10-3 ft2 (3) 

where A = 0.013 ft2, g = 1.4, and Ma = 0.52. 
 
The mass flow rate will be the choked mass flow rate: 

  Þ   lbm/s (4) 

where g = 1.4, R = 53.3 (lbf×ft)/(lbm×°R), p0 = 72.15 psia = 1.04*104 lbf/ft2, A* = 9.97*10-3 ft2 and 

  Þ  T0 = 527 °R  (Ma = 0.52 and T = 500 °R) (5) 
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In wind-tunnel testing near Ma = 1, a small area decrease caused by model blockage can be important.  
Suppose the test section area is 1 m2, with unblocked test conditions Ma = 1.10 and T = 20 °C.   
a. What model area will first cause the test section to choke?   
b. If the model cross section is 0.004 m2 (0.4 % blockage), what percentage change in test section 

velocity results? 
 
 
SOLUTION: 
 
 
 
 
 
 
 
First determine the area when the test section will choke.  This area will be the sonic area. 

 (1) 

Using ATS = 1 m2, Ma = 1.10, and gair = 1.4, A* = 0.992 m2.  Thus, the model area that will cause the test 
section to choke is Amodel = ATS – A* = (1 – 0.992) m2 = 0.008 m2. 
 
Using Eqn. (1) with A = (1 – 0.004) m2 = 0.996 m2 and A* = 0.992 m2, the Mach number in the test section 
with the blockage is Ma = 1.07.   
 
The velocity corresponding to a given Mach number is given by: 

 (2) 
where the local temperature is found using: 

 (3) 

 
The percent change in the test section velocity is: 

  

 (4) 

Using Maw/ blockage = 1.07, Maw/o blockage = 1.10, and gair = 1.4, % change = -2.2%. 
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A tank having a volume of 100 ft3 is initially filled with air at 100 psia and 140 °F.  Suddenly the air is 
allowed to escape to the atmosphere (14.7 psia) through a frictionless converging nozzle of 1 in. diameter.  
The tank is to be considered as insulated perfectly against heat conduction and as having no heat capacity.  
Plot the pressure in the tank as a function of time. 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
First determine the range of tank stagnation pressures that will result in choked flow from the tank. 

For , the flow will be choked. (1) 

With pB = 14.7 psia, the flow will be choked when p0 ≥ 27.8 psia.  Thus, the flow from the tank is initially 
choked. 
 
The rate of change of mass within the tank can be found from conservation of mass applied to the control 
volume shown in the figure. 

 

Þ  (2) 

where  is the mass flow rate leaving the tank. 
 
The mass flow rate for a choked flow is given by: 

 (3) 

where the pressure p0 and T0 are the pressure and temperature inside the tank and A* is the area of the 
nozzle exit area (for choked flow conditions, the nozzle exit area is the sonic area).  Note that the derivation 
for Eq. (3) assumes 1D, steady flow.  In this problem we’ll assume that the steady form of the isentropic 
flow relations can be used; however, unsteady effects will still be retained for determining the time rate of 
change of properties within the tank.  The pressure within the tank can be related to the temperature and 
mass within the tank using the ideal gas law. 

 (4) 

Hence, Eqn. (3) becomes: 

 (5) 
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When the flow is unchoked, the mass flow rate can be found from the conditions at the nozzle exit. 

 

 (6) 

 
The Mach number at the exit can be found by combining Eq. (4) with: 

  where pE = pB since the exit flow is subsonic (7) 

to get: 

 (8) 

 
To determine the temperature in the tank, apply conservation of energy to the control volume shown in the 
figure. 

 

Þ    (where u = cVT is the specific internal energy) 

  (where h0,E = cPTE + ½VE2)  

  (using Eqn. (2)) 

  (using gR = (g-1)cP) 
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To solve for the tank pressure (p0) as a function of time, use the following algorithm. 
1. Determine the mass flow rate at time step n. 

a. If p0 ≥ 27.8 psia: 

 (10) 

b. If p0 < 27.8 psia: 

 (11) 

where 

 (12) 

 
 

2. Determine the change in the tank temperature. 

  (this is a simple Euler integration scheme) (13) 

where Dt is the time step (assumed sufficiently small for stability and accuracy) and 

 (14) 

 
3. Determine the new mass within the tank. 

 (15) 

where 

 (16) 

and  is the mass flow rate found in step 1. 

 
4. Determine the new pressure in the tank. 

 (17) 

 
5. Repeat the steps 1-5 until the tank pressure equals the back pressure, i.e., p0 = pB. 
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Use the following given data: 

p0(t = 0) = 100 psia 
T0(t = 0) = 140 °F = 500 °R 
V  = 100 ft3 
AE  = 5.45e-3 ft2 
pB  = 14.7 psia 
gair  = 1.4 
Rair  = 53.3 (lbf×ft)/(lbm×°R) 
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The large compressed-air tank shown in the figure exhausts from a nozzle at an exit velocity of Ve = 235 
m/s.  Assuming isentropic flow, compute: 
a. the pressure in the tank  
b. the exit Mach number 
c. Now consider a case where the exit velocity is not given and the tank pressure is 300 kPa (abs). For 

these conditions, determine the exit flow speed, VE. 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
SOLUTION: 
 
First determine the exit Mach number using: 

 (1) 

The exit speed of sound, assuming ideal gas behavior, is given by: 
 (2) 

where, for an adiabatic flow: 

 (3) 

Using the given data: 
g = 1.4 
R = 287 J/(kg×K) 
T0 = 30 °C = 303 K 
Ve = 235 m/s 
cp = 1005 J/(kg×K) 
Þ Te  = 276 K 
Þ ce  = 333 m/s 
Þ Mae  = 0.71 
 

Since the exit Mach number is subsonic, the exit pressure will be equal to the back pressure, i.e. 
pe = patm = 101 kPa (abs) 
 

Assuming isentropic flow: 

 (4) 

Using the given data: 
Þ p0  = 141 kPa (abs) 
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Now consider the case where the exit velocity is not given, but the tank pressure is given as p0 = 300 kPa 
(abs).  First determine whether or not the flow is choked.  For a converging nozzle, the flow is choked if, 

 (5) 

Using the given data (p0 = 300 kPa (abs) and pB = 101 kPa (abs)), pB/p0 = 0.3367.  Thus, the flow is choked 
for the given conditions and MaE = 1. 
 
Since the exit is at sonic conditions, the speed of the flow there is, 

 (6) 

where 

 (7) 

Using the given data (T0 = 303 K, k = 1.4, R = 287 J/(kg.K)), T* = 253 K, and VE = 319 m/s. 
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Air flows isentropically through a converging nozzle.  At a section where the nozzle area is 0.013 ft2, the 
local pressure, temperature, and Mach number are 60 psia, 40 °F, and 0.52, respectively.  The back pressure 
is 30 psia.  The Mach number at the exit, the mass flow rate, and the exit area are to be determined. 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
First determine whether or not the flow is choked by checking the pressure ratio at the exit.  In order to do 
this, we must first determine the flow stagnation pressure (we’ll also calculate the stagnation pressure while 
we’re at it).  Note that the flow remains subsonic in the nozzle (subsonic Mach number and no minimum 
area) so that there will be no shock waves in the flow to modify the flow’s stagnation pressure. 

 (1) 

 (2) 

Using the given data: 
p1 = 60 psia 
T1 = 500 °R 
g = 1.4 
Ma1 = 0.52 
Þ p0 = 72.2 psia 
Þ T0 = 527 °R 

 
From the ideal gas law: 

  (where R = 53.3 (ft×lbf)/(lbm×°R) = 1716 ft2/(s2×°R)) (3) 

Þ r0 = 1.21*10-3 slug/ft3 
 
 

Now check to see if pb/p0 < p*/p0. 

   (4) 

Þ  The flow must be sonic at the exit, i.e., Mae = 1! 
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Since the flow is sonic at the exit, we know that the exit area must be the sonic area. 

 (5) 

Using the given data: 
g = 1.4 
A1 = 0.013 ft2 
Ma1 = 0.52 

 Þ  Ae = 9.97*10-3 ft2 

 
Since the flow is choked, the mass flow rate is: 

 (6) 

g = 1.4 
R  =  53.3 (ft×lbf)/(lbm×°R) = 1716 ft2/(s2×°R) 
Ae = 9.97*10-3 ft2 ( = A*) 
p0 = 72.2 psia 
T0 = 527 °R 
Þ   

 
We could have also found the mass flow rate using: 
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A fixed amount of gaseous fuel is to be fed steadily from a heated tank to the atmosphere through a 
converging nozzle.  The temperature of fuel in the tank remains constant.  A young engineer comes to you 
with the following scheme:  “Pressurize the tank to a pressure considerably higher than atmospheric 
pressure.  At the fuel nozzle outlet, the Mach number will then be equal to one.  As long as the Mach 
number is one at the nozzle outlet, we will have the same mass flow rate.”  Do you agree with the young 
engineer?  Explain your answer. 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
If p0 >> patm, then the flow will be choked at the nozzle exit.  Although the Mach number at the exit plane 
will remain sonic (i.e., MaE = 1) while the flow is choked, the mass flow rate will not remain constant since 
the stagnation pressure within the tank will decrease as mass leaves the tank.  Over time, the mass flow rate 
from the tank will decrease. 

 (1) 

In this expression, A* is the throat area (while the flow is choked) and T0 remains constant, as given in the 
problem statement.  However, the stagnation pressure decreases since, 

. (2) 

From Conservation of Mass applied to the tank, 

 (3) 

Thus, as mass escapes from the tank, the tank mass decreases (Eq. (3)) and, from Eq. (2), the stagnation 
pressure decreases.  Thus, from Eq. (1), the mass flow rate decreases. 
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A large tank contains 0.7 MPa (abs), 27 °C air.  The tank feeds a converging-diverging nozzle with a throat area of 
6.45*10-4 m2.  At a particular point in the nozzle, the Mach number is 2. 
 
a. What is the area at that point? 
b. What is the mass flow rate at that point? 
 
 
SOLUTION: 
 
Use the isentropic relations to determine the downstream Mach number. 

  Þ  A = 1.09*10-3 m2 (1) 

where k = 1.4, Ma = 2, and A* = 6.45*10-4 m2 (the throat must be at sonic conditions since the flow goes from 
stagnation conditions to supersonic conditions). 
 
Since the flow is sonic at the throat, the mass flow rate is choked: 

  Þ  1.05 kg/s (2) 

where R = 287 J/(kg.K). 
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A large tank supplies helium through a converging-diverging nozzle to the atmosphere.  Pressure in the 
tank remains constant at 8.00 MPa (abs) and temperature remains constant at 1000 K.  There are no shock 
waves in the nozzle.  The nozzle is designed to discharge at an exit Mach number of 3.5.  The exit area of 
the nozzle is 100 mm2.  Note that for helium the specific heat ratio is 1.66 and the ideal gas constant is 
2077 J/(kg×K).  
 
a. Determine the pressure at the exit of the converging/diverging nozzle.  
b. Determine the mass flow rate through the device. 
c. Sketch the flow process from the tank through the converging/diverging nozzle to the exit on a T-s 

diagram. 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 

  Þ  pe = 137 kPa (1) 

  Þ Te = 198 K (2) 

  Þ  re = 0.332 kg/m3 (3) 

  Þ  Ve = 2890 m/s (4) 

  Þ   = 9.59e-6 kg/s (5) 
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A rocket engine can be modeled as a reservoir of gas at high temperature feeding gas to a 
convergent/divergent nozzle as shown in the figure below. 
 
 
 
 
 
 
 
 
 
 
 
For the questions below, assume the following: 

1. The temperature in the reservoir is 3000 K. 
2. The exhaust gases have the same properties as air:  g=1.4, R=287 J/(kg×K). 
3. The exit Mach number is 2.5. 
4. The rocket operates at design conditions (no shock waves or expansion waves present) where the 

surrounding pressure is 1*105 Pa (abs). 
5. The area of the exit is 1*10-4 m2. 
 

Determine: 
a. the temperature of the flow at the exit, 
b. the pressure in the reservoir, 
c. the throat area, 
d. the mass flow rate out of the rocket, 
e. the thrust produced by the rocket, and 
f. sketch the process on a T-s diagram. 
 
 
SOLUTION: 
 
First determine the exit temperature using the adiabatic flow relation for stagnation temperature: 

  Þ  TE = 1333 K (1) 

using T0 = 3000 K, g = 1.4, and MaE = 2.5. 
 
Now determine the pressure in the reservoir using the isentropic stagnation pressure relation: 

  Þ  p0 = 1.709*106 Pa (abs) (2) 

where pE = pB = 1*105 Pa (since the nozzle operates at design conditions, the exit pressure is equal to the 
back pressure), g = 1.4, and MaE = 2.5. 
 
The throat area may be found using the isentropic sonic area ratio: 

  Þ A* = AT = 3.79*10-5 m2 (3) 

where AE = 1*10-4 m2, g = 1.4, and MaE = 2.5.  Note that since the flow starts from stagnation conditions 
and is supersonic at the exit, the throat area must also be the sonic area. 
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The mass flow rate may be found by considering the conditions at the exit: 

  Þ   kg/s (4) 

where pE = pB = 1*105 Pa (abs), R = 287 J/(kg×K), TE = 1333 K, MaE = 2.5, g = 1.4, and AE = 1.0*10-4 m2. 
 
The thrust on the rocket may be found by applying the linear momentum equation in the x-direction on the 
control volume shown below. 
 
 
 
 
 
 
 
 
 
 
 
 

 (5) 

where 

  (most of the rocket mass inside the CV remains stationary) (6) 

 (7) 

 (8) 

 (9) 
However, since the rocket is operating at design conditions, pE = pB = patm. 
 

Substitute and simplify.  
  Þ  F = 87.4 N (10) 

where  kg/s, MaE = 2.5, g = 1.4, R = 287 J/(kg×K), and TE = 1333 K. 
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Air, at a stagnation pressure of 7.20 MPa (abs) and a stagnation temperature of 1100 K, flows isentropically 
through a converging-diverging nozzle having a throat area of 0.01 m2.  Determine the speed and the mass 
flow rate at the downstream section where the Mach number is 4.0. 
 
 
SOLUTION: 
 
 
 
 
 
 
 
At the section where Ma = 4.0: 

  Þ  T = 261.9 K (1) 

where g = 1.4, T0 = 1100 K, and Ma = 4.0. 
 
The velocity at the section may be found from the Mach number and speed of sound. 

  Þ  V = 1298 m/s (2) 
where R = 287 J/(kg×K). 
 
That mass flow rate is given by: 

  Þ   (3) 

where 

  Þ  p = 4.742*104 Pa  (using p0 = 7.20 MPa) (4) 

  Þ  A = 0.107 m2  (using A* = At = 0.01 m2) (5) 

 
An alternate method for determine the mass flow rate is to use the choked flow mass flow rate expression. 

  Þ   (Same result as before, within numerical error!) (6) 
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Steady, 1D, Isentropic Flow of an Imperfect Gas 
 
Imperfect gas effects become significant when dealing with high temperature and high Mach number flows.  
Examples of imperfect gas effects include: 
1. variations in specific heats due to the activation of intra-molecular energy modes (i.e., rotational, 

vibration, electronic modes), 
2. dissociation of molecules, e.g., 

for T > 2000 K, 2 2O O→  and 
for T > 4000 K,  2 2N N→  

3. ionization of atoms, e.g. 
for T > 9000 K, O O e+ −→ +  and N N e+ −→ +  

4. chemical reactions. 
Non-equilibrium effects can also be significant at high Mach numbers. 
 
In these notes, we’ll focus only on the variations in specific heats due to temperature.   
 
Recall that the governing equations are: 

COM: ( ) 0d VAρ =  (56) 
LME: 0dp VdVρ+ =  (57) 
COE: 0dh VdV+ =  (58) 
2nd Law: 0ds =  (59) 

 
Notes: 
1. These equations are independent of the type of fluid being considered. 
 
2. The COE and LME statements are equivalent for an isentropic flow.  Recall that combining the first 

and second laws for a simple, compressible system with reversible pdv work gives: 

( ) ( )
du Tds pdv

du d pv Tds pdv d pv
dh Tds vdp

= −
+ = − +

= +

 (60) 

but since ds = 0 and v = 1/ρ: 
dpdh
ρ

=  (61) 

Substituting into COE gives: 
0dp VdVρ+ =  (62) 

This is the same relation that we had from the LME!  Hence, the COE and LME expressions are 
equivalent. 

 
3. Equations (56)-(59) (three equations, recall from note 2 that Eqs. (57) and (58) are equivalent) have a 

total of five unknowns (ρ, p, V, h, s).  Note that area, A, is typically a known quantity.  We need two 
additional extra relations to close the system of equations.  These relations are the equations of state for 
the substance of interest. 

( )
( )
,

,

p s

h h p s

ρ ρ=

=
 

The equations of state may be given in equation, tabular, or graphical form.  To solve the system of 
equations, one must generally employ an appropriate numerical scheme. 
a. Note that only two independent properties are required to fix the state of a simple compressible 

system at equilibrium. 
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Chapter 13:  Gas Dynamics 
 

4. This section remains incomplete. 
Empirical specific heat data is often expressed in terms of curve fits.  Exponential and polynomial 
curve fits are common.  For example, Zucrow and Hoffman use a 4th-order polynomial curve fit: 

2 3 4pc a bT cT dT eT
R

= + + + +  (63) 

where [T] = K and the constants a – e are given in the table below for various substances and for 
various temperature ranges. 

 
gas a b*103 c*106 d*109 e*1012 h0*10-3 s00 T range [K] 

O2 
3.62560 -1.87822 7.05545 -6.76351 2.15560 -1.04752 4.30528 300-1000 
3.62195 0.736183 -0.196522 0.0362016 -0.00289456 -1.120198 3.61510 1000-5000 

N2 
3.67483 -1.20815 2.32401 -0.632176 -0.225773 -1.06116 2.35804 300-1000 
2.89632 1.51549 -0.572353 0.0998074 -0.00652236 -0.905862 6.16151 1000-5000 

CO 3.71009 -1.61910 3.69236 -2.03197 0.239533 -14.3563 2.95554 300-1000 
2.98407 1.48914 -0.578997 0.103646 -0.00693536 -14.2452 6.34792 1000-5000 

CO2 
2.40078 8.73510 -6.60709 2.00219 0.000632740 -48.3775 9.69515 300-1000 
4.46080 3.09817 -1.23926 0.227413 -0.0155260 -48.9614 -0.986360 1000-5000 

A 2.50000 0 0 0 0 -0.745375 4.36600 300-1000 
2.50000 0 0 0 0 -0.745375 4.36600 1000-5000 

H2 
3.05745 2.67652 -5.80992 5.52104 -1.81227 -0.988905 -2.29971 300-1000 
3.10019 0.511195 0.0526442 -0.0349100 0.00369453 -0.877380 -1.96294 1000-5000 

H2O 4.07013 -1.10845 4.15212 -2.96374 0.807021 -30.2797 -0.322700 300-1000 
2.71676 2.94514 -0.802243 0.102267 -0.00484721 -29.9058 6.63057 1000-5000 

CH4 
3.82619 -3.97946 24.5583 -22.7329 6.96270 -10.1450 0.866901 300-1000 
1.50271 10.4168 -3.91815 0.677779 -0.0442837 -9.97871 10.7071 1000-5000 

C2H4 
1.42568 11.3831 7.98900 -16.2537 6.74913 5.33708 14.6218 300-1000 
3.45522 11.4918 -4.36518 0.761551 -0.0501232 4.47731 2.69879 1000-5000 

 
a. Note that table also includes data for calculating the specific enthalpy, h, as a function of 

temperature: 

0

T

p
T

h c dT= ∫  

2 3 4 51 1 1 1
0 2 3 4 5

h h aT bT cT dT eT
R
= + + + + +  (64) 

where h = h0R when T = T0. 
 

b. The table also includes data for calculating s0, a quantity that will be discussed in the following 
note (note #5). 

0

0
T

p
T

dTs c
T

= ∫  

0
0 2 3 41 1 1
0 2 3 4lns s a T bT cT dT eT

R
= + + + + +  (65) 

where s0 = s0
0 R when T = T0. 

 
c. The specific internal energy can be determined using the definition for enthalpy and the ideal gas 

law: 
u h pv h RT= − = −  (66) 
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d. The specific heat at constant volume, cv, and the specific heat ratio, γ, are determined from: 
v pc c R= −  (67) 

p

v

c
c

γ =  (68) 

 
e. Include calculations for dry air – incomplete.  
 

The composition of clean dry atmospheric air near sea level. 
Component % by Volume 

N2 78.084 
O2 20.9476 
A 0.934 

CO2 0.0314 
H2 0.00005 
Ne 0.001818 
Kr 0.000114 
Xe 0.0000087 
He 0.000524 

CH4 0.0002 
NO 0.00005 

 
f. Alternate cp expressions for monatomic and diatomic molecules – incomplete. 

 
5. In order to simplify matters when dealing with isentropic flow of an ideal, but imperfect gas (one 

where the specific heats vary with temperature), we’ll define some additional useful properties.   
 

Note that from Eq. (60): 
dh dpds
T Tρ

= −  (69) 

For an ideal gas (dh = cpdT and p = ρRT): 

p
dT dpds c R
T p

= −  (70) 

Integrating and using some reference state as the lower limit of integration gives: 
2

1

2
2 1

1
ln

T

p
T

pdTs s c R
T p

⎛ ⎞
− = − ⎜ ⎟

⎝ ⎠∫  (71) 

Define s0: 

ref

0
T

p
T

dTs c
T

= ∫  (72) 

where Tref is some reference state so that equation can be written as: 

0 0 2
2 1 2 1

1
ln

ps s s s R
p

⎛ ⎞
− = − − ⎜ ⎟

⎝ ⎠
 (73) 

Note that Eq. (72) is a function only of temperature.  Tabulated values of s0 are commonly given in the 
tables of most thermodynamics or gas dynamics texts. 

 
For an isentropic process, Eq. (73) can be written as: 

0 0
2 2 1

1
exp

p s s
p R

⎛ ⎞−
= ⎜ ⎟⎜ ⎟⎝ ⎠

 (74) 
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If we define state 1 as the reference state, then Eq. (74) simplifies to: 
0

ref
expr

p sp
p R

⎛ ⎞
= = ⎜ ⎟⎜ ⎟⎝ ⎠

 (75) 

where pr is known as the relative pressure.  Tabulated values of pr are commonly given in the tables 
of most thermodynamics or gas dynamics texts.  Note that for an isentropic process: 

2 2

1 1

r

r

p p
p p

=  (76) 
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Air is flowing through a duct at a Mach number of 3, a static temperature of 800 K, and a static pressure of 
70 kPa (abs).  Determine the temperature and pressure of the flow if it is brought to rest isentropically: 
a. assuming perfect gas behavior, and 
b. assuming imperfect gas behavior. 
 
 
SOLUTION: 
 
Assuming perfect gas behavior with gair = 1.4: 

 (1) 

 (2) 

Using Ma = 3, T = 800 K, and p = 70 kPa: 
T0  =  2240 K  
p0  =  2.57 MPa 
 
 

Assuming imperfect gas behavior: 
T  = 800 K Þ   pr = 0.35216e2 (from thermodynamic property tables for air) (3) 
 h = 823.112 kJ/kg 
 c = 557.54 m/s 
 

 Þ V = 1672.62 m/s (4) 
 

 Þ h0 = 2221.941 kJ/kg (5) 
  Þ T0 = 1977 K   (from thermodynamic property tables for air) 
  Þ p0r = 0.14461e4 
 

   (6) 

Using p = 70 kPa, p0r = 0.14461e4, and pr = 0.35216e2, p0 = 2.87 MPa.   
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A wind tunnel using air operates with a stagnation pressure and temperature of 10 atm (abs) and 1000 K, 
respectively.  The test section of the tunnel is designed to operate at a Mach number of 5.  Determine the 
pressure and temperature in the wind tunnel at this design Mach number: 
a. assuming the perfect gas behavior, and 
b. assuming imperfect gas behavior. 
 
 
SOLUTION: 
 
Assuming perfect gas behavior with g = 1.4: 

 (1) 

 (2) 

With p0 = 10 atm (abs) (1 atm = 101.3 kPa), T0 = 1000 K, and Ma = 5, p = 1.915 kPa (abs) and T = 166.7 K. 
 
 
Assuming imperfect gas behavior: 

T0 = 1000 K  Þ   p0r  =  8.4110e1  
 h0 = 1047.248 kJ/kg 
 g0 = 1.3361 

(Using thermodynamics tables for air, e.g., Table C.4 from Zucrow and Hoffman.) 
 

Iterate to determine the pressure and temperature. 
 

1. As an initial first guess for the pressure, assume perfect gas behavior. 

 (3) 

Using g = 1.3361, Ma = 5.0, and p0 = 10 atm = 1.013e6 Pa 
p = 1441.7 Pa (abs) 

 
2. Determine the relative pressure, pr. 

 (since for an isentropic flow, p2/p1 = pr2/pr1) (4) 

Using p/p0 = 1.4232e-3  and p0r = 8.411e1: 
pr = 1.1970e-1 Þ T = 162.57 K  

  g = 1.3976 
  h = 163.231 kJ/kg 
  c = 255.37 m/s 

(Using thermodynamics tables for air, e.g., Table C.4 from Zucrow and Hoffman.) 
 

3. Determine the velocity, V, from conservation of energy. 
  (5) 

Using h0 = 1047.248 kJ/kg and h = 163.231 kJ/kg  Þ  V = 1329.675 m/s 
 

4. Determine the Mach number from the velocity and speed of sound. 

     (6) 

Using V = 1329.675 m/s and c = 255.37 m/s  Þ  Ma = 5.207 
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5. The calculated Mach number isn’t equal to the given Mach number (=5) so we must iterate 
again.  Choose the next guess for the pressure in step 1 using the first guess and the perfect gas 
ratio required to attain Ma = 5 from Ma = 5.207. 

  where  (7) 

Using g = 1.3976 (found in step 2) and p0 = 10 atm (= 1.013e6 Pa): 
pnew = 1830.7 Pa (abs) 

 
Now repeat steps 2 – 5 until the calculated Mach number is sufficiently close to the given Mach 
number of 5.0.   
 

Following is a spreadsheet showing the iterations. 
T0 [K] = 1000         
p0 [Pa] = 1.01E+06         
Ma = 5.0         
p0r = 8.4110E+01         
h0 [kJ/kg] = 1047.248         
g0 = 1.3361         
          

Ma p pr T [K] g c [m/s] h [kJ/kg] V [m/s] Ma % error Ma 
5.000 1.4417E+03 1.1970E-01 162.57 1.3976 255.37 163.231 1329.675 5.207 4.13820% 
5.207 1.8307E+03 1.5201E-01 174.04 1.3982 264.28 174.791 1320.952 4.998 -0.03436% 
4.998 1.8270E+03 1.5170E-01 173.94 1.3982 264.20 174.689 1321.029 5.000 0.00109% 
5.000 1.8272E+03 1.5171E-01 173.94 1.3982 264.21 174.692 1321.027 5.000 -0.00003% 

          
perfect gas assumption:         
g = 1.4 % error        
T [K] = 166.67 -4.2%        
p [Pa] = 1914.61 4.8%        

 
Thus, assuming imperfect gas behavior: 

p = 1.827 kPa (abs) 
T = 173.94 K  

 
 
 
 
 
 
 
 
 
 
 
 
 

 

0new Ma 5.0

prev
0 Ma 5.207

p
pp

p p
p

=

=
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è ø
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7. Adiabatic Flow with Friction (Fanno Flow) 
 
So far we’ve examined adiabatic, reversible flows (isentropic flows).  For flows in long ducts, the 
frictional, or viscous, effects can be significant and the flow can no longer be modeled as isentropic.  
 
 
 
 
 
 
 
 
 
 
 
To examine the effects of friction, let’s consider the case of a steady, 1D, adiabatic flow in a constant area 
duct that has irreversible effects due to friction (viscous) effects. 
 
First let’s derive the governing equations for the following differential control volume: 
 
 
 

P is the perimeter of the duct 
 
 
 
 
 
 
From COM we have: 

( )rel
CV CS

0d dV d
dt

ρ ρ+ ⋅ =∫ ∫ u A  

where 

CV

0d dV
dt

ρ =∫  (steady flow) 

( ) ( )

( )

rel
CS

d VA VA d VA

d VA

ρ ρ ρ ρ

ρ

⎡ ⎤⋅ = − + +⎣ ⎦

=

∫ u A
 

Thus, 
( ) 0d VA AdV Vd Aρ ρ ρ= + =  (recall that A=constant) 

0d dV
V

ρ
ρ

+ =  (77) 

 

dx 
x 

τwPdx (p+dp)A pA 

V V+dV 

short duct:  
friction negligible 

⇒  isentropic (reversible) 

long duct: 
need to include friction  

⇒  non-isentropic (irreversible) 
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From the LME in the x-direction we have: 

( )rel ,body ,surface
on CV on CVCV CS

x x x x
d

u dV u d F F
dt

ρ ρ+ ⋅ = +∫ ∫ u A  

where 

CV

0x
d

u dV
dt

ρ =∫  (steady flow) 

    

ux ρurel ⋅dA( )
CS
∫ = − !mV + !m V + dV( )

= !mdV = ρAVdV
 

,body
on CV

0xF =  

( ),surface w
on CV

w

H

4

xF pA p dp A Pdx

A
dpA dx

D

τ

τ

= − + −

= − −
 where DH≡4A/P is a hydraulic diameter 

Thus, 
w

H

4 A
VAdV dpA dx

D
τρ = − −  

w

H

4
0dp VdV dx

D
τρ+ + =  (78) 

 
From COE we have: 

    

d
dt

eρ dV
CV
∫ + h+ 1

2V 2( ) ρurel ⋅dA( )
CS
∫ = !Qinto CV + !Won CV  

where 

CV

0d e dV
dt

ρ =∫  (steady flow) 

    

h+ 1
2V 2( ) ρurel ⋅dA( )

CS
∫ = − !m h+ 1

2V 2( ) + !m h+ 1
2V 2( ) + d h+ 1

2V 2( )⎡
⎣⎢

⎤
⎦⎥

= !md h+ 1
2V 2( ) = !m dh+VdV( )

 

   
!Qinto CV = 0  (adiabatic conditions) 

   
!Won CV = 0  (no work is done on the control volume, recall that although the walls 

exert a force on the control volume, they do no work since there is no 
displacement at the walls due to the no-slip condition) 

Thus, 
0dh VdV+ =  (79) 
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The Second Law gives: 

    

d
dt

sρ dV
CV
∫ + s ρurel ⋅dA( )

CS
∫ ≥

δ !qinto CV

T
CV
∫  

where 

CV

0d s dV
dt

ρ =∫  (steady flow) 

    
s ρurel ⋅dA( )

CS
∫ = − !ms+ !m s+ ds( ) = !mds  

   

δ !qinto CV

T
CV
∫ = 0  (adiabatic conditions) 

Thus, 
0ds >  (80) 

Note that only the “>” has been retained since the friction results in irreversible conditions. 
 

 
Now let’s also include the equations of state.  We’ll concern ourselves only with an ideal gas. 
 
The Thermal Equation of State (the ideal gas law) gives: 

          p RT dp RTd RdTρ ρ ρ= ⇒ = +  
so that 

dp d dT
p T

ρ
ρ

= +  (81) 

 
The Caloric Equation of State for an ideal gas can be written as: 

pdh c dT=  (82) 
 
We can also combine the 1st and 2nd Laws with the ideal gas law to write: 

p
dT dpds c R
T p

= −  (83) 

 
Finally, from the Mach number relation for an ideal gas we have: 

2 2
2

2Ma V V
RTc γ

= =  

so that 

( )

( )

2

2

2

2 2 2

22Ma Ma

Ma
Ma Ma 2 Ma

VdV V dTd
RT RT

d VdV V dT
RT RT

γ γ

γ γ

= −

⇒ = −

 

( )Ma
Ma 2
d dV dT

V T
= −  (84) 
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Now let’s combine Eqs. (77) through (79) and (81) through (84) (we won’t go through all of the algebra 
here) to get the following relations: 

( )
2 2

w
2 2

H

1Ma 1 MaMa 42
Ma 1 Ma

d
dx

V D

γγ
τ

ρ

−⎛ ⎞+⎜ ⎟ ⎛ ⎞⎝ ⎠= ⎜ ⎟⎜ ⎟− ⎝ ⎠
 (85) 

 

( )
2

w
22

H

4Ma

2 1 Ma

dV
dx

V V D
τγ

ρ
⎛ ⎞

= ⎜ ⎟⎜ ⎟− ⎝ ⎠
 (86) 

 

( ) 4
w

2 2
H

1 Ma 4
1 Ma

dT
dx

T V D

γ γ τ
ρ

⎛ ⎞− −
= ⎜ ⎟⎜ ⎟− ⎝ ⎠

 (87) 

 

( )2 2
w

2 2
H

Ma 1 1 Ma 4
1 Ma

dp
dx

p V D

γ γ τ
ρ

⎡ ⎤− + − ⎛ ⎞⎣ ⎦= ⎜ ⎟⎜ ⎟− ⎝ ⎠
 (88) 

 
2

w
2 2

H

4Ma
1 Ma

d
dx

V D
τρ γ

ρ ρ
⎛ ⎞−= ⎜ ⎟⎜ ⎟− ⎝ ⎠

 (89) 

 

( ) 2 w
2

H

4
1 Ma

p

ds
dx

c V D
τγ

ρ
⎛ ⎞

= − ⎜ ⎟⎜ ⎟⎝ ⎠
 (90) 

 
It is useful to consider how the isentropic stagnation pressure, i.e., the pressure we would have if we 
brought the flow to rest isentropically, varies in a Fanno flow.  Recall that the isentropic stagnation pressure 
is given by: 

1
2

0

11 Ma
2

p
p

γ
γγ −−⎛ ⎞= +⎜ ⎟⎝ ⎠
 

so that, after differentiating and doing some algebra, 
2

0 w
2

0 H

4Ma
2

dp
dx

p V D
τγ

ρ
⎛ ⎞

= − ⎜ ⎟⎜ ⎟⎝ ⎠
 (91) 

 
Note that we could also derive Eq. (91) by noting that Eq. (83) may be written in terms of stagnation 
quantities: 

0 0

0 0
p
dT dp

ds c R
T p

= −  

and incorporating COE (Eq. (79)) written for an ideal gas: 
0 0 0dh VdV dh dT+ = = =  

0 0dT =  (92) 
gives: 

0

0

dp ds
p R

= −  (93) 
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Now let’s examine the trends indicated by these equations.  Note that: 
w
2

H

4
0dx

V D
τ

ρ
>  

 
Ma < 1 (subsonic flow) Ma > 1 (supersonic flow) 
d(Ma) > 0 Eq. (85) d(Ma) < 0 
dV > 0 Eq. (86) dV < 0 
dT < 0 Eq. (87) dT > 0 
dp < 0 Eq. (88) dp > 0 
dρ < 0 Eq. (89) dρ > 0 
ds > 0 Eq. (90) ds > 0 
dT0 = 0 Eq. (92) dT0 = 0 
dp0 < 0 Eq. (91) dp0 < 0 
 
 

Notes: 
 
1. Usually we write the shear stress in terms of a friction factor, f: 

( )21
w F 2f Vτ ρ=  Fanning friction factor 

( )21 1
w D4 2f Vτ ρ=  D’Arcy friction factor 

1
4F Df f⇒ =  

 
2. The D’Arcy friction factor is used most often in the analysis of incompressible pipe flows while the 

Fanning friction factor is often used for compressible flows. 
 
3. In general, the friction factor, f, is a function of the flow Reynolds number, Re, the relative roughness 

of the pipe walls, ε/DH, and the Mach number, Ma (recall the Moody chart from undergraduate 
incompressible pipe flow problems).  Typically, Mach number effects are small in comparison to the 
effects of Re and ε/DH so they are often neglected.  Furthermore, the Reynolds number for 
compressible flows is often quite large.  As a result, the friction factor remains essentially constant for 
a compressible flow. 

 
4. The stagnation temperature remains constant and the stagnation pressure always decreases with 

friction. 
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Substituting the (Fanning) friction factor into Eq. (85) and integrating over a particular length of pipe: 

( ) ( )2 2

1 1

2Ma
F

3 2 HMa

2 1 Ma Ma 4
1Ma 1 Ma
2

x

x

d f
dx

Dγγ

−
=

−⎛ ⎞+⎜ ⎟⎝ ⎠

∫ ∫  

2
22

1
1 2 2 2 2

2H 1 2 2
1

11 Ma
4 Ma1 1 1 1 2ln

12Ma Ma Ma 1 Ma
2

Ff L
D

γ
γ

γγ γ→

−⎛ ⎞+⎜ ⎟⎛ ⎞ + ⎝ ⎠= − +⎜ ⎟⎜ ⎟ −⎛ ⎞⎝ ⎠ +⎜ ⎟⎝ ⎠

 (94) 

where L1→2 = x2-x1.  Note that the overbar (implying a mean value) on the friction factor will be dropped in 
subsequent equations for convenience. 
 
Equation (94) relates the conditions between two arbitrary points in a frictional duct flow.  It’s often more 
convenient to make one of the points a well-defined reference point.  The most logical reference would be 
where sonic conditions occur, i.e., Ma2=1, since in Fanno flow the Mach number approaches unity.  Using 
this reference point Eq. (94) becomes: 

( ) 22
*

2
2H

1 Ma4 1 1 Ma 1 ln
12Ma 2 1 Ma
2

Ff L
D

γγ
γγ γ

⎛ ⎞ +− += +⎜ ⎟⎜ ⎟ −⎛ ⎞⎝ ⎠ +⎜ ⎟⎝ ⎠

 (95) 

where L* is the length of duct required, real or imaginary, for the flow to reach Ma = 1.  
 
Equations (86) through (90) can be integrated in a similar manner: 

1 1
2 2

2
*

1 1Ma 1 Ma
2 2

V
V

γ γ −+ −⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 (96) 

 
2 1

2
* *

1 11 Ma
2 2

T c
T c

γ γ −+ −⎛ ⎞ ⎛ ⎞⎛ ⎞= = +⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
 (97) 

 
1 1
2 2

2
*

1 1 11 Ma
Ma 2 2

p
p

γ γ −+ −⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 (98) 

 
1 1
2 2

2
*

1 1 11 Ma
Ma 2 2

ρ γ γ
ρ

−+ −⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 (99) 

 
( )

( )
1
2 1*

21 2 1ln 1 Ma
Ma 1 2

s s
R

γ
γγ

γ

+
−⎧ ⎫⎡ ⎤⎛ ⎞− −⎛ ⎞⎪ ⎪= − +⎨ ⎬⎢ ⎥⎜ ⎟⎜ ⎟+ ⎝ ⎠⎝ ⎠⎣ ⎦⎪ ⎪⎩ ⎭

 (100) 

 
( )

( )
( )

( )
1 1
2 1 2 1

20
*
0

1 1 11 Ma
Ma 2 2

p
p

γ γ
γ γγ γ

+ +
− −−+ −⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 (101) 
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Notes: 
1. The length of duct, L12, required for the flow to go from a given initial Mach number, Ma1, to a given 

final Mach number, Ma2, is found by: 
* *

12 1 2
H H H

4 4 4F F Ff f fL L L
D D D

= −  

where 4fFL*
1/DH and 4fFL*

2/DH are found from Eq. (95) for the given Mach numbers. 
 

 
 
 
 
 
 

 
 
 

2. In order to find the change in some flow property, e.g., the pressure, between two locations where the 
Mach numbers are known, simply take the ratio: 

( )
( )

*
22

*
1 1

p pp
p p p

=  

3. Equations (95) through (101) are tabulated as a function of Mach number for air in the appendices of 
most compressible flow texts. 

4. What happens if the duct is longer than L*.  Assuming the back pressure is low enough, for a subsonic 
flow the flow adjusts upstream so that the length of duct becomes L*.  If the flow is supersonic, then a 
shock wave forms upstream at a location where the length from the shock to the end of the duct is L*.  
We’ll discuss this in more detail in the next set of notes. 

5. L* is typically on the order of 10-100 duct diameters for a supersonic flow, depending on the friction 
factor.  For example, for a friction factor of fF = 0.0025, the length of duct required to reduce a flow 
with Ma = ∞ to Ma = 1 is 82 pipe diameters.  Thus, supersonic flows reach sonic conditions in a short 
distance.  Furthermore, large losses in stagnation pressure also occur. 

6. In a Fanno flow with no shock waves, there can be no transition between supersonic and subsonic 
flows since both types of flow tend toward sonic conditions. 

 

Ma2 Ma1 

L12 L2
* 

L1
* 

Ma=1 
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The Fanno Line 
 
The Fanno Line is the locus of all possible Fanno flow states shown in a T-s plot.  To determine how T and 
s are related in a Fanno flow, we can combine Eqs. (79), (81), (82), and (83)  then integrate to give: 

11
2

01

1 0 1
ln

p

T Ts s T
c T T T

γ
γγ

−⎡ ⎤⎛ ⎞⎛ ⎞ −− ⎢ ⎥= ⎜ ⎟⎜ ⎟⎢ ⎥−⎝ ⎠ ⎝ ⎠⎣ ⎦
 (102) 

Equation (102) allows us to relate the entropy, s, to an arbitrarily chosen temperature, T, for a given 
stagnation temperature, T0.  A plot of this relation is shown below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The Fanno line shows all possible combinations of entropy and temperature that can exist in an adiabatic 
flow with friction in a constant area duct at a given stagnation temperature (recall that the stagnation 
temperature remains constant in an adiabatic flow). 
 
Notes: 
1. The processes always move in a direction that increases the entropy. 
2. Again for a Fanno flow: 

 Ma < 1 (subsonic flow) Ma > 1 (supersonic flow) 
d(Ma) > 0 Eq. (85) d(Ma) < 0 
dV > 0 Eq. (86) dV < 0 
dT < 0 Eq. (87) dT > 0 
dp < 0 Eq. (88) dp > 0 
dρ < 0 Eq. (89) dρ > 0 
ds > 0 Eq. (90) ds > 0 
dT0 = 0 Eq. (92) dT0 = 0 
dp0 < 0 Eq. (91) dp0 < 0 

s 

T 

Ma=1 
(maximum entropy) 

T0 = constant 

Ma>1 

Ma<1 

2’ 

1’ 

1 
2 

p02 p01 
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Air flows in a 0.100 m ID duct under adiabatic conditions.  Calculate the length of duct required to raise the 
Mach number of the air from Ma1=0.5 to Ma2=0.9 if the average value of the (Fanning) friction coefficient 
is 0.005. 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 

  using the Fanno flow relations with Ma1 = 0.5 and g = 1.4 (1) 

  using the Fanno flow relations with Ma2 = 0.9 and g = 1.4 (2) 

 (3) 

  using fF = 0.005 and D = 0.100 m (4) 

*
14 1.06906Ff L

D
=

*
24 0.01451Ff L

D
=

* *
12 1 24 4 4 1.05455F F Ff L f L f L

D D D
= - =

12 5.27 mL\ =

D 
1 2 

L12 

s 

T 
T0 

p01 p02 

p2 
p1 

T2 

T1 

1 2 
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An experiment is designed to measure friction coefficients for the supersonic flow of air.  Measurements 
from an experimental apparatus, consisting of a well-insulated, converging-diverging nozzle attached to a 
smooth, round tube, give the following data: 

pressure upstream of the nozzle = 516 cm Hg abs 
temperature upstream of the nozzle = 107.3 °F 
throat diameter = 0.2416 in 
diameter of nozzle exit and of tube = 0.5009 in 
pressure at a point 29.60 diameters from the tube inlet = 37.1 cm Hg abs 

What is the average friction factor for the tube with these conditions? 
 
 
SOLUTION: 
 
Assume the flow in the converging-diverging nozzle is isentropic since the distance is short. 
 
 
 
 
 
 
 
Using the isentropic flow relations. 

  Þ  Ma1 = 3.016  Þ  p1/p01 = 0.0266  Þ  p1 = 13.73 cm Hg abs (1)  

where p01 = 516 cm Hg abs. 
 
Using the Fanno flow relations: 

Ma1 = 3.016  Þ  p1/p* = 0.2163  and   (2) 

 
At station 2: 

 (3) 

Using the Fanno flow relations: 

p2/p* = 0.5845  Þ  Ma2 = 1.54  Þ   (4) 

 
The friction factor may be found using the dimensionless sonic lengths and the distance between the 
stations. 

 (5) 

 (6) 

 (7) 

2
1
*
1

0.5009 in. 4.2984
0.2416 in.

A
A

æ ö= =ç ÷
è ø

*
14 0.5246Ff L

D
=

( )2 2 1
* *

1

37.1 cm Hg abs 0.2163 0.5845
13.73 cm Hg abs

p p p
pp p

æ öæ ö æ ö
= = =ç ÷ç ÷ ç ÷ç ÷ è øè øè ø

*
24 0.1506Ff L

D
=

* *
12 1 24 4 4 0.5246 0.1506 0.3740F F Ff L f L f L

D D D
= - = - =

( )12

10.3740 0.3740
4 4 29.60F
Df
L

= =

0.0032Ff\ =

1 2 
p0 

T0 

T 

s 

p01 p02 

p1 

p2 T2 

T1 

T* p* 
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Choking in Fanno Flow 
 

Consider what happens if the duct length has its maximum value for a given duct inlet Mach number (so 
that the exit Mach number is unity) and then we increase the duct length beyond this value.  We’ll assume 
that the back pressure remains low enough to produce sonic exit conditions, i.e., pB ≤ p*. 
 
Subsonic Flow: 

The duct inlet Mach number will decrease until a steady-state solution again becomes possible with 
sonic exit conditions.  This decrease results in a reduction in the flow rate, i.e., the flow is “choked” by 
friction.  The mass flow rate through the duct can be found by the conditions at the duct inlet, which is 
assumed to have isentropic flow. 

 
 
 
 
 

 
 
 
 
 
 
 

   
!m = ρVA = ρ

ρ0

⎛
⎝⎜

⎞
⎠⎟
ρ0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Ma c
c0

⎛
⎝⎜

⎞
⎠⎟

c0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

A = ρ0c0 AMa 1+ γ −1
2

Ma2⎛
⎝⎜

⎞
⎠⎟

1+γ
2 1−γ( )

 

(As the Mach number decreases, the mass flow rate also decreases, i.e., 
   
∂ !m ∂ Ma( ) > 0 .) 

 
Further increases in the duct length result in decreases in the duct inlet Mach number and mass flow 
rate. 

 

isentropic 
duct inlet 

Mae = 1 

L* 

Mai < 1 
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Supersonic Flow: 
- First consider the case where the duct length has its maximum value for the inlet Mach number.  The 

flow within the duct will be supersonic and the exit conditions will be sonic (refer to curve A shown in 
the plots below).   

- Now increase the duct length to position B as shown in the figure.  A shock wave forms in the duct at a 
location such that the exit conditions are sonic.  The mass flow rate through the device remains 
unaffected since the flow at the nozzle throat is sonic.   

- As the duct length is increased further, the shock wave moves upstream until finally at the duct length 
indicated by position C, the shock wave is located at the duct inlet.  Now the flow throughout the duct 
is subsonic.  The mass flow rate, however, remains unaffected since the throat conditions are sonic. 

- Further increases in the duct length cause the shock wave to move into the diverging section of the 
nozzle toward the nozzle throat.  The duct inlet Mach number will continue to decrease but the mass 
flow rate is unaffected.   

- If the duct length is increased further, the shock vanishes at the nozzle throat and the flow throughout 
the entire device becomes subsonic and further increases in the duct length will result in decreasing 
duct inlet Mach number and decreasing mass flow rate through the device (refer to the previous 
discussion concerning subsonic flow).   
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Performance of Long Ducts at Various Pressure Ratios 
 
Now let’s consider the flow in long ducts with differing inlet nozzle conditions and varying back pressures. 
 
Ducts Fed by Converging Nozzles 

 
Consider the flow through a long duct fed by a converging nozzle as shown in the figure below.  The 
stagnation conditions are assumed fixed while the back pressure can be varied.  For a high enough 
back pressure (cases A and B shown in the plots below), the flow through the entire device, including 
the exit, will remain subsonic and the exit pressure will equal the back pressure.  If the back pressure is 
decreased to precisely the sonic pressure (case C), the flow throughout the device will be subsonic 
except at the exit where sonic conditions exist.  For this particular case the exit pressure is equal to the 
back pressure.  If the back pressure is decreased further, the flow conditions within the device will 
remain the same as in case C since the flow is choked at the exit; however, upon leaving the exit the 
flow will expand through expansion fans to reach the back pressure. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 

pE pB (variable) 

constant area, 
frictional duct 

p0, T0 
fixed 

frictionless 
nozzle 

p/p0I 

1 

subsonic (MaE < 1) 
subsonic (MaE < 1) 
sonic (MaE = 1) 

sonic (MaE = 1) with 
expansion fans 

A 
B 
C 

D 

x 

 1286 

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

C. Wassgren 1267 2024-02-01



 

C. Wassgren  Last Updated:  29 Nov 2016 
Chapter 13:  Gas Dynamics 
 

Ducts Fed by Converging-Diverging Nozzles 
Now consider flow through a duct with a converging-diverging inlet nozzle.  The flow through this 
device is considerably more complicated than through the duct fed by a converging nozzle.  In the 
following discussion we’ll assume that the stagnation conditions feeding the nozzle are constant and 
that the ratio of the nozzle exit/duct inlet area to the throat area is fixed, i.e., Ai/At = constant. 

 
Subsonic flow at the nozzle exit / duct inlet: 
We’ll first consider the cases where the Mach number at the nozzle exit/duct inlet is subsonic, i.e., MaI 
< 1.  Refer to the following figure for the various cases described below. 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

As the back pressure decreases: 
 
1. The flow in the nozzle and duct are subsonic.  Consider cases (a) and (b) described below. 
2. The flow in the nozzle is subsonic except at the nozzle throat where sonic conditions occur:   MaT 

= 1, pT = p*.  The flow is now choked at the nozzle throat.  Further decreases in back pressure will 
not affect conditions upstream of the throat.  Note that the Mach number at the duct inlet, MaI, for 
this case is determined by the area ratio, AI/A*

 = AI/AT. Consider cases (a) and (b) described below. 
3. The flow downstream of the throat is supersonic for some distance then passes through a normal 

shock wave and becomes subsonic for the remainder of the nozzle.  Hence, the flow into the duct 
is subsonic. Consider cases (a) and (b) described below. 
a. If the back pressure is greater than the sonic pressure for the inlet Mach number, then the exit 

Mach number will be subsonic and the back pressure will equal the exit pressure: MaE < 1 ⇒ 
pE = pB > p*.   

b. If the back pressure is less than or equal to the sonic pressure, then the exit will be at sonic 
conditions:  MaE = 1 ⇒ pE = p* ≥ pB.  Note that the flow is now choked at the duct exit.  
Further decreases in the back pressure will not affect the flow within the duct or nozzle. 
i. If pB = p* then the flow equals the back pressure when exiting the duct. 
ii. If pB < p* then expansion fans will form outside of the duct through which the flow 

pressure will equilibrate with the back pressure. 
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Supersonic flow at the nozzle exit / duct inlet: 
Now consider the cases when the Mach number at the nozzle exit/duct inlet is supersonic, i.e., MaI > 1.  
Refer to the following figure for the various cases described below.  Note that the Mach number at the 
nozzle entrance is determined solely by the area ratio, AI/A*.  Furthermore, since the Mach number is 
fixed, the sonic length is also fixed.   

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

First consider the cases where the duct length is less than the sonic length, L < L*
I, i.e., the exit 

pressure, assuming supersonic flow throughout the duct, is less than the sonic pressure, pE,supersonic < p*.  
(Recall that the pressure in a supersonic Fanno flow increases with increasing distance down the duct). 

 
1. The back pressure is sufficiently large that the flow cannot leave the duct under supersonic 

conditions and come into equilibrium with the back pressure.  Instead, a normal shock wave forms 
within the duct causing a transition to subsonic flow.  The shock wave forms at a location such 
that the exit pressure equals the back pressure:  MaE < 1 ⇒ pE = pB.  Decreasing the back pressure 
causes the shock wave to move closer to the duct exit. 

2. The entire duct flow is supersonic and the flow pressure equilibrates with the back pressure 
through a normal shock wave at the duct exit.  The flow downstream of the shock is subsonic so 
the pressure just downstream of the shock is equal to the back pressure. 

3. The flow within the duct is supersonic but pE < pB (also note that pE < p* as stated in the paragraph 
above).  Oblique shock waves form outside the duct through which the flow pressure equilibrates 
with the back pressure. 

4. The flow within the duct is supersonic and the pressure at the duct exit is equal to the back 
pressure, pE = pB.  Note that pE < p*. 

5. The flow within the duct is supersonic but pE > pB (also note that pE < p*).  Expansion fans form 
outside the duct through which the flow pressure equilibrates with the back pressure. 
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Now consider the cases where the duct length is greater than or equal to the sonic length, L ≥ L*
I, i.e. 

the exit pressure, assuming supersonic flow throughout the duct, is greater than or equal to the sonic 
pressure, pE,supersonic ≥ p*.  (Recall that the pressure in a supersonic Fanno flow increases with 
increasing distance down the duct). 

 
1. For the case where the back pressure is greater than the sonic pressure, i.e., pB > p*, a normal 

shock wave will form at a location within the duct such that the exit flow (which is subsonic) will 
equal the back pressure:  MaE < 1 ⇒ pE = pB > p*. 

2. For the case where the back pressure is equal to the sonic pressure, i.e., pB = p*, a normal shock 
wave will form at a location within the duct such that the exit flow is sonic:  MaE = 1 ⇒ pE = pB = 
p*. 

3. For the case where the back pressure is less than the sonic pressure, i.e., pB < p*, a normal shock 
wave will form at a location within the duct such that the exit flow is sonic:  MaE = 1 ⇒ pE = p* > 
pB.  Expansion fans will form outside the duct through which the flow pressure equilibrates with 
the back pressure. 

 
 
Notes: 
1. Once the flow chokes at either the nozzle throat or duct exit, the mass flow rate through the system will 

no longer be a function of the downstream conditions and will depend only on the upstream stagnation 
conditions. 

 
2. Shock waves within the duct will not be sharp discontinuities as idealized here.  Instead, boundary 

layer effects will tend to smear the transition from supersonic to subsonic flow over a considerable 
distance.  Similar shock smearing is observed when shock waves form in the diverging section of a 
converging-diverging nozzle. 
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Estimate the maximum flow rate of air (lbm/s) which can flow through the passage shown, assuming that 
the (Fanning) friction coefficient of the duct is 0.005.  For what range of back pressures will this maximum 
flow rate be achieved? 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
The maximum flow rate will occur when the flow is choked. 
 
 
 
 
 
 
 
 
 
 
Determine Ma1 using the adiabatic, frictional flow relations and: 

 (1) 

Þ     (2) 
(The flow at 1 will be subsonic since the flow starts from stagnation conditions and does not pass 
through a throat before reaching the duct inlet.) 

Þ   (3) 

 
Determine the mass flow rate through the duct using the conditions at 1.  The properties at 1 can be found 
by applying the isentropic flow relations from the stagnation conditions to 1 (flow through the converging 
duct is assumed isentropic). 

 Þ p1 = 10340 lbf/ft2 (4) 

where p01 = 100 psia = 14400 lbf/ft2, g = 1.4, Ma1 = 0.7043 

 Þ T1 = 545.8 °R (5) 

where T01 = 140 °F = 600 °R 

 Þ r1 = 0.3555 lbm/ft3 (6) 

where r01 = p01/(RT01) = 0.4503 lbm/ft3, R = 53.3 (lbf×ft)/(lbm×°R) 
 Þ V1 = 806.6 ft/s (7) 
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 Þ  = 6.26 lbm/s (8) 
where A1 = pD2/4 = 2.182e-2 ft2  
 

The back pressure at which choking just occurs is given by: 

 Þ pB  = 6970 lbf/ft2 = 48.4 psia (9) 

 
Hence, choking will occur for back pressures less than 48.4 psia.  When the flow is choked, it has the 
maximum flow rate of  = 6.26 lbm/s. 
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Air is drawn from a large storage tank (400 kPa (abs), 320 K) through a pipe that is 200 m long with an 
internal diameter of 50 mm and is discharged into the atmosphere (patm = 100 kPa (abs)).  The Darcy pipe 
friction factor is 0.0114.  Assume the flow is adiabatic.  Find: 
a. the mass flow rate through the pipe 
b. the Mach number of the flow at the pipe entrance and exit 
c. sketch the process on a T-s diagram. 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
First check to see if the flow is choked.  Assume that the flow is choked so that: 

    (Note that fF = ¼fD.) (1) 

Þ  = 0.12  (from the adiabatic, frictional flow relations) (2) 

 Þ  = 4.8643  (from the adiabatic, frictional flow relations) (3) 

Now calculate the pressure at location 2 and see how it compares with the back pressure. 

 (4) 

(Note that since we’re assuming a choked flow, location 2 is at sonic conditions, i.e., p2 = p*.) 
 

Since p2 = 53.44 kPa < pB = 100 kPa, the flow must not be choked as assumed.  Hence, the flow at location 
2 must be subsonic. 
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To solve for the flow properties within the pipe, use the following iterative approach. 
1. Assume a value for Ma2 (Ma2 < 1). 
 

2. Calculate  and  using Ma2 and the adiabatic, frictional flow relations. 

 

3. Calculate   . 

 

4. Calculate Ma1 and  using  and the adiabatic, frictional flow relations. 

 

5. Calculate . 

 

6. Calculate . 

 

7. Check to see if  since p2 = pB for a subsonic exit Mach number.  If  then p2 < 

pB so choose a smaller Ma2 (otherwise choose a larger Ma2) and repeat steps 2-7 until a converged 
result is achieved. 

 
 

The converged results are:  Ma1 = 0.1183 and Ma2 = 0.46. 
 

The mass flow rate can be found using the conditions at the pipe entrance. 
  (5) 

where 

  and  (6) 

  and   (7) 

 
Using the following data: 

p0 = 400 kPa 
T0 = 320 K 
g = 1.4 
R = 287 kJ/(kg×K) 
A1 = 1.963e-3 m2 
Ma1 = 0.1183 
Þ  (8) 
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Air from the laboratory (14.5 psia, 70 °F) is drawn through a long smooth, insulated tube that has a ¼ in. 
inside diameter.  When the flow chokes, the pressure at the tube entrance (station 1) is 7.11 inches of water 
vacuum (below atmospheric).  Determine for the choked flow conditions: 
a. the Mach number at station 1, 
b. the length of the tube (in feet), 
c. the mass flow rate (in lbm/s), 
d. the pressure at the tube exit (in psia), and 
e. show the process on a T-s diagram. 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
Determine Ma1 using the isentropic flow relations. 

  Þ  Ma1 = 0.16 (1) 

 
To determine the length of the tube, we use the adiabatic, frictional flow relations (Fanno flow). 

Ma1 = 0.16   Þ   (2) 

 
The friction factor for a “smooth” tube can be found using a Moody chart.  First estimate the Reynolds 
number for the flow using the conditions at 1. 

 (3) 

where 
  Þ  V1 = 180 ft/s (4) 

  Þ T1 = 527.3 °R (5) 

D1 = 2.083*10-2 ft 
n1 = 1.6*10-4 ft2/s 
 

From the Moody chart for the “smooth” curve with Re = 23,400, fD = 0.025 Þ fF = fD/4 = 6.25*10-3. 
 
Solving Eqn. (2) with the calculated fF and given pipe diameter, L*1 = 20.2 ft. 
 
Note that at the pipe exit: 

 (6) 

where 
  Þ  V1 = 1030 ft/s  (Note that Ma2 = 1.) (7) 
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  Þ T1 = 441.7 °R  (Note that the stagnation temperature remains constant.) (8) 

D2 = 2.083*10-2 ft 
n2 = 1.0*10-4 ft2/s 

 
From the Moody chart for the “smooth” curve with Re = 215,000, fD = 0.016.  Thus, a more accurate value 
of the D’Arcy friction factor would be: 

 (9) 
Following the same procedures as before, but using this new value for fD, the sonic length comes to L*1 = 
24.4 ft. 
 
The mass flow rate can be determined from the conditions at state 1. 

  Þ   (10) 
where 

  Þ  r1 = 9.87*10-1 lbm/ft3 (11) 

  Þ  r01 = 7.39*10-2 lbm/ft3 (12) 

V1 = 180 ft/s (calculated in Eqn. (4)) 
A1 = pD21/4 = 3.408*10-4 ft2 (13) 
 

The pressure at the exit is found from the adiabatic, frictional flow relations (Fanno flow). 

Ma1 = 0.16   Þ    Þ  pe = p* = 300 lbf/ft2 = 2.09 psia (14) 

where p1 = 2051 lbf/ft2. 
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Air, in a large reservoir, at a pressure of 200 Pa (abs) and a temperature of 30 °C is expanded through a 
convergent nozzle.  The air then flows down a pipe with a diameter of 25 mm and a Fanning friction factor 
of 0.005.  If the Mach number at the exit of the nozzle, i.e., at the inlet to the pipe, is 0.2 and the Mach 
number at the end of this pipe is 0.8, find, assuming that the flow in the nozzle is isentropic and the flow in 
the pipe is adiabatic,  
a. the length of the pipe 
b. the pressure at the exit of the pipe 
c. the pressure in the reservoir into which the pipe discharges at which choking first occurs and the inlet 

Mach number under these conditions.   
d. plot a graph of pipe inlet and outlet Mach number against discharge reservoir pressure. 

 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
 
Using the Fanno flow relations with g = 1.4: 

  =  14.5322  using Ma1 = 0.2 (1) 

  =  0.07228  using Ma1 = 0.8 (2) 

  Þ  DL = 18.1 m (3) 

with fF = 0.005 and DH = 25e-3 m. 
 

Using the Fanno flow relations with g = 1.4: 

  =  5.4454  using Ma1 = 0.2 (4) 

  =  1.2893  using Ma1 = 0.8 (5) 

In addition, using the isentropic relations: 

  Þ  p1  =  194.5 Pa. (6) 

using p01 = 200 Pa and Ma1 = 0.2. 
 
The pressure at station 2 can be found by combining ratios. 

  Þ  p2  =  46.0 Pa. (7) 
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Choking first occurs when Ma2 = 1 and p2 = pB so that: 

 (8) 

where DL = 18.1 m (found from Eq. (3)).  Using the Fanno flow relations with the sonic length ratio given 
in Eq. (8): 

  and   (9) 

 
Combining ratios: 

  Þ  p2 = p* = pB = 35.7 Pa. (10) 

where p1/p* is given in Eqn. (9), p1/p01 = 0.9724 (using Eq. (6) with Ma1 = 0.2005) and p01 = 200 Pa.  
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Use the following approach to plot Ma1 and Ma2 as a function of pB. 
 
1. Choose a value of Ma1.  Only use subsonic values since the flow starts from stagnation conditions and 

goes through a converging nozzle. 
 
2. Calculate 4fFL1*/DH using the Fanno flow relations and Ma1. 
 
3. Calculate 4fFL2*/DH using: 

 (11) 

with DL = 18.1 m, fF = 0.005, and DH = 25e-3 m. 
 

4. Calculate Ma2 using the Fanno flow relations and the value of 4fFL2*/DH found in step 3. 
 
5. Calculate p1/p* and p2/p* using the Fanno flow relations and Ma1 (step 1) and Ma2 (step 4). 
 
6. Calculate p1 using the isentropic flow relation: 

 (12) 

with p01 = 200 Pa. 
 

7. Calculate pB using: 

 (13) 

Note that pB = p2 when Ma2 < 1 and p2 = p* when Ma2 = 1 (pB £ p*).  When the back pressure is less 
than the sonic pressure, the flow in the pipe will remain unchanged, but the flow outside the pipe will 
exhibit expansion fans. 
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Air flows through a converging nozzle and then a length of insulated duct.  The air is supplied from a tank 
where the temperature is constant at 58 °F and the pressure is variable.  The outlet end of the duct exhausts 
to atmosphere.  When the exit flow is just choked, pressure measurements show the duct inlet pressure and 
Mach number are 53.2 psia and 0.30.  Determine the pressure in the tank and the temperature, stagnation 
pressure, and mass flow rate of the outlet flow, if the tube diameter is 0.249 in.  Show on a Ts diagram the 
effect of raising the tank pressure to 100 psia.  Sketch the pressure distribution versus distance along the 
channel for this new flow condition. 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
When the exit flow is just choked, the duct inlet pressure and Mach number are known. 

Mae = 1, pe = patm = p*  Þ  pi = 53.2 psia  and  Mai = 0.30 (1) 
 

Assume isentropic flow in the nozzle. 

  Þ  p0i = ptank = 56.6 psia (2) 

  Þ  Ti = 509 °R (3) 

  Þ  ri = 0.282 lbm/ft3 (4) 

  Þ  Vi = 332 ft/s (5) 

  Þ   = 3.16*10-2 lbm/s  where Ai = pD2/4   (6) 
 
The flow is at sonic conditions at the outlet so: 

  Þ  p0e = 27.8 psia     (7) 

where p0i/p0* = 2.03506 using the Fanno flow relations with Mai = 0.3.   
 
The temperature at the exit is: 

  Þ  Te = 432 °R     (8) 

where Ti/T* = 1.17878 using the Fanno flow relations with Mai = 0.3.   
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If the tank pressure is increased to p0i = 100 psia, then the Ts diagram looks like the following. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

T 
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pressure ouside duct 

Note that T* remains the same 
when the tank pressure increases 
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exit flow remains at sonic 
conditions. 
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Y =  1 . 4
tui = 99195.9 Pa
Po= 48618.8 Pa

ALi" = 4.266 m
D = 0.00716 m
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A converging-diverging nozzle with an area ratio of 3.3 is connected to a tank containing air at 200 psia 
and 600 °R.  The throat area is 8 in2.  A 7 ft long insulated duct with a (Fanning) friction factor estimated at 
0.005 is connected to the nozzle.   
 
a. Find the maximum flow rate through the device.  
b. What range of back pressures will produce the mass flow rate found in part (a)?  
c. Sketch the process on a T-s diagram. 
 
 
 
 
 
 
 

 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
The maximum flow rate will occur when the flow through the system is choked.  The question is, where 
does the flow choke first?  Does it choke first at the duct exit or the converging-diverging nozzle throat?  If 
it chokes first at the duct exit, then the pressure ratio plot will look something like the following. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For this case, we assume that the exit Mach number is one: 

Þ  Mae = 1, pe = p*, Lie = L*i (1) 
 
Now determine the Mach number at the duct inlet using the Fanno flow relations. 

  Þ  Mai = 0.6632 (2) 

Note that the inlet Mach number will be subsonic since we’re assuming that the flow chokes first at the 
duct exit and not at the converging-diverging nozzle throat. 
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With the given inlet Mach number, calculate the sonic area A* using the isentropic relations (IR) and Mai = 
0.6632 (Eqn. (2)). 

  Þ  Ai/A* = 1.12372 (3) 

Since the calculated Ai/A* is smaller than the given Ai/At = 3.3 Þ At < A*, we conclude that the assumption 
that the flow chokes first at the duct exit must be incorrect. 
 
Now assume that the system chokes first at the converging-diverging nozzle throat.  For this case, the 
pressure profile looks something like the following. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

From the isentropic relations: 

  Þ  Mai = 0.17874 (4) 

where Ai/At = 3.3 and the “IR” underneath the “=” sign signifies the isentropic relations. 
 
Using the given inlet Mach number and the Fanno flow relations (FFR): 

  and pi/p* = 6.10922 (5) 

Using the Fanno flow relations, the Mach number at the duct exit is then: 

  Þ Mae = 0.1800, pe/p* = 6.0676 (6) 

Since the exit Mach number is subsonic, there is no inconsistency with the assumption of choking first at 
the nozzle throat.  Our assumption that choking occurs first at the nozzle throat is ok. 
 
The maximum mass flow rate through the device will simply be the choked mass flow rate: 

  Þ   (7) 

where p0 = 200 psia = 28800 lbf/ft2 , T = 600 °R, g = 1.4, R = 53.3 (ft×lbf)/(lbm×°R), and A* = At = 8 in2/(144 
in2/ft2) = 0.056 ft2. 
 
The back pressure corresponding to when the flow just becomes choked may be found using the results in 
Eqs. (5) and (6) coupled with the isentropic relations. 

 (8) 
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Since the flow will remain choked for back pressures lower than this value, even if the flow chokes again at 
the duct exit, the range of back pressures for which the maximum flow rate in Eqn. (7) will occur is: 

 pb £ 194 psia (10) 
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Air flows steadily from a tank through the pipe shown in the figure.  There is a converging nozzle on the 
end.  If the mass flow rate is 3 kg/s and the nozzle is choked, estimate: 
 
a. the Mach number at duct inlet, and 
b. the pressure inside the tank. 
c. Sketch the process on a T-s diagram. 
 
 
 
 
 
 
 

 
 
 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
If the flow is choked, it will be choked at the exit Þ Mae = 1 and Ae = A*. (1) 
 
Use the isentropic flow relations to determine the conditions at station 2. 

  Þ  Ma2 = 0.45 (2) 

where A2/A* = (D2/De)2 = (6 cm/5 cm)2 = 1.44. 
 
Use the Fanno flow relations and Ma2 = 0.45 to determine the sonic length ratio at 2. 

 (3) 

 
Determine the sonic length ratio at 1 and then use the Fanno flow relations to determine the Mach number 
at 1. 

  Þ  Ma1 = 0.30 (4) 

where 4fFL*2/D = 1.5664 (found above), fF = fD/4 = 0.00625, L12 = 9 m, D = 0.06 m. 
 
The pressure within the tank can be found using a combination of the isentropic relations and the mass flow 
rate. 

  Þ  r1 = 9.22 kg/m3 (5) 

where 
 (6) 
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 (7) 

 (8) 

and , g = 1.4, Ma1 = 0.30, R = 287 J/(kg×K), T0 = 100 °C = 373 K, D1 = 0.06 m. 
 
The stagnation density is found using the isentropic relations and the ideal gas law is used to determine the 
stagnation pressure (the pressure in the tank). 

  Þ  r01 = 9.64 kg/m3 (9) 

  Þ  p01 = 1.03 MPa (10) 
 

Note that the conditions at the exit may be found in the following manner. 

 (11) 

  Þ  pe = 386 kPa (12) 

  Þ  Te = 311 K = 38 °C (13) 

where , Mae = 1, g = 1.4, R = 287 J/(kg×K), T0 = 100 °C = 373 K, De = 0.05 m. 
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Compressed air is supplied from a reservoir to a pipe 1 cm in diameter and 5 m long.  It is estimated that 
the average (Fanning) friction factor of the flow in the pipe is 0.02.  At the end of this long pipe is a short, 
converging nozzle whose opening to the atmosphere has one-half the diameter of the pipe.  Assuming that 
frictional effects in the nozzle can be neglected, find the following information pertaining to conditions 
when the flow through the pipe/nozzle combination is choked: 
1. the Mach number of the flow entering the pipe,  
2. the ratio of the pressure in the reservoir to the pressure in the exit from the nozzle, and 
3. sketch the entire process on a T-s diagram. 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
 
The flow will choke at the converging nozzle exit (location 3).  Determine the Mach number at the pipe 
exit (location 2) taking into account the fact that the converging nozzle flow is isentropic.  

  Þ  Ma2 = 0.1465 (1) 

Use the isentropic relations to determine the location 3-to-location 2 pressure ratio. 

  Þ  p3/p2 = 0.5283/0.9851 = 0.5363 (2) 

Note that Ma3 = 1 and p3 = p*. 
 
Use the Fanno flow relations to determine the dimensionless sonic length at location 2, then use this 
information in addition to the pipe length to determine the dimensionless sonic length at location 1.  Once 
this quantity is known, use the Fanno flow relations once more to determine the Mach number at the pipe 
inlet (location 1). 

Ma2 = 0.1465   Þ  4fFL2*/D = 29.4266 (3) 

= 29.4266 + 40.0000  Þ  4fFL1*/D = 69.4266 (4) 

4fFL1*/D = 69.4266  Þ  Ma1 = 0.09827  (5) 
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Now find the location 2-to-location 1 pressure ratio using the Fanno flow relations. 
Ma2 = 0.1465 Þ  p2/p* = 7.4614 (6) 
Ma1 = 0.09827  Þ  p1/p* =  11.1365 (7) 
p2/p1 = (p2/p*)/(p1/p*)  Þ  p2/p1 = 0.6700 (8) 
 

Use the isentropic relations to determine the location 1-to-reservoir pressure ratio. 

  Þ  p1/p01 = 0.9933 (9) 

 
Now find the ratio of the pressure in the reservoir to the pressure at the nozzle exit by multiplying the 
pressure ratios. 

  Þ  p01/p3 = 2.8018  (10) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

How do we know that the flow chokes first at the nozzle exit as opposed to the pipe exit?  Because the flow 
in going from 2 to 3 is isentropic, and the Mach number can only equal one at a minimum area, i.e., at 
location 3, in an isentropic flow.  There is a contradiction if the Mach number is one at location 2.  
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C. Wassgren  Last Updated:  29 Nov 2016 
Chapter 13:  Gas Dynamics 
 

Isothermal Flow with Friction 
 
In long pipelines there is too much surface area for the flow to be considered adiabatic.  Instead a more 
reasonable assumption is that the flow is isothermal.  The Mach numbers in such flows tend to be small but 
the pressure change, Δp, can be large ⇒ we can’t treat the flow as being incompressible. 
 
Consider isothermal (dT=0), 1D, steady flow of an ideal gas in a constant area (dA=0) duct.  Using the 
same approach as the differential analysis for adiabatic frictional flow, we determine the following 
relations: 

COM: 0d dV
V

ρ
ρ

+ =  (103) 

Note:  dA=0 
 

LME: w

H

4
0dp VdV dx

D
τρ+ + =  (104) 

 
COE: 0 intopc dT VdV qδ= =  (105) 

Notes:   
1. dh=0 since dT=0. 
2. dh0 = cpdT + VdV = δqinto =    

!Qinto !m  
3. We are not assuming adiabatic conditions so heat transfer must be included. 

 

2nd Law: intoq
ds

T
δ

>  (106) 

Since the flow is frictional, it is also irreversible. 
 

Ideal Gas Law: 
dp d
p

ρ
ρ

=  (107) 

Note:  dT=0 
 

Mach # relation: 
( )Ma
Ma
d dV

V
=  (108) 

Note:  dT=0 
 

Entropy relation: 
dpds R
p

= −  (109) 

Note:  dT=0 
 

The local adiabatic stagnation temperature is given by: 
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C. Wassgren  Last Updated:  29 Nov 2016 
Chapter 13:  Gas Dynamics 
 

The local stagnation pressure is given by: 
1

2
0

11 Ma
2

p p
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so that 
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Combine Eqs. (103) through (110) leaving (4fFdx/D) as the independent variable: 
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2 2

Ma 41 Ma
2 Ma 2 1 Ma

F

H

d fdp d dV ds dx
p V R D

ρ γ
ρ γ

⎛ ⎞−= = − = − = − = ⎜ ⎟
− ⎝ ⎠

 (111) 

 

( )

2 2

0

2 20

1Ma 1 Ma
42

12 1 Ma 1 Ma
2

F

H

dp f
dx

p D

γγ

γγ

+⎛ ⎞− −⎜ ⎟ ⎛ ⎞⎝ ⎠= ⎜ ⎟−⎛ ⎞ ⎝ ⎠− +⎜ ⎟⎝ ⎠

 (112) 

 

( )

( )
4

0

2 20

1 Ma 4
12 1 Ma 1 Ma
2

F

H

dT f
dx

T D
γ γ

γγ

− ⎛ ⎞
= ⎜ ⎟−⎛ ⎞ ⎝ ⎠− +⎜ ⎟⎝ ⎠

 (113) 

 
 

Ma2 < 1/γ (subsonic)  Ma2 > 1/γ (subsonic/supersonic) 
d(Ma) > 0 Eq. (111) d(Ma) < 0 
dV > 0 Eq. (111) dV < 0 
dp < 0 Eq. (111) dp > 0 
dT = 0 isothermal dT = 0 
dρ < 0 Eq. (111) dρ > 0 
ds > 0   Eq. (111) ds < 0   (Note:  ds > δqinto/T) 
dT0 > 0 (heat added) Eq. (113) dT0 < 0 (heat removed 
dp0 < 0 Eq. (112) dp0 > 0 for Ma2 < 2/(γ+1) 
   dp0 < 0 for Ma2 > 2/(γ+1) 
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Working equations can be found by integrating Eqs. (111) through (113) using the location where Ma2=1/γ 
as a reference point (indicated by the superscript “*t” to signify limiting conditions for isothermal, frictional 
flow). 
 

( )
* 2

2
2

H

4 1 Ma ln Ma
Ma

t
Ff L
D

γ γ
γ
−= +  (114) 

 
* *

* Ma
t t

t
V p

pV
ρ γ
ρ

= = =  (115) 

 
1

1
2

0
*
0

11+ Ma
1 2 2

3 1 Mat
p
p

γ
γ

γ
γ

γ
γ

γγ

−

−

−⎛ ⎞
⎜ ⎟⎛ ⎞ ⎝ ⎠= ⎜ ⎟−⎝ ⎠

 (116) 

 

20
*
0

2 11+ Ma
3 1 2t

T
T

γ γ
γ

−⎛ ⎞= ⎜ ⎟− ⎝ ⎠
 (117) 

 
Notes: 
 
1. Let’s determine the amount of heat that must be added (in the case of subsonic flow) or removed (in 

the case of supersonic flow) for the flow to go from a given Mach number, Ma, to the choked flow 
Mach number, Ma*t = 1/γ1/2.  From Eq. (105) we have: 

0 intopc dT qδ=  

and from Eq. (113) we have 
( )

( )
4

0

2 20

1 Ma 4
12 1 Ma 1 Ma
2

F

H

dT f
dx

T D
γ γ

γγ

− ⎛ ⎞
= ⎜ ⎟−⎛ ⎞ ⎝ ⎠− +⎜ ⎟⎝ ⎠

 

Combining these two relations gives: 
( )

( )
4

0
into

2 2

1 Ma 4
12 1 Ma 1 Ma
2

p F

H

c T f
q dx

D
γ γ

δ
γγ

− ⎛ ⎞
= ⎜ ⎟−⎛ ⎞ ⎝ ⎠− +⎜ ⎟⎝ ⎠

 (118) 

From Eq. (118) we see that as the Mach number approaches its limiting value of 1/γ1/2, the local heat 
transfer required to maintain isothermal conditions becomes very large.  Hence, the assumption of 
isothermal flow for Mach numbers in the neighborhood of the limiting Mach number may not be a 
good one since there may not be sufficient heat transfer to maintain isothermal conditions. 
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2.  Consider the following flow situation. 
 
 
 
 
 
 
 
 

Assume that for the given back pressure, pback, the duct length is the sonic length, i.e., L=L*t
 and 

Mae=1/γ1/2.  Note that since the exit Mach number is subsonic, the exit pressure will equal the back 
pressure, i.e., pe = p*t = pback.  What happens if we now increase the duct length or drop the back 
pressure?  It can be shown that there is no solution using the isothermal, frictional flow equations for 
the new conditions.  The isothermal flow assumption breaks down since we would need to supply an 
infinite amount of heat transfer to get to the new conditions (refer to Eq. (118)). 

pback p0, T0 

L 

i e 
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  iso_fanno_01 

Page 1 of 1 

Natural gas (γ=1.3, R=75 (ft⋅lbf)/(lbm⋅°R)) flows through a pipeline of diameter 3 ft and (Fanning) friction 
factor 0.001.  At a particular point in the pipeline the pressure is 200 psia, the temperature is 500 °R, and 
the velocity is 50 ft/s.  The pipeline is kept at constant temperature.   
a. Determine the maximum length of the pipe that one could have from this point given these conditions. 
b. What would be the pressure at the maximum length? 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
First find the Mach number at 1. 

1 1
1

1 1
Ma

V V
c RTγ

= =   ⇒  Ma1 = 0.0399 (1) 

 
Now find L*t using the isothermal, frictional flow relations. 

( )
* 2

21 1
12

1

4 1 Ma
ln Ma

Ma

t
F

H

f L
D

γ γ
γ
−

= +   ⇒  L1
*t = 67.6 miles (2) 

 
Now find p*t using the isothermal, frictional flow relations. 

*

1
1

Ma
tp
p

γ=   ⇒  p*t = 9.10 psia (3) 

 
 
 
 

1 2 

L*t 

D  = 3 ft 
fF  = 0.001 
p1  = 200 psia 
T1  = 500 °R 
V1 = 50 ft/s 
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  iso_fanno_02 

Page 1 of 2 

Consider the air pipeline attached to a converging nozzle as shown below. 
 
 
 
 
 
 
 
 
 
 
Determine the mass flow rate through the pipeline: 
a. if the pipeline is well-insulated, and 
b. if the pipeline is held at constant temperature. 
 
 
SOLUTION: 
 
For part (a), use the (adiabatic) Fanno flow relations.  First check if the flow is choked or not at the pipe 
exit.  Assume that the flow is choked so that Lie = L*i , Mae = 1, and pe = p* ≥ pb.   

( )( )
( )

* 4 0.001 50 m4
2.000

0.10 m
F if L
D

= =   ⇒ Mai = 0.4183  (using the Fanno flow relations) (1) 

⇒  pi/p* = 2.5739 (using the Fanno flow relations) (2) 
 
Calculate the inlet stagnation pressure ratio using the isentropic relations. 

Mai = 0.4183 ⇒  pi/p0i = 0.8866  (using the isentropic flow relations) (3) 
 
Now calculate the exit pressure using the various pressure ratios in order to verify that the choked flow 
assumption is correct. 

( ) ( )( )
*

0*
0

11 0.8866 500 kPa 172 kPa
2.5739

e i
e i

i i

p ppp p
p pp

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = =⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠
 (4) 

Note that pe > pb = 100 kPa, which is consistent with the assumption of choked flow. 
 
Now calculate the mass flow rate through the pipe using the conditions at the pipe inlet. 

   
!m = ρiVi Ai =

pi
RTi

⎛

⎝⎜
⎞

⎠⎟
Ma i γ RTi( ) π

4 D2( ) = piMa i
γ

RTi

⎛

⎝
⎜

⎞

⎠
⎟ π

4 D2( )  (5) 

   
!m = p0i 1+ γ −1

2
Ma i

2⎛
⎝⎜

⎞
⎠⎟

γ
1−γ

Ma i
γ

RT0i
1+ γ −1

2
Ma i

2⎛
⎝⎜

⎞
⎠⎟

1
2

π
4 D2( )  (6) 

   
!m = Ma i 1+ γ −1

2
Ma i

2⎛
⎝⎜

⎞
⎠⎟

1+γ
2 1−γ( )

p0i
γ

RT0i

π
4 D2( )  (7) 

   !m = 5.97 kg s  (8) 
 
 

reservoir conditions: 
500 kPa (abs) 
300 K 

100 kPa (abs) 

50 m 

(Fanning) friction factor = 0.001 

diameter = 0.10 m 
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  iso_fanno_02 

Page 2 of 2 

For part (b), use the iso-thermal with friction relations.  Follow the same approach as described above.  
First assume that the flow is choked at the outlet.  If this is the case, then Lie = L*ti, Mae = (1/γ)1/2, and pe = 
p*t = pb (since the exit Mach number is subsonic). 

( )( )
( )

* 4 0.001 50 m4
2.000

0.10 m

t
F if L
D

= = ⇒ Mai = 0.3982  (using the isothermal w/ friction relations) (9) 

⇒  pi/p*t = 2.1225 (using the isothermal w/ friction relations) (10) 
 

Calculate the inlet stagnation pressure ratio using the isentropic relations. 
Mai = 0.3982 ⇒  pi/p0i = 0.8965  (using the isentropic flow relations) (11) 
 

Now calculate the exit pressure using the various pressure ratios in order to verify that the choked flow 
assumption is correct. 

( ) ( )( )
*

0*
0

11 0.8965 500 kPa 211 kPa
2.1225

t
e i

e it
i i

p ppp p
p pp

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = =⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠
 (12) 

However, for choked isothermal flow with friction, the exit Mach number is subsonic so we would need pe 
= pb = 100 kPa, which is not the case here.  Furthermore, the pressure found in Eq. (12) is the lowest exit 
pressure that can be generated given the iso-thermal flow with friction assumptions and starting from 
subsonic conditions (note that the flow starts from stagnation conditions and goes through a converging 
nozzle).  Hence, we must conclude that it is not possible to maintain the isothermal flow with friction 
assumptions for the given flow conditions. 
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  iso_fanno_03 

Page 1 of 1 

Natural gas (R=75 (ft⋅lbf)/(lbm⋅°R), γ=1.3) is to be pumped through a pipe of 36 inches I.D. connecting two 
compressor stations forty miles apart.  At the upstream station the pressure is not to exceed 90 psig and at 
the downstream station it is to be at least 10 psig.  Calculate the maximum allowable mass flow rate, 
assuming that there is sufficient heat transfer through the pipe wall to maintain the gas at 70 °F. 
 
SOLUTION: 
 
 
 
 
 
 
The maximum flow rate will occur when the flow is choked.  For an isothermal flow with friction, this will 
occur when Ma2 = 1/γ1/2.  The mass flow rate for choked flow conditions is given by: 

   
!mchoked = ρ*tV *t A = p*t

RT
⎛

⎝
⎜

⎞

⎠
⎟

γ RT
γ

⎛

⎝
⎜

⎞

⎠
⎟ A = p*t

RT
A    (1) 

where V*t
 = Ma*t(γRT)1/2, Ma*t

 = 1/γ0.5, A = constant (constant area duct), and T = constant (isothermal 
conditions).  The sonic pressure can be determined in terms of the conditions at station 1 using the 
isothermal, frictional flow relations: 

*1 1
1 1*

2 1

1 Ma
Ma

t
t
p p p p

pp
γ

γ
= = ⇒ =  (2) 

Keeping in mind the constraint that: 
( )
( )

1 1
*

2 maxmax

90 14.7  psia 104.7 psia
4.2389

10 14.7  psia 24 psiat
p p

pp
+

= = = =
+

 (3) 

 
Substitute Eq. (2) into Eq. (1) to get: 

   
!mchoked = p1

γ
RT

Ma1A  (4) 

Hence, to maximize the mass flow rate, the pressure at 1 should be maximized (= 90 psig = 104.7 psia) and 
Ma1 should be as large as possible.  From Eq. (2) we observe that as Ma1 increases, p*t also increases 
(hence we needn’t worry about dropping below the minimum allowable pressure).  The maximum mass 
flow rate will occur when p*t = p1 (⇒ Ma1 = 1/γ0.5) with    !mmax = 3033 lbm /s  .  The (Fanning) friction factor 
corresponding to this case is zero, i.e., fF = 0. 
 
The largest allowable friction factor will correspond to: 

1
*

1max

1
4.2389

Mat
p
p γ

= =   ⇒  Ma1 = 0.2069   (5) 

⇒    ( )
* 2

21
12

1

4 1 Ma
ln Ma 14.081

Ma

t
F

H

f L
D

γ γ
γ
−

= + =   ⇒  fF = 5e-5 (6) 

The mass flow rate corresponding to this condition is 
   
!mmax fF

= 715.6 lbm /s . 

 
Larger friction factors are not possible without going outside of the range of allowable pressures.  For 
example, if fF = 1e-4:  

 ( )
* 2

21
12

1

4 1 Ma
28.16 ln Ma

Ma

t
F

H

f L
D

γ γ
γ
−

= = +   ⇒  Ma1 = 0.1535  and  p1/p*t
 = 5.7137 (7) 

This pressure ratio is greater than the allowable pressure ratio given in Eq. (3). 
 
Friction factors smaller than 5e-5 will result in flow rates between 715.6 lbm/s and 3033 lbm/s. 

1 2 

L 
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8. Flow with Heat Transfer (Rayleigh Flow) 
 
Now let’s consider compressible flows where heat transfer is significant.  Examples of such flows include 
those in which combustion, evaporation, condensation, or wall heat exchange occurs.  Note that we won’t 
worry about how the heat gets into (or out of) the flow.  We’ll just assume that we know its value, 
otherwise we would need to include heat transfer analyses into our discussions. 
 
To analyze the effects of heat transfer on a compressible flow, consider frictionless, 1D, steady flow of an 
ideal gas in a constant area (dA=0) duct.   
 
 
 
 
 
 
 
 
 
 
 
Using the same approach as the differential analysis for frictional flow gives: 

COM: 0d dV
V

ρ
ρ

+ =  (119) 

Note:  dA=0 
 
LME: 0dp VdVρ+ =  (120) 
 
COE: intodh VdV qδ+ =  (121) 

Note:    δq = δ !Q !m  (heat addition per unit mass flow rate) 
 

2nd Law: intoq
ds

T
δ

≥  (122) 

Note:  The flow may be reversible if the temperature gradients are very small.  
 

Ideal Gas Law: 
dp d dT
p T

ρ
ρ

= +  (123) 

 
caloric Eq of state: pdh c dT=  (124) 

0 intop pc dT c dT VdV qδ= + =  

 

Mach # relation: 
( )Ma
Ma 2
d dV dT

V T
= −  (125) 

 

Entropy relation: p
dT dpds c R
T p

= −  (126) 

 

dx 
x 

(p+dp)A pA 

V V+dV 

δqinto 
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Local stagnation pressure and temperature: 
1

2

0

11 Ma
2

T
T

γ −−⎛ ⎞= +⎜ ⎟⎝ ⎠
 (127) 

1
2

0

11 Ma
2

p
p

γ
γγ −−⎛ ⎞= +⎜ ⎟⎝ ⎠
 (128) 

 
Combining these equations gives and using dT0 (= δqinto/cP) as the independent variable: 

( ) ( )
( )

2 2

0
2

0

11 Ma 1 MaMa 2
Ma 2 1 Ma

d dT
T

γγ −⎛ ⎞+ +⎜ ⎟⎝ ⎠=
−

 (129) 

 
2 2

0
2

0

1Ma 1 Ma
2

1 Ma
dTdp

p T

γγ −⎛ ⎞+⎜ ⎟ ⎛ ⎞⎝ ⎠= − ⎜ ⎟
− ⎝ ⎠

 (130) 

 

( )
( )

2 2

0
2

0

11 Ma 1 Ma
2

1 Ma

dTdT
T T

γγ −⎛ ⎞− +⎜ ⎟ ⎛ ⎞⎝ ⎠= ⎜ ⎟
− ⎝ ⎠

 (131) 

 
2

0
2

0

11 Ma
2

1 Ma
dTdV d

V T

γ
ρ
ρ

−⎛ ⎞+⎜ ⎟ ⎛ ⎞⎝ ⎠= − = ⎜ ⎟
− ⎝ ⎠

 (132) 

 
2

0 0

0 0

Ma
2

dp dT
p T

γ ⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
 (133) 

 

2 0

0

11 Ma
2p

dTds
c T

γ ⎛ ⎞−⎛ ⎞= + ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 (134) 
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Note: for δqinto > 0 ⇒ dT0 > 0 
 for δqinto < 0 ⇒ dT0 < 0 
 
 
 
 Ma < 1  Ma > 1  
 heat   heat heat heat 
 addition removal addition removal 
 dT0 > 0 dT0 < 0 dT0 > 0 dT0 < 0 
 d(Ma) > 0 d(Ma) < 0 d(Ma) < 0 d(Ma) > 0 
 dV > 0  dV < 0 dV < 0 dV > 0 
 dp < 0  dp > 0 dp > 0 dp < 0 
 dT > 0 for Ma2<1/γ dT < 0 for Ma2<1/γ dT > 0 dT < 0 
 dT < 0 for Ma2>1/γ dT > 0 for Ma2>1/γ 
 dρ < 0  dρ > 0 dρ > 0 dρ < 0 
 dp0 < 0 dp0 > 0 dp0 < 0 dp0 > 0 
 ds > 0  ds < 0 ds > 0 ds < 0 

 
 
 
Notes: 
1. dT0 = δqinto/cp  
2. Heating always decreases the stagnation pressure ⇒ a loss in pressure recovery and thus efficiency.  

Removing heat results in an increasing stagnation pressure; however, in practice other effects act to 
decrease the stagnation pressure. 

3. For 1/γ0.5<Ma<1, heat addition decreases the flow temperature while heat removal increases the flow 
temperature.  The energy input from the heat goes into the kinetic energy of the flow rather than the 
thermal energy for this range of Mach numbers. 

4. Mathematically, it appears that we could transition from subsonic to supersonic flow by controlling the 
heat transfer rate.  In practice, transitioning from subsonic to supersonic flow using heat transfer has 
not been observed. 
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Integrating Eqs. (129) through (134) using sonic conditions as a reference point gives the following 
working equations: 
 

* 2
1

1 Ma
p
p

γ
γ
+=

+
 (135) 

 

( )
* 2

* 2
1 Ma
+1 Ma

V
V

ρ γ
ρ γ

+= =  (136) 

 

( )
( )

2 2

* 22

1 Ma

1 Ma

T
T

γ

γ

+
=

+
 (137) 

 
1

20
* 2
0

1 2 11 Ma
1 21 Ma

p
p

γ
γγ γ

γγ

−⎡ ⎤⎛ ⎞+ −⎛ ⎞= +⎢ ⎥⎜ ⎟⎜ ⎟++ ⎝ ⎠⎝ ⎠⎣ ⎦
 (138) 

 

( )
( )

2
20

* 220

2 1 Ma 11 Ma
21 Ma

T
T

γ γ

γ

+ −⎛ ⎞= +⎜ ⎟⎝ ⎠+
 (139) 

 
1

*
2

2

1ln Ma
1 Map

s s
c

γ
γγ

γ

+⎡ ⎤⎛ ⎞− +⎢ ⎥= ⎜ ⎟⎢ ⎥+⎝ ⎠⎣ ⎦
 (140) 

 

02
12 01

01

1p
T

q c T
T

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 (141) 

 
 

Note that the maximum amount of heat that can be added to a flow for a given initial state is: 
*
0

12,max 01
01

1p
T

q c T
T

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 

where, using Eq. (139), 

( )
( )

1
2*

20
2201

2 1 Ma 11 Ma
21 Ma

T
T

γ γ

γ

−⎡ ⎤
+ −⎛ ⎞⎢ ⎥= +⎜ ⎟⎢ ⎥⎝ ⎠+⎢ ⎥⎣ ⎦

 

so that 

( )
( )

1
2

2
12,max 01 22

2 1 Ma 1
1 Ma 1

21 Ma
pq c T

γ γ
γ

−⎧ ⎫⎡ ⎤+ −⎪ ⎪⎛ ⎞⎢ ⎥= + −⎨ ⎬⎜ ⎟⎢ ⎥⎝ ⎠+⎪ ⎪⎣ ⎦⎩ ⎭

  (142) 

 
 

 1328 

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

C. Wassgren 1309 2024-02-01



 

C. Wassgren  Last Updated:  29 Nov 2016 
Chapter 13:  Gas Dynamics 
 

Plotting the locus of all possible states for Rayleigh flow on a T-s diagram gives the Rayleigh Line: 
*

*
11
1

*

1

ln
p

T
Ts s

c p
p

γ
γ

−

⎛ ⎞⎜ ⎟− ⎝ ⎠=
⎛ ⎞
⎜ ⎟⎝ ⎠

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

s 

T 

Ma=1 
(maximum entropy) 

Ma>1 

Ma<1 

 

The arrows are drawn for heat addition.  
Reverse the arrows for heat removal. 
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  rayleigh_01 

Page 1 of 2 

Air flows with negligible friction through a duct of area 0.25 ft2.  At section 1, flow properties are T1 = 600 
°R, p1 = 20 psia, and V1 = 360 ft/s.  At section 2, p2 = 10 psia.  The flow is heated between sections 1 and 2.  
Determine the properties at section 2, the energy added, and the entropy change.  Finally, plot the process 
on a T-s diagram. 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
At section 1: 

1
1

1
Ma

V
RTγ

=   ⇒  Ma1 = 0.30 (1) 

Using the Rayleigh flow relations and the calculated Ma1: 
Ma1 = 0.30  ⇒  p1/p* = 2.1314 (2) 
Ma1 = 0.30  ⇒  T1/T* = 0.4089 (3) 
 

Combine with the condition at 2: 

2 2 1
* *

1

p p p
pp p

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

  ⇒  p2/p* = 1.0657 (4) 

Use the Rayleigh flow relations to determine the remainder of the conditions at 2. 
p2/p* = 1.0657  ⇒  Ma2 = 0.947 (5) 
Ma2 = 0.947  ⇒  T2/T* = 1.015 (6) 

*
2

2 1*
1

T TT T
TT

⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
  ⇒  T2 = 1490 °R (7) 

2
2

2

p
RT

ρ =   ⇒  ρ2 = 1.81*10-2 lbm/ft3 (8) 

1
22
2

02

11 Ma
2

p
p

γ
γγ −−⎛ ⎞= +⎜ ⎟⎝ ⎠
  ⇒  p02 = 17.8 psia (9) 

1
22
2

02

11 Ma
2

T
T

γ −−⎛ ⎞= +⎜ ⎟⎝ ⎠
  ⇒  T02 = 1760 °R (10) 

2 2 2MaV RTγ=   ⇒  V2 = 1792 ft/s (11) 
 

The heat added per unit mass between 1 and 2 may be found from Conservation of Energy. 
( )12 02 01Pq c T T= −   ⇒  q12 = 276 Btu/(lbm.°R) (12) 

 
The change in entropy between 1 and 2 may be found from the Tds equation. 

2 2
2 1

1 1
ln lnP
T ps s c R
T p

− = −   ⇒ s2 – s1 = 0.266 Btu/(lbm.°R) (13) 

2 1 

Q12 

V1 = 360 ft/s 
p1 = 20 psia 
T1  = 600 °R 

p2 = 10 psia 

γ = 1.4 
R = 53.3 (ft.lbf)/(lbm.°R) 
cP = 0.240 Btu/(lbm.°R) 

 1330 

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

C. Wassgren 1311 2024-02-01



  rayleigh_01 

Page 2 of 2 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

T 

s 

T1 

p1 

T2 

p2 
T01 

p01 

T02 

p02 

 1331 

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

C. Wassgren 1312 2024-02-01



  rayleigh_02 

Page 1 of 2 

Air flows in a constant-area duct.  At the inlet the Mach number is 0.2, the static pressure is 90 kPa (abs), 
and the static temperature is 27 °C.  Heat is added at a rate of 120 kJ/(kg of air).  Assuming a perfect gas 
with constant specific heats, determine the properties of the air at the end of the duct.  Assume also that the 
flow is frictionless and that cp = 1000 J/(kg⋅K). 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
From the isentropic relations: 

1
21
1

01

11 Ma
2

p
p

γ
γγ −−⎛ ⎞= +⎜ ⎟⎝ ⎠
  ⇒  p01 = 92.5 kPa (abs) (1) 

1
21
1

01

11 Ma
2

T
T

γ −−⎛ ⎞= +⎜ ⎟⎝ ⎠
  ⇒  T01 = 302 K (2) 

1 1 1MaV RTγ=   ⇒  V1 = 69.4 m/s (3) 
 

Determine the stagnation temperature at the end of the duct using Conservation of Energy. 
( )12 02 01Pq c T T= −   ⇒  T02 = 422 K (4) 

 
Use the Rayleigh flow relations and the Mach number at the state 1. 

Ma1 = 0.2  ⇒ T01/T0
* = 0.1736 (5) 

 p01/p0
* = 1.2346 (6) 

 T1/T* = 0.2066 (7) 
 p1/p* = 2.2727 (8) 
 

Now determine the conditions at state 2 using the Rayleigh flow relations. 

02 02 01
* *

010 0

T T T
TT T

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

  ⇒  T02/T0
* = 0.2426  ⇒  Ma2 = 0.24 (9) 

Ma2 = 0.24  ⇒ p02/p0
* = 1.2213 (10) 

 p2/p* = 2.2209 (11) 
 T2/T* = 0.2841 (12) 

*
2

2 1*
1

p pp p
pp

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

  ⇒  p2 = 87.9 kPa (abs) (13) 

*
2

2 1*
1

T TT T
TT

⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
  ⇒  T2 = 413 K (14) 

*
02 0

02 01*
010

p p
p p

pp

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

  ⇒  p02 = 91.5 kPa (abs) (15) 

2 2 2MaV RTγ=   ⇒  V2 = 97.8 m/s (16) 

2 1 

q12 = 120 kJ/kg 

Ma1 = 0.2 
p1 = 90 kPa (abs) 
T1  = (27+293) = 300 K 

γ = 1.4 
R = 287 J/(kg.K) 
cP = 1000 J/(kg.K) 
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p01 
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A gaseous mixture of air and fuel enters a ram-jet combustion chamber with a velocity of 200 ft/s, at a 
temperature of 120 °F, and at a pressure of 5 psia.  The heat of reaction, Δh0, of the mixture for the 
particular fuel-air ratio employed is 500 Btu/(lbm of the mixture).  It is desired to find the stream properties 
at the exit of the combustion chamber.  What is the maximum heat of reaction that can be accommodated 
for the given inlet conditions?  It will be assumed that friction is negligible, that the cross-sectional area is 
constant, and that the properties of both the reactants and the products are equivalent to air in respect to 
molecular weight and specific heat. 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
Determine the Mach number at 1. 

1
1

1
Ma

V
RTγ

=   ⇒  Ma1 = 0.169 (1) 

 
Determine the stagnation properties at 1. 

1
21
1

01

11 Ma
2

p
p

γ
γγ −−⎛ ⎞= +⎜ ⎟⎝ ⎠
  ⇒  p01 = 5.101 psia (2) 

1
21
1

01

11 Ma
2

T
T

γ −−⎛ ⎞= +⎜ ⎟⎝ ⎠
  ⇒  T01 = 583.3 °R (3) 

 
The stagnation temperature at station 2 may be found knowing the total specific enthalpy change during the 
reaction. 

( )0 02 01ph c T TΔ = −   ⇒  T02 = 2667 °R (4) 

 
The Mach number at station 2 may be found from the sonic stagnation temperature ratio there and the 
Rayleigh flow relations. 

02 02 01
* *

010 0

T T T
TT T

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

  ⇒  T02/T0
* = 0.585  ⇒  Ma2 = 0.433     (5) 

where T02/T01 = 4.572 and T01/T0
* = 0.128 (from the Rayleigh flow relations). 

 
The remainder of the flow properties may be found using the Rayleigh flow relations. 

Ma1 = 0.169  ⇒  p1/p* = 2.308, T1/T* = 0.153, p01/p0
* = 1.244 (6) 

Ma2 = 0.433  ⇒  p2/p* = 1.901, T2/T* = 0.677, p02/p0
* = 1.143 (7) 

*
2

2 1*
1

T TT T
TT

⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
  ⇒  T2 = 2570 °R (8) 

*
2

2 1*
1

p pp p
pp

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

  ⇒  p2 = 4.12 psia (9) 

2 2 2MaV RTγ=   ⇒  V2 = 1075 ft/s (10) 
 

 

1 2 
V1 = 200 ft/s 
T1 = (120 + 460) °R = 580 °R 
p1 = 5 psia 
 
Δh0 = 500 BTU/lbm 

q12 
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Note that the maximum heat of reaction (Δh’0) for the given inlet conditions may be found when the exit 
conditions are sonic (T’02 = T0

*). 
( )0 02 01ph c T T′′Δ = −  (11) 

where 
*

02 0
02 01*

010

1

T T
T T

TT
′

′

=

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠1 2 3

  ⇒  T02’ = 4550 °R  ⇒  Δh’0 = 952 BTU/lbm (12) 

If a larger heat of reaction occurs, then the inlet conditions must change. 
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A ram jet device has air entering it at station 1 with a pressure of 10 psia, temperature of 500 °R, and 
velocity of 250 ft/sec.  The inlet area is 3 ft2.  In the combustion chamber (from 1 to 2), 50 Btu/lbm of heat 
is added to the flow (it can be assumed that this is done without friction).  At the end of the combustion 
chamber (station 2) the flow passes through a nozzle with an exit area of 2.5 ft2 (the exit is at station 3).  
Assume that the flow is isentropic in this part.  Finally, more heat is added in a constant area afterburner 
(from station 3 to 4) to raise the exit Mach number to 1.  How much heat must be added in the afterburner 
to achieve this? 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
At station 1: 

1
1

1
Ma

V
RTγ

=   ⇒  Ma1 = 0.228 (1) 

2
01 1 1

11 Ma
2

T T γ −⎛ ⎞= +⎜ ⎟⎝ ⎠
  ⇒  T01 = 505 °R (2) 

using V1 = 250 ft/s, γ = 1.4, R = 53.3 (ft⋅lbf)/(lbm⋅°R) and T1 = 500 °R. 
 
At station 2: 

12
02 01

P

qT T
c

= +   ⇒  T02 = 713 °R (3) 

where T01 = 505 °R, q12 = 50 Btu/lbm, and cP = 0.240 Btu/(lbm⋅°R).  In addition: 

02 02 01
* *

010 0

T T T
TT T

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

  ⇒  02
*
0

0.3093
T
T

=  (4) 

where T02 and T01 are given above and T01/T0
* = 0.2919 (found using the Rayleigh flow relations with Ma1 

= 0.228 and γ = 1.4).  Using the Rayleigh flow relations with the given T02/T0
*, Ma2 = 0.280. (5) 

 
Using the isentropic flow relations, the sonic area at 2 can also be found: 

( )
1

2 11 2
22 2

1
2 2

1 Ma1
* Ma 1
A
A

γ
γγ

γ

+
−−

−

⎛ ⎞+
⎜ ⎟=
⎜ ⎟+⎝ ⎠

  ⇒  A* = 1.385 ft2 (6) 

where A2 = 3 ft2, γ = 1.4, and Ma2 = 0.280. 
 
At station 3: 

( )
1

2 11 2
33 2

1
3 2

1 Ma1
* Ma 1
A
A

γ
γγ

γ

+
−−

−

⎛ ⎞+
⎜ ⎟=
⎜ ⎟+⎝ ⎠

  ⇒  Ma3 = 0.343 (7) 

using A* = 1.385 ft2, A3 = 2.5 ft2, and noting that the flow from 2 to 3 is isentropic.  Also at station 3, T03 = 
T02 since the flow is isentropic from 2 to 3, and T03/T0

* = 0.4261 (using the Rayleigh flow relations with the 
calculated Ma3). 
 

1 2 

3 4 

q12 

q34 
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At station 4: 
04
*
0

1
T
T

=  (8) 

since Ma4 = 1.  The heat addition between 3 and 4 can be found from the stagnation temperatures at those 
stations. 

( ) 04
34 04 03 03

03
1P P

T
q c T T c T

T
⎛ ⎞

= − = −⎜ ⎟
⎝ ⎠

 (9) 

where 
*

04 04 0
*

03 030

T T T
T TT

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (10) 

Using cP = 0.240 Btu/(lbm⋅°R), T03 = 713 °R, T04/T0
* = 1, and T03/T0

* = 0.4261 ⇒ q34 = 230 Btu/lbm. 
 

 
 

T 

s 

1 

2 

3 

4 
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A constant area combustor is to pass 215 kg/sec of air (stagnation pressure and temperature of 800 kPa 
(abs) and 400 K, respectively) through a 5 m long chamber with a flow area of 0.25 m2.  The combustion 
process adds heat at 600 kJ/kg.  Assume ideal gas behavior with γ=1.4 and cp=1.004 kJ/(kg⋅K).  Find: 
a. the Mach number of the flow at the combustor entrance, 
b. the stagnation temperature of the flow leaving the combustor, 
c. the Mach number of the flow leaving the combustor, and 
d. sketch the process on a T-s diagram. 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
 
At station 2: 

( ) 12
12 02 01 02 01P

P

qq c T T T T
c

= − ⇒ = +   ⇒  T02 = 998 K (1) 

 
At station 1: 

   

!m = ρ1V1A1 = ρ0 1+ γ −1
2

Ma1
2⎛

⎝⎜
⎞
⎠⎟

1
1−γ⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Ma1 γ RT1( )A1

=
p0

RT0
1+ γ −1

2
Ma1

2⎛
⎝⎜

⎞
⎠⎟

1
1−γ⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Ma1 γ RT01 1+ γ −1
2

Ma1
2⎛

⎝⎜
⎞
⎠⎟

−1⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

A1

= p0
γ

RT01

⎛

⎝
⎜

⎞

⎠
⎟ Ma1 1+ γ −1

2
Ma1

2⎛
⎝⎜

⎞
⎠⎟

1+γ
2 1−γ( )

A1

 (2) 

Iterate to find that Ma1 = 0.328. 
 
At station 2: 

01 02
02 *

010

T T
T

TT

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

  ⇒  T02/T0
* = 0.9940 (3) 

using 
Ma1 = 0.328  ⇒  T01/T0

* = 0.3984 from the Rayleigh flow relations. (4) 
 

Again, from the Rayleigh flow relations, 
T02/T0

* = 0.9940  ⇒  Ma2 = 0.912 (5) 
 
 
 

q12 = 600 kJ/kg 

2 1 

  !m  = 215 kg/s 
A = 0.25 m2 
p01 = 800 kPa (abs) 
T01 = 400 K 
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It has been suggested that the combustion in rocket motors should be carried out at high speed in a tube of 
constant cross-section, as indicated in the sketch.  It is desired to compare the specific thrust (thrust force 
per unit mass rate of flow, in lbf⋅sec/slug) of such a rocket motor with the specific thrust of the conventional 
motor, also shown in the sketch. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To simplify the calculations it will be assumed that friction is negligible, that the jet leaves the nozzle at the 
pressure of the ambient atmosphere (say 5 psia), that the fuel and oxidant are supplied as gases, and that 
both rockets are supplied at the same pressure (p01 = p0a = 500 psia).  Also, all processes will be considered 
adiabatic, except that the combustion will be replaced by an equivalent heat process with T01=T0a = 500 °R 
and T03=T0b = 5000 °R.  As an approximation, take γ=1.4 and use a molecular weight of 20 lbm/mol.   

 
For the proposed design, assume that the velocity is negligible at section 1, that all combustion occurs 
between 2 and 3, and that the Mach number is unity at section 3.  For the conventional design assume 
negligible velocity at a and complete combustion between a and b. 

 
Calculate: 
a. the specific impulse for both motors (in lbf⋅sec/slug) [the specific impulse, Isp is defined as the thrust, T, 

developed by consuming a unit mass of the propellants in unit time, i.e., 
   
Isp = T !m ]   

b. the throat area per unit of thrust (ft2/lbf). 
 
 
 

fuel 

oxidant 

1 

2 3 4 

proposed design 

combustion 

jet 

fuel 

oxidant 

a b 
c 

conventional design 

combustion 

jet 
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SOLUTION: 
 
First analyze the proposed design.  Note that R = RU/M = 77.25 (ft⋅lbf)/(lbm⋅°R) where RU is the universal 
gas constant (= 1545 (ft⋅lbf)/(mol⋅°R)) and M is the molecular weight (= 20 lbm/mol for the current 
problem). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
At station 3: 

Ma3 = 1  ⇒  03
*
0

1
p
p

=   and  03
*
0

1
T
T

=    (using the Rayleigh flow relations) (1) 

 
At station 2: 

( )02 02 03
* *

030 0

500 R 1 0.1000
5000 R

T T T
TT T

⎛ ⎞ ⎛ ⎞⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

o

o  (2) 

⇒  Ma2 = 0.148  and  02
*
0

1.2490
p
p

=    (using the Rayleigh flow relations) (3) 

 
Back to station 3: 

( ) ( )
*

03 0
03 02 04*

020

11 500 psia 400 psia
1.2490

p p
p p p

pp

⎛ ⎞⎛ ⎞ ⎛ ⎞= = = =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠
 (4) 

 
At station 4: 

1
24
4

04

11 Ma
2

p
p

γ
γγ −−⎛ ⎞= +⎜ ⎟⎝ ⎠
  ⇒  Ma4 = 3.534 (5) 

1
24
4

04

11 Ma
2

T
T

γ −−⎛ ⎞= +⎜ ⎟⎝ ⎠
 ⇒  T4 = 1430 °R (6) 

4 4 4MaV RTγ=   ⇒  V4 = 7890 ft/s (7) 
 

The rocket thrust, F, can be found using the linear momentum equation in the x-direction applied to the 
control volume shown in the previous figure.  Note that the pressure forces cancel since the pressure acting 
everywhere on the control volume is 5 psia. 

   F = !mV4  (8) 
 

The specific impulse, Isp, is the thrust per mass flow rate: 

fuel 

oxidant 

1 

2 3 4 

combustion 

jet 

p01 = p02 = 500 psia 
T01 = T02 = 500 °R 
T03 = T04 = 5000 °R 
Ma1 ≈ 0 

p4 = 5 psia 
Ma3 = 1 

x 

F 
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Isp =

F
!m
=V4   ⇒  Isp = 7890 lbf⋅s/slug (9) 

 
The throat area per unit thrust is: 

   

AT
F

=
A3
F

=
!m

ρ3V3

!mV4
= 1
ρ3V3V4

 (10) 

where 
3

3
3

p
RT

ρ =   ⇒  ρ3 = 9.439e-2 lbm/ft3 (11) 

with 
1

2
3 03 3

11 Ma
2

p p
γ
γγ −−⎛ ⎞= +⎜ ⎟⎝ ⎠

  ⇒  p3 = 211 psia (12) 

1
2

3 03 3
11 Ma
2

T T γ −−⎛ ⎞= +⎜ ⎟⎝ ⎠
  ⇒  T3 = 4167 °R (13) 

3 3 3MaV RTγ=   ⇒  V3 = 3810 ft/s (14) 

∴ AT/F = 1.135e-5 ft2/lbf (15) 
 
 
Now analyze the conventional design. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
At station a: 

Maa = 0  ⇒ 0
*
0

0aT
T

=   and  0
*
0

1.2679ap
p

=   (using the Rayleigh relations) (16) 

 
At station b: 

( )0 0 0
* *

00 0

5000 R0 0
500 R

b a b

a

T T T
TT T

⎛ ⎞ ⎛ ⎞⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

o

o  (17) 

⇒  Mab = 0  ⇒  0
*
0

1.2679bp
p

=    (using the Rayleigh relations)   (18) 

( ) ( )
*

0 0
0 0*

00

11.2679 500 psia 500 psia
1.2679

b
b a

a

p p
p p

pp

⎛ ⎞⎛ ⎞ ⎛ ⎞= = =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠
 (19) 

 

fuel 

oxidant 

a b 
c 

combustion 

jet F 

x 

p0a = 500 psia 
T0a = 500 °R 
T0b = T0c = 5000 °R 
Maa ≈ 0 

pc= 5 psia 
p0c = p0b 
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At station c: 
1

2

0

11 Ma
2

c
c

c

p
p

γ
γγ −−⎛ ⎞= +⎜ ⎟⎝ ⎠
  ⇒  Mac = 3.693 (20) 

1
2

0

11 Ma
2

c
c

c

T
T

γ −−⎛ ⎞= +⎜ ⎟⎝ ⎠
  ⇒  Tc = 1340 °R (21) 

c
c

c

p
RT

ρ =   ⇒  ρc = 6.96e-3 lbm/ft3
 (22) 

Mac c cV RTγ=   ⇒  Vc = 7980 ft/s (23) 
 

The specific impulse can be found following the analysis for deriving Eqs. (8) and (9). 

  
Isp =

F
!m
=Vc   ⇒  Isp = 7980 lbf⋅s/slug (24) 

 
The throat area per unit thrust is given by: 

   

AT
F

=
AT
!mVc

=
AT

ρcVc
2 Ac

=
AT
Ac

1
ρcVc

2  (25) 

where 
( )
1

2 11 2
2

1
2

1 Ma1
* Ma 1

cc c

T c

A A
A A

γ
γγ

γ

+
−−

−

⎛ ⎞+
⎜ ⎟= =
⎜ ⎟+⎝ ⎠

  ⇒  Ac/AT = 8.1168 (26) 

TA
F

∴  = 5.897e-4 ft2/lbf (27) 

 
To summarize: 

 Conventional Design Proposed Design 
Isp  [lbf⋅s/slug] 7980 7890 
AT/F  [ft2/lbf] 5.897e-4 1.135e-5 

 
Both designs have similar specific impulses, with the conventional design being slightly more efficient 
(more thrust per mass flow rate).  The proposed design has a smaller throat area to thrust ratio, which may 
impact the structural (and, hence, mass) aspects of the design. 
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Air flows in a constant-area duct.  At the inlet the Mach number is 0.2, the static pressure is 90 kPa (abs), 
and the static temperature is 27 °C.  Heat is added at a rate of 120 kJ/(kg of air).  Assuming a perfect gas, 
determine the Mach number and static pressure of the air at the end of the duct.  Sketch the process on a T-s 
diagram. 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
Determine the stagnation temperature at 1. 

1
21
1

01

11 Ma
2

T
T

γ −−⎛ ⎞= +⎜ ⎟⎝ ⎠
  ⇒ T1/T01 = 0.9921  ⇒  T01 = 302.4 K (1) 

 
Determine the sonic stagnation temperature using the Rayleigh flow relations. 

( )
( )

2
1 201

1* 220 1

2 1 Ma 11 Ma
21 Ma

T
T

γ γ

γ

+ −⎛ ⎞= +⎜ ⎟⎝ ⎠+
  ⇒  T01/T0

* = 0.1736 (2) 

 
Determine the stagnation temperature ratio at 2. 

02
12 01

01
1P

T
q c T

T
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

  ⇒  T02/T01 = 1.3952 (3) 

 
Determine the Mach number at the end of the duct using the Rayleigh flow relations and the sonic 
stagnation temperature ratio. 

02 02 01
* *

010 0

T T T
TT T

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

   ⇒  T02/T0
* = 0.2421 (4) 

( )
( )

2
2 202

2* 220 2

2 1 Ma 11 Ma
21 Ma

T
T

γ γ

γ

+ −⎛ ⎞= +⎜ ⎟⎝ ⎠+
  ⇒  Ma2 = 0.24  (5) 

 
Determine the sonic pressure ratio at the duct inlet and outlet given the Mach numbers there. 

1
* 2

1

1
1 Ma

p
p

γ
γ
+=

+
  ⇒  p1/p* = 2.2727 (6) 

2
* 2

2

1
1 Ma

p
p

γ
γ
+=

+
  ⇒  p2/p* = 2.2188 (7) 

*
2

2 1*
1

p pp p
pp

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

  ⇒  p2 = 87.9 kPa (abs) (8) 

Ma1 = 0.2 
p1 = 90 kPa (abs) 
T1 = (27 + 273) = 300 K 

1 2 

q12 = 120 kJ/kg 

s 

T 

2 

1 

p2 

p1 

T1 

T2 

T02 

T01 p01 

p02 
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Consider the supersonic wind tunnel shown below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Assume the working fluid is air. 
a. Determine the area of the test section. 
b. Determine the minimum area of the second throat in order to start the wind tunnel. 
c. What minimum reservoir pressure is required to start the wind tunnel?  
 
Now consider the case where the wind tunnel is driven by igniting fuel in a combustor downstream of the test 
section.  Assume the combustor adds heat over a short distance so that the area downstream of the combustor 
is equal to the test section area. 
 
 
 
 
 
 
 
 
 
 
 
 
 
d. What is the sonic area downstream of the combustion region? 
 
 

test section 

2nd throat 

reservoir 
conditions 

(293 K) 

exit to atmosphere 
(100 kPa) 

area of first throat  
= 5.926*10-3 m2 

MaTS = 2.0 

area of exit  
= 1.000*10-2 m2 

reservoir 
conditions 

(293 K) 

test section 

2nd throat 

exit to atmosphere 
(100 kPa) 

area of first throat  
= 5.926*10-3 m2 

MaTS = 2.0 

area of exit  
= 1.000*10-2 m2 

combustor adding 10 kJ/kg of 
heat to the flow 
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SOLUTION: 
 
The test section area can be determined using the isentropic sonic area ratio. 

( )
1

2 11 2
2

* 1
1 2

1 Ma1
Ma 1

TSTS

TS

A
A

γ
γγ

γ

+
−−

−

⎛ ⎞+
⎜ ⎟=
⎜ ⎟+⎝ ⎠

  ⇒  ATS  =  1.000e-2 m2 (1) 

using A1
* = AT1 = 5.926e-3 m2 (since the flow must be sonic at the throat in order to reach supersonic 

conditions), γ = 1.4 (air), and MaTS = 2.0. 
 
In order to start the wind tunnel, the minimum area for the 2nd throat must be large enough to swallow a shock 
located at the entrance to the test section. 
 
 
 
 
 
 
 
 
 
 
 
 
 
The sonic area ratio across the normal shock is given by: 

1
1
1

2
* 1

202 02 1
1* 201 01 2 1

1Ma 2 12 Ma
1 1 11 Ma
2

p A
p A

γ
γ

γ
γ

ρ γ γ
γρ γ γ

−

−
+⎡ ⎤

⎢ ⎥ ⎡ ⎤−= = = −⎢ ⎥ ⎢ ⎥− + +⎣ ⎦⎢ ⎥+⎢ ⎥⎣ ⎦

  ⇒  
*

01 01 2
*

02 02 1
1.3872

p A
p A

ρ
ρ

= = =  (2) 

where Ma1 = 2.0 and γ = 1.4.  The 2nd throat area should be greater than or equal to the new sonic area.  
Hence: 

( )( )
* *

* * 22 2
2,min 2 1 1* *

1 1
1.3872 5.926e-3 mT T

A AA A A A
A A

⎛ ⎞ ⎛ ⎞
= = = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 (3) 

2
2,min 8.221e-3 mTA∴ =  

 
The minimum reservoir pressure to start the wind tunnel will be the stagnation pressure (p01) corresponding to 
when the shock stands at the entrance of the test section. 

( )
1

2 11 22
2

* 2 1
2 2

1 Ma1.000e-2 m 11.2164
Ma8.221e-3 m 1

EE

E

A
A

γ
γγ

γ

+
−−

−

⎛ ⎞+
⎜ ⎟= = =
⎜ ⎟+⎝ ⎠

  ⇒  MaE = 0.5774  (subsonic at exit) (4) 

1
2

02

11 Ma
2

E
E

p
p

γ
γγ −−⎛ ⎞= +⎜ ⎟⎝ ⎠
  ⇒  

02
0.7978Ep

p
=  (5) 

( ) ( )01 02
01

02

11.3872 100 kPa
0.7978E

E

p p
p p

p p
⎛ ⎞⎛ ⎞ ⎛ ⎞= =⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

  ⇒  p01,min = 173.9 kPa (6) 

where pE = patm = 100 kPa (the exit Mach number is subsonic), p01/p02 is found from Eq. (2), and pE/p02 is 
found from Eq. (5). 
 

test section 

2nd throat 

exit to atmosphere 
(100 kPa) 

area of first throat  
= 5.926*10-3 m2 

1 

area of exit  
= 1.000*10-2 m2 

2 
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Now consider the case where heat is added just downstream of the test section.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Determine the Mach number just downstream of the heat addition using the Rayleigh flow relations given the 
amount of heat addition per unit mass. 

( ) 02 02 12
12 02 01 01

01 01 01
1 1P P

P

T T qq c T T c T
T T c T

⎛ ⎞
= − = − ⇒ = +⎜ ⎟

⎝ ⎠
  ⇒  02

01
1.034

T
T

=  (7) 

using q12 = 10 kJ/kg, cP = 1004 J/(kg⋅K), and T01 = 293 K. 
 
In addition, from the Rayleigh flow relations: 

 ( )
( )

2
1 201

1* 220 1

2 1 Ma 11 Ma
21 Ma

T
T

γ γ

γ

+ −⎛ ⎞= +⎜ ⎟⎝ ⎠+
  ⇒  01

*
0

0.7934
T
T

=  (8) 

using γ = 1.4 and Ma1 = MaTS = 2.0. 
 
The sonic stagnation temperature ratio just downstream of the heat addition is: 

( )( )02 02 01
* *

010 0
1.034 0.7934 0.8204

T T T
TT T

⎛ ⎞⎛ ⎞
= = =⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (9) 

( )
( )

2
2 202

2* 220 2

2 1 Ma 10.8204 1 Ma
21 Ma

T
T

γ γ

γ

+ −⎛ ⎞= = +⎜ ⎟⎝ ⎠+
  ⇒  Ma2 = 1.871  (Rayleigh flow relations) (10) 

 
The sonic area downstream of the heat addition is found from the isentropic relations. 

( )
1

2 11 2
22 2

* 1
22 2

1 Ma1
Ma 1

A
A

γ
γγ

γ

+
−−

−

⎛ ⎞+
⎜ ⎟=
⎜ ⎟+⎝ ⎠

  ⇒  2
*
2
1.5199

A
A

=   ⇒  * 2
2 6.579e-3 mA =  (11) 

using Ma2 = 1.871, γ = 1.4, and A2 = ATS = 1.000e-2 m2 (Eq. (1)). 
 
 

 

test section 

2nd throat 

exit to atmosphere 
(100 kPa) 

area of first throat  
= 5.926*10-3 m2 

MaTS = 2.0 

area of exit  
= 1.000*10-2 m2 

combustor adding 10 kJ/kg of 
heat to the flow 

1 2 
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A	converging-diverging	nozzle	with	a	test	section-to-throat	area	ratio	of	3.0	supplies	air	to	a	supersonic	wind	
tunnel.		If	there	is	moisture	in	the	air,	it	is	possible	for	the	water	vapor	to	condense	during	the	expansion	process	if	
the	local	static	temperature	drops	below	the	saturation	temperature.		In	practice,	this	condensation	process	
occurs	very	rapidly,	leading	to	an	almost	discontinuous	change	in	the	flow	properties	(and	thus	is	referred	to	as	a	
“condensation	shock”).		Assume	that	the	stagnation	temperature	of	the	air/water	vapor	mixture	entering	the	
nozzle	is	600	K	and	that	the	mass	fraction	of	water	vapor	in	the	stream	is	mH2O/mmix	=	0.01	(the	ratio	of	the	mass	of	
water	vapor	to	the	mass	of	the	vapor	air	mixture).		The	saturation	temperature	for	the	air/water	vapor	mixture	is	
14	°C	and	the	heat	of	vaporization	of	water	is	2470	kJ/kg	(i.e.,	the	heat	released	per	unit	mass	of	water	when	
water	vapor	condenses	to	liquid	water).		You	may	assume	that	the	air/vapor	mixture	behaves	as	a	perfect	gas	and	
has	the	same	flow	properties	as	air	(γ	=	1.4,	R	=	287	J/(kg.K)).	
	
	
	
	
	
	
	
	
	
	
a.	 Determine	the	area	ratio,	Acond/Athroat,	where	the	condensation	shock	occurs,	i.e.	the	area	ratio	where	the	

static	temperature	of	the	flow	first	drops	below	the	saturation	temperature	of	14	°C.	
b.	 Determine	the	test	section	Mach	number	when	no	condensation	shock	is	present.	
c.	 Determine	the	test	section	Mach	number	when	the	condensation	shock	is	present.		[Hint:		Be	careful	

differentiating	between	mH20	and	mmix.]	
d.	 Sketch	the	process	with	the	condensation	shock	on	a	T-s	diagram.	
	
	
SOLUTION:	
	
Assume	the	flow	is	isentropic	up	to	the	point	of	the	condensation	shock.		The	Mach	number	at	the	saturation	
temperature	of	Tcond	=	(14	+	273)	=	287	K	may	be	found	using:	

1
2cond
cond

0

1
1 Ma

2
T
T

γ −+⎛ ⎞= +⎜ ⎟⎝ ⎠
			⇒		Macond	=	2.335			where	Tcond	=	287	K	and	T0	=	600	K	(⇒		Tcond/T0	=	0.4783)	 (1)	

The	area	ratio	at	this	Mach	number	may	be	found	using:	

( )
1

1 2 2 1
condcond cond 2

* 1
throat cond 2

1 Ma1
Ma 1

A A
A A

γ
γ γ

γ

+
+ −

+

⎛ ⎞+
= = ⎜ ⎟+⎝ ⎠

		⇒		Acond/Athroat	=	2.264				 (2)	

Note	that	in	the	previous	equation	Athroat	=	A
*.	

	
The	Mach	number	in	the	test	section	when	no	condensation	shock	is	present	may	be	found	from	the	area	ratio	
ATS/Athroat	=	ATS/A

*	=	3.0:	

( )
1

1 2 2 1
2

* 1
2

1 Ma1
Ma 1

TSTS TS

TS TS

A A
A A

γ
γ γ

γ

+
+ −

+

⎛ ⎞+
= = ⎜ ⎟+⎝ ⎠

		⇒		MaTS	=	2.637	 (3)	

	
	 	

Athroat	

Acond	 ATS	

T0	=	600	K	
mH2O/mmix	=	0.01	

ATS/Athroat	=	3.0	

condensation	
shock	
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When	the	condensation	shock	is	present,	we	must	account	for	the	heat	released	by	the	flow	as	the	water	vapor	
condenses	from	vapor	to	liquid.		The	rate	at	which	heat	is	released	into	the	flow	is	the	mass	flow	rate	of	water	
multiplied	by	the	heat	of	vaporization,	hfg:	

   
!q = !mH 2Ohfg 	 (4)	

Thus,	the	flow	through	the	condensation	shock	may	be	modeled	as	a	Rayleigh	flow.	
	
	
		
	
	
	
	
	
	
	
	
	

The	stagnation	temperature	change	through	the	condensation	shock	is	given	from	conservation	of	energy	as:	

( )12 02 01Pq c T T= − 	 (5)	

where	

   
q12 =

!q
!mmix

=
!mH 2Ohfg

!mmix

	 (6)	

Combine	the	previous	two	equations	to	get:	

   

!mH 2Ohfg

!mmix

= cP T02 −T01( )⇒T02 = T01 +
!mH 2O

!mmix

hfg

cP

		⇒		T02	=	624.1	K			(or	T02/T01	=	1.041)	 (7)	

	
The	Mach	number	just	downstream	of	the	condensation	shock	may	be	found	using	T02/T

*:	

02 02 01
* *

010 0

T T T
TT T

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

		⇒		T02/T0
*	=	0.7641		⇒		Macond,2	=	2.154			(from	the	Rayleigh	flow	relations)	 (8)	

where	
T01/T0

*	=	0.7340			using	Macond,1	=	2.335	and	the	Rayleigh	flow	relations.	 (9)	
	

The	sonic	area	ratio	corresponding	to	the	downstream	Mach	number	is:	

( )
1

1 2 2 1
cond,22cond

* 1
cond,22 2

1 Ma1
Ma 1

A
A

γ
γ γ

γ

+
+ −

+

⎛ ⎞+
= ⎜ ⎟⎜ ⎟+⎝ ⎠

		⇒		Acond/A2
*	=	1.926	 (10)	

	
The	sonic	area	ratio	for	the	test	section	is:	

throat cond
* *

throat cond2 2

TS TSA A A A
A AA A

⎛ ⎞⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠⎝ ⎠
		⇒		ATS/A2

*	=	2.552	 (11)	

	
The	Mach	number	in	the	test	section	may	be	found	from	the	sonic	area	ratio.	

( )
1

1 2 2 1
2

* 1
2 2

1 Ma1
Ma 1

TSTS

TS

A
A

γ
γ γ

γ

+
+ −

+

⎛ ⎞+
= ⎜ ⎟+⎝ ⎠

		⇒		MaTS	=	2.465	 (12)	

Thus,	we	see	that	the	Mach	number	in	the	test	section	decreases	when	there	is	a	condensation	front.		It	would	be	
a	good	idea	to	de-humidify	the	air	before	sending	it	through	the	wind	tunnel.		
	 	

Athroat	

Acond	 ATS	

T0	=	600	K	
mH2O/mmix	=	0.01	

ATS/Athroat	=	3.0	

condensation	
shock	

1	 2	
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Sketch	the	process	on	a	T-s	diagram.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

T	

s	

Rayleigh	curve	

T01	
p01	

p02	
T02	

T2	
p2	

T1	
pTS	

TTS	p1	
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In a gas turbine, the combustor increases the thermal energy of the gas by burning fuel.  A basic model for this 
process is a simple heat addition flow.  Consider the one-dimensional flow of air, a perfect gas, in a frictionless, 
constant-area duct with energy added by heat addition.  The air enters the duct with a total temperature of 450 K, a 
total pressure of 8 atm (abs), and a Mach number of 0.3. 
 
a. Determine the heat addition per unit mass that chokes the flow at the exit and the exit total temperature and total 

pressure. 
b. For an exit Mach number of 0.6, determine the heat addition per unit mass and the exit total temperature and 

pressure. 
c. Sketch the T-s diagram for the case described in (b). 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
a. Use the Rayleigh flow relations to determine the state at 2.  Note that state 2 is choked. 

Ma1 = 0.3  ⇒ T01/T0
* = 0.3469,  p01/p0

* = 1.1985 (1) 

( )
*

* 0
0 01

01

1 450 K
0.3469

T
T T

T
⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠

  ⇒  *
02 0 1300 KT T∴ = =  (2) 

( )
*

* 0
0 01

01

1 8 atm
1.1985

p
p p

p
⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠

  ⇒  *
02 0 6.7 atmp p∴ = =  (3) 

( ) ( )12 02 01
J1000 1300 K 450 K

kg Kpq c T T ⎛ ⎞
= − = −⎜ ⎟⋅⎝ ⎠

  ⇒  12
kJ850 
kg

q∴ =  (4) 

 
b. Use the Rayleigh flow relations to determine the state at 2. 

Ma2 = 0.6  ⇒ T02/T0
* = 0.8189,  p02/p0

* = 1.0753 (5) 

( ) ( )
*

02 0
02 01*

010

10.8189 450 K
0.3469

T T
T T

TT
⎛ ⎞⎛ ⎞ ⎛ ⎞= =⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

  ⇒  02 1100 KT∴ =  (6) 

( ) ( )
*

02 0
02 01*

010

11.0753 8 atm
1.1985

p p
p p

pp
⎛ ⎞⎛ ⎞ ⎛ ⎞= =⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

  ⇒  02 7.2 atmp∴ =  (7) 

( ) ( )12 02 01
J1000 1100 K 450 K

kg Kpq c T T ⎛ ⎞
= − = −⎜ ⎟⋅⎝ ⎠

  ⇒  12
kJ650 
kg

q∴ =  (8) 

 
c. 

 
 

 

1 2 

q12 

T01 = 450 K 
p01 = 8 atm 
Ma1 = 0.3 

T 

s 

1 

2 

Rayleigh line 
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13.17. Normal Shock Waves

Consider the movement of a piston in a cylinder, as shown in Figure 13.25. When we first move the piston,
an infinitesimal (compression) pressure wave travels down the cylinder at the sonic speed. Behind the wave,
the pressure, temperature, density, and increase slightly and the fluid has a small velocity following the wave
(refer to Section 13.4).

Figure 13.25. A single compression wave caused by a moving piston and traveling down
the length of a cylinder into stagnant gas.

If we continue to increase the piston velocity, additional pressure waves will propagate down the cylinder
(Figure 13.26). However, these waves travel at a slightly increased speed relative to a fixed observer due
to the increased fluid temperature and fluid movement. The result is that the waves formed later catch
up to the previous waves. When the waves catch up to the first wave, their effects add together so that
the small changes across the individual waves now become a sudden and finite change called a shock wave
(Figure 13.27).

Figure 13.26. Multiple compression waves caused by an accelerating piston and traveling
down the length of a cylinder.

Notes:

(1) The velocity of a shock wave is greater than the speed of sound. From the analysis used to determine
the speed of a pressure wave Eq. (13.51),

c2 =
∆p

∆ρ

(
1 +

∆ρ

ρ

)
. (13.138)

For a sound wave, ∆ρ → dρ =⇒ ∆ρ/ρ → 0. For a shock wave, however, ∆ρ > 0 so that
cshock wave > csound wave.

(2) A shock wave is a pressure wave across which there is a finite change in the flow properties.
(3) Shock waves only occur in supersonic flows. This fact is proven later in this section using the Second

Law of Thermodynamics.
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Figure 13.27. A plot illustrating the paths of an accelerating piston, weak compression
waves, and the formation of a shock wave. The shock wave is defined as occurring where the
compression waves first intersect.

(4) Shock waves are typically very thin, with thicknesses on the order of 1 µm. Thus, we consider the
changes in the flow properties across the wave to be discontinuous.

(5) The sudden change in flow properties across the shock wave occurs non-isentropically since the
thermal and velocity gradients are large within the shock wave itself.

To analyze a shock wave, we’ll use an approach similar to that used to examine a sound wave. Let’s consider
a fixed shock wave across which flow properties change. A thin control volume of cross-sectional area A
encompasses the wave as shown in Figure 13.28.

Figure 13.28. The control volume used to analyze changes in properties across a normal
shock wave. Note that there is no heat transfer into the control volume.

From Conservation of Mass,

ρ1V1A1 = ρ2V2A2, (13.139)

ρ1V1 = ρ2V2. (13.140)

From the Linear Momentum Equation,

ṁV2 − ṁV1 = p1A− p2A, (13.141)

ρ1V1(V2 − V1) = ρ2V2(V2 − V1) = p1 − p2. (13.142)
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From the First Law of Thermodynamics,

h1 +
1

2
V 2

1 = h2 +
1

2
V 2

2 , (13.143)

h01 = h02. (13.144)

Note that no heat is transferred into the control volume and, thus, the process is adiabatic.

From the Second Law of Thermodynamics,

ṁs2 − ṁs1 = σ̇, (13.145)

s2 − s1 = σ > 0. (13.146)

The entropy production is greater than zero since within the shock wave there are internal irreversibilities.
The thermal gradient and velocity gradient are enormous since the temperature and velocity have finite
changes within the shock and the shock thickness is very small.

Since we’re assuming we’re working with a perfect gas,

p1

ρ1T1
=

p1

ρ1T1
= R (ideal gas law), (13.147)

∆h = cp∆T. (13.148)

Combining Eqs. (13.140) and (13.142),

p1

ρ1V1
− p2

ρ2V2
= V2 − V1. (13.149)

Substituting Eq. (13.147),

RT1

V1
− RT2

V2
= V2 − V1. (13.150)

Substituting Eqs. (13.144) and (13.148),

R

V1

(
T0 −

V 2
1

2cp

)
− R

V2

(
T0 −

V 2
2

2cp

)
= V2 − V1, (13.151)

RV2T0 −
RV2V

2
1

2cp
−RV1T0 −

RV1V
2
2

2cp
= V1V2(V2 − V1), (13.152)

V1V2(V2 − V1) = R

[
(V2 − V1)T0 + (V2 − V1)

V1V2

2cp

]
, (13.153)

V1V2(V2 − V1) = R(V2 − V1)

(
T0 +

V1V2

2cp

)
, (13.154)

V1V2 = R

(
T0 +

V1V2

2cp

)
, (13.155)

V1V2

(
1− R

2cp

)
= RT0, (13.156)

V1V2 =
RT0

1− R
2cp

. (13.157)

Finally, substituting the ideal gas relation,

R

cp
=
cp − cv
cp

=
k − 1

k
, (13.158)

and re-arranging gives,

V1V2 =
2kRT0

k + 1
Prandtl’s Equation. (13.159)
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Dividing both sides of Prandtl’s equation by the sound speed on either side of the shock wave and utilizing
the definition for the Mach number for an ideal gas,

V1√
kRT1

V2√
kRT2

=
2

k + 1

√
kRT0√
kRT1

√
kRT0√
kRT2

, (13.160)

Ma1Ma2 =
2

k + 1

√
T0

T1

√
T0

T2
. (13.161)

Recall that for the adiabatic flow of a perfect gas,

T

T0
=

(
1 +

k − 1

2
Ma2

)−1

, (13.162)

so that,

Ma1Ma2 =
2

k + 1

√
T0

T1

√
T0

T2
, (13.163)

=
2

k + 1

(
1 +

k − 1

2
Ma2

1

) 1
2
(

1 +
k − 1

2
Ma2

2

) 1
2

. (13.164)

After additional algebra, we can reduce this equation to,

Ma2
2 =

(k − 1)Ma2
1 + 2

2kMa2
1 − (k − 1)

. (13.165)

This equation relates the upstream and downstream Mach numbers across a normal shock wave.

Notes:

(1) When Ma1 > 1, then Ma2 < 1 (supersonic to subsonic flow) and when Ma1 < 1, then Ma2 > 1
(subsonic to supersonic flow).

(2) From experiments, we observe that shock waves never form in subsonic flows (Ma1 < 1) even though
Eq. (13.165) doesn’t give any indication that this would be the case. We will use the Second Law
in a moment to show that shock waves can only form in supersonic flows (Ma1 > 1).

The temperature ratio across the shock wave can be determined using the adiabatic stagnation temperature
relation for a perfect gas and noting that the stagnation temperature remains constant across a shock,

T2/T0

T1/T0
=

(
1 + k−1

2 Ma2
2

)−1(
1 + k−1

2 Ma2
1

)−1 , (13.166)

T2

T1
=

(
1 + k−1

2 Ma2
1

)(
1 + k−1

2 Ma2
2

) . (13.167)

The pressure ratio across the shock can be determined by combining Eqs. (13.167), (13.147), and (13.140),

p2

p1
=
ρ2T2

ρ1T1
=
V1T2

V2T1
=

(
√
kRT1Ma1)T2

(
√
kRT2Ma2)T1

, (13.168)

=
Ma1

Ma2

√
T2

T1
, (13.169)

p2

p1
=

Ma1

Ma2

(
1 + k−1

2 Ma2
1

1 + k−1
2 Ma2

2

) 1
2

. (13.170)
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The density ratio across the shock is,

ρ2

ρ1
=
V1

V2
=
p2T1

p1T2
=

Ma1

Ma2

(
1 + k−1

2 Ma2
1

1 + k−1
2 Ma2

2

) 1
2
(

1 + k−1
2 Ma2

1

1 + k−1
2 Ma2

2

)
, (13.171)

ρ2

ρ1
=
V1

V2
=

Ma1

Ma2

(
1 + k−1

2 Ma2
1

1 + k−1
2 Ma2

2

) 3
2

. (13.172)

We can also determine the ratio of the isentropic stagnation pressures and densities across the shock wave,

p1/p01

p2/p02
=

(
1 + k−1

2 Ma2
1

1 + k−1
2 Ma2

2

) k
1−k

, (13.173)

p02

p01
=

(
p2

p1

)(
1 + k−1

2 Ma2
1

1 + k−1
2 Ma2

2

) k
1−k

, (13.174)

p02

p01
=

Ma1

Ma2

(
1 + k−1

2 Ma2
1

1 + k−1
2 Ma2

2

) 1
2
(

1 + k−1
2 Ma2

1

1 + k−1
2 Ma2

2

) k
1−k

, (13.175)

p02

p01
=

Ma1

Ma2

(
1 + k−1

2 Ma2
1

1 + k−1
2 Ma2

2

) 1+k
2(1−k)

. (13.176)

For the stagnation density,
ρ02

ρ01
=
p02

p01

T01

T02
, (13.177)

but since T01 = T02 (refer to Eq. (13.148)),

ρ02

ρ01
=
p02

p01
=

Ma1

Ma2

(
1 + k−1

2 Ma2
1

1 + k−1
2 Ma2

2

) 1+k
2(1−k)

. (13.178)

The sonic area ratio across the shock can be determined from the fact that the mass flow rate across the
shock must remain constant,

ṁ1 = ṁ2, (13.179)

ρ∗1V
∗
1 A
∗
1 = ρ∗2V

∗
2 A
∗
2, (13.180)

A∗2
A∗1

=
ρ∗1
ρ∗2

V ∗1
v∗2
. (13.181)

The sonic ratios can be determined from the following analyses,

ρ∗1
ρ01

=
ρ∗2
ρ02

=

(
1 +

k − 1

2

) 1
1−k

, (13.182)

ρ∗1
ρ∗2

=
ρ01

ρ02
=

Ma1

Ma2

(
1 + k−1

2 Ma2
1

1 + k−1
2 Ma2

2

) 1+k
2(1−k)

, (13.183)

and,

V ∗1
V ∗2

=
c∗1
c∗2

=

√
T ∗1
T ∗2

=

√
T ∗1 /T0

T ∗2 /T0
= 1. (13.184)

Note that T01 = T02 has been used in the previous equation. Substituting these two sonic ratios and
simplifying gives,

A∗2
A∗1

=
Ma2

Ma1

(
1 + k−1

2 Ma2
1

1 + k−1
2 Ma2

2

) k+1
2(k−1)

. (13.185)
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Note that we could have also used the isentropic area ratios on either side of the shock wave to determine
the sonic area ratio across the shock,

A1

A∗1
=

1

Ma1

(
1 + k−1

2 Ma2
1

1 + k−1
2

) k+1
2(k−1)

and
A2

A∗2
=

1

Ma2

(
1 + k−1

2 Ma2
2

1 + k−1
2

) k+1
2(k−1)

, (13.186)

so that,

A∗2
A∗1

=
A1/A

∗
1

A2/A∗2
=

Ma2

Ma1

(
1 + k−1

2 Ma2
1

1 + k−1
2 Ma2

2

) k+1
2(k−1)

, (13.187)

where A1 = A2.

Notes:

(1) The previous equations may be written only in terms of Ma1 by substituting in Eq. (13.165). The
resulting equations (after much algebra) are,

Ma2
2 =

(k − 1)Ma2
1 + 2

2kMa2
1 − (k − 1)

, (13.188)

T2

T1
=
[
2 + (k − 1)Ma2

1

] [2kMa2
1 − (k − 1)

(k + 1)2Ma2
1

]
, (13.189)

ρ2

ρ1
=
V1

V2
=

(k + 1)Ma2
1

(k − 1)Ma2
1 + 2

, (13.190)

p2

p1
=

2k

k + 1
Ma2

1 −
k − 1

k + 1
, (13.191)

T02

T01
= 1 , (13.192)

p02

p01
=
ρ02

ρ01
=
A∗1
A∗2

=

(
k+1

2 Ma2
1

1 + k−1
2 Ma2

1

) k
k−1 (

2k

k + 1
Ma2

1 −
k − 1

k + 1

) 1
1−k

. (13.193)

(2) Note let’s examine the change in specific entropy across the shock using the following expression
for a perfect gas,

s2 − s1 = cp ln

(
T2

T1

)
−R ln

(
p2

p1

)
. (13.194)

Substituting Eqs. (13.189) and (13.191) into this equation and plotting we obtain Figure 13.29. We
observe that for Ma1 < 1 the entropy decreases across the shock. The Second Law, however, states
that the entropy must increase across the shock (refer to Eq. (13.146)). Thus, shock waves can only
form when Ma1 > 1.
Also note that as the upstream Mach number approaches one (Ma1 → 1), the flow through the
shock approaches an isentropic process. An infinitesimally weak shock wave, one occurring when
Ma1 = 1, results in an isentropic process. This type of shock is, in fact, just a sound wave!

(3) Plots of the various property ratios are shown in Figure 13.30 as functions of the upstream Mach
number. The temperature, pressure, density, and sonic area increase across the shock, with the
ratios increasing as the Mach number increases. The stagnation pressure, stagnation density, and
velocity decrease across the shock, with the ratios decreasing as the Mach number increases. The
downstream Mach number also decreases across the shock and becomes smaller as the upstream
Mach number increases. The stagnation temperature remains constant across the shock. Normal
shock tables with the numerical values for these ratios can be found in the appendices of most
compressible flow textbooks.
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Figure 13.29. A plot of the dimensionless specific entropy change across a normal shock
wave, ∆s/cp as a function of the upstream Mach number, Ma1, for k = 1.4.

(4) The shock strength is defined as the change in pressure across the shock wave relative to the
upstream pressure, i.e., ∆p/p1 = p2/p1 − 1. Viewing the trends shown in Figure 13.30, the larger
the incoming Mach number the stronger the shock wave.

(5) On a T -s diagram, the states across a shock wave correspond to the intersection of the Fanno and
Rayleigh lines for the flow, as shown in Figure 13.31. The reason is because the flow across the shock
satisfies the Fanno relations for Conservation of Mass (Eq. (13.140)), the First Law (Eq. (13.144)),
and the ideal gas relations (Eqs. (13.147) and (13.148)). The shock also satisfies the Rayleigh
relations for Conservation of Mass, the Linear Momentum Equation (Eq. (13.142)), and the ideal
gas relations. The shock states must, therefore, occur at the intersection of the Fanno and Rayleigh
lines in order for the shock to satisfy all of the basic relations simultaneously. Furthermore, state
2 lies to the right of state 1 in the T -s diagram since entropy must increase across the shock (from
the Second Law).
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  normalshock_02 

Page 1 of 1 

Stagnation pressure and temperature probes are located on the nose of a supersonic aircraft at 35,000 ft 
altitude.  A normal shock stands in front of the probes.  The temperature probe indicates T0 = 420 °F behind 
the shock.   
a. Calculate the Mach number and airspeed of the plane.   
b. Find the static and stagnation pressures behind the shock.   
c. Show the process and the static and stagnation points on a T-s diagram. 
 
 
SOLUTION: 
 
 
 
 
 
 
 
The pressure and temperature at an altitude of 35,000 ft using a U.S. Standard Atmospheric table (e.g., 
Table C.5 in Zucrow and Hoffman or using an online calculator such as 
http://www.digitaldutch.com/atmoscalc/) are: 

p1 = 3.458 psia (1) 
T1 = 393.9 °R (2) 
 

The Mach number of the aircraft may be found by noting that the stagnation temperature remains constant 
across the shock wave (T01 = T02 = 879 °R) and using the adiabatic stagnation temperature ratio: 

  Þ  Ma1 = 2.48 (3) 

where, for air, g = 1.4.  The velocity is found from the Mach number and speed of sound: 
  Þ  V1 = 2410 ft/s (4) 

where R = 53.3 (lbf×ft)/(lbm×°R). 
 
The static pressure downstream of the shock, p2, may be found from the normal shock relations. 

  Þ  p2 = 24.2 psia (5) 

The stagnation pressure may be found by combining the stagnation pressure upstream of the shock with the 
stagnation pressure ratio across the shock. 

  Þ  p01 = 57.4 psia (6) 

  Þ  p02 = 29.1 psia (7) 
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Video solution: https://www.youtube.com/watch?v=CwrvQ2cdjl4
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An air stream approaches a normal shock at Ma1 = 2.64.  Upstream, p01 = 3.00 MPa (abs) and r1 = 1.65 
kg/m3.  Determine the downstream Mach number and temperature. 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
The downstream Mach number may be found from the normal shock relations: 

 (1) 

where Ma1 = 2.64 and g = 1.4. 
\Ma2 = 0.50 
 

One method of finding the downstream temperature is to determine the upstream stagnation temperature 
and then use the downstream Mach number and the adiabatic stagnation temperature ratio along with the 
fact that the stagnation temperature remains constant across the shock wave to determine the downstream 
static temperature.   

  Þ  r01 = 14.6 kg/m3  (where r1 = 1.65 kg/m3) (2) 

 Þ  T01 = 714 K   (where R = 287 J/(kg×K)) (3) 

  Þ  T02 = 714 K    (4) 

  Þ  T2 = 680 K  (where Ma2 = 0.50) (5) 
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Video solution: https://www.youtube.com/watch?v=pex-DiC_OnA
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Air approaches a normal shock with T1 = 18 °C, p1 = 101 kPa (abs), and V1 = 766 m/s.  The temperature 
immediately downstream from the shock is T2 = 551 K.   
1. Determine the velocity immediately downstream from the shock.  
2. Determine the pressure change across the shock.  
3. Calculate the corresponding pressure change for a frictionless, shockless deceleration between the 

same speeds and temperatures. 
 
 
SOLUTION: 
 
 
 
 
 
 
The velocity downstream of the shock may be found from conservation of energy. 

 (1) 

  Þ  V2 = 254.3 m/s (2) 

using cP = 1004 J/(kg×K). 
 
The pressure change across the shock may be found using the normal shock relations. 

  Þ  Dp = 4.73*105 Pa (3) 

where 

  Þ  p2/p1 = 5.6880 (4) 

and 

  Þ  Ma1 = 2.24 (5) 

In addition,  

  Þ  Ma2 = 0.54  (6) 

Note that we could have also simply used: 

  Þ  Ma2 = 0.54  (Same result as the previous one!) (7) 

 
The corresponding pressure change for an isentropic deceleration between the same speeds may be found 
by combining isentropic stagnation pressure ratios, 

  Þ  Dpisentropic = 8.41*105 Pa (8) 

where, 

  Þ  p2/p1 = 9.3253 (9) 
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Video solution: https://www.youtube.com/watch?v=U17r_lPemjo
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A total pressure probe is inserted into a supersonic air flow.  A shock wave forms just upstream of the 
impact hole.  The probe measures a total pressure of 500 kPa (abs) and the stagnation temperature at the 
probe head is 227 °C.  The static pressure upstream of the shock is measured with a wall tap to be 100 kPa 
(abs). 
a. Determine the Mach number of the incoming flow. 
b. Determine the velocity of the incoming flow. 
c. Sketch the process on a T-s diagram. 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
Determine the upstream Mach number by combining the isentropic pressure ratio and the stagnation 
pressure ratio across a normal shock. 

 (1) 

 (2) 

 (3) 

Solve Eqn. (3) numerically for Ma1 given that p1 = 100 kPa and p02 = 500 kPa (and g = 1.4). 
Ma1 = 1.87 (4) 
 

The velocity may be found from the Mach number and speed of sound on the upstream side of the shock 
wave. 

  Þ  V1 = 643.1 m/s (5) 
where the upstream static temperature is found from the adiabatic stagnation temperature ratio and noting 
that T01 = T02. 

  Þ  T1 = 294.1 K (6) 
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Video solution: https://www.youtube.com/watch?v=wRlhD_5Wehs
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Air, with a temperature of 300 K, is flowing at 180 m/s through a constant-area, 30 m long pipe.  A valve at 
the end of the pipe is suddenly closed and a normal shock wave propagates back into the pipe starting from 
the valve.  How long will it be before the effect of closing the valve is felt at the pipe inlet? 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
Change the frame of reference shown in the figure (which is with respect to the ground), to a frame of 
reference that is fixed to the shock wave so that the normal shock relations may be used. 
 
 
 
 
 
 
 
Use an iterative procedure for determining Vshock. 
1. Assume a value for Ma1. 
2. Calculate Ma2 using the normal shock relations. 

 (1) 

3. Determine T2 using the normal shock relations. 

 (2) 

where 

 (3) 

4. Determine Vshock using: 
 (4) 

5. Determine V1. 
 (5) 

6. Determine V1’. 
 (6) 

7. If V1’ is greater than V1, then the assumed value for Ma1 was too small and a larger value for Ma1 
should be used.  If V1’ < V1, then choose a smaller value for Ma1.  Repeat steps 2 – 7 until a converged 
solution is obtained. 

 
Using the given iterative procedure: 

Ma1 = 1.36  Þ  Vshock = 291 m/s (7) 
 

The valve closing will be felt 30 m upstream in time: 
T = L/Vshock = 0.10 s (8) 
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A stagnation tube is placed in a supersonic flow in which the static pressure and temperature far upstream 
are 60 kPa (abs) and -20 °C.  The difference between the stagnation pressure measured by the stagnation 
tube and the upstream static pressure is 449 kPa.  Determine the upstream Mach number and velocity of the 
flow.  
 
 
SOLUTION: 
 
Since there is no throat upstream of the stagnation tube, there must be a shock wave that forms in order to 
slow the flow from supersonic to subsonic conditions, and eventually stagnation conditions at the inlet to 
the stagnation tube. 
 
 
 
 
 
 
 
 
 
Re-arrange the given conditions in order to solve for the upstream Mach number. 

 (1) 

where 

 (2) 

 (3) 

 (4) 

 
Iterate to a converged solution using the following approach. 
1. Assume a value for Ma1. 
2. Determine Ma2 using Eq. (2). 
3. Determine p2/p02 using Eq. (3). 
4. Determine p2/p1 using Eq. (4). 
5. Substitute the values calculated in the previous steps into the left-hand side of Eq. (1), along with p1 

= 60 kPa. 
6. Check to see if the calculation from step 5 equals the right-hand side of Eq. (1).  If the calculation is 

smaller than the right-hand side of Eq. (1) then the assumed Ma1 was too small and a larger Ma1 
should be chosen.  If the calculation is larger than the right-hand side of Eq. (1) then the assumed 
Ma1 was too large and a smaller Ma1 should be chosen.  Steps 2 through 6 should be repeated until a 
converged solution results.  

 
Following the previous iterative procedure: 

Ma1  =  2.493 
and 

  =  795 m/s (5) 
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p1 = 60 kPa 
T1 = -20 °C = 253 K 
g = 1.4, R = 287 J/(kg×K) 

p02 – p1 = 449 kPa 
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Video solution: https://www.youtube.com/watch?v=J8SMANZaKsg
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According to a newspaper article, at the center of a 12,600 lbm “Daisy-Cutter” bomb explosion the 
overpressure in the air is approximately 1000 psi.  Estimate: 
a. the speed of the resulting shock wave into the surrounding air, 
b. the wind speed following the shock wave, 
c. the temperature after the shock wave has passed, and 
d. the air density after the shock wave has passed. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
Change the frame of reference from one that is fixed to the ground to one that is fixed to the wave as shown 
in the schematic below.  Treat the explosion shock wave as a normal shock. 
 
 
 
 
 
 
 
 
 
The pressure ratio across the wave is: 

 

 
Using the normal shock relations: 

p2/p1 = 69  Þ Ma1 = 7.7 
 Þ Ma2 = 0.4 
 Þ T2/T1 = 12.5 
 Þ r2/r1 = 5.5 
 

2

1

1015 psia 69
15 psia

p
p
= =

 

1 2 
BOOM! 

Change the frame of 
reference so the wave 
appears stationary 
(substract the velocity of 
the wave to all velocities.) 

V1, Ma1 
p1 = patm = 15 psia 
T1 = 70 °F = 530 °R 
r1 = 7.7*10-2 lbm/ft3 

V2, Ma2 
p2  = 1000 psi + patm  
      =  1015psia 
T2, r2 

2 1 

x 
x 
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Video solution: https://www.youtube.com/watch?v=ljtlZpx4lnw

C. Wassgren 1361 2024-02-01

https://www.youtube.com/watch?v=ljtlZpx4lnw


  normalshock_17 

Page 2 of 2 

Now determine the unknown quantities. 

  

   (Note that is the velocity w/r/t the wave.) 
 

 

 
 

 

 
 

   

   (Note that is the velocity w/r/t the wave.) 
 

To determine the shock and downstream wind speed with respect to the ground, we must change back to 
our original frame of reference. 
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A Pitot tube which senses the stagnation pressure at its mouth, p0, is often used to measure the speed of an 
airplane.  Such a device is incorporated into the nose of a supersonic airplane for the purpose of measuring 
the Mach number, Ma, at which the airplane is traveling (Ma > 1). 
 
Assume that the ambient pressure of the air, p1, through which the airplane is traveling, is known.  If a bow 
shock forms ahead of the Pitot tube, find the relation between the measured quantity, p1/p0, and the required 
quantity, Ma.  The relation also involves the specific heat ratio.  Note that the answer cannot be written 
explicitly as Ma = fcn(p1/p0), but can be written as p1/p0 = fcn(Ma). 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
Determine the upstream Mach number by combining the isentropic pressure ratio and the stagnation 
pressure ratio across a normal shock. 

 (1) 

 (2) 

 (3) 

Solve Eq. (3) numerically for Ma given that p1 and p02 (and g). 
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An automobile tire bursts sending a shock wave (assume this is a normal shock wave) propagating into the 
ambient air that has a pressure of p1, sonic speed, c1, and specific heat ratio, g.  If the pressure behind the 
shock is p2 (roughly the inflated tire pressure), show that the speed of propagation of the shock, uS, is given 
by: 

 

Calculate this speed if the temperature of the ambient air is 30 °C and the pressure ratio is p2/p1 = 3.0  (e.g. 
p1 = 14.7 psia and p2 = 44.1 psia). 
 
 
SOLUTION: 
 
Put our frame of reference on the shock wave. 
 
 
 
 
 
 
 
 
 
Write the normal shock relation for the pressure rise across the shock. 

 (1) 

Re-arrange and express the Mach number in terms of the velocity and speed of sound. 

   where Ma1 = V1/c1 (2) 

 
For T1 = 30 + 273 = 303 K, g = 1.4, R = 287 J/(kg.K), and p2/p1 = 3.0, c1 = 348.9 m/s, and uS = 574.8 m/s. 
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Note:  uS = V1 
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The Mach number and temperature upstream of a shock wave are 2 and 7 °C, respectively.  What is the air speed, 
relative to the shock wave, downstream of the shock wave? 
 
 
SOLUTION: 
 
Use the normal shock relations to determine the downstream Mach number. 

   Þ  Ma2 = 0.58 (1) 

where k = 1.4 and Ma1 = 2. 
 
Determine the stagnation temperature upstream of the shock wave. 

  Þ  T01 = 504 K (2) 

where T1 = (273 + 7) K = 280 K. 
 

Note that the stagnation temperature remains constant across a shock wave, so T02 = T01.  Use the downstream 
stagnation temperature and downstream Mach number to determine the downstream static temperature: 

  Þ  T2 = 473 K (3) 

 
Use the definition of the Mach number and the speed of sound for an ideal gas to determine the air speed 
downstream of the shock wave: 

  Þ  V2 = 252 m/s (4) 
where Rair = 287 J/(kg.K). 
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Video solution: https://www.youtube.com/watch?v=fEp-t5sD8JE
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A supersonic aircraft flies at a Mach number of 2.7 at an altitude of 20 km.  Air enters the engine inlet and 
is slowed isentropically to a Mach number of 1.3.  A normal shock occurs at that location.  The resulting 
flow is decelerated adiabatically, but not isentropically, further to a Mach number of 0.4.  The final static 
pressure is 104 kPa (abs).  Evaluate: 
a. the stagnation temperature for the flow, 
b. the pressure change, Dp, across the shock,  
c. the final stagnation pressure, and 
d. the total entropy change throughout the entire process. 
e. Sketch the process on a Ts diagram. 
 
 
SOLUTION: 
 
 
 
 
 
 
 
The static temperature and pressure at an altitude of 20 km is, using the U.S. Standard Atmosphere, are T1 = 
216.65 K and p1 = 5474.9 Pa (abs) (using http://www.digitaldutch.com/atmoscalc/ for example).  The 
stagnation temperature is then: 

  Þ T1/T0 = 0.4068 Þ   T0 = 533 K  (1) 

Note that the stagnation temperature will remain constant throughout the entire process since there is no 
heat transfer. 

 
The pressure ratio across the shock wave is may be found using the normal shock relations and noting that 
Ma1 = 2.7 and Ma2 = 1.3. 

  Þ  p3/p2 = 1.8050 (2) 

  Þ  p1/p01 = 0.0430 Þ p01 = 127 kPa (abs) (3) 

  Þ p2/p01 = 0.3609 Þ p2 = 46.0 kPa (abs) (4) 

  Þ  Dp = 37.0 kPa (5) 

 
The stagnation pressure at station 4 may be found from the isentropic stagnation pressure ratio and 
knowing that Ma4 = 0.4 and p4 = 104 kPa (abs). 

  Þ p4/p04 = 0.8956 Þ p04 = 116 kPa (abs) (6) 
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The total entropy change throughout the process may be found using the perfect gas, entropy relation: 

  Þ  Ds = 26.3 J/(kg×K)    (7) 

where p1 and T1 are 5474.9 Pa and 216.65 K, respectively (from a U.S. Standard Atmosphere), p4 = 104 
kPa (given), cP = 1004 J/(kg×K), and R = 287 J/(kg×K).  The temperature T4 may be found from: 

  Þ T4/T04 = 0.9690  Þ   T4 = 516 K (8) 

where T04 = T01 = 533 K (from Eq. (1)). 
 
Note that we could have also found Ds using stagnation conditions (refer to the Ts diagram below). 

  Þ  Ds = 26.4 J/(kg×K)   (Same as before, within error!) (9) 

where T04 = T01, p04 = 116 kPa, and p01 = 127 kPa. 
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Figure 13.30. Plots of the various property ratios as functions of the upstream Mach
number, Ma1, for k = 1.4. Note that T02/T01 = 1 and p02/p01 = ρ02/ρ01.

Figure 13.31. On a T -s plot, the states across a normal shock occur at the intersection of
the Fanno and Rayleigh lines.

13.18. Flow through Converging-Diverging Nozzles

Consider flow through a converging-diverging nozzle (aka a de Laval nozzle) as shown in Figure 13.32. Let’s
hold the stagnation pressure, p0, fixed and vary the back pressure, pB . The plot shown in Figure 13.33 shows
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Figure 13.32. A schematic of a converging-diverging nozzle.

how the pressure ratio, p/p0, varies with the location, x, in the nozzle for various values of the back pressure
ratio, pB/p0.

Figure 13.33. The pressure ratio p/p0 plotted as a function of location x in a converging-
diverging nozzle for different back pressure ratios pB/p0. The different cases, identified by
the numbers on the right-side of the plot, are described in the text.

Cases (identified by the numbers on the right side in the plot):

(1) There is no flow through the device since pB = p0.
(2) There is subsonic flow throughout the device. The exit pressure equals the back pressure, i.e.,

pE = pB , since the exit Mach number is subsonic. Also, MaT < 1, AT > A∗,MaE < 1, ṁ < ṁchoked.
The flow everywhere is isentropic.

(3) There is subsonic flow throughout the device except at the throat where pT = p∗ (MaT = 1, AT =
A∗). The flow is now choked since downstream pressure changes won’t make it upstream of the
throat. The mass flow rate is now ṁ = ṁchoked. Further decreases in pB will not affect the flow
upstream of the throat and the mass flow rate will remain at the choked mass flow rate value. The
exit pressure equals the back pressure for this case pE = pB , since the flow is subsonic at the exit
(MaE < 1). The flow everywhere is isentropic.

(4) Subsonic flow will occur in the converging section, sonic flow will occur at the throat (pT =
p∗,MaT = 1, AT = A∗), and supersonic flow will occur in the diverging section (MaE > 1). This
type of flow is called correctly expanded, perfectly expanded, or design flow since no shock waves
form anywhere in the device and pE = pB . Note that pE does not equal pB because the flow is
subsonic at the exit, but it’s because the flow is at design conditions (a special case).
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(5) Subsonic flow will occur in the converging section and sonic flow will occur at the throat (pT =
p∗,MaT = 1, AT = A∗1). A portion of the diverging section will be supersonic with a normal shock
wave occurring at a location such that the subsonic flow downstream of the shock will have an exit
pressure equal to the back pressure: pE = pB since MaE < 1. As the back pressure decreases, the
shock wave moves downstream of the throat and toward the exit. The pressure rise across the shock
wave also increases as the back pressure decreases. There is isentropic flow upstream of the shock
and downstream of it, but across the shock the flow is non-isentropic.

(6) This case is similar to Case 5 except that the shock wave is precisely at the nozzle exit. The
pressure just downstream of the shock wave equals the back pressure since the flow is subsonic there
(pE2 = pB ,MaE2 < 1). The flow everywhere within the converging-diverging nozzle is isentropic
except right at the exit.

(7) The flow within the converging-diverging nozzle (and the exit) is isentropic (MaE > 1). The
normal shock that was located at the exit for Case 6 has moved outside the device to form a
complicated sequence of oblique shock waves alternating with expansion fans. These are two-
dimensional phenomena to be discussed in a following section of notes. This case is called the
over-expanded case since the diverging section of the device has an area that over-expands the flow
to a pressure that is lower than the back pressure (pE < pB). External shock waves are required to
compress the flow to match the back pressure.

(8) This case is similar to Case 7 except that the flow outside of the device forms a sequence of expansion
fans alternating with oblique shock waves (a sequence out of phase with the sequence mentioned in
Case 7). This case is called the under-expanded case since the diverging section of the device has
an area that is not large enough to drop the exit pressure to the back pressure (pE > pB ,MaE > 1).
External expansion waves are required expand the flow to match the back pressure.

Notes:

(1) The critical back pressure ratio corresponding to Case 3 can be found from the isentropic relations
(the flow throughout the entire device is isentropic). Assume that the geometry, and hence the exit-
to-throat area ratio, AE/AT , is given. Since for Case 3 the flow is choked we know that AT = A∗.
Furthermore, since the exit flow is subsonic we also know that pE = pB . From the area ratio we
can determine the exit Mach number, MaE ,

AE
A∗

=
AE
AT

=
1

MaE

(
1 + k−1

2 Ma2
E

1 + k−1
2

) k+1
2(k−1)

(where the subsonic MaE is found). (13.195)

The back pressure ratio, pB/p0, for Case 3 can be determined given the exit Mach number,

pB
p0

=
pE
p0

=

(
1 +

k − 1

2
Ma2

E

) k
1−k

. (13.196)

(2) The critical back pressure ratio corresponding to Case 4 can be determined in a manner similar to
that described previously in Note 1. For Case 4 however, the supersonic value for MaE should be
used when determining the exit Mach number from the area ratio.

(3) The critical back pressure ratio corresponding to Case 6 can be found by combining the isentropic
relations with the normal shock wave relations. When the shock wave occurs right at the exit of
the device, the flow just upstream of the exit can be found from the isentropic relations,

AE
A∗1

=
AE
AT

=
1

MaE1

(
1 + k−1

2 Ma2
E1

1 + k−1
2

) k+1
2(k−1)

(where the supersonic MaE1 is found), (13.197)

pE
p01

=

(
1 +

k − 1

2
Ma2

E1

) k
1−k

. (13.198)
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Note that the subscript “1” denotes the conditions just upstream of the shock wave. To determine
the conditions just downstream of the shock we use the normal shock wave relations,

pE2

pE1
=

2k

k + 1
Ma2

E1 −
k − 1

k + 1
, (13.199)

where pE2 is the pressure just downstream of the shock. Since the downstream flow is subsonic and
because we’re at the exit of the device, the downstream pressure, pE2, must also equal the back
pressure, pB . Thus,

pB
p01

=
pE2

p01
=
pE2

pE1

pE1

p01
, (13.200)

where the different ratios are given by Eqs. (13.198) and (13.199).
(4) The location of a shock wave for a back pressure in the range between Case 3 and Case 5 can be

determined through iteration. For example:
(a) Assume a location for the shock wave, e.g., pick a value for A/AT since the geometry is known.
(b) Determine the Mach number and pressure just upstream of the shock, Ma1 and p1, using the

isentropic relations as discussed in Note 3,

A
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=

A
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1
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2 Ma2
1
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2

) k+1
2(k−1)

(where the supersonic Ma1 is found), (13.201)

p1

p01
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(
1 +

k − 1

2
Ma2

1

) k
1−k

. (13.202)

(c) Calculate the stagnation pressure ratio and sonic area ratio across the shock using the normal
shock relations,

p02

p01
=
A∗1
A∗2

=
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k+1

2 Ma2
1

1 + k−1
2 Ma2

1

) k
k−1 (

2k
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Ma2
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k + 1

) 1
1−k

. (13.203)

(d) Determine the exit Mach number and exit pressure ratio using the isentropic relations and the
downstream sonic area and stagnation pressure,

AE
A∗2

=
AE
AT

A∗1
A∗2

=
1

MaE

(
1 + k−1

2 Ma2
E

1 + k−1
2

) k+1
2(k−1)

(where the subsonic MaE is chosen). (13.204)

Note that since the flow is choked, the throat area is equal to the upstream sonic area, i.e.,
AT = A∗1. The exit pressure ratio is found from the isentropic relations,

pE
p02

=

(
1 +

k − 1

2
Ma2

E

) k
1−k

. (13.205)

Note that since the exit Mach number is subsonic, the exit pressure will equal the back pressure,
i.e., pE = pB .

(e) Calculate the ratio of the back pressure to the upstream stagnation pressure,

pB
p01

=
pE
p02

p02

p01
. (13.206)

(f) Check to see if the back pressure ratio calculated in Step (e) matches with the given back
pressure ratio. If so, then the assumed location of the shock is correct. If not, then the go
back to Step (a) and repeat. If the back pressure ratio calculated in Step (e) is less than
the given back pressure ratio, then the assumed shock location is too far downstream. If the
back pressure ratio calculated in Step (e) is greater than the given back pressure ratio, then the
assumed shock location is too far upstream. The logic for this step is illustrated in Figure 13.34.

(g) Photographs for the various converging-diverging nozzle cases are shown in Figure 13.35.
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Figure 13.34. A plot illustrating in what direction to change the shock location during
iteration. The calculated back pressure is compared to the actual back pressure. If the
calculated back pressure is larger than the actual back pressure, then the shock should be
moved further downstream. Alternately, if the calculated back pressure is smaller than the
actual back pressure, then the shock should be moved further upstream.

(h) In real nozzles flows, the flow will typically separate from the nozzle walls as a result of the
large adverse pressure gradient occurring across a shock wave. Interaction of the shock with
the separated boundary layer results in a more gradual pressure rise than what is expected for
the ideal, normal shock analysis.
It is also possible that downstream pressure information can propagate upstream in the di-
verging section even when the core flow is supersonic. In a real flow, a boundary layer will
form along the wall with the flow in part of this boundary layer being subsonic. Thus, pressure
information can propagate upstream within the subsonic part of the boundary layer and affect
the flow in the diverging section. When the back pressure is in the range corresponding to
Case 7 (back pressure less than the exit pressure when a shock stands at the exit, and greater
than the isentropic case corresponding to supersonic diverging section flow), oblique shocks will
typically form within the diverging section and flow separation occurs as shown in Figure 13.36.
The exact pressure and location of the separation point are dependent on the boundary layer
flow.

(i) Experimental pressure measurement data within a converging-diverging nozzle are shown in
Figure 13.37. Also included in the plot are predictions using the analysis described in this
section (a combination of isentropic flow relations and normal shock wave relations). As can
be observed in the plot, the real data are predicted well by the models.
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Figure 13.35. Photographs corresponding to the different converging-diverging nozzle cases
shown in Figure 13.33.
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Figure 13.36. Photographs showing separated flow in supersonic flow in the diverging
section of a converging-diverging nozzle.
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Figure 13.37. A photograph of a converging-diverging nozzle and corresponding pressure
data shown in a plot.
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During a test docking of the Progress M-34 supply ship with the Mir space station in 1997, a collision 
occurred which punctures the hull of Spektr Module of Mir.  Assume the puncture hole had a minimum 
area of 1.0 cm2 and an outer area of 1.5 cm2 (the size of the hole was not directly measured).  The volume 
of the Spektr module was 61.9 m3 and had an initial interior pressure of 100 kPa (abs) and temperature of 
34 °C. 
1. Determine the mass flow rate of air from the capsule when the hole initially occurred. 
2. Write an equation relating how the mass of air inside the module changed with time.  You may assume 

that the air behaved as a perfect gas throughout the entire discharge process and that the temperature 
remained constant inside the space station (thanks to the small discharge rate and onboard heaters). 

3. Calculate the thrust acting the space station for the initial conditions. 
 
 

 

 
 
 
 
 
SOLUTION: 
 
Since the air in the space station is discharging into space, the back pressure is essentially zero and the flow 
will always be choked with a mass flow rate of, 

 (1) 

where, 

 (2) 

where M is the mass of air within the space station and V is the interior volume of the station.  Using the 
given data: 

g  = 1.4 
R = 287 J/(kg.K) 
p0,t = 0  = 100*103 Pa (abs) 
T0  = 34 + 273 = 307 K 
A* = Amin = 1 cm2 = 1*10-4 m2 
V  = 61.9 m3 
Þ r0 = 1.135 kg/m3 
Þ Mt = 0 = 70.25 kg 
Þ  = 2.90*10-2 kg/s 
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The mass in the space station may be found as a function of time by applying conservation of mass to a 
control volume surrounding the station as shown in the figure below. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (3) 

where, 

 (4) 

 (5) 

Note that since the back pressure is always zero, the mass flow rate out of the space station will always be 
choked.  Substitute and simplify. 

 (6) 

where Eqs. (1) and (2) have been used.  Solve the differential equation given in Eq. (6). 

    (Note that T0 = constant.) (7) 

 (8) 

    where A* = Amin (9) 
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The thrust acting on the space station may be found by applying the Linear Momentum Equation to the 
same control volume, 

 (10) 

where, 

  (The thrust is the force required to hold Mir stationary.) (11) 

 (12) 

 (13) 
   (where Ae = Aouter) (14) 

Substitute and simplify, 
 (15) 

 
The exit conditions may be found using isentropic relations since the flow through the hole is under-
expanded. 

  Þ  Mae = 1.8541 (16) 

  Þ  pe/p0 = 0.1602  Þ  pe = 16.02 kPa (abs)   (p0 = 100 kPa abs) (17) 

  Þ  Te/T0 = 0.5926  Þ  Te = 181.9 K   (T0 = 307 K) (18) 

  Þ  Ve = 501.3 m/s (19) 
Now calculate the thrust using Eq. (15) and the mass flow rate found in the first part of this problem. 

Tt = 0 = 16.94 N (20) 
Note that this is the thrust at t = 0.  The thrust will vary with time since the stagnation pressure, and thus 
exit pressure, will vary with time as mass discharges from the space station. 
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The orientation of a hole can make a difference.  Consider holes A and B in the figure below which are 
identical but reversed.  For the given air properties on either side, compute the mass flow rate through each 
hole and explain why they are different. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
First consider flow through hole B which can be considered a converging nozzle.  First check to see if the 
flow is choked. 

  Þ  The flow is not choked.  (Note that gair = 1.4.) (1) 

 
The mass flow rate can be found from the conditions at the hole exit. 

 (2) 
where, 

 (3) 

 (4) 

 (5)  

 (6) 

 (7) 

Using the given data: 
g = 1.4 
R  = 287 J/(kg×K) 
p0 = 150e3 Pa (abs) 
T0 = 20 °C = 293 K 
pE = 100e3 Pa (abs) (Note that since the exit flow is subsonic, pE = pB.) 
AE = 0.2 cm2 = 2.0e-5 m2 
MaE = 0.784 
r0 = 1.784 kg/m3 
rE = 1.335 kg/m3 
TE = 261 K 
VE = 254 m/s 
\   =  6.78e-3 kg/s 

*

0 0

100 kPa 0.6667 0.5283
150 kPa

Bp p
p p

= = > =

  !m = ρEVE AE

1
1

2
0

11 Ma
2E E

ggr r
--æ ö= +ç ÷

è ø
0

0
0

p
RT

r =

1
2

0 0

11 Ma
2

E B
E

p p
p p

g
gg --æ ö= = +ç ÷

è ø
MaE E EV RTg=

1
2

0
11 Ma
2E ET T g --æ ö= +ç ÷

è ø

  !mB

0.3 cm2 

0.2 cm2 

pback = 100 kPa (abs) 

p0 = 150 kPa (abs) 
T0 = 20 °C 

A B 

0.2 cm2 

0.3 cm2 

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

Video solution: https://www.youtube.com/watch?v=nD-3DbTDYqg

C. Wassgren 1379 2024-02-01

https://www.youtube.com/watch?v=nD-3DbTDYqg


  comp_15 

Page 2 of 2 

Now consider hole A which can be modeled as a converging-diverging nozzle.  Check to see what pB/p0 
ratio will result in choked flow (case 3 in the figure below). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Þ  MaE,crit  =  0.43 (8) 

using AE = 0.3 cm2 and AT = 0.2 cm2. 

  Þ   (9) 

For the given situation, pB/p0 = 0.6667 (refer to Eq. (1)) < pE,crit/p0 = 0.8805 so the flow for hole A must be 
choked!  The mass flow rate through the hole can be found using the (sonic) conditions at the throat. 

 (10) 
where 

  (using gair = 1.4) (11) 

 (12) 

 (13)  

 (14) 

 (15) 

Using the given data: 
AT = 0.2 cm2 = 2.0e-5 m2 
r* = 1.131 kg/m3 
T* = 244.2 K 
VT = 313.2 m/s 
\   =  7.08e-3 kg/s 
 
 

The different mass flow rates through holes A and B are because the flow through hole A is choked (the 
hole acts as a converging-diverging nozzle) while through hole B the flow is not choked (the hole acts as a 
converging nozzle).  
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A rocket engine is designed to operate at a pressure ratio (inlet reservoir pressure/back pressure) of 37.  
Find: 

a. the ratio of the exit area to the throat area which is necessary for the supersonic exhaust to be 
correctly expanded, 

b. the Mach number of the exit flow under correctly expanded conditions, 
c. the lowest pressure ratio (p0/pb) at which the same nozzle would be choked, and 
d. the pressure ratio (p0/pb) at which there would be a normal shock wave at the exit. 

Assume the specific heat ratio of the gas is 1.4. 
 
 
SOLUTION: 
 
 
 
 
 
 
The area ratio may be found from the isentropic sonic area ratio and the isentropic pressure ratio. 

  Þ  Mae = 3.0  (since at design conditions, the flow is isentropic) (1) 

  Þ  Ae/At = 4.3  (since At = A*) (2) 

 
The lowest pressure ratio for which the nozzle will be choked may be found Eqns. (2) and (1), but using the 
subsonic Mach number. 

  Þ  Mae = 0.14 (3) 

  Þ  p0/pb = 1.01  Note that pe = pb when the flow just becomes choked. (4) 
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Now consider a case where a shock wave occurs at the exit of the device. 
 
 
 
 
 
 
 
From Eqn. (1), Mae1 = 3.0 and p01/pe1 = 37.  From the normal shock relations, 

  Þ  Ma2 = 0.475 (5) 

  Þ  p02/p01 =  0.327 (6) 

and the isentropic relations: 

  Þ  p2/p02 = 0.857 (7) 

Since the flow downstream of the shock is subsonic, p2 = pb.  Thus, 

  Þ  p01/pb = 3.6  (8) 
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Which nozzle will fill the tank faster (or will they fill at the same rate), assuming that the tank is initially 
evacuated?  Justify your answer.  The upstream stagnation properties, throat areas, and tank volumes are 
identical in both cases. 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
The converging-diverging nozzle will fill the tank faster.  Since the tank is initially evacuated, the flow will 
start at choked conditions in each case.  Hence, the mass flow rate into each tank will be the choked flow 
mass flow rate (i.e., the maximum mass flow rate), which will be identical in both cases since the throat 
areas and stagnation properties are identical.  However, the converging-diverging nozzle will remain 
choked for a wider range of back pressure ratios than the converging nozzle.  Hence, converging-diverging 
nozzle will fill the tank more rapidly. 
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An 8.5 m3 vacuum tank is to be used to create a flow at an exit Mach number of MaE = 2.0 (refer to the figure 
below).  A plug is put into the nozzle and the tank is evacuated until it contains 0.45 kg of air at a temperature of 296 
K.  When the plug is removed, air flows from the atmosphere into the tank through the converging-diverging nozzle.  
The throat area is AT = 6.5 cm2. 
 
 
 
 
 
 
 
 
 
 
 
a. Determine the design exit area. 
b. Determine the initial pressure in the tank. 
c. Determine the initial mass flow rate through the nozzle. 
d. Determine the exit pressure, pE, immediately after the flow begins. 
e. Determine the tank pressure at which a normal shock wave will stand in the nozzle exit plane. 
 
 
SOLUTION: 
 
The design exit area may be found from the design exit Mach number, MaE,d = 2.0, and the isentropic flow relations. 

  Þ  AE,d/A* = 1.6875  Þ  AE,d = 11.0 cm2 (1) 

where the sonic area is equal to the throat area, A* = AT = 6.5 cm2, since the flow goes from stagnation conditions to 
supersonic conditions. 
 
 
The initial pressure in the tank may be found using the ideal gas law, 

  Þ  ptank(t = 0) = 4.50 kPa (abs) (2) 

where M = 0.45 kg, V = 8.5 m3, R = 287 J/(kg.K), and T = 296 K. 
 
 
To determine the exit plane pressure and initial mass flow rate through the nozzle, first determine whether or not the 
flow is choked.  Determine the pressure at the exit plane when the flow first becomes choked (i.e., MaT = 1) by first 
determining the exit Mach number when the flow first becomes choked, then using this Mach number and the 
isentropic relations to determine the exit pressure ratio. 

  Þ  MaE = 0.372  (3) 

where AE/A* = 1.6875 from Eq. (1) (note that when the flow is choked, A* = AT).  The pressure at the exit for this 
condition is found from the isentropic flow relation. 

  Þ  pE/p0 = 0.9088 Þ  pE = 91.8 kPa (abs) (4) 

where p0 = patm = 101 kPa (abs).  Since this exit pressure is larger than the initial tank pressure, the flow must be 
choked and the mass flow rate is then, 
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  Þ  0.154 kg/s (5) 

where p0 = 101 kPa (abs), T0 = 296 K, R = 287 J/(kg.K), g = 1.4, and A* = AT = 6.5 cm2. 
 
The design pressure for the nozzle is found using the isentropic relations and the design Mach number. 

  Þ  pE,d/p0 = 0.1278  Þ  pE,d = 12.9 kPa (abs) (6) 

Since the exit pressure at design is larger than the initial tank pressure, the flow must be underexpanded and the exit 
pressure will be equal to the design exit pressure of pE,d = 12.9 kPa (abs). 
 
The tank pressure at which a normal shock stands in the exit plane is found by using the design Mach number and 
exit pressure found in Eq. (6) just upstream of the shock, then applying the normal shock relations across the exit 
shock wave. 

MaE1 = 2.0  Þ  pE2/pE1 = 4.500  (from the normal shock relations)  Þ  pE2 = 58.1 kPa (abs)  (7) 
where pE1 = 12.9 kPa (abs) from Eq. (6).  Since the flow just downstream of the shock is subsonic, the downstream 
exit pressure will equal the back pressure.  Thus, the tank pressure at which a normal shock just stands at the exit is 
58.1 kPa (abs). 
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A converging-diverging nozzle, with an exit to throat area ratio, Ae/At, of 1.633, is designed to operate with 
atmospheric pressure at the exit plane, pe = patm. 
a. Determine the range(s) of stagnation pressures for which the nozzle will be free from normal shocks. 
b. If the stagnation pressure is 1.5patm, at what position, x, will the normal shock occur? 

 
The converging-diverging nozzle area, A, varies with position, x, as: 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

SOLUTION: 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
If there are no shocks, then the flow is assumed to remain isentropic.  Determine the back pressure 
corresponding to isentropic sonic area ratio.  Consider, for the moment, only the subsonic condition (case 3 
shown in the figure above). 

  Þ   MaE = 0.39  (isentropic flow relations) (1) 

Þ     (isentropic flow relations) (2) 

Hence, for patm £ p0 £ patm/0.9016 = 1.11 patm the flow throughout the nozzle will be subsonic and, as a 
result, there will be no shocks within the nozzle. 

  

( ) 2

1 2 1 1E

E T

A x A x
A A L

æ öæ ö= - - +ç ÷ç ÷
è øè ø

( )
1

2 11 2
2

1
2

1 Ma11.633
* Ma 1

EE E

T E

A A
A A

g
gg

g

+
--

-

æ ö+
ç ÷= = =
ç ÷+è ø
1

2

0

11 Ma 0.9016
2

E
E

p
p

g
g

g
-

-æ ö= + =ç ÷
è ø

stagnation 
conditions 

throat area, At 

 

exit area, Ae 

1/2L 

L 

x 

p/p0 

x 

p*/p0 

1 

throat exit 

1 
2 
3 

4 

5 
6 
7 

8 

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

C. Wassgren 1390 2024-02-01



  normalshock_03 

Page 2 of 3 

It’s also possible to have isentropic flow within the nozzle, yet have a shock wave at the nozzle exit (case 6 
in the figure).  For the case when a normal shock wave is stationed at the nozzle exit: 

  Þ   MaE = 1.96  (isentropic flow relations) (3) 

Þ    (isentropic flow relations) (4) 

and   (normal shock relations) (5) 

Note that since downstream of the shock the flow is subsonic and at the exit, pE2 = patm. 
 
Now determine the upstream stagnation pressure corresponding to the given conditions. 

 (6) 

 (7) 

 
Therefore, the device will not contain normal shocks for the following range of stagnation conditions: 

  and   (8) 

 
 

Based on Eq. (8), a normal shock will occur somewhere within the diverging portion of the nozzle if the 
stagnation pressure is p01 = 1.5patm.  Use an iterative approach to determine the location of the shock as 
given below. 
 

a. Assume a location for the shock wave (e.g., pick a value for A/At since the geometry is known). 
b. Determine the Mach number and pressure just upstream of the shock, Ma1 and p1, using the 

isentropic relations as discussed in Note 2. 

  (where the supersonic Ma1 is chosen) (9) 

 (10) 

c. Calculate the stagnation pressure ratio and sonic area ratio across the shock using the normal 
shock relations: 

 (11) 

d. Determine the exit Mach number and exit pressure ratio using the isentropic relations and the 
downstream sonic area and stagnation pressure: 

(where the subsonic Mae is chosen) (12) 
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Note that since the flow is choked, the throat area is equal to the upstream sonic area, i.e., At = A1*. 

 (13) 

 
Note that since the exit Mach number is subsonic, the exit pressure will equal the back pressure, 
i.e., pe = pb. 

e. Calculate the ratio of the back pressure to the upstream stagnation pressure: 

 (14) 

f. Check to see if the back pressure ratio calculated in step (e) matches with the given back pressure 
ratio.  If so, then the assumed location of the shock is correct.  If not, then the go back to step (a) 
and repeat.  If the back pressure ratio calculated in part (e) is less than the given back pressure 
ratio, then the assumed shock location is too far upstream.  If the back pressure ratio calculated in 
part (e) is greater than the given back pressure ratio, then the assumed shock location is too far 
downstream.   

 
Apply this algorithm using the given data and summarize in the following table.  (Note that the correct 
position is found manually in this case, but the method could easily be made into a computer program and 
the correct position could be found using an approach such as a bisection method.) 
 

 
 
Thus, the shock is located at x/L = 0.9306. 
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g
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è ø

02
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b ep p p
p p p

=

g = 1.4
AE/AT = 1.633
p01/patm = 1.5

x/L A(x)/AT Ma1 p1/p01 p02/p01 A1*/A2* AE/A2* MaE pE/p02 pB/p01 p01/pB comment
0.8000 1.2279 1.5716 0.2454 0.9056 0.9056 1.4788 0.4382 0.8764    0.7937    1.2600    shock too far upstream
0.9000 1.4051 1.7681 0.1827 0.8267 0.8267 1.3500 0.4948 0.8459    0.6993    1.4299    shock too far upstream
0.9500 1.5127 1.8649 0.1575 0.7835 0.7835 1.2794 0.5343 0.8234    0.6451    1.5502    shock too far downstream
0.9250 1.4573 1.8167 0.1696 0.8052 0.8052 1.3150 0.5134 0.8354    0.6727    1.4865    shock too far upstream
0.9375 1.4846 1.8408 0.1635 0.7944 0.7944 1.2973 0.5235 0.8296    0.6591    1.5173    shock too far downstream
0.9313 1.4709 1.8288 0.1665 0.7998 0.7998 1.3061 0.5184 0.8326    0.6659    1.5017    shock too far downstream
0.9281 1.4641 1.8228 0.1681 0.8025 0.8025 1.3105 0.5159 0.8340    0.6693    1.4941    shock too far upstream
0.9297 1.4675 1.8258 0.1673 0.8012 0.8012 1.3083 0.5172 0.8333    0.6676    1.4980    shock too far upstream
0.9305 1.4692 1.8273 0.1669 0.8005 0.8005 1.3072 0.5178 0.8329    0.6667    1.4998    shock too far upstream
0.9309 1.4700 1.8280 0.1667 0.8002 0.8002 1.3067 0.5181 0.8327    0.6663    1.5007    shock too far downstream
0.9307 1.4696 1.8276 0.1668 0.8004 0.8004 1.3070 0.5179 0.8329    0.6666    1.5002    shock too far downstream
0.9306 1.46947 1.82753 0.1669 0.8004 0.8004 1.30702 0.51791 0.8329    0.6666    1.5001    just about right!
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Air flows through a converging-diverging nozzle, with Ae/At = 3.5 where At = 500 mm2.  The upstream 
stagnation conditions are atmospheric; the back pressure is maintained by a vacuum system.  Determine the 
range of back pressures for which a normal shock will occur within the nozzle and the corresponding mass 
flow rate. 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
 
A shock wave will appear within the nozzle for the range of back pressures indicated in the figure shown 
below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The back pressure ratio corresponding to case 3 may be found from the isentropic relations: 

  Þ  Mae = 0.168 (1) 

(Note that for case 3, At = A* since the flow is choked.) 

  Þ  pb/p0 = 0.980 (2) 

(Note that since the flow is subsonic at the exit, pe = pb.) 
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The back pressure ratio corresponding to case 6 may be found by combining the isentropic relations with 
the normal shock relations. 

  Þ  Mae1 = 2.80 (3) 

  Þ  Mae2 = 0.488 (4) 

  Þ  p02/p01 = 0.389 (5) 

  Þ  pb/p02 = 0.850 (6) 

  Þ  pb/p01 = 0.331 (7) 

 
Thus, a normal shock wave will appear in the diverging portion of the converging-diverging nozzle over 
the range:  

0.331 < pb/p0 < 0.980 (8) 
where p0 = 1 atm = 101 kPa (abs). 

 
The mass flow rate when the flow is choked is: 

  Þ   (9) 

where g = 1.4, p0 = 101 kPa, R = 287 J/(kg×K), T0 = 293 K, and A* = At = 500 mm2. 
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A satellite includes a correctional propulsive unit consisting of a tank that is 3 ft3 in volume and contains 
helium initially at 2000 psia.  Heaters on the satellite maintain the tank temperature at 0 °F.  The tank is 
connected to a short, insulated, convergent-divergent nozzle having a throat area of 1 in2 and an exit area of 
3 in2.  The mass of the satellite, exclusive of the helium, is 50 lbm.  Plot the acceleration of the satellite as a 
function of time if the valve is left open. 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
The pressure in space is nearly zero so the flow from the nozzle will always be underexpanded. 
 
Apply the LME in the x-direction to the CV shown below.  Use a frame of reference fixed to the satellite. 
 
 
 
 
 
 
 
 
 
 

 (1) 

where 

  (The velocity of He in tank is zero in the given FOR.) (2) 

 (3) 

 (4) 
 (5) 

 (6) 

Substitute and simplify. 
 (7) 

 
Since the flow within the nozzle will always be choked and isentropic (the back pressure is zero), the mass 
flow rate is: 

    where A* = Athroat (8) 
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The exit velocity and pressure may be expressed in terms of the exit Mach number: 

 (9) 

 (10) 

Substitute and simplify. 

 (11) 

 
The Mach number at the exit is found using the given area ratio: 

  Þ  Mae = 3.0   (Note:  gHe = 1.66) (12) 

 
Using the given data: 

p0 = 2000 psia 
At = 1 in2 
Ae = 3 in2 
Mae = 3.0 
gHe = 1.66 
RHe = 386.1 (ft.lbf)/(lbm.°R) 
Vtank = 3 ft3 
T0 = 460 °R 

Þ   (13) 

Þ  asat(t = 0) = 54.7 ft/s2 = 1.7g   (where g is 32.2 ft/s2) (14) 
 

Note that the pressure within the tank will decrease with time as helium is discharged from the tank (the 
tank temperature remains constant due to the heaters). 

 (15) 

     from conservation of mass (16) 

Substitute Eqn. (8) and simplify. 

 (17) 

 (18) 

 (19) 
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Substitute Eq. (19) into Eq. (13) to determine how the satellite mass changes with time. 

 (20) 

 
Summarizing: 

 (21) 

 (22) 

 (23) 

 
Using the given initial data, the satellite tank pressure and acceleration may be plotted as a function of time 
as shown in the figure below. 
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Air flows through a frictionless, adiabatic converging-diverging nozzle.  The air in the reservoir feeding the 
nozzle has a pressure and temperature of 700 kPa (abs) and 500 K, respectively.  The ratio of the nozzle 
exit to throat area is 11.91.  A normal shock wave stands where the upstream Mach number is 3.0.  
Calculate the Mach number, the static temperature, and static pressure at the nozzle exit plane. 
 
 
SOLUTION: 
 

p0  =  700 kPa (abs) 
T0  =  500 K 
AE/AT  =  11.91 
Ma1  =  3.0 
 
 

Using the normal shock relations: 
Ma1 = 3.0  Þ   Ma2  = 0.4752 (1) 
 T02/T01 =  1 (2) 
 p02/p01 = 0.3283 (3) 
 

The flow is isentropic from the reservoir to just upstream of the shock (location 1) so that: 
p01  =  p0 (4) 

T01 = T0 (5) 
A1/A1* = 4.2346 (using Ma1 = 3.0) (6) 
 

The flow is also isentropic from just downstream of the shock (location 2) to the exit so that: 
p0E  =  p02 (7) 
T0E = T02 (8) 
A2/A2* = 1.390 (using Ma2 = 0.4752) (9) 
 

Combine the previous equations to get the exit stagnation conditions. 

 (10) 

 (11) 

Now determine the exit sonic area ratio (AE/A*) so that it can be used to determine the exit Mach number. 

  (Note that AT = A1*.) (12) 

 
Use this area ratio and the isentropic flow sonic area relation to determine the exit Mach number.  Note that 
the exit Mach number will be subsonic since the flow downstream of the shock wave is subsonic. 

 (13) 

 
Use the isentropic flow relations with the exit Mach number to determine the stagnation temperature and 
pressure ratios. 

  and   (14) 

Combine Eqns. (14) with Eqs. (10) and (11) to determine the exit static temperature and pressure. 
TE  =  498 K  and pE = 226 kPa (abs) 
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A large reservoir at 20 °C and 800 kPa (abs) is used to fill a small tank through a converging-diverging 
nozzle with 1 cm2 throat area and 1.66 cm2 exit area.  The small tank has a volume of 1 m3 and is initially at 
20 °C and 100 kPa (abs).  Estimate the elapsed time when: 
a. shock waves begin to appear inside the nozzle, and 
b. the mass flow rate begins to drop below its maximum value. 
You may assume that the tank filling process occurs isothermally.   
c. Describe (but you need not work out) how your solution approach would change if the tank is well 

insulated so that the filling process occurs adiabatically. 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
 
 
First check to see where the flow is on the diagram below.  At t = 0: 

pb/p0 = (100 kPa)/(800 kPa) = 0.125 (1) 
 
The back pressure ratios corresponding to cases 3 (onset of choked flow) and 4 (design conditions) – refer 
to the plot below – may be found from the isentropic relations. 

  Þ  Mae = 0.3796, Mae = 1.9802 (2) 

using Ae = 1.66 cm2 and A* = At = 1 cm2 (Þ Ae/A* = 1.66). 

Þ  pb/p0 = 0.9053, 0.1318 (3) 

 
The back pressure ratio when a normal shock wave stands at the nozzle exit may be found by combining 
the isentropic and normal shock wave relations. 

  Þ  Mae2 = 0.5808  (using Mae1 = 1.9802 – from Eq. (2)) (4) 

  Þ  p02/p01 = 0.7301 (5) 

  Þ  pb/p02 = 0.7957 (6) 

  Þ  pb/p01 = 0.5809 (7) 
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The mass flow rate into the tank will be choked until pb/p0 ³ 0.9053.  The choked mass flow rate into the 
tank is given by: 

  Þ   (8) 

 
The (back) pressure in the tank may be found by applying conservation of mass to a control volume 
surrounding the tank and making use of the ideal gas law.  

  Þ   (9)  

Note that the mass flow rate into the tank is the choked mass flow rate (Eq. (8), which remains constant up 
until case 3 is reached), and M0 is the mass inside the tank at t = 0. 

  Þ  M0 = 1.189 kg (10) 

where pb,t = 0 = 100 kPa, Tb, t = 0 = 293 K, R = 287 J/(kg×K), and Vtank = 1 m3.  
 
Thus, the time for the onset of shock waves in the nozzle (case 6) is: 

 (11) 

  Þ  tshocks = 23.0 s (12) 

 
The time for when the flow is no longer choked (case 3) is: 

  Þ  tunchoked = 39.3 s (13) 
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If we assume that the tank fills adiabatically (likely a more realistic scenario), then the calculations become 
much more involved since the temperature in the tank will also vary as the pressure varies.  The (back) 
pressure in the tank will increase as additional mass enters the tank.  We can determine how the pressure 
varies by applying conservation of energy and conservation of mass to a control volume surrounding the 
tank as shown below. 
 
 
 
 
 
 
 
 
 
 
 
 
Applying conservation of energy to a control volume surrounding the tank gives: 

 (14) 

 (15) 

  (where conservation of mass has been used) (16) 

 (17) 

where the mass flow rate entering the tank is given by Eq. (8) (the flow is choked for the conditions we’re 
interested in so that mass flow rate will remain constant).  Note that we are assuming that the tank is well 
insulated indicating that the filling process occurs adiabatically ( ).  The temperature and 
velocity of the air entering the tank (Te and Ve) may be found following an approach similar to the ones 
used previously to determine the exit pressure.  For back pressures less than the value corresponding to 
case 6 (normal shock at the exit plane), the exit temperature and velocity are given by: 

  Þ  Te/T0 = 0.5605  Þ  Te = 164.2 K (18) 

  Þ Ve = 508.7 m/s (19) 
 

The (back) pressure in the tank may be found by applying conservation of mass to the same control volume 
and making use of the ideal gas law.  

  Þ   (20)  

where Tb is found from the (numerical) solution of Eq. (17).  Note that the mass flow rate into the tank is 
the choked mass flow rate (Eqn. (8), which remains constant up until case 3 is reached), and M0 is the mass 
inside the tank at t = 0 (Eq. (10)). 
 

   
d
dt

M tankcVTb( )− !me cPTe +
1
2Ve

2( ) = 0

   
cV Tb

dM tank
dt

+ M tank
dTb
dt

⎛
⎝⎜

⎞
⎠⎟
− !me cPTe +

1
2Ve

2( ) = 0

   
cV !meTb + !met + M0( ) dTb

dt
⎡

⎣
⎢

⎤

⎦
⎥ − !me cPTe +

1
2Ve

2( ) = 0

   
cV !met + M0( ) dTb

dt
+ !mecVTb = !me cPTe +

1
2Ve

2( )

   
!Qinto tank = 0

1
2

0

11 Ma
2

e
e

T
T

g --æ ö= +ç ÷
è ø
Ma Mae e e e eV c RTg= =

   
M tank = ρbVtank =

pbVtank
RTb

= !mt + M0
   
pb =

RTb
Vtank

!mt + M0( )

e 

b 

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

C. Wassgren 1401 2024-02-01



  normalshock_14 

Page 4 of 4 

When pb/p0 ³ 0.5806 (corresponding to case 6), then the temperature and velocity of the air entering the 
tank (Te and Ve) must be found by taking into consideration a normal shock wave located somewhere 
within the diverging portion of the nozzle.  The exit temperature and velocity will depend upon the location 
of the shock wave, which in turn will depend upon the back pressure.  Hence, the shock finding algorithm 
described in the course notes (it won’t be repeated here) must be used for a given back pressure to 
determine the location of the normal shock wave.  Once this location has been found (and hence, Ma1 is 
known) , the exit temperature and velocity may be found by combining the isentropic and normal shock 
relations: 

   (Note that T0 = T01 = T02) (21) 

 (22) 
where the exit Mach number is found from the area ratio: 

 (23) 

where 

   (24) 

where Ma1 is the Mach number just upstream of the shock wave.  With the calculated Te and Ve, Eqn. (17) 
may be solved numerically simultaneously with Eq. (20) so that pb may be determined. 
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A converging-diverging nozzle, with Ae/At = 1.633, is designed to operate with atmospheric pressure at the 
exit plane.  Determine the range(s) of stagnation pressures for which the nozzle will be free from normal 
shocks. 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
There will be two ranges of back pressures that will not produce shock waves within the C-D nozzle.  In 
region 1 shown above, the entire flow remains subsonic (with possible sonic flow at the throat).  In region 2 
the flow is subsonic in the converging section, sonic at the throat, then subsonic throughout the diverging 
section.  Shock waves and expansion fans may occur outside of the C-D nozzle in region 2. 
 
Consider pressure curve 1 indicated in the figure above.  For this case the exit Mach number is given by: 

 (1) 

Solve for the subsonic exit Mach number to get: 
MaE  =  0.387 
 

Now use the isentropic stagnation pressure ratio to determine the reservoir stagnation pressure for these 
conditions. 

  Þ  p0  = 1.11pE  =  112 kPa  (where pE = patm = 101 kPa) (2) 

Hence, the nozzle will be shock free for: 
patm £ p0 £ 1.11patm  or  101 kPa £ p0 £ 112 kPa 
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Now consider pressure curve 2 indicated in the figure above.  For this case a normal shock wave occurs at 
the nozzle exit plane.  Just upstream of the shock wave the Mach number can be found using the sonic area 
ratio. 

 Þ MaE1 = 1.96  (using the isentropic flow relations) 

 Þ  pE2/pE1 = 4.3152 (using the normal shock relations with MaE1 = 1.96) 
 Þ  pE1/p01 = 0.1359 (using the isentropic flow relations with MaE1 = 1.96) 
 

Now solve for pE2/p01. 

 

Note that p01 = p0 (the reservoir pressure) and pE2 = patm (since the flow downstream of the shock is 
subsonic). 

Þ  p0 = 1.7052 patm 
 

Thus, normal shocks will not form in the C-D nozzle when: 
p0 > 1.71 patm  or  p0 > 172 kPa 
 

To summarize, the C-D nozzle will remain shock-free for the following range of stagnation pressures: 
patm £ p0 £ 1.11patm and  p0 > 1.71 patm     
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A crude converging-diverging nozzle with an exit-to-throat area ratio of Ae/At = 16 is built using a straight-
sided conical diffuser as shown in the figure below. 
 
 
 
 
 
 
 
 
 
The nozzle is supplied by an air reservoir of pressure, pres, and temperature, Tres.  The nozzle discharges into 
atmospheric conditions (patm = 1 atm). 
 
a. If a shock wave forms half-way along the diffuser, i.e., x/L = 0.5, determine the reservoir pressure, pres. 
b. Determine over what range of reservoir pressures the flow will be choked. 
 
 
SOLUTION: 
 
First determine the area in the straight-sided nozzle as a function of position in the nozzle. 

 (1) 

 (2) 

  where   (3) 

 (4) 

For x/L = 1/2 and Ae/At = 16 , A/At = 6.25. (5) 
 
Using the isentropic flow relations (or tables) for air (g = 1.4) and noting that the throat is also the sonic 
area since there is a shock wave in the diverging section: 

 (6) 

 
Using the normal shock relations (or tables) for air: 

 (7) 

 
Now determine the sonic area ratio at the exit, downstream of the shock wave. 

 (8) 

Using the isentropic flow relations (or tables) for air: 

 (9) 
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Now determine the upstream stagnation pressure using the pressure ratios.  Note that pe = patm = 1 atm since 
the exit Mach number is subsonic. 

 (10) 

 (11) 
 

For a flow that just becomes choked: 

 (12) 

 (13) 

 (14) 
Therefore, the flow will be choked for p0 ≥ 1.001 atm. 
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For the purposes of an experiment, we wish to design a de Laval nozzle which will be supplied from a 
compressed air reservoir (specific heat ratio of 1.4).  It is required that: 
1. there is a normal shock across the exit of the diffuser, and 
2. the jet emerging downstream of the shock should have a Mach number of 0.5. 
 
Find: 
a. the ratio of the cross-sectional area at the diffuser exit to the cross-sectional area of the throat, 
b. the ratio of the ambient pressure downstream of the shock to the pressure in the compressed air 

reservoir, and 
c. the ratio of the ambient pressure downstream of the shock to the throat pressure.  
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
The Mach number just upstream of the shock wave at the exit may be found using the normal shock 
relations, 

  Þ  MaE1 = 2.6457 (1) 

 
The ratio of the cross-sectional area at the diffuser exit to the cross-sectional area of the throat may be 
found using the isentropic sonic area ratio and the Mach number just upstream of the shock, 

  Þ  AE/AT = 3.0236  (2) 

Note that since the flow at the exit is supersonic, the throat must be at a sonic Mach number. 
 
The pressure ratio, pb/p01, is given by, 

  Þ  pb/p01 = 0.3736  (3) 

where 

  (since MaE2 < 1) (4) 

  Þ  pE2/pE1 = 7.9997  (normal shock relations) (5) 

  Þ  pE1/p01 = 0.0467 (isentropic stagnation pressure ratio) (6) 

 
The pressure ratio, pb/p*, is given by, 

  Þ  pb/p* = 0.7071  (7) 

where 

  Þ  p*/p01 = 0.5283  (isentropic stagnation pressure ratio) (8) 
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Consider the flow of air through the converging-diverging nozzle shown in the figure below.  The flow begins at 
stagnation conditions with p0 = 100 kPa (abs) and T0 = 300 K.  The nozzle exit-to-throat area ratio is AE/AT = 1.688 
with a throat area of AT = 1.0*10-4 m2. 
 
 
 
 
 
 
 
 
 
a.  Determine the back pressure at which the flow first becomes choked. 
b. Determine the range of back pressures at which the flow at the exit is supersonic. 
c. Determine the mass flow rate through the nozzle when the exit Mach number is 0.2. 
 
 
SOLUTION: 
The flow first becomes choked when the Mach number at the throat is equal to one (AT = A*) then goes back to 
subsonic conditions.  The area ratio for this case is 

. (1) 

where k = 1.4.  Since the flow is entirely isentropic, the back pressure ratio corresponding to this Mach number 
may be found using, 

   Þ  pE/p0 = 0.9088  (2) 

Since the exit Mach number is subsonic, the exit pressure and back pressure are the same.  Hence, 
pB = pE. (3) 

Using the given inlet stagnation pressure and Eqs. (2) and (3),  
pB = 90.8 kPa (abs) (4) 

 
 
The flow at the exit will be supersonic for back pressures less than the case when a normal shock wave stands at 
the nozzle exit.  The back pressure at which a normal shock stands at the exit may be found by noting that the flow 
upstream of the exit will be entirely isentropic (and choked), with the Mach number just upstream of the shock at 
the exit being supersonic.  Hence, 

. (5) 

The pressure ratio just upstream of the shock at the exit may be found from the isentropic relations, 

   Þ  pE1/p01 = 0.1278  Þ  pE1 = 12.78 kPa (abs) (6) 

where p01 is the upstream stagnation pressure (the stagnation pressure decreases across the shock). 
 
The static pressure ratio across the shock may be found using the normal shock relations, 

 Þ  pE2/pE1 = 4.500   (7) 

so that the pressure just downstream of the shock is, 

 Þ  pE2 = 57.51 kPa (abs). (8) 
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Note that the Mach number just downstream of the exit will be subsonic, so the downstream pressure will be 
equal to the back pressure.  Hence, 

. (9) 
Thus, the range of back pressures for which the exit Mach number will be supersonic is, 

pB < 57.51 kPa (abs). (10) 
 
Note that the Mach number downstream of the shock wave is, 

   Þ  MaE2 = 0.5774 (11) 

and the stagnation pressure ratio across the shock wave is, 

   Þ  p02/p01 = 0.7209  Þ  p02 = 72.1 kPa (abs) (12) 

The isentropic stagnation pressure ratio at the downstream side of the shock is, 

   Þ  pE2/p02 = 0.7978, (13) 

The back pressure for this case can be found by combining relations in the following manner, 

,  (14) 

which is exactly the same result found in Eqs. (8) and (9). 
 
 
Given that the flow chokes at an exit Mach number of 0.3721 (found from Eq. (1)), the flow in the device must be 
entirely subsonic when the exit Mach number is 0.2.  Thus, the mass flow rate may be found from the isentropic 
relations evaluated at the exit, 

, (15) 
where, 

  and  , (16) 

, (17) 

, (18) 

. (19)   

Using the given data, 
 Þ   r0 = 1.161 kg/m3 
 rE = 1.139 kg/m3 
 TE = 297.6 K 
 cE = 345.8 m/s 
 VE = 69.16 m/s 
 AE = 1.69*10-4 m2 
 Þ   (20) 

Note that this mass flow rate is less than the choked flow mass flow rate (since the flow isn’t choked). 
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Consider the supersonic wind tunnel shown in the following schematic.  Air is the working fluid and the 
test section area is constant. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a. What is the design Mach number of the test section? 
 
SOLUTION: 
 
The test section design Mach number may be found using the isentropic sonic area ratio and choosing the 
supersonic test section Mach number (case 4 in the diagram above), 

  Þ  MaTS = 2.50. (1) 

Note that at design conditions, the throat Mach number is one. 
 
 
b. What is the mass flow rate through the wind tunnel at design conditions? 
 
SOLUTION: 
 
The flow through the wind tunnel will be choked at design conditions, with a mass flow rate of, 

  Þ   = 23.3 kg/s, (2) 

where A* = AT. 
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c. What is the maximum back pressure at which the throat will reach sonic conditions? 
 
SOLUTION: 
 
When the throat just reaches sonic conditions (case 3 in the diagram above), the throat area will equal the 
sonic area (A* = AT) and the exit Mach number may be found using the isentropic sonic area ratio since the 
flow through the entire converging-diverging nozzle will be subsonic (no shock waves), 

  Þ  MaE = 0.2263. (3) 

The exit pressure may be found from this Mach number using the isentropic stagnation pressure ratio, 

  Þ  pE/p0 = 0.9650 Þ pE = 96.5 kPa (abs), (4) 

using p0 = 100 kPa (abs).  Since the exit Mach number is subsonic, the exit and back pressures are equal.  
Hence, 

pB = pE = 96.5 kPa (abs). (5) 
 
 
d. Assume a shock wave stands in the diverging section where the area is 0.1688 m2.  What is the back 

pressure at these conditions? 
 
SOLUTION: 
 
The Mach number just upstream of the shock wave may be found using the isentropic sonic area ratio since 
the flow leading up to the shock wave is isentropic and the throat area is at sonic conditions (since shock 
waves only form in supersonic flows, case 5 in the diagram shown above), 

  Þ  Ma1 = 2.00. (6) 

The stagnation pressure ratio and sonic area ratio across the shock are, 

Þ p02/p01 = A*1/ A*2 = 0.7209. (7) 

The flow downstream of the shock wave is isentropic and subsonic.  Thus, the pressure at the exit may be 
found 

 Þ  MaE = 0.3240. (8) 

The exit pressure may be found from the isentropic stagnation pressure ratio downstream of the shock and 
the exit Mach number, 

 Þ  pTS/p02 = 0.9299. (9) 

Accounting for the change in stagnation pressure ratio across the shock, 

   Þ  pTS = 67.03 kPa (abs) (10) 

Since the exit is at a subsonic Mach number, the exit and back pressures are equal, 
pB = pE = 67.0 kPa (abs). (11) 
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Figure 13.38. A schematic of a blowdown-style wind tunnel.

13.19. Supersonic Wind Tunnel Design

There are three common designs for supersonic wind tunnels:

(1) high-pressure gas storage tanks (and/or vacuum tanks) for blowdown wind tunnels,
(2) a compressor and diffuser for continuous-duty wind tunnels, and
(3) shock tubes for high-enthalpy wind tunnels.

Here we’ll study only the first two categories: blowdown and continuous-duty wind tunnels.

13.19.1. Blowdown Wind Tunnels

A schematic for a typical blowdown wind tunnel is shown in Figure 13.38 (Figure 13.39 shows a more detailed
example). Another possible design would be to use atmospheric conditions at the inlet and use a vacuum
tank at the exit (such a design is effectively the same as the one shown in the figure).

The wind tunnel will have supersonic flow in the test section as long as the back-to-tank pressure ratio,
pB/p01, is less than the back pressure ratio corresponding to case 6 shown in Figure 13.40 (no shock waves
anywhere within the device). If the back pressure ratio becomes too large, then a shock wave will form in
the diverging section of the nozzle and there will be subsonic flow in the test section.

Notes:

(1) There is a fixed amount of time for which the device will operate at the design test section Mach
number, MaTS , since the tank mass will decrease with time. To extend the duration of the test, a
diverging section can be added to the exit of the device as shown in Figure 13.41. The presence of
the diverging section allows the tank to drop to a lower pressure before a shock wave appears ahead
of the test section.

13.19.2. Continuous-duty Wind Tunnels

Continuous-duty wind tunnels utilize a compressor to produce the driving pressure gradient for the flow. In
order to minimize the required compressor power, the wind tunnel should operate as efficiently as possible,
i.e., as close to isentropic conditions as possible. Continuous-duty wind tunnels can be either open-circuit
where air is drawn in and exhausted to the surroundings, or closed-circuit where the working gas is recycled
through the system. The schematics shown in Figures 13.42 and 13.43 provide examples of both types of
systems.

Again, in order to minimize the compressor power requirements, the losses in the system should be minimized.
The ideal case (shown in Figure 13.44) is to have an isentropic deceleration from supersonic to subsonic speeds.

Consider what happens if we design the wind tunnel such that the downstream throat has a smaller area than
the upstream throat, i.e., At2 < At1. As we decrease the back pressure ratio, pback/p01, then we will have
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Figure 13.39. A schematic of a blowdown-style wind tunnel used at NASA. Image from
https://history.nasa.gov/SP-440/ch5-6.htm.

Figure 13.40. Stagnation pressure ratio plotted as a function of position in a converging-
diverging nozzle.

subsonic flow throughout the device until at a critical back pressure the flow through the second throat will
become choked. As we decrease the back pressure further, a shock wave will form in the diverging section of
the downstream diffuser (refer to Figure 13.45). The test section is considered blocked since further reductions
in the back pressure will not cause any changes upstream of the second throat. Since the test section was
subsonic before blocking occurred, it will remain subsonic after blocking.
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Figure 13.41. A schematic of a blowdown-style wind tunnel with a diffuser at the exit.

Figure 13.42. An example of an open-circuit, continuous-duty wind tunnel. Figure from:
http://history.nasa.gov/SP-440/ch5-4.htm

Now consider what happens if we make the second throat just a little bit larger than the first throat. As we
decrease the back pressure we will reach a case where the flow in the first throat becomes choked and a shock
wave forms in the diverging section of the first throat. The flow in the test section will be subsonic. As the
back pressure decreases, the shock wave in the first throat moves further downstream and becomes stronger.
Recall that as the shock becomes stronger, A∗2/A

∗
1 increases. If the second throat area is smaller than the

A∗2 for the strongest shock wave, i.e., one that stands at the test section entrance, then a second shock will
appear downstream of the second throat and the flow is once again blocked. Figure 13.46 illustrates this
condition.

If the downstream throat has an area greater than the sonic area downstream of the shock when the shock
wave stands at the entrance of the test section (Figure 13.47), and we decrease the back pressure further,
then the shock will be swallowed by the second throat and the flow within the test section will, at last, be
supersonic (Figure 13.48).

Now let’s get back to the original discussion. Once the shock has been swallowed by the second throat, the
shock will stand in the diverging section of the downstream diffuser. The wind tunnel is now considered
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Figure 13.43. An example of a closed-circuit, continuous-duty wind tunnel. Figure from:
http://history.nasa.gov/SP-440/ch5-3.htm

Figure 13.44. The ideal case for a supersonic, continuous-duty wind tunnel.
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Figure 13.45. A wind tunnel blocked downstream of the second throat. The flow in the
test section is subsonic.

Figure 13.46. A wind tunnel blocked at both throats.

running or started. In order to isentropically decelerate the flow we should now decrease the area of the
second throat so that it is approximately the same as the upstream throat area (Figure 13.49). Since there
are no longer any shock waves upstream of the second throat, we theoretically could approach the first throat
area; however, due to boundary layer effects we will always have to make the second throat slightly larger
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Figure 13.47. A wind tunnel with the downstream throat having an area larger than the
sonic area downstream of the upstream shock.

Figure 13.48. A wind tunnel in which the upstream shock wave has been swallowed. The
shock now stands downstream of the second throat while the flow in the test section is
supersonic.
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Figure 13.49. A wind tunnel with a variable throat area. Figure from: http://history.
nasa.gov/SP-440/ch5-5.htm

than the first. Decreasing the second throat area too much results in shock waves in the diverging sections
of both the first and second throats (discussed previously) and the wind tunnel is once again blocked.

Once the wind tunnel is running and we’ve decreased the second throat area, we should try to minimize the
stagnation pressure loss through the shock wave in the second diverging section (and, hence, increase the
tunnel efficiency). To do this we increase the back pressure, pback, so that the shock wave will move further
toward the second throat thus decreasing the shock’s strength (Figure 13.50). The ideal case is to have the
shock positioned exactly at the second throat. In practice, however, a shock standing exactly at the second
throat is unstable and could disgorge, i.e., move back into the diverging section of the first throat, and block
the test section once again.

Notes:

(1) An excellent reference on the history of wind tunnel development at NACA/NASA can be found
at: http://www.hq.nasa.gov/office/pao/History/SP-440/contents.htm
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Figure 13.50. A running supersonic wind tunnel with a weak normal shock downstream of
the second throat. The weak second shock results in a small amount of entropy generation
in the flow.
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A well insulated, blowdown wind tunnel exhausting to atmospheric pressure (14.7 psia) is to be designed.  
The test section cross-sectional area is specified to be 1 ft2, and the desired test section Mach number is 2.0.  
The supply tank can be pressurized to 150 psia and heated to 150 °F (at least initially).  Determine the 
throat area and supply tank volume required for a testing time of 30.0 s.   
 
If a diverging section with an area ratio equal to 3.375 times that of the throat is added downstream of the 
test section, what is the new testing time? 
 
 
SOLUTION: 
 
 
 
 
 
 
 
First determine the throat area required for a test section Mach number of MaTS = 2.0 and test section area 
of ATS = 1 ft2: 

( )
1

2 12
TS

*
TS

11 Ma1 2
1Ma 1
2

TS TS

t

A A
A A

γ
γγ

γ

+
−−⎛ ⎞+⎜ ⎟

= = ⎜ ⎟−⎜ ⎟+⎜ ⎟⎝ ⎠

  ⇒  At = A* = 0.59 ft2 (1) 

 
The tank will operate at the design Mach number until the tank pressure drops enough so that a normal 
shock wave stands at the nozzle exit. 
 
 
 
 
 
 
 
For an upstream Mach number of Ma1 = 2.0, the downstream Mach number, Ma2, and pressure ratio across 
the shock may be found using the normal shock relations. 

( )
( )
2
12

2 2
1

1 Ma 2
Ma

2 Ma 1

γ
γ γ
− +

=
− −

  ⇒  Ma2 = 0.5774 (2) 

22
1

1

2 1Ma
1 1

p
p

γ γ
γ γ

−= −
+ +

  ⇒  p2/p1 = 4.500 (3) 

Note that the pressure just downstream of the shock wave, p2, is also equal to the back pressure, pb, since 
the downstream Mach number is subsonic and the shock is located at the nozzle exit.  The pressure just 
upstream of the shock may be related to the tank pressure using the isentropic relations. 

 
1

21
1

01

11 Ma
2

p
p

γ
γγ −−⎛ ⎞= +⎜ ⎟⎝ ⎠

  ⇒  p1/p01 = 0.1278 (4) 

Combine Eqs. (3) and (4) to determine the critical tank pressure for when a normal shock is located at the 
nozzle exit plane. 

01 1
01

1 2
b

p pp p
p p

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

  ⇒  p01 = 25.6 psia (5) 

MaTS = 2.0 
ATS = 1 ft2 

pb = 14.7 psia p0 = 150 psia 
T0 = 150 °F 

1 2 
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To determine the required tank volume, we need to know how the pressure in the tank varies with time.  
Apply conservation of mass to a control volume surrounding the tank.  Note that the mass flow rate from 
the tank will be choked during operation of the wind tunnel. 

   

dM
dt

= − !m = − 1+ γ −1
2

⎛
⎝⎜

⎞
⎠⎟

1+γ( )
2 1−γ( )

ρ01 γ RT0 A*  (6) 

where M = ρ01V and ρ01 = p01/(RT0). 
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 (7) 

Since the tank is well insulated, assume that the discharge process occurs isentropically so that: 
1
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Substitute Eqs. (9) and (10) into Eq. (7) and simplify. 
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where p01,f is the pressure corresponding to when a normal shock appears at the nozzle exit (Eqn. (5)). 
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 (14) 

 
Using the given data: 

γ = 1.4 
R = 287 J/(kg.K) 
p01,f = 25.6 psia   (Eq. (5)) 
p01,i = 150 psia 
T0,i = (150 + 460) °R = 610 °R 
A* = At = 0.59 ft2   (Eq. (1)) 
Δt = 30 s 
⇒  V = 8670 ft3 
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Now attach a diverging section downstream of the test section. 
 
 
 
 
 
 
 
 
Testing can continue until a shock wave forms at the test section exit. 
 
 
 
 
 
 
The conditions at location 1 just upstream of the shock were found previously in Eqs. (2) and (3) using the 
normal shock relations.  These quantities are repeated here for convenience. 

Ma1 = 2.0 ⇒ Ma2 = 0.5774 
 ⇒ p2/p1 = 4.500 
 ⇒ p01/p02 = A*

2/A*
1 = 1.3872 

 
The Mach number at the exit may be found using the sonic area ratio: 
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   where Ae/At = 3.375 (16) 

 
The stagnation pressure in the tank for this case is given by: 
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p p
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= ⎜ ⎟⎜ ⎟
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 (17) 

where p01/p02 = 1.3872 from the normal shock relations, pe = pb = 14.7 psia since the exit Mach number is 
subsonic, and 

1
2

02

11 Ma
2

e
e

p
p

γ
γγ −−⎛ ⎞= +⎜ ⎟⎝ ⎠

  ⇒  pe/p02 = 0.9586  (18) 

Combining, we find that p01 = 21.3 psia. 
 
Using Eq. (14) with p01,f = 21.3 psia and V = 8670 ft3 and solving for Δt gives:  Δt = 33.6 s.  Thus, adding 
the diffuser extends the useful run time by approximately 12%. 

MaTS = 2.0 
ATS = 1 ft2 

pb = 14.7 psia p0 = 150 psia 
T0 = 150 °F 

Ae/At = 3.375 

1 2 e 
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A continuous-duty supersonic wind tunnel (air is the working fluid) is to be designed.  The test section 
specifications are a Mach number of 2, a static pressure of 40 kPa (abs), a static temperature of 250 K, and 
an area of 0.5 m2.   
a. Determine the stagnation conditions required upstream of the test section, the mass flow rate required, 

and the throat area required.   
b. During the startup process, what is the maximum stagnation pressure loss across the shock system?   
c. If a fixed-area diffuser is used (the throat area cannot be adjusted during operation), what is the 

minimum diffuser throat area? 
d. If a variable-area diffuser is used, explain the startup sequence required to achieve shock-free 

operation.  
 
 

SOLUTION: 
 
 
 
 
 
 
 
 
 
 
Determine the upstream conditions given the test section Mach number. 
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11 Ma
2

TS
TS

p
p

γ
γγ −−⎛ ⎞= +⎜ ⎟⎝ ⎠
  ⇒  p0 = 313 kPa (abs) (1) 

using pTS
 = 40 kPa (abs), MaTS = 2, and γ = 1.4. 
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  ⇒  T0 = 450 K (2) 

using TTS = 250 K. 
0

0
0

p
RT

ρ =   ⇒  ρ0 = 2.42 kg/m3 (3) 

 
The mass flow rate is found using the conditions in the test section. 

  !m = ρTSVTS ATS   ⇒     !m = 176 kg/s  (4) 
where 
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2
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2TS TS

γγρ ρ
−−⎛ ⎞= +⎜ ⎟⎝ ⎠

  ⇒  ρTS = 0.557 kg/m3 (5) 

MaTS TS TSV RTγ=   ⇒  VTS = 634 m/s (6) 
 

The required throat area is found from the area ratio. 
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  ⇒  AT  =  0.2963 m2 (7) 

 

MaTS = 2 
pTS = 40 kPa (abs) 
TTS = 250 K 
ATS = 0.5 m2 
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The maximum stagnation pressure loss during start-up will occur when a shock stands at the inlet of the test 
section (this is when the Mach number upstream of the shock is the greatest). 
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using Ma1 = MaTS = 2. 
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  ⇒  0 87.4 kPapΔ = −  (9) 

using p01 = 313 kPa (refer to Eq. (1)). 
 
The minimum diffuser area must be able to accommodate the mass flow rate when the shock wave stands 
at the entrance to the test section. 

*
012

*
021
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= =   (using the result from Eq. (8)) (10) 
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  ⇒  AT2 = 0.411 m2 (11) 

 
A sketch of the steady state operation of the tunnel for a fixed area diffuser is shown below. 
 
 
 
 
 
 
 
Note that once the shock has been swallowed, the Mach number at the downstream throat will be: 
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  ⇒  MaT2 = 1.75 (12) 

using AT2 = 0.411 m2 and AT1 = 0.2963 m2. 
 

 
Using a variable area diffuser we could eliminate the shock wave using the following procedure: 
1. Maintain a downstream throat area of at least 0.411 m2 during start-up so that the upstream normal 

shock can be swallowed. 
2. Once the shock has been swallowed, the downstream throat area can be decreased to a value just 

greater than the upstream throat area of 0.296 m2. 
3. Simultaneously, increase the back pressure so that the downstream shock moves toward the 

downstream throat (and, hence, becomes weaker). 
 
 

1 2 

MaTS =  2 

AT1 = A*
1 = 0.2963 m2 AT2 = 0.411 m2 
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A supersonic wind tunnel is to be operated at a Mach number of 2.2 in the test section.  Upstream from the 
test section, the nozzle throat area is 0.07 m2.  Air is supplied at stagnation conditions of 500 K and 1.0 
MPa (abs).  At one flow condition, while the tunnel is being brought up to speed, a normal shock stands at 
the nozzle exit plane.  The flow is steady.  For this starting condition, immediately downstream from the 
shock, find:  
a. the Mach number, 
b. the static pressure, 
c. the stagnation pressure, and 
d. the minimum area theoretically possible for the second throat downstream from the test section. 
e. On a Ts diagram, show static and stagnation state points and the process path. 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
The Mach number just upstream of the shock wave will be the test section design Mach number, i.e. Ma1 = 
2.2.  The conditions just downstream of the shock wave may be found using the normal shock relations. 
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  ⇒  p2/p1 = 5.4800 (2) 

( )
( )

( )

( )

( )
1

1 12*
102 1

* 2 2
01 2 1 1

1 Ma 1
2 1 Ma 2 Ma 1

p A
p A

γ
γ γγ γ

γ γ γ

− −⎡ ⎤ ⎡ ⎤+ += = ⎢ ⎥ ⎢ ⎥
+ − − −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

  ⇒  p02/p01 = A1
*/A2

* = 0.6281 (3) 

The stagnation pressure just downstream of the shock is: 

 ( )( )02
02 01

01
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p
p p

p
⎛ ⎞

= =⎜ ⎟
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  ⇒  p02 = 0.6281 MPa (abs) (4) 

 
The static-to-stagnation pressure ratio just upstream of the shock may be found using the isentropic 
relations. 

1
21
1

01

11 Ma
2

p
p

γ
γγ −−⎛ ⎞= +⎜ ⎟⎝ ⎠

  ⇒  p1/p01 = 0.0935 (5) 

The pressure just downstream of the shock is then: 
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  ⇒  p2 = 0.5124 MPa (abs) (6) 

 
The minimum second throat area will be A2

*. 
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MaTS = 2.2 
 

At1 = 0.07 m2 

p01 = 1.0 MPa (abs) 
T0 = 500 K 

1 
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Consider the supersonic wind tunnel design shown in the figure below.  The system consists of a 
converging-diverging nozzle located downstream from a large tank of air held at a constant pressure and a 
constant temperature of 500 K.  Downstream from the converging-diverging nozzle is the test section, and 
downstream of the test section is a converging nozzle.  The converging nozzle discharges to the atmosphere 
which is at 100 kPa (abs). 
 
 
 
 
 
 
 
 
 
If the test section is to operate at a Mach number of 1.5 and have a cross-sectional area of 0.01 m2, 
determine: 
a. the converging-diverging nozzle throat area, At1, and 
b. the minimum area of the downstream converging nozzle, Ae, in order to start the wind tunnel. 
c. Given the areas calculated in parts (a) and (b), sketch how the pressure ratio, p/ptank, varies with 

position in the tunnel, x, just prior to when the tunnel is started (just before the shock is swallowed).   
Clearly indicate the location of the upstream throat, the test section region, the exit plane and p*/p01 
and p*/p02. 

d. What is the minimum tank pressure required to start the wind tunnel using the areas given in parts 
(a) and (b)? 

e. What is the minimum tank pressure that results in choked flow within the wind tunnel using the 
areas found in parts (a) and (b)? 

f. Given the areas calculated in parts (a) and (b) and the tank pressure in part (d), sketch how the 
pressure ratio, p/ptank, varies with position in the tunnel, x, just after the tunnel is started.   Clearly 
indicate the location of the upstream throat, the test section region, the exit plane and p*/p01. 

 
 
SOLUTION: 
 
Determine the upstream sonic area, A*

 , given that MaTS = 1.5 and ATS = 0.01 m2.  Note that the upstream 
throat area, At1, will be equal to the sonic area, A*. 

( )
1

2 12
TS

*
TS

11 Ma1 2
1Ma 1
2

TSA
A

γ
γγ

γ

+
−−⎛ ⎞+⎜ ⎟

= ⎜ ⎟−⎜ ⎟+⎜ ⎟⎝ ⎠

  ⇒  ATS/A* = 1.1762  ⇒  At1 = A* = 8.5*10-3 m2 (1) 

 
The minimum area of the downstream converging nozzle will be equal to the sonic area following a normal 
shock wave located at the entrance to the test section. 

( )
( ) ( )

1 12*
1012

* 2 2
021 1 1

1 Ma 1
2 1 Ma 2 Ma 1

pA
pA

γ γ
γ γγ γ

γ γ γ

− −⎡ ⎤ ⎡ ⎤+ +⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥+ − − −⎣ ⎦ ⎣ ⎦

 ⇒ A*
2/A*

1 = 1.0755 ⇒ Ae = A*
2 = 9.1*10-3 m2 (2) 

where Ma1 = MaTS and A*
1 was found in Eq. (1). 

large tank: 
500 K  100 kPa (abs)   

test section  
x 

At1  Ae  
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The smallest tank pressure required to start the wind tunnel will occur when a normal shock occurs at the 
entrance to the wind tunnel.  For this case, Mae = 1 since Ae = A*

2.  Furthermore, 
1

2

02

11 Ma
2

e
e

p
p

γ
γγ −−⎛ ⎞= +⎜ ⎟⎝ ⎠
  ⇒  pe/p02 = p*/p02 = 0.5283 (3) 

The tank pressure is found by multiplying pressure ratios. 

01 02
01,min

02
e

e

p p
p p

p p
⎛ ⎞⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

  ⇒  p01,min = 204 kPa (abs) (4) 

where pe = pb = 100 kPa (abs) and p02/p01 was found in Eq. (2). 
 
The tank pressure corresponding to when the flow through the device just becomes choked may be found 
using the isentropic relations and noting that pe = pb. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
( )
1

2 12

*

11 Ma1 2
1Ma 1
2

e
e

e

A
A

γ
γγ

γ

+
−−⎛ ⎞+⎜ ⎟

= ⎜ ⎟−⎜ ⎟+⎜ ⎟⎝ ⎠

 ⇒  Mae = 0.7279 (5) 

where Ae = A*
2 and A* = A*

1  ⇒  A*
2/A*

1 = 1.0755 (from Eq. (2)).  Now, using the isentropic stagnation 
pressure ratio relation: 

large tank: 
T0 = 500 K  
p01 

pb = 100 kPa (abs)   

test section (TS)  

1 2 e 

p/p01 

1 

p*/p01 

t1 TSstart e TSend 

p*/p02 

x 

p/p01 

1 

p*/p01 

t1 TSstart e TSend 

x 
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1
2

0 0

11 Ma
2

b e
e

p p
p p

γ
γγ −−⎛ ⎞= = +⎜ ⎟⎝ ⎠
  ⇒ pb/p0 = 0.7029  ⇒  p0 = 142 kPa (abs) (6) 

where pb = 100 kPa. 
 
 
 
 
 
 

large tank: 
T0 = 500 K  
p01 

pb = 100 kPa (abs)   

test section  

e 

p/p01 
1 

p*/p01 

t1 TSstart e TSend 

x 

p*/p02 
The dotted lines are 
the case for part (c), 
just before the wind 
tunnel is started. 
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Supersonic Diffuser Design 
 
Another application where the efficient deceleration of a supersonic flow is of interest is a supersonic 
diffuser at the inlet of aircraft jet engines.  The flow entering a jet engine typically needs to be subsonic in 
order to avoid shocks in the compressor section and give efficient combustion in the combustor.  Obviously 
the most efficient deceleration of the incoming flow is desired since the thrust out of the device will 
decrease if the upstream stagnation pressure decreases. 
 
Many of the same ideas discussed previously for the design of supersonic wind tunnels are pertinent here as 
well.  Consider a diffuser with a fixed inlet and throat area, Ai and At, respectively, in a supersonic flow 
with an upstream Mach number of Ma∞ > 1.  At design conditions, i.e., Ma∞ = MaD, the flow through the 
diffuser will be shockless (isentropic) as shown in the figure below. 
 
 
 
 
 
 
 
 
 
 
 
In the ideal case the inlet-to-throat area ratio will be related to the design Mach number, MaD, by the 
isentropic relation for the sonic area ratio, i.e.: 

( )
1

2 12
D

*
D

11 Ma1 2
1Ma 1
2

i i

t

A A
AA

γ
γγ

γ

+
−−⎛ ⎞+⎜ ⎟

= = ⎜ ⎟−⎜ ⎟+⎜ ⎟⎝ ⎠

 (165) 

 
However, we need to consider what happens as the aircraft comes up to the design Mach number from rest 
(Ma∞ = 0).  Consider the plot shown below: 
 
 
 
 
 
 
 
 
 
 
 
For Ma∞ < MaD, (Ai/A*) < (Ai/A*)D so that At = A*D < A*

Ma < MaD.  Thus, the diffuser cannot “swallow” all of 
the air flowing toward the inlet.  A shock wave forms in front of the inlet to produce subsonic flow so that 
some of the air can spill over the inlet as shown in the figure below.   
 
 
 
 
 
 
 

(Ma∞ > 1) = MaD 

Ai 
At 

Mat = 1 Ma < 1 

A/A* 

Ma 1 MaD 

1 

(Ma∞ > 1) < MaD 
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As the upstream Mach number increases, the sonic area approaches the throat area, i.e., A* → At, and the 
shock moves closer to the inlet (the shock gets weaker and less flow needs to be diverted around the 
diffuser).  Eventually we’ll reach design conditions but a normal shock will still appear ahead of the inlet 
since the sonic area after the shock, A2

*, will be greater than the throat area, At, at design conditions. 
 
 

   

Ai

A2
* =

Ai

A1
*

A1
*

A2
* =

Ai

At

A1
*

A2
*

<1
!

   ⇒    A2
* > At

 
 
 

If we continue to increase Ma∞ the shock wave will move closer to the inlet until at a critical upstream 
Mach number, Ma∞, crit, the shock will be positioned exactly at the inlet such that the diffuser can 
accommodate all of the mass flow heading toward it (no spill-over).  This occurs when A2

* = At: 

( )
*
1

, crit* * *
2 1 2

Mai i i

t

A A A A fcn
A A A A ∞= = =    

where Ai/A1
* is found from the isentropic relations and A1

*/A2
* is found from the normal shock relations.  

 
 
 
 
 
 
 
A further increase in the upstream Mach number will cause the shock wave to be swallowed by the diffuser 
where it will come to a steady state position within the diverging section. 
 
 
 
 
 
 
 
 
Now the upstream Mach number can be decreased back down to the design Mach number so that the shock 
wave will travel back upstream toward the throat and, hence, become weaker (less stagnation pressure drop 
across the shock).  The ideal case is to bring the Mach number down exactly to the design Mach number so 
that the shock occurs exactly at the throat and has zero strength.   
 
Notes: 
1. In practice we don’t want to operate the diffuser exactly at design conditions since any small decrease 

in the upstream Mach number will cause the shock wave to disgorge from the diffuser and the entire 
process for swallowing the shock must be repeated again. 

 
2. One measure of the diffuser performance is the stagnation pressure recovery coefficient defined as: 

0,exit of diffuser

0

p
p

η
∞

≡  

At design conditions under ideal conditions this coefficient should be unity. 
 

(Ma∞ > 1) = MaD 
1 2 

Ma∞,crit > 1 
1 2 

Ma∞ > Ma∞,crit 
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3. Over-speeding the diffuser is often impractical.  For example, consider a diffuser designed to operate 
at a Mach number of 1.7 (Ai/A∞

* =  Ai/At = 1.338).  The critical Mach number for swallowing the shock 
will be: 

 
 

Note:  A2
* = At 

 
 

 
 

( )
1

2 12
2

2 1*
22 sub

11 Ma1 21.338    Ma 0.5    Ma 2.65
1Ma 1

2

i i

t

A A
AA

γ
γγ

γ

+
−−⎛ ⎞+⎜ ⎟

= = = ⇒ = ⇒ =⎜ ⎟−⎜ ⎟+⎜ ⎟⎝ ⎠

 

,critMa 2.65∞∴ =  
Thus, to achieve isentropic flow through the diffuser, we would need to operate our diffuser at a Mach 
number just greater than 2.65 then decrease the Mach number down to just greater than 1.7.  Designing 
an aircraft to achieve this over-speed Mach number is often impractical. 

 
4. Since fixed geometry diffusers are often impractical, other diffuser types have been designed.  These 

include designs that have variable areas so that the throat area can be increased to swallow the shock, 
then decreased again to the design conditions (very similar to what was discussed for supersonic wind 
tunnels). 

 
 
 
 
 
 
 
 
 

Oblique shock wave diffusers are also often used.  The stagnation pressure loss across an oblique 
shock is less than that across a normal shock wave.  The weaker the oblique shock wave, the smaller 
the stagnation pressure loss.  Normal shock waves may still appear in the device but they’ll be weaker 
than if there wasn’t an oblique shock since the oblique shock helps to decelerate the flow. 

Ma∞,crit > 1 
1 2 

actuators 

movable plug 

variable area 
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Note that engine inlets typically “bleed off” or remove boundary layers as shown in the F-16 engine 
inlet design.  This is done in order to avoid exposing engine components to the unsteady conditions 
resulting from wakes formed by separated boundary layers. 

 
  

 

 

 1459 

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

C. Wassgren 1434 2024-02-01



  ss_diffuser_01 

Page 1 of 1 

A convergent-divergent supersonic diffuser is to be used at Mach 3.0.  The diffuser is to use a variable 
throat area so as to swallow the starting shock.  What percentage increase in throat area will be necessary? 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
If there is no shock in front of the diffuser, then the throat area will be At = A* at design conditions (Ma∞ = 
3.0).  However, during start up conditions a normal shock wave will appear in front of the diffuser.  The 
largest required throat area will occur when the normal shock wave stands at the entrance of the diffuser.  
For these conditions, the minimum throat area will be equal to the sonic area downstream of the shock 
wave, i.e. At = A*2.  Hence, the ratio of the throat area required to swallow the shock (= A*2) to the throat 
area without the shock (= A*1) at the design Mach number (Ma∞ = 3.0) is: 

Ma∞ = 3.0 ⇒ (normal shock relations)  A*2/A*1 = 3.0456.    (1) 
 
Thus, the throat area must increase by approximately 305% in order to swallow the shock wave. 
 
 
 

Ma∞ > 3.0 
1 2 
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A convergent-divergent supersonic diffuser is to be used at Mach 3.0.  The diffuser is to use a variable 
throat area so as to swallow the starting shock.  What percentage increase in throat area will be necessary? 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
If there is no shock in front of the diffuser, then the throat area will be At = A* at design conditions (Ma∞ = 
3.0).  However, during start up conditions a normal shock wave will appear in front of the diffuser.  The 
largest required throat area will occur when the normal shock wave stands at the entrance of the diffuser.  
For these conditions, the minimum throat area will be equal to the sonic area downstream of the shock 
wave, i.e. At = A*2.  Hence, the ratio of the throat area required to swallow the shock (= A*2) to the throat 
area without the shock (= A*1) at the design Mach number (Ma∞ = 3.0) is: 

Ma∞ = 3.0 ⇒ (normal shock relations)  A*2/A*1 = 3.0456.    (1) 
 
Thus, the throat area must increase by approximately 305% in order to swallow the shock wave. 
 
 
 

Ma∞ > 3.0 
1 2 
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A small jet aircraft that is designed to cruise at a Mach number of 1.7 has a convergent-divergent intake 
diffuser with a fixed area ratio.  Find the ideal area ratio for this diffuser and the Mach number to which the 
aircraft must be taken in order to swallow the normal shock wave if the diffuser has this ideal area ratio. 
 
 
SOLUTION: 
 
Just before the shock is swallowed, the flow is as shown below. 
 
 
 
 
 
 
 
 
The area ratio corresponding to the ideal Mach number of 1.7 (with no shock wave) is: 

( )
1

2 12

*

11 Ma1 2
1Ma 1
2

i i

t

A A
A A

γ
γγ

γ

+
−−⎛ ⎞+⎜ ⎟

= = ⎜ ⎟−⎜ ⎟+⎜ ⎟⎝ ⎠

  ⇒  Ai/At = 1.3376   (where Ma = 1.7 and At = A*) (1) 

 
With the shock located at the inlet plane, the downstream area ratio required to swallow the shock is: 

Ai/A2
* = 1.3376 

which corresponds to a subsonic Mach number downstream of the shock at the inlet of: 
( )
1

2 12
2

*
22

11 Ma1 2
1Ma 1
2

iA
A

γ
γγ

γ

+
−−⎛ ⎞+⎜ ⎟

= ⎜ ⎟−⎜ ⎟+⎜ ⎟⎝ ⎠

  ⇒  Ma2 = 0.5012 (2) 

The corresponding upstream Mach number is: 
( )

( )
2
12

2 2
1

1 Ma 2
Ma

2 Ma 1

γ
γ γ
− +

=
− −

  ⇒  Ma1 = 2.6313 (3) 

 
 
 
 

1 2 
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A small jet aircraft designed to cruise at a Mach number of 2.5 has an intake diffuser with a variable area 
ratio.  Find the ratio of the throat area under these cruise conditions to the throat area required when the 
aircraft is flying at a Mach number of 1.3.  Assume the diffuser intake area does not change.  When flying 
at cruise conditions, if the aircraft is suddenly slowed down without altering the diffuser area ratio, sketch 
the diffuser flow pattern that will exist. 
 
 
SOLUTION: 
 
The inlet-to-throat area ratio for cruise conditions is: 

( )
1

2 12

*

11 Ma1 2
1Ma 1
2

i i

t

A A
A A

γ
γγ

γ

+
−−⎛ ⎞+⎜ ⎟

= = ⎜ ⎟−⎜ ⎟+⎜ ⎟⎝ ⎠

 ⇒  (Ai/At)Ma= 2.5 = 2.6367    (1) 

The inlet-to-throat area ratio for a Mach number of 1.3 is: 
( )
1

2 12

*

11 Ma1 2
1Ma 1
2

i i

t

A A
A A

γ
γγ

γ

+
−−⎛ ⎞+⎜ ⎟

= = ⎜ ⎟−⎜ ⎟+⎜ ⎟⎝ ⎠

  ⇒  (Ai/At)Ma= 1.3 = 1.0663    (2) 

 
Thus, the ratio of the throat area at cruise to the throat area at Ma = 1.3 is: 

,Ma 2.5 Ma 1.3

,Ma 1.3

Ma 2.5

1.0663
2.6367

i
tt

it
t

A
AA

AA
A

= =

=

=

⎛ ⎞⎜ ⎟⎝ ⎠= =
⎛ ⎞⎜ ⎟⎝ ⎠

  ⇒  At,Ma= 2.5/ At,Ma= 1.3 = 0.4044 (3) 

 
 
If the aircraft is slowed without increasing the throat area, the engine will not be able to accommodate the 
flow rate and a shock will form upstream of the inlet in order to divert some of the flow. 
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11. Flows with Mass Addition 
 
Now let’s consider compressible flows where mass addition (or removal) occurs.  Examples of such flows 
include those in which solid rocket propellant is burned, a gas coolant is added to the flow such as in film 
cooling of turbine blades, or the boundary layer flow is removed such as in some wind tunnels. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We’ll make the following assumptions for our analysis of flow with mass addition: 
- no heat transfer 
- no other work 
- no friction 
- no area change 
- no significant elevation changes 
- steady flow 
- 1D flow (This isn’t a very good assumption in general, but we’ll make the assumption here for 

simplicity.) 
 
 
 
 

 
 
 
 
 
 
 
 
Using the same control volume approach as in previous analyses gives: 
COM:  

   

!m+ d !m( )− !m− d !mi = 0

d !m = d ρVA( ) = d !mi

 

  

dρ
ρ

+ dV
V

= d !m
!m

 (166) 

Note:  dA=0 
 

 

fluid is assumed to be  
completely mixed 

in this region 

  

x 
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LME in x-direction:  

   

!mV + d !mV( )⎡⎣ ⎤⎦ − !mV − d !miVix = pA− pA+ d pA( )⎡⎣ ⎤⎦
d !mV( )− d !miVix = −dpA

Vd !m+ !mdV − d !miVix = −dpA

dp +
ρV V −Vix( )d !m

ρVA
+ ρV !mdV

ρVA
= 0

 

   
dp + ρVdV + ρV 2 1− y( ) d !m

!m
= 0  (167) 

Note:  y ≡ Vix/V, and   d !m = d !mi  
 

COE: 
   
!mh0 + d !mh0( )⎡⎣ ⎤⎦ − !mh0 − d !mih0i = 0  

   
dh0 + h0 − h0i( ) d !m

!m
= 0  

0 0dh =  (168) 
Note:  For simple mass addition we assume that the inlet fluid has the same composition 
and stagnation enthalpy as the main stream, i.e., h0i = h0.  In general, however, the 
addition stream may have a different stagnation enthalpy than the main flow.  The general 
case will be considered when we investigate general 1D flows. 

 
2nd Law: 

   
!ms+ d !ms( )⎡⎣ ⎤⎦ − !ms− d !misi > 0  

   
ds+ s− si( ) d !m

!m
> 0  (169) 

Note:  The mass addition stream may have, in general, a different entropy than the main 
stream.  Moreover, mixing processes are generally irreversible. 

  

Ideal Gas Law: 
dp d dT
p T

ρ
ρ

= +  (170) 

 
caloric Eq pdh c dT=  (171) 

of state When combined with COE (Eq. (168)): 
0 00 0pc dT dT= ⇒ =  (172) 

 

Mach # relation: 
( )Ma
Ma 2
d dV dT

V T
= −  (173) 

 

Gibbs Eq: 0

0
p

dpdT dpds c R R
T p p

= − = −  (174) 

Note:  dT0 = 0 from Eq. (172). 
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Local stagnation pressure and temperature: 
2

0
11 Ma
2

T T γ −⎛ ⎞= +⎜ ⎟⎝ ⎠
 (175) 

1
2

0
11 Ma
2

p p
γ
γγ −−⎛ ⎞= +⎜ ⎟⎝ ⎠

 (176) 

 
Combining these equations so that   d !m  is the driving potential, and using the substitution, y ≡ Vix/V, gives: 
 

   

d Ma( )
Ma

=
1+ γ −1

2
Ma2

1− Ma2

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

1+ γ Ma2( )− yγ Ma2⎡
⎣⎢

⎤
⎦⎥

d !m
!m

 (177) 

 

   

dp
p

= −γ Ma2

1− Ma2 2 1+ γ −1
2

Ma2⎛
⎝⎜

⎞
⎠⎟

1− y( ) + y
⎡

⎣
⎢

⎤

⎦
⎥

d !m
!m

 (178) 

 

   

dρ
ρ

= −1
1− Ma2 γ +1( )Ma2 − yγ Ma2⎡

⎣
⎤
⎦

d !m
!m

 (179) 

 

   

dT
T

=
− γ −1( )Ma2

1− Ma2 1+ γ Ma2( )− yγ Ma2⎡
⎣⎢

⎤
⎦⎥

d !m
!m

 (180) 

 

   

dV
V

= 1
1− Ma2 1+ γ Ma2( )− yγ Ma2⎡

⎣⎢
⎤
⎦⎥

d !m
!m

 (181) 

 

   

dp0
p0

= −γ Ma2 1− y( ) d !m
!m

 (182) 

 

0 0dT =  (183) 
 

   

ds
cp

= γ −1( )Ma2 1− y( ) d !m
!m

 (184) 
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Notes:  
1. The trends in Eqs. (177)-(184) will depend on   d !m , y, and Ma. Equation (182) shows that for mass 

addition, the stagnation pressure will decrease if y < 1 and will increase if y > 1.  Equation (184) shows 
that entropy has the opposite trend. 

 
2. For y < 1, all factors that involve y are positive so that for mass addition (   d !m > 0 ) we have: 

 Ma < 1  Ma > 1  
 d(Ma) > 0 d(Ma) < 0 
 dp < 0 dp > 0 
 dρ < 0 dρ > 0 
 dT < 0 dT > 0 
 dV > 0 dV < 0 
 dp0 < 0 dp0 < 0 
 ds > 0 ds > 0 

The opposite trends occur for mass removal (   d !m < 0 ).  Note that choking is possible with mass 
addition since the Mach number approaches unity for both subsonic and supersonic flows.   

 
3. We cannot simply add mass to transition from a subsonic to a supersonic flow.  Equation (177) 

indicates that as the flow approaches a sonic Mach number, the addition stream must have a large mass 
flow rate to continue approaching the sonic Mach number.  In the limit as Ma → 1,   d !m→∞ .  
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4. For y = 0 (i.e., the flow comes in normal to the stream), Eqs. (177)-(184) become exact differentials.  
Integrating using sonic conditions (denoted by the superscript “*”) as a reference gives: 

 

   

!m
!m* = Ma

1+ γ Ma2 2 γ +1( ) 1+ γ −1
2

Ma2⎛
⎝⎜

⎞
⎠⎟
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⎢
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⎥
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2

 (185) 

 

* 2
1

1 Ma
p
p

γ
γ
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+
 (186) 

 

2
* 2

2 11 Ma
21 Ma

ρ γ
ρ γ

−⎛ ⎞= +⎜ ⎟+ ⎝ ⎠
 (187) 

 
1

2
*

2 11 Ma
1 2

T
T

γ
γ

−⎡ ⎤−⎛ ⎞= +⎢ ⎥⎜ ⎟+ ⎝ ⎠⎣ ⎦
 (188) 

 
1
2

2
*

2 1Ma 1 Ma
+1 2

V
V

γ
γ

−⎡ ⎤−⎛ ⎞= +⎢ ⎥⎜ ⎟⎝ ⎠⎣ ⎦
 (189) 

 
1

20
* 2
0

1 2 11 Ma
1 21 Ma

p
p

γ
γγ γ

γγ

−⎡ ⎤⎛ ⎞+ −⎛ ⎞= +⎢ ⎥⎜ ⎟⎜ ⎟++ ⎝ ⎠⎝ ⎠⎣ ⎦
 (190) 

 

0
*
0

1
T
T

=  (191) 

 
*

0
*
0

ln
ps s

R p
− = −  (192) 

 
5. The relationship between T and s may be found by considering Eqs. (188), (190), and (192).  Below is 

a T-s diagram for a flow with mass addition. 

s 

T 

T* 

s* 

Ma = 1 

arrows are drawn for mass addition (y = 0) 

at Ma = 0, T/T* = (γ+1)/2  

as Ma → ∞, T/T* → 0 

Ma > 1 

Ma < 1 
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Air with initial stagnation conditions of 600 K and 1 MPa (abs) flows at a Mach number of 0.3 at the 
entrance to a constant-area, porous-walled duct.  During passage through the duct, the mass flow rate is 
increased by 50%.  Find the exit conditions and sketch the process on a T-s diagram. 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
Use the simple mass addition relations at state 1. 

Ma1 = 0.3 ⇒ 
   

!m1

!m* = 0.5889  (1) 

  1
* 2.1314
p
p

=  (2) 

  1
* 1.1788
T
T

=  (3) 

  01
*
0

1.1985
p
p

=  (4) 

 
At state 2: 

   !m2 = 1.5 !m1  ⇒ 
   

!m2

!m* =
!m2
!m1

⎛

⎝⎜
⎞

⎠⎟
!m1

!m*

⎛
⎝⎜

⎞
⎠⎟
= 1.5( ) 0.5889( ) = 0.8834  (5) 

 
Now use the simple mass addition relations to determine conditions at state 2. 

   

!m2

!m* = 0.8834  ⇒ Ma2 = 0.5663 (6) 

  2
* 1.6563
p
p

=  (7) 

  2
* 1.1277
T
T

=  (8) 

  02
*
0

1.0877
p
p

=  (9) 

*
2

2 1*
1

p pp p
pp

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 ⇒  p2 = 0.7301 MPa (abs) (10) 

where 
1

21
1

01

11 Ma
2

p
p

γ
γγ −−⎛ ⎞= +⎜ ⎟⎝ ⎠
  ⇒  p1 = 0.9395 MPa (abs) (11) 

2 1 

   !min  
Since the wall is porous, 
assume the incoming air is 
oriented normal to the main 
flow, i.e., y = Vix/V = 0. 

   !m2 = 1.5 !m1  Ma1 = 0.3 
T01 = 600 K 
p01 = 1 MPa (abs) 

 1468 

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

C. Wassgren 1444 2024-02-01



  massaddition_01 

Page 2 of 2 

 
*

2
2 1*

1

T TT T
TT

⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 ⇒  T2 = 563.9 K (12) 

where 
1

21
1

01

11 Ma
2

T
T

γ −−⎛ ⎞= +⎜ ⎟⎝ ⎠
  ⇒  T1 = 589.4 K (13) 

 
*

02 0
02 01*

010

p p
p p

pp

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 ⇒  p02 = 0.9076 MPa (abs) (14) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  
 
 
 
 

T 

s 

T1 

p1 
T2 

p2 

T0 

p02 p01 
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A solid rocket configuration is shown in the figure below.  With the configuration as given and with a mass 
flow rate of 5 kg/s, find: 
a. the Mach number at the propellant exit plane, 
b. the head-end stagnation pressure, and 
c. the change in static pressure from the head-end to the propellant exit plane. 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
Use the isentropic sonic area ratio to determine the Mach number at the exit plane.  Note that the Mach 
number should be subsonic since the flow in the mass addition region starts at stagnation conditions. 

( )
1

2 11 2
2

* 1
2

1 Ma1
Ma 1

ee

e

A
A

γ
γγ

γ

+
−−

−

⎛ ⎞+
= ⎜ ⎟+⎝ ⎠

  ⇒  Mae = 0.3615    (using Ae/A* = 1.75 and γ = 1.26) (1) 

 
Use the simple mass addition relations to determine the stagnation pressure at the head end.  The mass flow 
rate at the head end will be zero and, hence, from the simple mass addition relations: 

   

!mh

!m* = 0   ⇒  ( )
1

0
*
0

21
1

hp
p

γ
γ

γ
γ

−⎛ ⎞= + ⎜ ⎟+⎝ ⎠
  ⇒  0

*
0

1.2499hp
p

=  (2) 

 
The sonic stagnation pressure may be found using: 

*
* 0
0 0

0
e

e

p
p p

p
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (3) 

where, from the simple mass addition relations: 
Mae = 0.3615  ⇒  p0e/p0

* = 1.1645 (4) 
and, from the ideal gas law: 

0 0 0e e ep RTρ=  (5) 
 

The stagnation temperature at the exit plane is given in the problem statement and the stagnation density at 
the exit plane may be found from the mass flow rate at the exit. 

   
!me = ρeVe Ae = ρ0e 1+ γ −1

2 Ma e
2( ) 1

1−γ⎡
⎣⎢

⎤
⎦⎥

Ma e γ RT0e 1+ γ −1
2 Ma e

2( )−1⎡

⎣
⎢

⎤

⎦
⎥

Ae

A*

⎛
⎝⎜

⎞
⎠⎟

A*⎡

⎣
⎢

⎤

⎦
⎥  (6) 

   

ρ0e =
!me

1+ γ −1
2 Ma e

2( ) 1
1−γ⎡

⎣⎢
⎤
⎦⎥

Ma e γ RT0e 1+ γ −1
2 Ma e

2( )−1⎡
⎣
⎢

⎤
⎦
⎥

Ae

A*

⎛
⎝⎜

⎞
⎠⎟

A*⎡

⎣
⎢

⎤

⎦
⎥

 (7) 

 

Ae/A* = 1.75 
A* = 0.001 m2 

γ = 1.26 
T0 = 4000.0 K 
R = 377.9 J/(kg⋅K) 

propellant exit plane (e) 

head end (h) 
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Use the given data: 
γ = 1.26 
R = 377.9 J/(kg⋅K) 
Mae = 0.3615 
T0e = 4000 K 
Ae/A* = 1.75 
A* = 0.001 m2 

  !me  = 5 kg/s 
⇒ ρ0e = 6.162 kg/m3     (from Eq. (7)) 
⇒ p0e = 9.314 MPa (from Eq. (5)) 
⇒ p0

* = 7.999 MPa (from Eq. (3)) 
⇒ p0h = 9.998 MPa (from Eq. (2)) 
 

Since the Mach number at the head end is zero, the static pressure there will be equal to the stagnation 
pressure, i.e.,  ph = p0h.  The pressure at the exit plane is given by: 

( )11 2
0 21 Mae e ep p

γ
γγ −−= +  ⇒  pe  =  8.584 MPa (8) 

 
Hence: 

e hp p pΔ = −  =  -1.414 MPa  (Δp/ph = -14.1%) (9) 
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You are asked to model the main flow inside a solid rocket motor.  A schematic of the flow is shown in the 
diagram below. 
 
 
 
 
 
 
 
 
To simplify your model, you may assume that the flow area remains constant and that the flow is 1D, 
steady, frictionless, and adiabatic.  You should, however, include the effects of mass addition to the flow.  
You should also assume that the mass addition stream enters the flow at an angle of θ with respect to the 
vertical, and that the mass addition stream has different flow properties than the main stream. 
  
Using the differential control volume shown in the diagram, write the equations for: 
a. conservation of mass, 
b. the linear momentum principle, 
c. conservation of energy, and 
d. the second law of thermodynamics. 
for the given flow conditions.  Clearly state any additional assumptions you make in deriving your relations. 
 
SOLUTION: 
 
Consider the differential control volume shown below. 
 
 
 
 
 
 
 
 
Conservation of Mass: 

rel
CV CS

0d dV d
dt

ρ ρ+ ⋅ =∫ ∫ u A  

where 

CV

0d dV
dt

ρ =∫   (steady flow) 

    

ρurel ⋅dA
CS
∫ = − ρVA( ) + d ρVA( )

dx
− 1

2 dx( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+ ρVA( ) + d ρVA( )

dx
1
2 dx( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
− d !m

mass added by
mass addition stream

"

=
d ρVA( )

dx
dx − d !m

 (1) 

 
Substitute and simplify. 

   

d ρVA( )
dx

dx − d !m = 0     (2) 

  AVdρ + AρdV = d !m    (Note that A = constant.) 

  

dρ
ρ

+ dV
V

= d !m
!m

   where   !m = ρVA  (3) 

propellant 

main flow θ 

dx 

propellant 

main flow θ 

dx 

x 

x 
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Linear Momentum Equation in the x-direction 

( )rel , ,
CV CS

x x B x S x
d

u dV u d F F
dt

ρ ρ+ ⋅ = +∫ ∫ u A  

where 

CV

0x
d

u dV
dt

ρ =∫   (steady flow) 

    

ux ρurel ⋅dA( )
CS
∫ = − V !m+

d V !m( )
dx

− 1
2 dx( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+ V !m+

d V !m( )
dx

1
2 dx( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
−Vixd !m

=
d V !m( )

dx
dx −Vixd !m

 (4) 

(where Vix is the x-component of the velocity of the mass addition (incoming) stream) 
, 0B xF =   (neglect body forces since the fluid is a gas) 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1
, 2 2S x

d pA d pA d pA
F pA dx pA dx dx

dx dx dx
⎡ ⎤ ⎡ ⎤

= + − − + = −⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 (5) 

(Note that the flow is assumed frictionless and 1D.) 
 
Substitute and simplify. 

  

d V !m( )
dx

dx −Vixd !m = −
d pA( )

dx
dx  (6) 

  
d V !m( )−Vixd !m = −Adp    (A = constant) 

   Adp + !mdV +Vd !m−Vixd !m = 0  

   
dp +

!m
A

dV + V −Vix( ) d !m
A

= 0     (Note:    !m = ρVA .) 

   
dp + ρVdV + ρV 2 1−

Vix

V
⎛
⎝⎜

⎞
⎠⎟

d !m
!m

 (7) 
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Conservation of Energy 

    

d
dt

eρ dV
CV
∫ + h+ 1

2V 2 + gz( ) ρurel ⋅dA( )
CS
∫ = !Qinto CV + !Won CV  

where 

CV

0d e dV
dt

ρ =∫   (steady flow) 

    

h+ 1
2V 2 + gz( ) ρurel ⋅dA( )

CS
∫ = − !mhT +

d !mhT( )
dx

− 1
2 dx( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+ !mhT +

d !mhT( )
dx

1
2 dx( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
− hiT d !m

=
d !mhT( )

dx
dx − hiT d !m

 (8) 

(where hT is the total specific enthalpy of the main flow and hiT is the total specific enthalpy of the 
mass addition (incoming) stream) 

   
!Qinto CV = 0   (the flow is assumed adiabatic) 

   
!Won CV = 0   (no work other than pressure is performed on the control volume) (9) 

Substitute and simplify. 

   

d !mhT( )
dx

dx − hiT d !m = 0  (10) 

   
d !mhT( )− hiT d !m = 0  

   !mdhT + hT d !m− hiT d !m = 0  

   
dhT + hT − hiT( ) d !m

!m
= 0  (11) 

 
2nd Law of Thermodynamics 

    

d
dt

sρ dV
CV
∫ + s ρurel ⋅dA( )

CS
∫ ≥

δ !qinto CV

T
CV
∫  

where 

CV

0d s dV
dt

ρ =∫   (steady flow) 

    

s ρurel ⋅dA( )
CS
∫ = − !ms+

d !ms( )
dx

− 1
2 dx( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+ !ms+

d !ms( )
dx

1
2 dx( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
− sid !m

=
d !ms( )

dx
dx − sid !m

 (12) 

(where si is the total specific entropy of the mass addition (incoming) stream) 

   

δ !qinto CV

T
CV
∫ = 0   (the flow is assumed adiabatic) 

Substitute and simplify. 

   

d !ms( )
dx

dx − sid !m > 0   (The “>” is used since the streams are mixing, which is irreversible.) (13) 

   
d !ms( )− sid !m > 0  

   !mds+ sd !m− sid !m > 0  

   
ds+ s− si( ) d !m

!m
> 0  (14) 

 1474 

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

C. Wassgren 1450 2024-02-01



 

C. Wassgren  Last Updated:  29 Nov 2016 
Chapter 13:  Gas Dynamics 
 

12. Generalized Steady, One-Dimensional Flow 
 
In our previous analyses we have only considered simple flows where there is only one potential affecting 
the flow (e.g., area change, friction, heat transfer, or mass addition).  Now we’ll discuss how to analyze 
flows where multiple effects are considered.  Our approach is very similar to the approach we have used 
many times before:  we’ll draw a control volume, apply our conservation laws, utilize definitions, and 
simplify our resulting equations. 
 
 
 
 
 
 
 
 
 
 
 
 
In our analysis, we’ll include the effects of: 
- area change, dA 
- friction, δFf 
- heat transfer, δQ 
- mass addition,   d !m  
- “other” work, δW 
- other forces, δD 
- gravity body force, ρgAdx 

 
We’ll further assume that the flow is steady, one-dimensional, and that the fluid is well-mixed within the 
control volume. 
 
Now let’s apply our conservation laws: 
 
COM: 

   

!m+ d !m( )− !m− d !mi = 0

d !m = d ρVA( ) = d !mi

 

  

d !m
!m

= dρ
ρ

+ dV
V

+ dA
A

 (193) 

 

 

x 

 

 

gx 

z 

gz 

δFf 

δQinto 

δD 
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LME (in x-direction): 

   

!mV + d !mV( )⎡⎣ ⎤⎦ − !mV − d !miVix =

                   pA− pA+ d pA( )⎡⎣ ⎤⎦ + p + 1
2 dp( )dA−δD −δ Ff − ρgx A+ 1

2 dA( )dx
 

   

d !mV + !mdV − d !miVix = −dpA−δD −δ Ff − ρgx Adx

dpA+ !mdV + ρgx Adx +δ Ff +δD + d !m V −Vix( ) = 0
 

Substituting the following:   

  !m = ρVA , y ≡ Vix/V, and ( )2 21 1
2 2 4f w F F HF Pdx f V Pdx V Af Dδ τ ρ ρ= = = :  

   
dp + ρVdV + ρgxdx + 1

2 ρV 2 4 fF dx
DH

⎛
⎝⎜

⎞
⎠⎟
+ δD

A
+ ρV 2 1− y( ) d !m

!m
= 0  (194) 

 
COE: 

   
!mh0 + d !mh0( )⎡⎣ ⎤⎦ − !mh0 − d !mih0i = δ !Qinto CV +δ !Won CV  

   
dh0 + h0 − h0i( ) d !m

!m
= δqinto CV +δwon CV  (195)  

The term in parentheses represents the difference in the stagnation enthalpy of the main stream and the 
incoming flow.  Note that:  21

0 2 zh h V g z= + + .  
 

2nd Law: 

   
!ms+ d !ms( )⎡⎣ ⎤⎦ − !ms− d !misi ≥

δ !Qinto CV

T
CV
∫  

   
ds+ s− si( ) d !m

!m
≥

δqinto CV

T
CV
∫  (196) 

 
Now let’s specify that we’re dealing with an ideal gas: 

p RTρ=  (197) 
 

pdh c dT=  (198) 
 

p
dT dpds c R
T p

= −  (199) 

 

Ma V
RTγ

=  (200) 

Since we’re concerned with a gas, we’ll also assume that gravitational effects are negligible compared to 
the other terms in the equations (i.e., g ≈ 0). 
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We’ll also utilize the definitions of the isentropic stagnation pressure and the adiabatic stagnation 
temperature: 

1
2

0

11 Ma
2

p
p

γ
γγ −−⎛ ⎞= +⎜ ⎟⎝ ⎠
 (201) 

 
1

2

0

11 Ma
2

T
T

γ −−⎛ ⎞= +⎜ ⎟⎝ ⎠
 (202) 

 
Equations (193)-(202) are a system of equations that can be combined and solved1 for the dependent 
variables:  

( ) 0

0

Ma
, , , , , ,

Ma p

d dpdp d dT dV ds
p T V p c

ρ
ρ

 

in terms of the independent variables, or driving potentials: 

   

dA
A

,
4 fF dx

DH

+ 2γδD
γ Ma2 pA

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
,
dT0

T0

, d !m
!m

 

 
The following table summarizes the resulting equations. 

                                                             
1 For details, refer to Zucrow and Hoffman, Gas Dynamics:  Volume I, Wiley. 
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Table 1.  Change in flow properties in terms of driving potentials. 
 Driving Potentials 

Change in 
Flow 

Property 

dA
A

 
2

4 2
Ma

F

H

f dx D
D pA

δ
γ

+
⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦

 0

0

dT
T

 
  
d !m
!m

 

( )
Ma
Mad

 21 Ma
Ψ

−
−

 
( )

2

2

Ma
2 1 Ma
γ Ψ
−

 ( )
( )

2

2

1 Ma

2 1 Ma

+ γ Ψ

−
 ( )2 2

2

1 Ma Ma

1 Ma

yγ γΨ + −

−

⎡ ⎤⎣ ⎦  

dp
p

 
2

2

Ma
1 Ma
γ
−

 ( )
( )

2 2

2

Ma 1 1 Ma

2 1 Ma

γ + γ −
−

−

⎡ ⎤⎣ ⎦

 

2

2

Ma
1 Ma
γ Ψ

−
−

 ( )[ ]2

2

Ma 2 1
1 Ma

y yγ Ψ − +
−

−
 

dρ
ρ

 
2

2

Ma
1 Ma−

 
( )

2

2

Ma
2 1 Ma

γ
−

−
 21 Ma

Ψ
−

−
 ( ) 2 2

2

1 Ma Ma

1 Ma

yγ γ+ −
−

−

⎡ ⎤⎣ ⎦  

dT
T

 ( ) 2

2

1 Ma
1 Ma
γ −

−
 

( )
( )

4

2

1 Ma

2 1 Ma

γ γ −
−

−
 ( )2

2

1 Ma

1 Ma

− γ Ψ

−
 ( ) ( )2 2 2

2

1 Ma 1 Ma Ma

1 Ma

yγ γ γ− + −
−

−

⎡ ⎤⎣ ⎦

 

dV
V

 
2

1
1 Ma

−
−

 
( )

2

2

Ma
2 1 Ma

γ
−

 21 Ma
Ψ

−
 ( )2 2

2

1 Ma Ma

1 Ma

yγ γ+ −

−

⎡ ⎤⎣ ⎦  

0

0

dp
p

 
0 2Ma

2
γ

−  
2Ma

2
γ

−  ( )2Ma 1 yγ− −  

dF
F

 
2

1
1 Ma+ γ

 
( )

2

2

Ma
2 1 Ma

γ
−

+ γ
 

0 2

2

Ma
1 Ma
yγ
γ+

 

p

ds
c

 
0 ( ) 21 Ma

2
γ −

 
Ψ  ( ) ( )21 Ma 1 yγ − −  

 
 
where 21

1 Ma
2

γ −
Ψ = +  

 ixVy
V

=  

   F ≡ impulse function = pA+ !mV  
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Notes: 
 

1. The terms in the table are often referred to as influence coefficients. 
 
2. The impulse function,   F ≡ pA+ !mV , is a convenient definition that is helpful in determining the 

reaction force for one-dimensional steady flows.  For example, the thrust on the jet engine shown 
below can be determined from the difference between the outgoing and incoming impulse functions: 

 
 
 
 
 
 

   

!m2V2 − !m1V1 = T + p1A1 − p2 A2

T = !m2V2 + p2 A2( )− !m1V1 + p1A1( )  

2 1T F F∴ = −  
 
3. As can be seen from Eqs. (195) and (198), the effects of heat transfer, other work, and the difference in 

the main and incoming stream stagnation enthalpies are all included in the change in the stagnation 
temperature, dT0. 

 
4. How one uses the table is best shown by example.  Let’s say we’re interested in determining how the 

Mach number varies as a function of the driving potentials.  From the table we see that the Mach 
number variation is given by: 

   

d Ma( )
Ma

= −
Ψ

1− Ma2

dA
A

+ γ Ma2Ψ
2 1− Ma2( )

4 fF dx

DH

⎛
⎝⎜

⎞
⎠⎟
+

2δ D
γ Ma2 pA

⎡

⎣
⎢

⎤

⎦
⎥

+
1+ γ Ma2( )Ψ
2 1− Ma2( )

dT0

T0

+
Ψ 1+ γ Ma2( )− yγ Ma2⎡⎣ ⎤⎦

1− Ma2

d !m
!m

 (203) 

We would now need to know how to model the driving potentials as we move downstream in flow 
(e.g., How does the area vary as we move downstream in the duct?)  Finally, we would integrate the 
resulting equation (numerically if necessary) to solve for the Mach number variation. 

 

p1A1 p2A2 

 
 

T 
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5. We can also extract trends from the influence coefficients.  For example, Eq. (203) may be written as: 

   

d Ma( )
Ma

= Ψ
1− Ma2

−
dA
A

+ γ Ma2

2
4 fF dx

DH

⎛
⎝⎜

⎞
⎠⎟
+

2δ D
γ Ma2 pA

⎡

⎣
⎢

⎤

⎦
⎥

+
1+ γ Ma2( )

2
dT0

T0

+ 1+ γ Ma2( )− yγ Ma2⎡
⎣

⎤
⎦

d !m
!m

⎧

⎨

⎪
⎪

⎩

⎪
⎪

⎫

⎬

⎪
⎪

⎭

⎪
⎪

≡Λ
" #$$$$$$$$$ %$$$$$$$$$

 

Note that Ψ is always positive.   
a. If Λ < 0, then the Mach number will decrease for subsonic flow and increase for supersonic flow, 

i.e. the Mach number diverges from one. 
b. If Λ > 0, then the Mach number will increase toward one for subsonic Mach numbers while the 

Mach number will decrease toward one for supersonic Mach numbers.  Hence, choking is possible 
if Λ > 0. 

c. If Λ = 0, then the Mach number does not change since d(Ma) = 0 (the flow is at an inflection 
point). 

It is possible that a flow may have changes in the sign of Λ as the flow moves downstream.  For 
example, simple isentropic flow in a converging-diverging nozzle has Λ > 0 in the converging section, 
Λ = 0 at the throat, and Λ < 0 in the diverging section.   

 
Note that sonic conditions (Ma = 1) can only occur where Λ = 0 otherwise d(Ma) would be infinite.  
For example, consider the special case where only friction and area changes are present (δD = dT0 = 
  d !m  = 0) so that: 

2Ma
2

4 F

H

f dxdA
A D

γ
−

⎛ ⎞
Λ = + ⎜ ⎟

⎝ ⎠
 

Since the friction term will always be positive, and since sonic conditions must occur when Λ = 0, the 
sonic point must occur in a diverging section (dA > 0).  The exact location of the sonic point can be 
determined since we know how the area varies with x: 

   

0 = −
1
A

dA
dx

dx

=dA
A

!"# $#
+
γ 1( )2

2
4 fF dx

DH

⎛
⎝⎜

⎞
⎠⎟

 

2
41 F

H

fdA
A dx D

γ ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
   (Since A(x), fF, and DH are given, one can solve for x.) 
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6. Note that many of the relations in Table 1 have a (1 – Ma2) in the denominator.  Hence, one must 
proceed with care when integrating the relations near the sonic point since the gradients become very 
large there.  At the sonic point in particular, terms with (1 – Ma2) in the denominator are undefined so 
they cannot be integrated directly.  If the independent variables can be expressed explicitly as a 
function of x, gradients at the sonic point can be resolved using l’Hopital’s rule.  For example, let’s 
again consider the case for a frictional flow with area change (δD = dT0 =   d !m  = 0) so that the Mach 
number relation is given by: 

   

d Ma( )
dx

= MaΨ
1− Ma2 −

1
A

dA
dx

+ γ Ma2

2
4 fF

DH

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

≡λ
! "#### $####

=
MaΨλ x( )
1− Ma2  

( ) ( ) ( )
( ) *

*

Ma 1

Ma 1

MaMa Ma
lim

2Ma Ma
x x

dd d dx
ddx dx
dx

λ
→

=
=

Ψ⎛ ⎞
= =⎜ ⎟

−⎝ ⎠
 

( ) ( )

( ) ( )

*

*
*

2*

Ma 1

*

Ma 1
Ma 1

Ma Ma1
2

1 Ma3 1
4 4

x x

x x
x x

d d
dx dx

dd
dx dx

λ

γ λ γ λ

=
=

=
==

=

⎡ ⎤ Ψ⎛ ⎞
⎢ ⎥ = −⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

+ ⎛ ⎞−⎛ ⎞= − − ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠

 

( ) ( ) ( )
*

*

2* *

Ma 1
Ma 1

Ma Ma 13 1 0
4 4x x

x x

d d d
dx dx dx

γγ λλ =
= =

=

⎡ ⎤ +⎛ ⎞ ⎛ ⎞−⎛ ⎞⎢ ⎥ + + =⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦
 (204) 

where  

*

*Ma 1 2
41 F

x x
x x H

fdA
A dx D

γλ =
= =

−
⎛ ⎞⎛ ⎞= + ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠

 (205) 

( )
* *

*

Ma 1

Ma41 F

x x x x H

dfd d dA
dx dx A dx D dx
λ γ

= ==

−
⎛ ⎞⎛ ⎞⎛ ⎞= + ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

 (206) 

 
Equations (204), (205), and (206) can be combined to give a single quadratic equation in terms of the 
unknown sonic Mach number gradient.  Two solutions can be found with the appropriate one being 
determined by the downstream boundary conditions (Recall our previous discussions concerning 
isentropic flow through a C-D nozzle.  Whether the flow remains subsonic or supersonic after the 
throat depends on the back pressure.)   

 
7. The previous generalized flow table (Table 1) can be simplified to give our previous results for simple 

flows as shown in the following table. 
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  generalized1Dflow_01 

Page 1 of 2 

A stream flowing in an insulated, circular duct with friction is to be maintained at constant Mach Number 
through suitable changes in duct area.  Assume that a 1D treatment is acceptable and that at section 1 of the 
duct the properties are Ma1, p1, A1, etc.   
a. Show that the product of the area and pressure is the same for all cross sections. 
b. Find an expression for the area at a point downstream of section 1 in terms of the area at 1, the Mach 

number, the (Fanning) friction coefficient, and the number of length-to-diameter ratios (based on D1) 
between section 1 and the downstream section. 

c. If Ma1 = 0.5, p1 = 1 atm (abs), and fF = 0.005, compute the ratios A2/A1, p2/p1, and p02/p01 if section 2 is 
50 diameters downstream of section 1. 

 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
Apply conservation of mass between any two stations. 

1 1 1 2 2 2V A V Aρ ρ=  (1) 
Combine with the ideal gas law and the definition of the Mach number. 

1 2
1 1 1 2 2 2

1 2
Ma Ma

p pRT A RT A
RT RT

γ γ
⎛ ⎞ ⎛ ⎞

=⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (2) 

Since the Mach number, the specific heat ratio, and gas constant are the same at stations 1 and 2, the 
previous equation may be simplified. 

1 2
1 2

1 2

p pA A
T T

⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 (3) 

Since the duct is insulated, the stagnation temperature, T0, will remain constant (from conservation of 
energy).  As a result, the static temperature will also remain constant (since the Mach number is constant). 

1
2

0

11 Ma
2

T
T

γ −−⎛ ⎞= +⎜ ⎟⎝ ⎠
    ⇒  If Ma = constant and T0 = constant, then T = constant. (4) 

Thus, Eqn. (3) becomes: 

1 1 2 2p A p A=  (5) 
 

 
For generalized, 1D, steady flow with area change and friction: 

( )
( )

2

2 2

Ma 4Ma
Ma 1 Ma 2 1 Ma

F

H

d f dxdA
A D

γ⎡ ⎤−Ψ Ψ⎛ ⎞ ⎢ ⎥= +⎜ ⎟ ⎢ ⎥−⎝ ⎠ −⎣ ⎦
 (6) 

But since the Mach number is constant, d(Ma) = 0 and the previous equation becomes: 
2 4Ma

2
F

H

f dxdA
A D

γ⎛ ⎞
= ⎜ ⎟⎜ ⎟⎝ ⎠

 (7) 

Since the duct is circular, 

2
2

4

2
DdDdA dD

A DD

π

π
= =     and DH = D (8) 

2 1 

friction, 
adiabatic 
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  generalized1Dflow_01 

Page 2 of 2 

Substitute into Eq. (7) and simplify. 
2Ma FdD f dxγ=  (9) 

2 2

1 1

2Ma
D x

F
D x

dD f dxγ=∫ ∫  (10) 

( )2
2 1 2 1Ma FD D f x xγ− = −  (11) 

22

1 1
1 Ma F

D Lf
D D

γ= +     where L = x2 – x1 (12) 

2
22

1 1
1 Ma F

A Lf
A D

γ
⎡ ⎤

= +⎢ ⎥
⎣ ⎦

 (13) 

 
If Ma1 = 0.5 
 p1 = 1 atm (abs) 
 fF = 0.005 
 γ = 1.4 
 L/D1 = 50 
then A2/A1 = 1.183 
 
From Eq. (5),  
 p2/p1 = A1/A2 = 0.845 (14) 
 
The stagnation pressure ratio is given by: 

 
1 1

2 202 022 1 2
2 1

01 1 2 01 1

1 11 Ma 1 Ma
2 2

p pp p p
p p p p p

γ γ
γ γγ γ− −⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞ − −⎛ ⎞ ⎛ ⎞= = + +⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

 (15) 

 02 2

01 1
0.845

p p
p p

∴ = =     since Ma1 = Ma2 (16) 
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  generalized1Dflow_02
  

Page 1 of 3 

Consider steady air flow through a duct that has a circular cross-sectional shape.  The inlet diameter of the 
duct is 6 cm and the duct has a length of 1.5 m.  The air enters the duct with a Mach number of 0.35 and a 
temperature of 40 °C.  Heat is added to the flow in the duct at a uniform rate, which is such that the 
stagnation temperature increases by 246 K over the length of the duct.  If the (Fanning) friction factor is 
assumed to be 0.003, determine the Mach number and temperature variations along the duct if: 
a. its diameter increases linearly to a final diameter of 7.2 cm. 
b. its diameter increases linearly to a final diameter of 6.12 cm. 
c. its diameter remains constant. 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
For generalized, 1D, steady flow with area change, friction, and heat transfer: 

( )
( )

( )
( )

22
0

2 2 2
0

1 MaMa 4Ma
Ma 1 Ma 2 1 Ma 2 1 Ma

F

H

d dTf dxdA
A D T

γ⎡ ⎤ ⎡ ⎤+ Ψ−Ψ⎛ ⎞ ⎢ ⎥ ⎢ ⎥= + +⎜ ⎟ ⎢ ⎥ ⎢ ⎥−⎝ ⎠ − −⎣ ⎦ ⎣ ⎦
 (1) 

where 
211 Ma

2
γ −Ψ = +  (2) 

and 

2
2

4

2
DdDdA dD

A DD

π

π
= =  (3) 

 
Since D varies linearly: 

2 1D D
dD dx

L
−⎛ ⎞= ⎜ ⎟⎝ ⎠

 (4) 

Also, since heat is added uniformly over the length: 

02 01
0

T T
dT dx

L
−⎛ ⎞= ⎜ ⎟⎝ ⎠

 (5) 

 
Substitute Eqs. (3) – (5) into Eq. (1). 

( )
( )

( )
( )

22
02 012 1

2 2 2
0

1 MaMa 42 Ma
Ma 1 Ma 2 1 Ma 2 1 Ma

Fd T TD D f dxdx dx
L D D T L

γ⎡ ⎤ ⎡ ⎤+ Ψ ⎛ ⎞−−−Ψ ⎛ ⎞⎛ ⎞ ⎢ ⎥ ⎢ ⎥= + + ⎜ ⎟⎜ ⎟⎜ ⎟ ⎢ ⎥ ⎢ ⎥−⎝ ⎠⎝ ⎠ − − ⎝ ⎠⎣ ⎦ ⎣ ⎦
 (6) 

 

2 1 

friction 
 

q12 
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  generalized1Dflow_02
  

Page 2 of 3 

Use a simple numerical scheme to solve Eq. (1) as a function of distance moved downstream. 
1n nx x x+ = +Δ  (7) 

2 1
1n n

D D
D D x

L+
−⎛ ⎞= + Δ⎜ ⎟⎝ ⎠

    (making use of Eq. (4)) (8) 

02 01
0 1 0n n

T T
T T x

L+
−⎛ ⎞= + Δ⎜ ⎟⎝ ⎠

    (making use of Eq. (5)) (9) 

( )
( )

( )
( )

22
02 012 1

2 2 2
0

1 MaMa Ma 42
Ma 1 Ma 2 1 Ma 2 1 Ma

n nn n n F

n n n nn n n

T TD D f xx x
L D D T L

γ⎡ ⎤ ⎡ ⎤+ ΨΔ ⎛ ⎞ ⎛ ⎞−Ψ −− ΔΔ Δ⎛ ⎞ ⎢ ⎥ ⎢ ⎥= + +⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎢ ⎥ ⎢ ⎥− ⎝ ⎠ − − ⎝ ⎠⎝ ⎠ ⎣ ⎦ ⎣ ⎦
 (10) 

where   
211 Ma

2n n
γ −Ψ = +   (making use of Eqs. (2) and (6)) (11) 

( )1Ma Ma Man n n+ = +Δ  (12) 
 

Use the following parameters as boundary conditions. 
γ = 1.4 
L = 1.5 m 
D1 = 0.06 m 
Ma1 = 0.35 
fF = 0.003 

T01 = 320.7 K    using 2
01 1 1

11 Ma
2

T T γ −⎛ ⎞= +⎜ ⎟⎝ ⎠
  with T1 = (40 + 273) K = 313 K (13) 

T02 = 566.7 K    using T02 = T01 + 246 K (14) 
D2 = 0.072 m (case 1);  0.0612 m (case 2);  0.06 m (case 3) 
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D = 0.072 m 

D = 0.0612 m 

D = 0.06 m 
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  generalized1Dflow_03 

Page 1 of 2 

Air flows adiabatically in a tube of circular cross-section with an initial Mach number of 0.5, temperature 
of 1070 K, and pressure of 690 kPa (abs).  The tube is to be changed in cross-sectional area so that, taking 
friction into account, there is no change in the temperature of the stream.  Assuming the (Fanning) friction 
coefficient is 0.005 and that the exit is 100 initial tube diameters downstream of the inlet, find: 
a. the final Mach number 
b. the ratio of the final diameter to the initial diameter 
c. the final stagnation pressure (in kPa) 
 
 
SOLUTION: 
 
For a 1D flow with area change and friction: 

( ) ( )
( )

2 4

2 2

1 Ma 1 Ma 4
1 Ma 2 1 Ma

Ff dxdT dA
T A D

γ γ γ− − ⎛ ⎞⎛ ⎞= −⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠
 (1) 

 
For an isothermal flow, dT = 0.  Also, for a circular duct: 

2

2
4 2
D DdD dA dDA dA

A D
π π= ⇒ = ⇒ =  (2) 

 
Substitute into Eq. (1) and simplify. 

( ) ( )
( )

2 4

2 2

1 Ma 1 Ma 4
0 2

1 Ma 2 1 Ma
Ff dxdD

D D
γ γ γ− − ⎛ ⎞⎛ ⎞= −⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

 (3) 

2MaF

dD
dx

fγ
∴ =  (4) 

 
For a 1D flow with area change and friction, we also have: 

( ) ( ) ( )
( )

1 12 2 2
2 2

2 2

1 Ma Ma 1 MaMa 4
Ma 1 Ma 2 1 Ma

Fd f dxdA
A D

γ γγ− −− + + ⎛ ⎞⎛ ⎞= +⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠
 (5) 

Substitute Eqns. (2) and (4) and simplify. 

( ) ( ) ( )
( )

1 12 2 2 2
2 2

2 2

41 Ma Ma 1 MaMa Ma
2

Ma 1 Ma 2 1 Ma

F
F

dDf
d fdD

D D

γ γγ γ
− −

⎛ ⎞
⎜ ⎟− + +⎛ ⎞ ⎜ ⎟= +⎜ ⎟− ⎜ ⎟−⎝ ⎠
⎜ ⎟⎝ ⎠

 (6) 

( ) ( )
( )

1 2
2

2

1 MaMa
2 2

Ma 1 Ma
d dD dD

D D

γ −+ ⎡ ⎤= − +⎢ ⎥− ⎣ ⎦
 

( )Ma 0d =  
Ma constant∴ =  (7) 

 
Hence, since Ma1 = 0.5, Ma2 = 0.5. 
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The final-to-initial diameter ratio may be found from Eq. (4) utilizing the fact that the Mach number 
remains constant. 

2

1

2
0 Ma

D Dx L

Fx D D

dD
dx

fγ

==

= =

=∫ ∫  (8) 

2 1 1 2
2 2

1

1
Ma MaF F

D D D DL
Df fγ γ

⎛ ⎞−
= = −⎜ ⎟

⎝ ⎠
 

22

1 1

1 MaF
D Lf
D D

γ= +  (9) 

For γ = 1.4, fF = 0.005, Ma = 0.5, L/D1 = 100 ⇒ D2/D1 = 1.175. 
 
The stagnation pressure for a 1D flow with varying area and friction is given by: 

2
0

0

4Ma
2

Fdp f dx
p D

γ ⎛ ⎞= − ⎜ ⎟⎝ ⎠
 (10) 

Substitute Eqn. (4) and simplify. 
0

0

2
dp dD
p D

= −  (11) 

0 02 2

0 01 1

0

0

2
p p D D

p p D D

dp dD
p D

= =

= =

= −∫ ∫  

02 2

01 1

ln 2ln
p D
p D

= −  

2

02 1

01 2

p D
p D

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 (12) 

where 
1

2
01 1

11 Ma
2

p p
γ
γγ −−⎛ ⎞= +⎜ ⎟⎝ ⎠

 (13) 

 
For D2/D1 = 1.175, γ = 1.4, Ma = 0.5, and p1 = 690 kPa ⇒ p01 = 818.5 kPa and p02 = 593 kPa. 
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Consider the constant-area mixing between two streams, as shown in the sketch.  It is agreed to assume: 
1. that just before mixing the individual streams have equal cross-sectional areas, 
2. that wall friction in the mixing section is negligible and that the walls of the mixing section are 

insulated against heat transfer, 
3. that the streams are completely mixed at section 3, and  
4. that air behaves as a perfect gas. 

Calculate: 
a. the isentropic stagnation pressure (psia) for stream 1, 
b. the mass flow rate per unit area (lbm/(s⋅ft2)) for stream 1, 
c. the stagnation temperature at section 3 (°R) at section 3, and 
d. the isentropic stagnation pressure (psia) at section 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

SOLUTION: 
 
First calculate the stagnation pressure at station 1. 

1
21
1

01

11 Ma
2

p
p

γ
γγ −−⎛ ⎞= +⎜ ⎟⎝ ⎠
  ⇒  p01 = 12.8 psia (1) 

where 
1

1
1

Ma
V
RTγ

=   ⇒  Ma1 = 0.60 (2) 

 
Similarly, calculate the stagnation pressure at station 2. 

1
22
2

02

11 Ma
2

p
p

γ
γγ −−⎛ ⎞= +⎜ ⎟⎝ ⎠
  ⇒  p02 = 10.6 psia (3) 

where 
2

2
2

Ma
V
RTγ

=   ⇒  Ma2 = 0.30 (4) 

 
Now calculate the stagnation temperature at stations 1 and 2. 

1
21
1

01

11 Ma
2

T
T

γ −−⎛ ⎞= +⎜ ⎟⎝ ⎠
  ⇒  T01 = 643 °R (5) 

1
22
2

02

11 Ma
2

T
T

γ −−⎛ ⎞= +⎜ ⎟⎝ ⎠
  ⇒  T02 = 2443 °R (6) 

 

3 
1 

2 

p1 = 10 psia 
T1 = 600 °R 
V1 = 722 ft/s 

p2 = 10 psia 
T2 = 2400 °R 
V2 = 722 ft/s 
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Now calculate the mass flow rate per unit area at stations 1 and 2. 

   !m1 = ρ1V1A1   ⇒     !m1  = 32 lbm/(s.ft2) (7) 

   !m2 = ρ2V2 A2   ⇒     !m2  = 8.1 lbm/(s.ft2) (8) 
where 

1
1

1

p
RT

ρ =   ⇒  ρ1 = 4.5*10-2 lbm/ft3 (9) 

2
2

2

p
RT

ρ =   ⇒  ρ2 = 1.1*10-2 lbm/ft3 (10) 

 
To determine the stagnation temperature at section 3, apply conservation of energy to the following control 
volume. 

 
 
 
 
 
 
 
 

    

d
dt

eρ dV
CV
∫ + h+ 1

2V 2( ) ρurel ⋅dA( )
CS
∫ = !Qinto CV + !Wother, on CV  (11) 

where 

CV

0d e dV
dt

ρ =∫   (steady flow) (12) 

    
h+ 1

2V 2( ) ρurel ⋅dA( )
CS
∫ = !m3h03 − !m1h01 − !m2h02  (13) 

   
!Qinto CV = 0   (adiabatic) (14) 

   
!Wother, on CV = 0   (no work other than pressure work) (15) 

Substitute and simplify. 

   !m3h03 − !m1h01 − !m2h02 = 0  (16) 

   
T03 =

!m1
!m1 + !m2

T01 +
!m2
!m1 + !m2

T02  (17) 

03 01 02
1

1 1
T T Tµ

µ µ
= +

+ +
 (18) 

where a perfect gas model has been employed (h0 = cPT0) and conservation of mass has been applied to the 
same control volume (   !m3 = !m1 + !m2 ;     µ = !m2 !m1  ).  Using the previously calculated values for the 
stagnation temperatures and mass flow rates,  

T03 = 1003 °R   (µ = 0.25) (19) 
 

To find the stagnation pressure at station 3, apply the linear momentum in the x-direction to the control 
volume. 

( )rel , ,
CV CS

x x B x S x
d

u dV u d F F
dt

ρ ρ+ ⋅ = +∫ ∫ u A  (20) 

where 

CV

0x
d

u dV
dt

ρ =∫   (steady flow) (21) 

3 
1 

2 

x 
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ux ρurel ⋅dA( )

CS
∫ = !m3V3 − !m2V2 − !m1V1  (22) 

, 0B xF =   (body forces are negligible) (23) 

, 1 1 2 2 3 3S xF p A p A p A= + −  (24) 
Substitute and simplify. 

   !m3V3 − !m2V2 − !m1V1 = p1A1 + p2 A2 − p3A3  (25) 

   

!m1 + !m2
A

V3 −
!m2
A

V2 −
!m1
A

V1 = p1 + p2 − 2 p3    (where A3 = A1 + A2 and A1 = A2 = A) (26) 

   

!m1
A

⎛
⎝⎜

⎞
⎠⎟

1+ µ( )V3 − µV2 −V1⎡⎣ ⎤⎦ = p1 + p2 − 2 p3    (27) 

Re-write p3. 

   
p3 = ρ3RT3 =

!m3
2AV3

⎛

⎝⎜
⎞

⎠⎟
R T03 −

V3
2

2cP

⎛

⎝
⎜

⎞

⎠
⎟ =

!m1 + !m2
2AV3

⎛

⎝⎜
⎞

⎠⎟
R T03 −

V3
2

2cP

⎛

⎝
⎜

⎞

⎠
⎟ =

1
2
!m1
A

1+ µ
V3

⎛

⎝⎜
⎞

⎠⎟
R T03 −

V3
2

2cP

⎛

⎝
⎜

⎞

⎠
⎟  (28) 

Substitute into Eq. (27) and solve for V3. 

   

!m1
A

⎛
⎝⎜

⎞
⎠⎟

1+ µ( )V3 − µV2 −V1⎡⎣ ⎤⎦ = p1 + p2 −
!m1
A

1+ µ
V3

⎛

⎝⎜
⎞

⎠⎟
R T03 −

V3
2

2cP

⎛

⎝
⎜

⎞

⎠
⎟  (29) 

   

1+ µ( )V3 −
p1 + p2
!m1

A

+ µV2 +V1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
+ 1+ µ

V3

⎛

⎝⎜
⎞

⎠⎟
R T03 −

V3
2

2cP

⎛

⎝
⎜

⎞

⎠
⎟ = 0  (30) 

   

1+ µ( )V3
2 −

p1 + p2
!m1

A

+ µV2 +V1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

V3 + 1+ µ( )R T03 −
V3

2

2cP

⎛

⎝
⎜

⎞

⎠
⎟ = 0  (31) 

   

1+ µ( ) 1− R
2cP

⎛

⎝⎜
⎞

⎠⎟
V3

2 −
p1 + p2
!m1

A

+ µV2 +V1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

V3 + 1+ µ( )RT03 = 0  (32) 

2
3 3 0AV BV C+ + =  (33) 

where 

( )1 1
2 P

RA
c

µ
⎛ ⎞

= + −⎜ ⎟
⎝ ⎠

 (34) 

   

B = −
p1 + p2
!m1

A

+ µV2 +V1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 (35) 

( ) 031C RTµ= +  (36) 
Using the given data: 

V3 = 722 ft/s  or  2781 ft/s (37) 
 

 1492 

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

C. Wassgren 1468 2024-02-01



  generalized1Dflow_04 

Page 4 of 5 

Determine the properties corresponding to each of these velocities. 
2
3

3 03 2 P

V
T T

c
= −  (38) 

   
ρ3 =

!m3
2A

⎛
⎝⎜

⎞
⎠⎟

1
V3

= 1
2
!m1
A

⎛
⎝⎜

⎞
⎠⎟

1+ µ
V3

 (39) 

3 3 3p RTρ=  (40) 

3
3

3
Ma

V
RTγ

=  (41) 

1
2

03 3 3
11 Ma
2

p p
γ
γγ −−⎛ ⎞= +⎜ ⎟⎝ ⎠

 (42) 

 
V3 = 722 ft/s ⇒ T3 = 960 °R 
  ρ3 = 2.81*10-2 lbm/ft3 
  p3 = 10 psia 
  Ma3 = 0.48 
  p03 = 12 psia 
 
V3 = 2781 ft/s ⇒ T3 = 361 °R 
  ρ3 = 7.31*10-3 lbm/ft3 
  p3 = 1 psia 
  Ma3 = 2.99 
  p03 = 35 psia 
 

Which velocity is the correct one?  Apply the 2nd Law of Thermodynamics to the same control volume to 
determine. 

    

d
dt

sρ dV
CV
∫ + s ρurel ⋅dA( )

CS
∫ ≥

δ !qinto

T
CV
∫  (43) 

where 

CV

0d s dV
dt

ρ =∫  (steady flow) (44) 

    
s ρurel ⋅dA( )

CS
∫ = !m3s3 − !m2s2 − !m1s1  (45) 

   

δ !qinto

T
CV
∫ = 0  (the mixing occurs adiabatically) (46) 

Substitute and simplify.  Also note that the “>” sign should be used since mixing is an irreversible process. 

   !m3s3 − !m2s2 − !m1s1 > 0  (47) 

( ) 3 2 11 0s s sµ µ+ − − >  (48) 
 

The specific entropies may be found using the Tds relation. 

3 3
3 ref

ref ref
ln lnP

T p
s s c R

T p
⎛ ⎞ ⎛ ⎞

− = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (49) 

2 2
2 ref

ref ref
ln lnP

T ps s c R
T p

⎛ ⎞ ⎛ ⎞
− = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (50) 

1 1
1 ref

ref ref
ln lnP

T ps s c R
T p

⎛ ⎞ ⎛ ⎞
− = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (51) 
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Substitute and simplify. 

( ) 3 3 2 2
ref ref

ref ref ref ref

1 1
ref

ref ref

1 ln ln ln ln

                  ln ln 0

P P

P

T p T ps c R s c R
T p T p

T ps c R
T p

µ µ
⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞

+ + − − + −⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

⎡ ⎤⎛ ⎞ ⎛ ⎞
− + − >⎢ ⎥⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 (52) 

( ) ( ) 3 3 2 2
ref

ref ref ref ref

1 1

ref ref

1 1 1 ln ln ln ln

                  ln ln 0

P P

P

T p T ps c R c R
T p T p

T pc R
T p

µ µ µ µ
⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞

+ − − + + − − −⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

⎡ ⎤⎛ ⎞ ⎛ ⎞
− − >⎢ ⎥⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 (53) 

( ) ( )1 1
3 3 2 2 1 1

ref ref ref ref ref ref
ln ln ln ln ln ln 0

P P Pc R c R c R
T p T p T p
T p T p T p

µ µ µ µ+ − + − −⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
+ + + + + >⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 (54) 

( ) ( )1 1
3 3

ref ref

2 1 2 1

ref ref ref ref

ln ln 0P

T p
T p

c R
T T p p
T T p p

µ µ

µ µ

+ +⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠− >

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (55) 

( )( )

( ) ( )
( )( )

( ) ( )

1 1
3 3

2 1 2 1

ln ln 0P
T p

c R
T T p p

µ µ

µ µ

+ +

− >  (56) 

 
For the V3 = 722 ft/s data, the left hand side of Eq. (57) is 45.1 (lbf.ft)/(lbm.°R), which satisfies the 2nd 
Law.  For the V3 = 2781 ft/s data, the left hand side of Eq. (57) is -28.5 (lbf.ft)/(lbm.°R), which does not 
satisfy the 2nd Law.   
 
Thus, the correct velocity is V3 = 722 ft/s and the correct stagnation pressure is p03 = 12 psia. 
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Consider steady air flow through a constant area circular duct which has a diameter of 10 cm and a length 
of 1 m.  The Mach number, pressure, and temperature at the inlet to the duct are 0.3, 200 kPa (abs), and 80 
°C.  Heat is added at a uniform rate to the air as it flows through the duct causing the stagnation 
temperature to increase by 300 K.  If the (Fanning) friction factor can be assumed to be 0.003, find the 
Mach number, pressure, and temperature at the outlet of the duct. 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
 
First determine the stagnation properties at station 1. 

1
2

01 1 1
11 Ma
2

p p
γ
γγ −−⎛ ⎞= +⎜ ⎟⎝ ⎠

  ⇒  p01 = 212.9 kPa (1) 

2
01 1 1

11 Ma
2

T T γ −⎛ ⎞= +⎜ ⎟⎝ ⎠
  ⇒  T01 = 359.4 K (2) 

⇒ T02 = 659.4 K  since T02 – T01 = 300 K (given) (3) 
 

The Mach number will change as we move downstream due to the frictional contribution and the heat 
transfer contribution. 

( )
( )

( )
( )

22
0

2 2
0

1 MaMa 4Ma
Ma 2 1 Ma 2 1 Ma

Fd dTf dx
D T

γγ +Ψ ⎛ ⎞= +⎜ ⎟⎝ ⎠− −
  where  211 Ma

2
γ −Ψ = +   (4) 

 
Note that since the heat is added at a uniform rate, the change in stagnation temperature over the length of 
the duct can be written as: 

0 02 01 02 01
0

dT T T T T
dT dx

dx L L
− −⎛ ⎞= ⇒ = ⎜ ⎟⎝ ⎠

 (5) 

 
Substitute Eq. (5) into Eq. (4) and simplify. 

( )
( )

( )
( )

22
02 01

2 2
0

1 MaMa 4Ma
Ma 2 1 Ma 2 1 Ma

Fd T Tf dx
dx

D T L

γγ + ⎛ ⎞−Ψ ⎛ ⎞= + ⎜ ⎟⎜ ⎟⎝ ⎠− − ⎝ ⎠
 (6) 

( )
( )

( )
( )

23
02 01

2 2
0

Ma 1 MaMa 4Ma
2 1 Ma 2 1 Ma

Fd T Tf
dx D T L

γγ + ⎛ ⎞−Ψ ⎛ ⎞= + ⎜ ⎟⎜ ⎟⎝ ⎠− − ⎝ ⎠
 (7) 

 

1 2 

Ma1 = 0.3 
p1 = 200 kPa (abs) 
T1 = (80 + 273) K = 353 K 
fF = 0.003 
T02 – T01 = 300 K 

D = 0.10 m 

L = 1 m 

q12 
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Solve Eq. (7) numerically.  Note that the numerical approach shown below is crude, but as Δx is mad 
smaller, the results become more accurate.  

( ) ( ) ( )Ma
Ma Ma

d
x x x x

dx
+ Δ ≈ + Δ  (8) 

A similar approach may be used to solve for the other flow properties. 

( )
( )

2 2 2
0

22
0

Ma 1 1 Ma 4 Ma
1 Ma2 1 Ma

F dTf dxdp
p D T

γ γ γ⎡ ⎤− + − Ψ⎛ ⎞⎣ ⎦= −⎜ ⎟ −⎝ ⎠−
 (9) 

( )
( )

( )24
0

22
0

1 Ma1 Ma 4
1 Ma2 1 Ma

F dTf dxdT
T D T

γγ γ − Ψ− − ⎛ ⎞= +⎜ ⎟ −⎝ ⎠−
 (10) 

Note that we could also determine T using: 
1

2
0

11 Ma
2

T T γ −−⎛ ⎞= +⎜ ⎟⎝ ⎠
 (11) 

since the T0 distribution is known. 
 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0.0 0.2 0.4 0.6 0.8 1.0

position, x /L

ra
tio

Ma/Ma1

p/p1

T/T1

 
 

Ma2 = 0.47 
p2 = 169.9 kPa (abs) 
T2 = 631.2 K 
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Consider a perfect gas flowing in a constant-area duct adiabatically and without friction.  Changes in state 
come about as the result of changes in elevation in the earth’s gravity field.  The z-direction is away from 
the center of the earth, and hence gravity acts in the negative z-direction. 
a. Starting from first principles, determine by analysis the direction of change (increase or decrease) of 

the Mach #, gas speed, sound speed, density, pressure, stagnation temperature, and isentropic 
stagnation pressure, all for a positive increase in z. 
i. for subsonic speeds 
ii. for supersonic speeds 

b. Is choking possible for this type of flow?  Justify your answer. 
 
 

SOLUTION: 
 
Determine the working equations for this flow by applying the basic laws, in differential form, to the 
following control volume.  Assume the flow is steady, 1D, adiabatic, and frictionless.  Also assume that the 
fluid is a perfect gas and that the gravitational acceleration is a constant. 
 
 
 
 
 
 
 
 
Conservation of mass: 

rel
CV CS

0d dV d
dt

ρ ρ+ ⋅ =∫ ∫ u Α  

where 

CV

0d dV
dt

ρ =∫   (steady flow) 

( ) ( ) ( ) ( )rel
CS

d VA VA d VA d VAρ ρ ρ ρ ρ⋅ = − + + =⎡ ⎤⎣ ⎦∫ u Α  (1) 

Substitute and simplify. 
( ) 0d VAρ =  

0d dV
V

ρ
ρ

+ =   (Note that A = constant.) (2) 

 

z 

dz 
g 
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Linear momentum equation in the z-direction: 

( )rel , ,
CV CS

z z B z S z
d u dV u d F F
dt

ρ ρ+ ⋅ = +∫ ∫ u Α  

where 

CV

0z
d u dV
dt

ρ =∫   (steady flow) 

    
ρurel ⋅dA

CS
∫ = − !mV + !mV + d !mV( )⎡⎣ ⎤⎦ = !mdV = ρVAdV  (3) 

,B zF Adzgρ= −  (4) 

( ) ( ) ( ),S zF pA pA d pA Adp= − + = −⎡ ⎤⎣ ⎦   (Note that A = constant.) 

 
Substitute and simplify. 

VAdV Adzg Adpρ ρ= − −  (5) 
0dp VdV gdzρ ρ+ + =  

 
Conservation of energy: 

    

d
dt

eρ dV
CV
∫ + h0 ρurel ⋅dA( )

CS
∫ = !Qinto CV + !Won CV  

where 

CV

0d e dV
dt

ρ =∫   (steady flow) 

    
h0 ρurel ⋅dA( )

CS
∫ = − !mh0 + !mh0 + d !mh0( )⎡⎣ ⎤⎦ = !mdh0 = ρVAdh0  (6) 

   
!Qinto CV = 0   (adiabatic)  

   
!Won CV = 0   (no other work besides that due to pressure) 

 
Substitute and simplify. 

0 0VAdhρ =  (7) 

( )21
0 2 0dh d h V gz= + + =  (8) 

0dh VdV gdz+ + =  (9) 
 

Thermal equation of state for an ideal gas (the ideal gas law): 
p RTρ=  (10) 

dp d dT
p T

ρ
ρ

= +  (11) 

 
Caloric equation of state for an ideal gas: 

Pdh c dT=  (12) 
 
Speed of sound for an ideal gas: 

c RTγ=  (13) 
1
2

dc dT
c T

=  (14) 
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Mach number for an ideal gas: 

Ma V V
c RTγ

= =  (15) 

( )Ma 1
Ma 2
d dV dT

V T
= −  (16) 

 
Adiabatic stagnation temperature for a perfect gas: 

0 0pdh c dT=    (from Eq. (12)) (17) 

0 0dT∴ =   (since dh0 = 0 from Eq. (8)) (18) 

Note that 21
0 2P Pc T c T V= +  shouldn’t be used since it doesn’t include elevation effects. 

 
Isentropic stagnation pressure for a perfect gas: 

1
02 02

01 01

p T
p T

γ
γ −⎛ ⎞

= ⎜ ⎟
⎝ ⎠

  (the flow is isentropic) (19) 

Since T0 = constant, p0 = constant and: 
0 0dp =  (20) 

Note that ( ) 11 2
0 21 Map p

γ
γγ −−= +  shouldn’t be used since it doesn’t include elevation effects. 

 
 

Summarize the previously derived equations. 

0d dV
V

ρ
ρ

+ =  (21) 

dp VdV gdzρ ρ+ = −  (22) 
dh VdV gdz+ = −  (23) 

0dp d dT
p T

ρ
ρ

− − =  (24) 

0Pdh c dT− =  (25) 
1 0
2

dc dT
c T
− =  (26) 

( )Ma 1 0
Ma 2
d dV dT

V T
− + =  (27) 

0 0dT =  (28) 

0 0dp =  (29) 
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In the previous equations we observe that there are six equations with six unknowns (dρ, dV, dp, dT, dh, 
d(Ma)).  Note that dz will be considered a known quantity since it will be the quantity that we will vary.  
Now combine the previous equations so that they are all in terms of dz. 

 
From Eq. (21): 

d dV
V

ρ
ρ

= −  (30) 

 
From Eq. (22): 

2dp V dV g dz
p p V p

ρ ρ+ = −   but from the ideal gas law:  p/ρ = RT 

2 2

2
dp V dV V gdz
p RT V RT V

γ γ
γ γ

+ = −   but Ma = V/(γRT)1/2 for an ideal gas 

2 2
2Ma Madp dV gdz

p V V
γ γ= − −  (31) 

 
Combining Eqs. (23) and (25) gives: 

Pc dT VdV gdz+ = −  
2 1

P P

dT V dV gdz
T c T V c T

+ = −   but cP = γR/(γ-1) for an ideal gas 

( ) ( )
2 2

21 1dT V dV V gdz
T RT V RT V

γ γ
γ γ

= − − − −   but Ma = V/(γRT)1/2 for an ideal gas 

( ) ( )2 2
21 Ma 1 MadT dV gdz

T V V
γ γ= − + −  (32) 

 
Substitute Eqs. (30) - (32) into Eqn. (24) and simplify. 

( ) ( )2 2 2 2
2 2Ma Ma 1 Ma 1 Ma 0dV gdz dV dV gdz

V V VV V
γ γ γ γ⎡ ⎤ ⎡ ⎤ ⎡ ⎤− − − − − − + − =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

( )2 2
21 Ma Ma 0dV gdz

V V
− − =  

2

2 2
Ma
1 Ma

dV gdz
V V

⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠
 (33) 

 
Now combine Eq. (33) with Eq. (30). 

2

2 2
Ma
1 Ma

d dV gdz
V V

ρ
ρ

⎛ ⎞⎛ ⎞= − = −⎜ ⎟⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠
 (34) 

 
Combine Eq. (33) with Eq. (31). 

2
2 2

2 2 2
MaMa Ma
1 Ma

dp gdz gdz
p V V

γ γ
⎛ ⎞

= − −⎜ ⎟⎜ ⎟−⎝ ⎠
 

2
2

2 2
MaMa 1
1 Ma

dp gdz
p V

γ
⎡ ⎤⎛ ⎞

= − +⎢ ⎥⎜ ⎟⎜ ⎟−⎢ ⎥⎝ ⎠⎣ ⎦
 

2

2 2
Ma
1 Ma

dp gdz
p V

γ
⎛ ⎞⎛ ⎞= − ⎜ ⎟⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠

 (35) 
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Combine Eqs. (33) and (32). 

( ) ( )
2

2 2
2 2 2

Ma1 Ma 1 Ma
1 Ma

dT gdz gdz
T V V

γ γ
⎛ ⎞

= − + −⎜ ⎟⎜ ⎟−⎝ ⎠
 

( )
2

2
2 2

Ma1 Ma 1
1 Ma

dT gdz
T V

γ
⎛ ⎞

= − +⎜ ⎟⎜ ⎟−⎝ ⎠
 

( )
2

2 2
Ma1
1 Ma

dT gdz
T V

γ
⎛ ⎞⎛ ⎞= − ⎜ ⎟⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠

 (36) 

 
Combining Eqs. (36) and (26) gives: 

2

2 2
1 1 Ma
2 2 1 Ma

dc dT gdz
c T V

γ ⎛ ⎞− ⎛ ⎞= = ⎜ ⎟⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠
 (37) 

 
Combine Eqn. (33), (36), and (27). 

( ) ( )
2 2

2 2 2 2

Ma Ma 1 Ma1 0
Ma 21 Ma 1 Ma
d gdz gdz

V V
γ

⎡ ⎤⎡ ⎤ ⎛ ⎞
− + − =⎢ ⎥⎜ ⎟⎢ ⎥ ⎜ ⎟− −⎢ ⎥⎣ ⎦ ⎝ ⎠⎣ ⎦

 

( ) ( )
2 2

2 2 2

Ma Ma 1 Ma1
Ma 21 Ma 1 Ma
d gdz

V
γ

⎡ ⎤⎛ ⎞
= + −⎢ ⎥⎜ ⎟⎜ ⎟− −⎢ ⎥⎝ ⎠⎣ ⎦

 

( ) 2

2 2

Ma 1 Ma
Ma 2 1 Ma
d gdz

V
γ ⎛ ⎞+ ⎛ ⎞= ⎜ ⎟⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠

 (38)  
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Summarizing the results: 
2

2 2
Ma
1 Ma

dV gdz
V V

⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠
 (39) 

2

2 2
Ma
1 Ma

d dV gdz
V V

ρ
ρ

⎛ ⎞⎛ ⎞= − = −⎜ ⎟⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠
 (40) 

2

2 2
Ma
1 Ma

dp gdz
p V

γ
⎛ ⎞⎛ ⎞= − ⎜ ⎟⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠

 (41) 

( )
2

2 2
Ma1
1 Ma

dT gdz
T V

γ
⎛ ⎞⎛ ⎞= − ⎜ ⎟⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠

 (42) 

2

2 2
1 1 Ma
2 2 1 Ma

dc dT gdz
c T V

γ ⎛ ⎞− ⎛ ⎞= = ⎜ ⎟⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠
 (43) 

( ) 2

2 2

Ma 1 Ma
Ma 2 1 Ma
d gdz

V
γ ⎛ ⎞+ ⎛ ⎞= ⎜ ⎟⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠

 (44) 

0 0dT =  (45) 

0 0dp =  (46) 
 

 
Examining Eqs. (39) - (44) (and noting that γ > 1) indicates that: 
 

 Ma < 1 Ma > 1 
 dz < 0 dz > 0 dz < 0 dz > 0 

dρ  + - - + 
dV - + + - 
dp + - - + 
dT + - - + 
dh + - - + 
dc + - - + 

d(Ma) - + + - 
dT0 0 0 0 0 
dp0 0 0 0 0 

 
Choking is possible for this flow since the Mach number approaches one for both subsonic and supersonic 
flows (dz > 0).  
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13. Oblique Shock Waves 
 
An oblique shock wave is a shock wave that forms at an angle with respect to the incoming flow (note that 
normal shock waves are a special case of an oblique shock wave).  As with normal shock waves, the flow 
properties abruptly change when passing through an oblique shock.  In addition, the flow is turned through 
the shock as shown in the figure below.   
 
 
 
 
 
 
 
 
We’ll refer to ε as the shock angle (the angle of the shock with respect to the upstream velocity) and δ as 
the flow turning (or deflection) angle. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The working equations for oblique shock waves can be determined by analyzing a very thin control volume 
that straddles the shock wave (an approach identical to what we used to analyze normal shock waves).  
We’ll also break the upstream and downstream velocities into components that are normal and tangential to 
the shock wave. 
 
 
 
 
 
 
 
 
COM: 

1 1 2 2N NV Vρ ρ=    (207) 
 
LME: 

N-dir: 2 2
2 2 1 1 1 2N NV V p pρ ρ− = −    (208) 

T-dir:    !mVT 2 − !mVT1 = 0   ⇒    VT 2 =VT1 =VT   (209) 
(The tangential velocity components on either side of the wave are equal!) 
 
COE: 

2 2 2 21 1 1 1
1 1 2 2 1 1 2 22 2 2 2      N Nh V h V h V h V+ = + ⇒ + = +    (since VT1 = VT2) (210) 

   

p1, ρ1, T1 

V1 
V2 

δ 

ε 

p1, ρ1, T1 

p2, ρ2, T2 

 
 

V1 
V2 δ 

ε 

ε 
VN1 VT1 

VT2 
VN2 

ε−δ 

p2, ρ2, T2 
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2nd Law: 
2 1s s>   (The large gradients within a shock wave result in an irreversible process.) (211) 

 
Equations of state for a perfect gas: 

p RTρ=  (212) 

ph c T=  (213) 
 
For an ideal gas: 

Ma V
RTγ

=  (214) 

( )1
2

0

11 Ma
2

p
p

γ
γγ −−⎛ ⎞= +⎜ ⎟⎝ ⎠

 (215) 

1
2

0

11 Ma
2

T
T

γ −−⎛ ⎞= +⎜ ⎟⎝ ⎠
 (216) 

 
From geometry: 

2 2 2
1 1
2 2 2
2 2

N T

N T

V V V

V V V

= +

= +
 (217) 

( )
( )

1 1

2 2

1 2

sin

sin

cos cos

N

N

T

V V
V V

V V V

ε
ε δ

ε ε δ

=

= −

= = −

   (218) 
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Combining the previous equations and, after much simplifying, we have: 
1 1Ma Ma sinN ε=  (219) 

( )2 2Ma Ma sinN ε δ= −  (220) 

( )
( )
2
12

2 2
1

1 Ma 2
Ma

2 Ma 1
N

N
N

γ
γ γ
− +

=
− −

 (221) 

 
22
1

1

2 1Ma
1 1N

p
p

γ γ
γ γ

−= −
+ +

 (222) 

 

( )
( )
( )

2
112
2

1 2 1

1 Matan
tan 2 1 Ma

NN

N N

V
V

γρ ε
ρ ε δ γ

+
= = =

− + −
 (223) 

 

( ) ( )
( )

2
122

1 2
1 N1

2 Ma 1
2 1 Ma

1 Ma
N

N
T
T

γ γ
γ

γ

− −⎡ ⎤= + −⎣ ⎦ ⎡ ⎤+⎣ ⎦
 (224) 

 

( ) ( )
2

2
1 1

sin 2 1
sin 11 MaN

V
V

ε γ
ε δ γγ

⎡ ⎤−= +⎢ ⎥
− ++⎢ ⎥⎣ ⎦

 (225) 

 

( )
( )

( )

( )

( )
1

1 12
102
2 2

01 1 1

1 Ma 1
2 1 Ma 2 Ma 1

N

N N

p
p

γ
γ γγ γ

γ γ γ

− −⎡ ⎤ ⎡ ⎤+ += ⎢ ⎥ ⎢ ⎥
+ − − −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (226) 

 
02

01
1

T
T

=  (227) 

 

( ) 2
2

tan 2 1 1
tan 1 2MaN

ε γ
ε δ γ

⎡ ⎤−= +⎢ ⎥
− + ⎢ ⎥⎣ ⎦

 (228) 

 
2
1

2
1

Ma1 1 1 tan
tan 2 Ma 1N

γ ε
δ

⎡ ⎤+= −⎢ ⎥
−⎢ ⎥⎣ ⎦

   (229) 
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Notes: 
1. Equations (221)-(227) are the same relations as for a normal shock wave except that the normal 

component of the velocity is used.  Thus, we can use normal shock relations to determine flow 
properties across an oblique shock as long as we use the normal component of the velocity. 

 
2. There are two free parameters in the Eqs. (221) - (229).  These typically are the incoming Mach 

number, Ma1, and the flow turning angle, δ.  Note that the flow is always turned toward the shock 
wave. 

 
3. Analysis using the 2nd Law (refer to the notes on normal shock waves) states that an oblique shock will 

only form if the incoming normal Mach number is greater than or equal to one, i.e., MaN1 ≥ 1.  The 
downstream normal Mach number will be less than one, i.e., MaN2 ≤ 1.  Note that the total downstream 
Mach number, Ma2, may not be less than one due to the tangential velocity component. 

 
4. Based on the previous note, the minimum value for ε (the angle of the shock to the incoming flow) is 

sin-1(1/Ma1) which corresponds to a Mach wave (i.e., a sound wave).  The maximum value for ε is 90° 
corresponding to a normal shock wave.  For both of these shock angle limits we find (from Eq. (229)) 
that the turning angle of the flow is δ = 0.  Note that δ will have a maximum value since it is zero for 
εmin = sin-1(1/Ma1), is positive for larger values of ε, then returns to zero for εmax = 90°.  We will 
discuss this maximum value for δ in a later note. 
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5. Since the equations relating the incoming Mach number, Ma1, the wave angle, ε, and the turning angle, 
δ, are complicated, it’s often more instructive and useful to present the data in graphical form rather 
than in equation form.   

 
The following figure plots the wave angle, ε, as a function of the incoming Mach number, Ma1, for 
different values of the turning angle, δ, for γ=1.4 using Eq. (229) [plot from Zucrow and Hoffman, Gas 
Dynamics:  Vol. I, Wiley].  The lines corresponding to the maximum turning angle, δmax, and where the 
downstream flow is sonic, Ma2 = 1, are also shown in the figure.  Note that for a given Ma1, there are two 
values for ε, the larger corresponding to a “strong” shock with Ma2 < 1 and the smaller ε corresponding to a 
“weak” shock with Ma2 > 1.  We’ll discuss these observations in greater detail in a subsequent note. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

strong shocks (Ma2 < 1) 

weak shocks (Ma2 > 1) 

weak shocks (Ma2 < 1) 

maximum turning 
angle, δmax 
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The following figure plots the downstream Mach number, Ma2, as a function of the incoming Mach 
number, Ma1, for different values of the turning angle, δ, for γ=1.4 using Eqs. (228) and (229) [plot from 
Zucrow and Hoffman, Gas Dynamics:  Vol. I, Wiley].  The line corresponding to the maximum turning 
angle, δmax, is also shown in the figure.  
 

 

weak shocks 
(Ma2 > 1) 

strong shocks 
(Ma2 < 1) 
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6. The plots shown in Note 5 indicate that there are two possible wave angles, ε, corresponding to a 
particular incoming Mach number, Ma1, and turning angle, δ.   The smaller value of ε corresponds to a 
“weak” oblique shock and the larger value corresponds to a “strong” oblique shock.  Flow downstream 
of the strong shock is always subsonic while the flow downstream of the weak shock is usually 
supersonic, except for a region where δ is close to δmax. 

 
 
 
 
 
 
 
 
 

 
Both types of shocks occur in practice with the weak shock being more prevalent.  If there is a 
blockage or a high-pressure condition downstream of the shock, the strong shock solution will 
typically occur (e.g., at the inlet of a supersonic jet engine diffuser where the internal flow is at a high 
pressure). For flows occurring in the atmosphere where the pressure far downstream of the deflection 
can only be infinitesimally different from the pressure far upstream of the deflection, the weak shock 
will occur (e.g., supersonic flow over the surface of an aircraft).   To further complicate matters, since 
the governing equations of the fluid motion are nonlinear, it is possible to have multiple, stable flow 
solutions.  Which solution is observed will depend on the path taken to get to the solution.  The 
hysteresis associated with the starting/overspeeding of a supersonic jet engine diffuser is a good 
example of a flow situation having multiple, stable solutions (e.g. operating at the design speed with a 
shock in front of the inlet, or after overspeeding where the shock has been swallowed).  The solution 
that occurs in this flow situation depends on the path taken to get to that solution.  If no other 
information is available, it is generally reasonable to assume that the weak shock occurs.   

 
7. The figures in Note 5 also indicate that there is a maximum turning angle, δmax, that can be achieved 

through an oblique shock (this maximum turning angle separates the weak and strong shock solutions).  
It can be shown that the maximum wave angle corresponding to the maximum turning angle for a 
given upstream Mach number is (refer to Ferri, A., Elements of Aerodynamics of Supersonic Flow, 
Macmillan, NY): 

( )2 2 2 4
max 1 1 12

1

1 1 1 1
sin Ma 1 1 1 Ma Ma

4 2 16Ma
γ γ γε γ

γ
⎧ ⎫+ − +⎪ ⎪⎛ ⎞= − + + + +⎨ ⎬⎜ ⎟⎝ ⎠⎪ ⎪⎩ ⎭

 (230) 

The corresponding maximum turning angle may be found using Eqs. (219) and  (229). 

Ma1 

δ 

Ma2,strong < 1 
Ma2,weak usually > 1 

εweak 

εstrong 
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The following figure plots the maximum turning angle, δmax, and the wave angle corresponding to this 
maximum turning angle, εmax, as a function of the incoming Mach number, Ma1 [plot from Zucrow and 
Hoffman, Gas Dynamics:  Vol. I, Wiley].   
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What happens if the flow is deflected by an angle larger than δmax?  A curved, detached shock wave 
occurs with a strong shock below the sonic line and a weak shock above sonic line.  Analysis of curved 
shock waves is very difficult due to the existence of subsonic, transonic, and supersonic flow, each of 
which has very different governing differential equations.  In addition, the flow downstream of the 
shock system will have curved streamlines and be irrotational (we’ll discuss this in a different set of 
notes when investigating Crocco’s Theorem). 

 
 
 
 
 
 
   
 
 
 

Note that δmax increases with increasing upstream Mach number.  Hence, it’s possible that a flow with 
a detached, curved shock at a low Mach number may produce an attached, oblique shock at larger 
Mach numbers.   

Ma2 = 1 

Ma2 > 1 

Ma2 < 1 

Ma1 > 1 

weak 

strong 

δ > δmax 

Ma1 > 1 δ > δmax Ma’1 > Ma1 
δ < δmax 
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  obliqueshock_01 
 

Page 1 of 2 
 

Air flowing with a Mach number of 2.5 with a pressure of 60 kPa (abs) and a temperature of 253 K passes 
over a wedge which turns the flow through an angle of 4° leading to the generation of an oblique shock 
wave. This oblique shock wave impinges on a flat wall, which is parallel to the flow upstream of the 
wedge, and is “reflected” from it.  Find the pressure and velocity behind the reflected shock wave. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Use the oblique shock relations to determine the conditions in region 2. 

Ma1 = 2.5, δ12 = 4° ⇒ ε12 = 26.6°, Ma2 = 2.333, p2/p1 = 1.2961, T2/T1 = 1.0775 (1) 
(Can use the normal shock relations with Ma1N = Ma1sinε12 = 1.12 to determine the property ratios 
across the shock.) 
 
 
 
 
 
 
 
 

Ma1=2.5 
p1=60 kPa (abs) 
T1=253 K 

4° 

Ma1=2.5 
p1=60 kPa (abs) 
T1=253 K 

4° 

2 
3 

1 

ε12 

δ12 

2 
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  obliqueshock_01 
 

Page 2 of 2 
 

Use the oblique shock relations to determine the conditions in region 3. 
Ma2 = 2.333, δ23 = 4° ⇒ ε23 = 28.5°, Ma3 = 2.17, p3/p2 = 1.2787, T3/T2 = 1.0732 (2) 

(Ma2N = Ma2sinε23 = 1.113) 
 
 
 
 
 
 
 

Thus, 

3 2
3 1

2 1

p pp p
p p

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

  ⇒  p3 = 99.4 kPa (abs) (3) 

3 2
3 1

2 1

T TT T
T T

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

  ⇒  T3 = 293 K (4) 

3 3 3MaV RTγ=   ⇒ V3 = 745 m/s (5) 
 
 

 
 

2 

3 

ε23 

δ23 

 1513 

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

C. Wassgren 1489 2024-02-01



  obliqueshock_02 
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Air is flowing down a wide channel with a Mach number of 3, pressure of 30 kPa (abs), and a temperature 
of 263 K.  The upper wall of this channel turns through an angle of 4° towards the flow while the lower 
wall turns through an angle of 3° towards the flow leading to the generation of two oblique shock waves 
which intersect each other.  Find the pressure and flow direction downstream of the shock intersection. 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
 
Consider the flow in region 2.   
 
 
 
 
 
 
 
Using the oblique shock relations: 

Ma1 = 3, δ12 = 4°  ⇒  ε12 = 22.4°, Ma2 = 2.799, p2/p1 = 1.352 (1) 
 
Now consider the flow in region 3. 
 
 
 
 
 
 
 
Using the oblique shock relations: 

Ma1 = 3, δ13 = 3°  ⇒  ε13 = 21.6°, Ma3 = 2.848, p3/p1 = 1.256 (2) 
 

Ma1=3 
p1=30 kPa 
T1=263 K 3° 

4° 

1 
2 

3 

4 

5 

δ12 
ε12 

1 

2 

δ13 ε13 

1 

3 

Ma1=3 
p1=30 kPa (abs) 
T1=263 K 3° 

4° 
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Finally, consider flow in regions 4 and 5.  Note that since the flow in regions 4 and 5 will be parallel, the 
flow angle from the horizontal, θ, will be the same for both regions. 
 
 
 
 
 
 
 
 
 
From geometry: 

12 24δ δ θ= +   ⇒  24 12δ δ θ= −  (3) 

13 35δ δ θ= −   ⇒  35 13δ δ θ= +  (4) 
 

Use an iterative approach to determine θ.  Recall that the pressure in regions 4 and 5 must be identical. 
1. Assume a value for θ. 
2. Determine Ma4, ε24, and p4/p2 using the oblique shock relations and Ma2 = 2.799 and δ24 = δ12 – θ 

where δ12 = 4°. 
3. Determine Ma5, ε35, and p5/p3 using the oblique shock relations and Ma3 = 2.848 and δ35 = δ13 + θ 

where δ13 = 3°. 
4. Determine: 

4 4 2

1 2 1

p p p
p p p

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

  where p2/p1 = 1.352 (5) 

5 5 3

1 3 1

p p p
p p p

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
  where p3/p1 = 1.256 (6) 

5. Is p4/p1 = p5/p1?  Yes ⇒ end.  No ⇒  If p4/p1 > p5/p1, then the assumed value for θ was too small.  
If p4/p1 < p5/p1, then the assumed value for θ was too large.  Repeat the procedure starting at step 
1.  

 
The following table shows a few trials starting with θ = -1°. 

θ  
[deg] 

p4/p2 p5/p3 p4/p1 p5/p1 

-1 1.4234 1.1577 1.924 1.454 
0 1.3291 1.2437 1.797 1.562 
1 1.2398 1.3347 1.676 1.676 

   
∴θ = 1°  and p4 = p5 = 50.3 kPa (abs)  (using p4/p1 = p5/p1 = 1.676 and p1 = 30 kPa) 
Ma4 = 2.658, δ24 = 3°, ε24 = 23.1° 
Ma5 = 2.658, δ35 = 4°, ε35 = 23.5° 
 

 

δ24 

ε24 

2 4 3 

θ 
θ 

5 
δ35 

ε35 

δ12 

δ13 
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Air at a pressure of 60 kPa and a temperature of 253 K flows at a Mach number of 2.5 over a wedge, 
leading to the generation of an oblique shock wave.  This oblique shock wave impinges on a wall which 
turns away from the flow by 4° exactly at the point where the oblique shock wave impinges on it.  If the 
leading edge of the wedge is 1 m above the wall, how far behind this leading edge would the change in wall 
angle have to occur? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Using the oblique shock relations, determine the flow conditions in region 2. 

Ma1 = 2.5, δ12 = 4°  ⇒    Ma2 = 2.333, ε12 = 26.6° (1) 
 

From geometry: 

12
12

tan
tan

h hL
L

ε
ε

= ⇒ =  (2) 

1.997 mL∴ =  
using h = 1 m. 

Ma1 = 2.5 
p1 = 60 kPa 
T1 = 253 K 

4° 

1 m 

L = ? 

4° 

Ma1 = 2.5 
p1 = 60 kPa 
T1 = 253 K 

4° 

h = 1 m 

L = ? 

4° 

1 2 

ε12 
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Air, assumed to be a perfect gas, flows from the storage tanks of a blow-down wind tunnel where the 
temperature and pressure are 290 K and 7000 kPa (abs).  A symmetrical wedge having a half-angle of 15° 
is placed in the test section where the Mach number is 3.0.  Calculate the following properties on the 
surface of the wedge:  
a. temperature, 
b. pressure, 
c. Mach number, 
d. the oblique shock angle with respect to the incoming flow, and 
e. the minimum Mach number for which the shock wave will remain attached to the wedge.   
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
Apply the oblique shock relations across the shock wave. 

Ma1 = 3.00, δ12 = 15°   ⇒   ε12 = 32.24°;  Ma2 = 2.255;  p2/p1 = 2.8216;  T2/T1 = 1.3883 (1) 
 

The pressure and temperature downstream of the shock are: 

2
2 1

1

pp p
p

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

  ⇒  p2 = 537.8 kPa (abs) (2) 

where 
1

2
1 01 1

11 Ma
2

p p
γ
γγ −−⎛ ⎞= +⎜ ⎟⎝ ⎠

  ⇒  p1 = 190.6 kPa (abs) (3) 

and 

2
2 1

1

TT T
T

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

  ⇒  T2 = 143.8 K (4) 

where 
1

2
1 01 1

11 Ma
2

T T γ −−⎛ ⎞= +⎜ ⎟⎝ ⎠
  ⇒  T1 = 103.6 K (5) 

 

15° 

δ12 

ε12 
1 

2 
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The minimum Mach number for which the oblique shock wave will remain attached when δmax = 15° may 
be found from the relation: 

1 11 2
max

2 1
tan tanN N

N N

V V
V V

δ − −⎛ ⎞ ⎛ ⎞
= −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 (6) 

or, more conveniently, but less accurately, from a plot of the maximum turning angle as a function of the 
upstream Mach number (e.g., from Fig. 7.20 in Zucrow and Hoffman as shown below). 

δmax = 15°  ⇒  Ma1,min = 1.6 (7) 
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Air, assumed to be a perfect gas, flows from the storage tanks of a blow-down wind tunnel where the 
temperature and pressure are 290 K and 7000 kPa (abs).  A symmetrical wedge having a half-angle of 15° 
is placed in the test section.  An oblique shock forms on the wedge at an angle of 30° with respect to the 
incoming flow.  Calculate the following properties on the surface of the wedge:  
a. the free-stream values of the Mach number, pressure, and temperature, and  
b. the same flow properties on the surface of the wedge. 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
Apply the oblique shock relations across the shock wave. 

ε12 = 30°   , δ12 = 15°   ⇒   Ma1 = 3.348;  Ma2 = 2.502;  p2/p1 = 3.1023;  T2/T1 = 1.4397 (1) 
 

The pressure and temperature downstream of the shock are: 

2
2 1

1

pp p
p

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

  ⇒  p2 = 354 kPa (abs) (2) 

where 
1

2
1 01 1

11 Ma
2

p p
γ
γγ −−⎛ ⎞= +⎜ ⎟⎝ ⎠

  ⇒  p1 = 114.1 kPa (abs) (3) 

and 

2
2 1

1

TT T
T

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

  ⇒  T2 = 128.9 K (4) 

where 
1

2
1 01 1

11 Ma
2

T T γ −−⎛ ⎞= +⎜ ⎟⎝ ⎠
  ⇒  T1 = 89.5 K (5) 

 

15° 

δ12 

ε12 
1 

2 
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A two-dimensional supersonic inlet comprises two 15° wedges placed symmetrically on the top and bottom 
surfaces of a rectangular flow passage.  An oblique shock wave propagates into the inlet from the leading 
edge of each wedge.  Calculate the flow Mach number, pressure, and temperature behind the initial shock 
waves and the transmitted shock waves if the incoming Mach number is 3.0.  Assume that the incoming 
flow is air with a pressure of 101.35 kPa (abs) and a temperature of 300 K.  
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Use the oblique shock relations to determine the conditions in each region. 

Ma1 = 3.0, δ12 = 15° ⇒ ε12 = 32.24°, Ma2 = 2.25; p2/p1 = 2.822; T2/T1 = 1.388 (1) 
p1 = 101.35 kPa (abs) ⇒ p2 = 286.0 kPa (abs) (2) 
T1 = 300 K ⇒ T2 = 416.4 K (3) 
 
Ma2 = 2.25, δ23 = 15° ⇒ ε23 = 40.43°, Ma3 = 1.67; p3/p2 = 2.317; T3/T2 = 1.293 (4) 
p2 = 286.0 kPa (abs) ⇒ p3 = 662.7 kPa (abs) (5) 
T2 = 416.4 K ⇒ T3 = 538.4 K (6) 
 
 
 
 

 
 

15° 

15° 

15° 

15° 

1 2 

3 

δ12 

δ23 

ε23 ε12 Due to symmetry, the flow in the 
upper and lower halves will be 
identical. 
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In Example 7.17 of Zucrow & Hoffman, a multiple oblique shock wave inlet is described where the total 
turning angle of 18° is accomplished by three flow deflection angles of 6° each, and the corresponding 
stagnation pressure recovery is ηp=0.97804 where ηp=p0,final/p0,initial.  Determine the stagnation pressure 
recovery of a multiple oblique shock wave inlet operating at the same conditions for two equal flow 
deflection angles of 9° each. 
 
 
 
 
 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
Use the oblique shock relations across each shock wave. 

Ma1 = 3.000, δ12 = 9° ⇒ ε12 = 26.49°;  Ma2 = 2.554;  p02/p01 = 0.9722 (1) 
Ma2 = 2.554, δ23 = 9° ⇒ ε23 = 30.34°;  Ma3 = 2.174;  p03/p02 = 0.9811 (2) 
 
The stagnation pressure recovery is then: 

03 03 02

01 02 01
P

p p p
p p p

η
⎛ ⎞⎛ ⎞

= = ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

  ⇒  ηP = 0.9538 (3) 

 
Thus, turning the flow through three 6° turns rather than two 9° turns results in a stagnation pressure 
recovery increase of approximately 2.5%. 

9° 

9° 

9° 

9° 1 2 
3 

Ma = 3.0 

Ma1 = 3.0 
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An aircraft is to cruise at a Mach number of 3.  The stagnation pressure in the flow ahead of the aircraft is 
400 kPa.  Compare the stagnation pressure recovery for three possible intake scenarios. 
a. An intake that involves a normal shock in the free stream ahead of the intake followed by an isentropic 

deceleration of the subsonic flow behind the shock wave to an essentially zero velocity. 
b. An oblique shock wave diffuser in which the air flows through an oblique shock wave and then an 

isentropic deceleration of the subsonic flow behind the normal shock wave to an essentially zero 
velocity. 

c. An ideal shockless convergent-divergent diffuser in which the air is isentropically brought to an 
essentially zero velocity.  
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
Consider first the normal shock wave case.  Using the normal shock relations across the shock wave: 

Ma1 = 3.0 ⇒ p02/p01 = 0.3283 (1) 
 

Now consider the oblique / normal shock wave case.  From the oblique shock relations: 
Ma1 = 3.0, δ12 = 15° ⇒ Ma2 = 2.255, p02/p01 = 0.8950 (2) 

Now apply the normal shock relations: 
Ma2 = 2.255 ⇒ p03/p02 = 0.6033 (3) 
The stagnation pressure ratio drop across both shocks is: 

03 03 02

01 02 01

p p p
p p p

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

   ⇒ p03/p01 = 0.5400 (4) 

 
For the isentropic case, the stagnation pressure doesn’t change. 
 
Thus, we see that isentropic deceleration is the most efficient deceleration method, using an oblique shock 
with a subsequent normal shock is the next efficient method, and the least efficient is deceleration using a 
single normal shock. 

Ma=3 
p=400 kPa isentropic 

deceleration 

Ma=3 
p=400 kPa 

15° 

isentropic 
deceleration 

Ma=3 
p=400 kPa 

isentropic 
deceleration 
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A thin, flat plate airfoil at an angle of attack of 20° is close to the ground and encounters an oncoming air 
stream with a Mach number of 5.  The leading edge of the airfoil is a distance, h, from the ground and the 
chord length of the foil is denoted by c: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a. Determine the smallest value of the ratio h/c for which the lift and drag on the airfoil will not be 

affected by the presence of the ground. 
b. What is the airfoil’s lift coefficient (based on the chord length) for these conditions? 
c. What is the airfoil’s drag coefficient (based on the chord length) for these conditions? 
d. If h/c is slightly less than the critical value found in part (a), will the drag coefficient be larger than, 

equal to, or less than the value found in part (c)?  Explain how you arrived at your answer. 
 
 
SOLUTION: 
 
For the ground not to affect the lift and drag, the reflected oblique shock must not impinge on the airfoil. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Using the oblique shock relations: 

Ma1 = 5.0, δ12 = α = 20°  ⇒   Ma2  = 3.022 (1) 
 ε12 = 29.80° 
 p2/p1 = 7.038 
 
 
Ma2 = 3.022, δ23 = α = 20°  ⇒   Ma3 = 2.008 (2) 
 ε23 = 37.59° 
 p3/p2 = 3.799 
 

20° 

Ma=5 c 

h 

α 

c 

h 

1 
2 

3 
δ23 

δ12 

4 
1 

ε12 ε23 

x 
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From geometry: 

12
12

tan
tan

hh cx
cx

ε
ε

= ⇒ =  (3) 

( )23 23

sinsin
tan

cos cos

hh c c
xc x
c

ααε δ
α α

−−− = =
− −

 (4) 

Combining Eqs. (3) and (4) gives: 

( )23 23

12

sin
tan

cos
tan

h
c

h
c

α
ε δ

α
ε

−
− =

−

 (5) 

( )
( )

23 23

23 23

12

tan cos sin
tan

1
tan

h
c

ε δ α α
ε δ

ε

− +
∴ =

−
+

 (6) 

Using the given values, h/c|min = 0.412. 
 
The lift and drag coefficients are given by. 

2 4
1

1 12 4
2 2 21 1 1

1 1 1 1 1 1 12 2 2

coscos cos
Ma MaL

p pp p pp c p cLc
U c RT c p

αα α
ρ ρ γ γ

⎛ ⎞−⎜ ⎟− ⎝ ⎠≡ = =  (7) 

2 4

1 1
21
12

cos

MaL

p p
p p

c
α

γ

⎛ ⎞−⎜ ⎟⎝ ⎠∴ =  (8) 

2 4
1

1 12 4
2 2 21 1 1

1 1 1 1 1 1 12 2 2

sinsin sin
Ma MaD

p pp p pp c p cDc
U c RT c p

αα α
ρ ρ γ γ

⎛ ⎞−⎜ ⎟− ⎝ ⎠≡ = =  (9) 

2 4

1 1
21
12

sin

MaD

p p
p p

c
α

γ

⎛ ⎞−⎜ ⎟⎝ ⎠∴ =  (10) 

 
The pressure ratio, p4/p1 may be found using Prandtl-Meyer angles and the stagnation pressure ratios. 

Ma1 = 5.0  ⇒  ν1 =  -76.92° (11) 
ν4 = ν1 - 20° =  -96.92°  ⇒  Ma4 = 8.326  (12) 

11 2
44 2

1 2
1 12

1 Ma
1 Ma

p
p

γ
γγ

γ

−−

−

⎛ ⎞+
= ⎜ ⎟+⎝ ⎠

  ⇒  4

1

0.04177
p
p

=  (13) 

Hence, cL = 0.3757, cD = 0.1367. 
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If h/c is less than the value found above, the reflected shock will impinge on the airfoil surface as shown in 
the figure below. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Following the same approach used to derive Eq. (10), the airfoil’s drag coefficient for this case will be: 

 
( ) ( ) 52 4

1 1 1
21
12

1 sin

MaD

pp px x
c p c p p

c
α

γ

⎡ ⎤+ − −⎢ ⎥⎣ ⎦=   where x is defined in the figure. (14) 

The values for p2/p1 and p4/p1 will be the same as previously determined.  The pressure ratio for region 5 
will be larger than that for region 2, i.e., p5/p1> p2/p1, and so the drag coefficient will be larger for h/c < 
h/c|min than for h/c ≥ h/c|min. 

 
 
 
 
 
 

1 

2 

3 

4 
1 

5 

x 
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Air flows in the passage shown in the sketch with an initial Mach number of 2.0.  Determine the maximum 
turning angle, δ, for which three oblique shock waves appear. 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
While there may be other more elegant approaches, the iterative approach given here is crude, but simple. 
 
1. Assume a value of δ. 
2. Determine Ma2 using the oblique shock relations with Ma1 = 2.0 and δ12 = δ.  Note that if δ > δmax for 

Ma1, then assume a new δ with δnew < δold and go to step 2. 
3. Determine Ma3 using the oblique shock relations with Ma2 (from step 2) and δ23 = δ.  Note that if δ > 

δmax for Ma2, then assume a new δ with δnew < δold and go to step 2. 
4. Determine Ma4 using the oblique shock relations with Ma3 (from step 3) and δ34 = δ. 
5. Is the δmax corresponding to Ma4 (from step 3) equal to δ? 

a. If yes, then the iterations are complete. 
b. If δmax < δ, then choose a new δ such that δnew > δold.  Go to step 2. 
c.  If δmax > δ, then choose a new δ such that δnew < δold.  Go to step 2. 
 

After performing the iterations described above: 
δ = 8.8° with Ma1 = 2.0, Ma2

 = 1.68, Ma3 = 1.38, and Ma4
 = 0.94 

δ 

Ma=2.0 

δ 

Ma=2.0 1 2 
3 
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/* 
  soln_obliqueshock_10.c 
  Copyright (C) Carl R. Wassgren, Jr. 
 
  Carl R. Wassgren, Jr. 
  School of Mechanical Engineering 
  585 Purdue Mall 
  Purdue University 
  West Lafayette, IN  47907-2088 
  e-mail:  wassgren@purdue.edu 
  WWW:  http://widget.ecn.purdue.edu/~wassgren 
*/ 
 
# include <stdio.h> 
# include <stdlib.h> 
# include <math.h> 
# include "ObliqueShockRelations.h" 
# define PI (4.0*atan(1.0)) 
 
/* ***** */ 
 
int main(int argc, char **argv) { 
  int flag = 0; 
  double k, Ma1, Ma2, Ma3, Ma4, delta, deltamax; 
 
  // Initialize the variables. 
  k = 1.4;  /* air */ 
  Ma1 = 2.0; 
 
   

// Use a brute force approach to determine delta.  Simply march through increasing 
// values of delta until a solution is found. 

   
  delta = 0.0*PI/180.0;  // Choose a starting point for delta. 
  do { 
    delta += 0.01*PI/180.0; 
    Ma2 = Determine_Ma2_Given_Ma1_And_delta(k, Ma1, delta); 
    if (!isnan(Ma2)) {  
      Ma3 = Determine_Ma2_Given_Ma1_And_delta(k, Ma2, delta); 
      if (!isnan(Ma3)) { 
 deltamax = Determine_deltamax_Given_Ma1(k, Ma3); 
 if (delta >= deltamax) { 
   flag = 1; 
 } 
 Ma4 = Determine_Ma2_Given_Ma1_And_delta(k, Ma3, delta); 
      } 
    } 
  } while (flag == 0); 
   
  printf("(delta, deltamax) = (%.2f, %.2f) deg\n",  
  delta*180.0/PI, deltamax*180.0/PI); 
 
  Ma2 = Determine_Ma2_Given_Ma1_And_delta(k, Ma1, deltamax); 
  Ma3 = Determine_Ma2_Given_Ma1_And_delta(k, Ma2, deltamax); 
  Ma4 = Determine_Ma2_Given_Ma1_And_delta(k, Ma3, deltamax); 
  printf("(Ma1, Ma2, Ma3, Ma4) = (%.2f, %.2f, %.2f, %.2f)\n",  
  Ma1, Ma2, Ma3, Ma4); 
 
  return 0; 
} 
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A uniform supersonic air flow traveling at Mach 2.0 passes over a wedge.  An oblique shock, making an 
angle of 40° with the flow direction, is attached to the wedge for these flow conditions.  If the static 
pressure and temperature in the uniform flow are 5 psia and 0° F, determine the static pressure ant 
temperature behind the wave, the Mach number of the flow passing over the wedge, and the wedge half 
angle. 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
Use the oblique shock relations to determine the pressure and temperature across the shock. 

Ma1N = Ma1 sinε12 = 1.29 ⇒ p2/p1 = 1.775 ⇒ p2 = 8.88 psia (1) 
  T2/T1 = 1.185 ⇒ T2 = 545 °R (2) 
  Ma2N = 0.791   (3) 
 
Ma1 = 2.0, ε12 = 40° ⇒ δ12 = 10°   (4) 
 

2
01 1 1

11 Ma
2

T T γ −⎛ ⎞= +⎜ ⎟⎝ ⎠
  ⇒  T01 = 828 °R   (5) 

2
02 2 2 01

11 Ma
2

T T Tγ −⎛ ⎞= + =⎜ ⎟⎝ ⎠
  ⇒  Ma2 = 1.61   (6) 

 
Alternately, the downstream Mach number can be found using: 

( )2 2 12 12Ma Ma sinN ε δ= −      (7) 

ε12 = 40° 
p1 = 5 psia 
T1 = 0 °F = 460 °R 

Ma1 = 2.0 
δ12 ε12 
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Consider a compression corner with a deflection angle of 28°.  How does the pressure ratio across the 
oblique shock change if the incoming Mach number is doubled from 3 to 6? 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 

Ma1 = 3, δ = 28°  ⇒  p2/p1 = 5.7388  (using the oblique shock relations) (1) 
Ma1 = 6, δ = 28°  ⇒  p2/p1 = 15.8361  (using the oblique shock relations) (2) 

 
Note that: 
 

1

1

2

1 Ma 6

2

1 Ma 3

15.8361 2.7595
5.7388

p
p

p
p

=

=

= =  (3) 

Thus, doubling the upstream Mach number more than doubles the pressure rise, i.e., the oblique shock 
relations are non-linear. 
 

Ma1, p1  

28° 

Ma2, p2  
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Air flowing with a Mach number of 2.5, a pressure of 60 kPa (abs), and a temperature of 253 K passes over 
a wedge which turns the flow through an angle of 4° leading to the generation of an oblique shock wave.  
a. If this oblique shock wave impinges on a flat wall, which is parallel to the flow upstream of the wedge, 

determine the pressure and Mach number behind the reflected shock wave. 
b. If the wedge is 1 m long, what is the minimum height above the wall, hmin, that the wedge must be in 

order to not intersect the reflected shock. 
c. If the reflected shock did intersect with the wedge, what type of shock pattern would appear? 
d. How could we avoid producing the reflected shock? 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
From the oblique shock relations: 

Ma1 = 2.5, δ12 = α = 4°  ⇒ Ma2 =  2.3326 (1) 
 p2/p1 = 1.2961 
 ε12 = 26.61°  
p2 = (p2/p1)p1   ⇒   p2 = 77.78 kPa (2) 

where p1 = 60 kPa. 
 

 
The conditions in region 3 may also be found using the oblique shock relations: 

Ma2 = 2.3326, δ23 = α = 4°  ⇒ Ma3 =  2.1745 (3) 
 p2/p1 =  1.2786 
 ε23 =  28.50°  
 

Ma1=2.5 
p1=60 kPa 
T1=253 K 

4° 

hmin 

1 m 

Ma1=2.5 
p1=60 kPa 
T1=253 K 

α 

hmin 

L 

2 

3 

1 

x 

δ23 

δ12 
ε12 

ε23 
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Trigonometry may be used to determine the minimum height so that the reflected shock does not intersect 
the wedge. 

min
12tan

h
x

ε =  (4) 

The shock between regions 2 and 3 will have a  

( ) min
23 23

tan
tan

h L
L x

αε δ −
− =

−
 (5) 

Substitute Eq. (4) into Eq. (5) and solve for hmin. 

( )
min

min
23 23

min min

12 12

tantan
tan

11
tan tan

h
h L L

h hL
L

ααε δ

ε ε

−−
− = =

− −
 

( ) min min
23 23

12

1tan 1 tan
tan

h h
L L

ε δ α
ε

⎛ ⎞
− − = −⎜ ⎟

⎝ ⎠
 

( ) ( )23 23min
23 23

12

tan
1 tan tan

tan
h
L

ε δ
ε δ α

ε
⎡ ⎤−
+ = − +⎢ ⎥

⎣ ⎦
 

( )
( )

23 23min

23 23

12

tan tan
tan

1
tan

h
L

ε δ α
ε δ

ε

− +
∴ =

−
+

 (6) 

Using the following values: 
ε23 = 28.50° 
δ23 = 4° 
α = 4° 
ε12 = 26.61° 
L = 1 m 
⇒  hmin = 0.28 m 
 

If the height is less than hmin, the reflected shock will reflect off the wedge as another oblique shock (refer 
to the figure below). 
 
 
 
 
 
 
 
 
 
 
The reflected shock may be avoided by expanding the flow by the wedge angle at the intersection point of 
the initial shock wave as shown below. 
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α α α 

α 

 1532 

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

C. Wassgren 1508 2024-02-01



 1533 

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

C. Wassgren 1509 2024-02-01



  obliqueshock_16 

Page 1 of 1 

Air flows at an upstream Mach number of 3 and pressure of 10 psia toward a wedge of total angle 16° as 
shown in the figures below.   
a. If the pointed edge is forward, what will be the pressure at point A?   
b. If the blunt edge is forward, what will be the pressure at point B?   
c. At what total wedge angle will the attached oblique shock in part (a) become a detached, curved 

shock? 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
 
 
 
 
 
 
Use the oblique shock relations to find the pressure in region 2 (pA = p2). 

Ma1 = 3, δ12 = 8°  ⇒  Ma2 = 2.6031, ε12 = 25.6113°, p2/p1 = 1.7953 (1) 
p2 = (p2/p1)p1  ⇒  p2 = pA = 17.953 psia.  (Note that pA is not a stagnation pressure.) (2) 

 
 
Use the normal shock relations to determine the pressure at B. 

Ma1 = 3  ⇒  Ma2 = 0.4752, p2/p1 = 10.3333 (3) 
In addition, 

1
202
2

2

11 Ma
2

p
p

γ
γγ −−⎛ ⎞= +⎜ ⎟⎝ ⎠

   (4) 

02 2
02 1

2 1
B

p pp p p
p p

⎛ ⎞⎛ ⎞
= = ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
   (Note that B is located at a stagnation point from symmetry.) (5) 

 
Using the given data, pB = 120.60 psia. 
 
 
The oblique shock will become detached when δ12 ≥ δmax for Ma1 = 3.  Using Fig. 7.20 from Zucrow and 
Hoffman, δmax ≈ 34°.  Hence, the maximum total wedge angle for maintaining oblique shocks at this Mach 
number will be approximately 68°. 
 

16° 

A 

B 

1 
2 

δ12 = 8° 
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If the Mach number and pressure ahead of the oblique shock waves system shown in the figure are 3 and 50 
kPa (abs), respectively, find the pressure in regions 1 through 5.  Also determine the angle of the slipstream 
with respect to the horizontal. 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
Use the oblique shock relations to determine the conditions in regions 2 and 3. 

Ma1 = 3, δ12 = 9° ⇒ Ma2 = 2.554 (1) 
  ε12 = 26.49° 
  p2/p1 = 1.922 
 
Ma1 = 3, δ13 = 5° ⇒ Ma3 = 2.750 (2) 
  ε23 = 23.13° 
  p3/p1 = 1.454 
 
p2 = (p2/p1)p1 ⇒ p2 = 96.08 kPa    (using p1 = 50 kPa) (3) 
p3 = (p3/p1)p1 ⇒ p3 = 72.70 kPa (4) 
 

Use an iterative approach to determine the conditions in regions 4 and 5. 
 
1. Choose a value for θ (the angle of the flow in regions 4 and 5 with respect to the horizontal). 
2. Determine Ma4, ε24, and p4/p2 using the oblique shock relations with Ma2 = 2.554 and δ24 = δ12 – θ. 
 
 
 
 
 
3. Determine Ma5, ε35, and p5/p3 using the oblique shock relations with Ma3 = 2.750 and δ35 = δ13 + θ. 

 
 
 

 
 
4. Determine the pressure ratios for regions 4 and 5. 

4 4 2

1 2 1

p p p
p p p

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 (5) 

5 5 3

1 3 1

p p p
p p p

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 (6) 

 
5. Check to see if p4/p1 = p5/p1.  If yes, then the iterations are complete.  If no, then choose a new value 

for θ and go to step 2. 
 

δ12 

ε12 
1 2 

δ24 

ε24 

2 
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The converged results are: 

θ = 4.0°  
Ma4 = 2.34 
Ma5 = 2.34 
p4 = 133.4 kPa 
p5  = 133.4 kPa 
 
 

/* 
  soln_obliqueshock_17.c 
  Copyright (C) Carl R. Wassgren, Jr. 
 
  Carl R. Wassgren, Jr. 
  School of Mechanical Engineering 
  585 Purdue Mall 
  Purdue University 
  West Lafayette, IN  47907-2088 
  e-mail:  wassgren@purdue.edu 
  WWW:  http://widget.ecn.purdue.edu/~wassgren 
*/ 
 
# include <stdio.h> 
# include <stdlib.h> 
# include <math.h> 
# include "ObliqueShockRelations.h" 
# define PI (4.0*atan(1.0)) 
 
/* ***** */ 
 
int main(int argc, char **argv) { 
  double k, Ma1, Ma2, Ma3, Ma4, Ma5, 
    delta12, delta13, delta24, delta35, theta, 
    epsilon12, epsilon13, epsilon24, epsilon35, 
    p2p1Ratio, p3p1Ratio, p4p2Ratio, p5p3Ratio, p4p1Ratio, p5p1Ratio, 
    p1, p2, p3, p4, p5, tol=1.0e-4; 
 
  /* Initialize the variables. */ 
  k = 1.4;  /* air */ 
  Ma1 = 3.0; 
  p1 = 50.0;  /* kPa */ 
  delta12 = 9.0*PI/180.0;  /* angle is in radians */ 
  delta13 = 5.0*PI/180.0;  /* angle is in radians */ 
 
  /* Determine the conditions in region 2. */ 
  Ma2 = Determine_Ma2_Given_Ma1_And_delta(k, Ma1, delta12); 
  epsilon12 = Determine_weakepsilon_Given_Ma1_And_delta(k, Ma1, delta12); 
  p2p1Ratio = Determine_p2p1Ratio_Given_Ma1_And_delta(k, Ma1, delta12); 
  p2 = p2p1Ratio*p1; 
 
  /* Determine the conditions in region 3. */ 
  Ma3 = Determine_Ma2_Given_Ma1_And_delta(k, Ma1, delta13); 
  epsilon13 = Determine_weakepsilon_Given_Ma1_And_delta(k, Ma1, delta13); 
  p3p1Ratio = Determine_p2p1Ratio_Given_Ma1_And_delta(k, Ma1, delta13); 
  p3 = p3p1Ratio*p1; 
 
  /* Use a brute force approach to determining the correct theta. 
     Simply march through different values of the theta until the one 
     that gives p4=p5 is found.  A more efficient approach would use a 
     bisection or secant method for finding the correct value of 
     theta.*/ 
  theta = -5.0*PI/180.0;  /* Choose a starting point for theta. */ 
  do { 
    theta += 1.0e-4*PI/180.0; 
 
    /* Determine the conditions in region 4. */ 
    delta24 = delta12-theta; 
    Ma4 = Determine_Ma2_Given_Ma1_And_delta(k, Ma2, delta24); 

5° 

9° 

1 

2 

3 

4 

5 
4° 
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    epsilon24 = Determine_weakepsilon_Given_Ma1_And_delta(k, Ma2, delta24); 
    p4p2Ratio = Determine_p2p1Ratio_Given_Ma1_And_delta(k, Ma2, delta24); 
    p4p1Ratio = p4p2Ratio*p2p1Ratio; 
    p4 = p4p1Ratio*p1; 
 
    /* Determine the conditions in region 5. */ 
    delta35 = delta13+theta; 
    Ma5 = Determine_Ma2_Given_Ma1_And_delta(k, Ma3, delta35); 
    epsilon35 = Determine_weakepsilon_Given_Ma1_And_delta(k, Ma3, delta35); 
    p5p3Ratio = Determine_p2p1Ratio_Given_Ma1_And_delta(k, Ma3, delta35); 
    p5p1Ratio = p5p3Ratio*p3p1Ratio; 
    p5 = p5p1Ratio*p1; 
 
  } while (fabs((p4-p5)/p4) > tol); 
 
  printf("theta = %.2f deg\n", theta*180.0/PI); 
  printf("Ma1 = %.2f\n", Ma1); 
  printf("Ma2 = %.2f\n", Ma2); 
  printf("Ma3 = %.2f\n", Ma3); 
  printf("Ma4 = %.2f\n", Ma4); 
  printf("Ma5 = %.2f\n", Ma5); 
  printf("delta12 = %.2f deg\n", delta12*180.0/PI); 
  printf("delta13 = %.2f deg\n", delta13*180.0/PI); 
  printf("delta24 = %.2f deg\n", delta24*180.0/PI); 
  printf("delta35 = %.2f deg\n", delta35*180.0/PI); 
  printf("epsilon12 = %.2f deg\n", epsilon12*180.0/PI); 
  printf("epsilon13 = %.2f deg\n", epsilon13*180.0/PI); 
  printf("epsilon24 = %.2f deg\n", epsilon24*180.0/PI); 
  printf("epsilon35 = %.2f deg\n", epsilon35*180.0/PI); 
  printf("p2p1Ratio = %.4f\n", p2p1Ratio); 
  printf("p3p1Ratio = %.4f\n", p3p1Ratio); 
  printf("p4p2Ratio = %.4f\n", p4p2Ratio); 
  printf("p5p3Ratio = %.4f\n", p5p3Ratio); 
  printf("p1 = %.2f Pa\n", p1); 
  printf("p2 = %.2f Pa\n", p2); 
  printf("p3 = %.2f Pa\n", p3); 
  printf("p4 = %.2f Pa\n", p4); 
  printf("p5 = %.2f Pa\n", p5); 
   
  return 0; 
} 
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A symmetric two-dimensional supersonic diffuser, shown in the sketch, is to be designed for a Mach 
number of 2.5.  The ratio h2/h1 is to be chosen so that the diffuser will barely swallow the initial shock, and 
the ratio l/h1 is to be selected so as to obtain the wave pattern shown. 
a. Determine h2/h1 and l/h1. 
b. Compare the overall stagnation pressure ratio of this diffuser with the stagnation pressure ratio of a 

diffuser in which a normal shock occurs at a Mach number of 2.5. 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
The first part of this problem is identical to the problem of starting a supersonic wind tunnel.  In order to 
swallow the shock, the downstream area must be at least as large as the sonic area following the shock 
wave. 
 
 
 
 
 
 
 
 
 
Using the normal shock relations: 

Ma1 = 2.5  ⇒  A2
*/A1

* = 2.00394    (Note that h2 = A2
*.) (1) 

 
where, upstream of the shock: 

( )
1

2 11 2
11 2

* 1
11 2

1 Ma1
Ma 1

A
A

γ
γγ

γ

+
−−

−

⎛ ⎞+
= ⎜ ⎟+⎝ ⎠

  ⇒  A1/A1
* = 2.6367    using Ma1 = 2.5    (Note that h1 = A1.) (2) 

 
Hence: 

* *
2 2 1

*
1 11

h A A
h AA

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

  ⇒  h2/h1 = 0.7600 (3) 

 
 

For the second part of the problem, use the geometry of the oblique shock waves to determine the ratio h1/l.  
Note that since the diffuser is symmetric, we need not be concerned with sliplines forming downstream of 
regions 2 and 3. 
 
 
 
 
 
 

Ma = 2.5 h1 h2 

l 

normal shock 

Ma = 2.5 h1 h2 

l 

normal shock 

1 

2 

3 
4 5 

Ma = 2.5 h1 h2 
1 2 
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From geometry: 
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     (6) 

 
Combine Eqs. (5) and (6) and make use of the fact that δ24 = δ12 to get: 

( )
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1
122

24 12 1
12

12 1 12

tan
12tan tan

h
hh

h ll
h

ε δ

ε ε

⎛ ⎞
⎜ ⎟
⎝ ⎠− = =

⎛ ⎞− −⎜ ⎟
⎝ ⎠

 (7) 

 
Use the following iterative approach to determine the value of l/h1 corresponding to the given geometry. 
 
1. Choose a value for l/h1. 
2. Calculate δ12 using Eq. (4).  Note that h2/h1 was determined in the previous part of the problem. 
3. Calculate ε12 and Ma2 using the oblique shock relations with Ma1 = 2.5 and δ12. 
4. Calculate ε24 using Eq. (7). 
5. Calculate ε24’ and Ma4 using the oblique shock relations with Ma2 (found in step 3) and δ24 = δ12. 
6. Check to see if ε24 = ε24’.  If so, then the iterations are complete.  If not, then choose a new value for 

l/h1 and go to step 2. 
 
After iterating: 

h1/l = 0.54  or  l/h1 = 1.85 
δ12 = 3.72° 
ε12 = 26.38° 
Ma2 = 2.34 
ε24 = 28.11° 
Ma4 = 2.20 
 

The stagnation pressure ratio for this device is given by: 

05 05 04 02

01 04 02 01

p p p p
p p p p

⎛ ⎞⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠

  ⇒  p05/p01  =  0.6280 (8) 

where 
p05/p04 = 0.6297 using the normal shock relations with Ma4 = 2.20 (9) 
p04/p02 = 0.9988 using the oblique shock relations with Ma2 = 2.34 and δ24 = 3.72° (10) 
p02/p01 = 0.9986 using the oblique shock relations with Ma1 = 2.50 and δ12 = 3.72° (11) 
 

The stagnation pressure ratio across a single normal shock with Ma1 = 2.5 is: 
p02/p01 = 0.4990 using the normal shock relations with Ma1 = 2.5 (12) 
 

Therefore, the stagnation pressure loss is less for the oblique shock case. 

½h1 ½h2 

l 

ε12 δ12 

x 
ε24 δ24 

½(h2 – h1) 

1 2 
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/* 
  soln_obliqueshock_18.c 
  Copyright (C) Carl R. Wassgren, Jr. 
 
  Carl R. Wassgren, Jr. 
  School of Mechanical Engineering 
  585 Purdue Mall 
  Purdue University 
  West Lafayette, IN  47907-2088 
  e-mail:  wassgren@purdue.edu 
  WWW:  http://widget.ecn.purdue.edu/~wassgren 
*/ 
 
# include <stdio.h> 
# include <stdlib.h> 
# include <math.h> 
# include "ObliqueShockRelations.h" 
# define PI (4.0*atan(1.0)) 
 
/* ***** */ 
 
int main(int argc, char **argv) { 
  int flag = 0; 
  double k, Ma1, Ma2, Ma4,  
    delta12, epsilon12, delta24, epsilon24, epsilon24p, 
    h1lRatio, h2h1Ratio, tol=1.0e-3, 
    p02p01Ratio, p04p02Ratio, p05p04Ratio; 
 
  /* Initialize the variables. */ 
  k = 1.4;  /* air */ 
  Ma1 = 2.5; 
  h2h1Ratio = 0.7600; 
 
  h1lRatio = 0.0;   /* Assume an initial value for h1/l. */ 
  do { 
    h1lRatio += 0.0001; 
 
    delta12 = atan(0.5*h1lRatio*(1.0-h2h1Ratio)); 
    Ma2 = Determine_Ma2_Given_Ma1_And_delta(k, Ma1, delta12); 
    epsilon12 = Determine_weakepsilon_Given_Ma1_And_delta(k, Ma1, delta12); 
     
    epsilon24 = delta12+atan(h2h1Ratio/(2.0/h1lRatio - 1.0/tan(epsilon12))); 
     
    delta24 = delta12; 
    Ma4 = Determine_Ma2_Given_Ma1_And_delta(k, Ma2, delta24); 
    epsilon24p = Determine_weakepsilon_Given_Ma1_And_delta(k, Ma2, delta24); 
     
  } while (fabs((epsilon24-epsilon24p)/epsilon24) > tol); 
 
  p02p01Ratio = Determine_p02p01Ratio_Given_Ma1_And_delta(k,Ma1,delta12); 
  p04p02Ratio = Determine_p02p01Ratio_Given_Ma1_And_delta(k,Ma2,delta24); 
  p05p04Ratio = Determine_p02p01Ratio_Given_Ma1(k, Ma4); 
 
  printf("h1lRatio = %.2f\n", h1lRatio); 
  printf("(Ma1, Ma2, Ma4) = (%.2f, %.2f, %.2f)\n", Ma1, Ma2, Ma4); 
  printf("(delta12, delta24) = (%.2f, %.2f) deg\n",  
  delta12*180.0/PI, delta24*180.0/PI); 
  printf("(epsilon12, epsilon24) = (%.2f, %.2f) deg\n",  
  epsilon12*180.0/PI, epsilon24*180.0/PI); 
  printf("p02p01Ratio = %.4f\n", p02p01Ratio); 
  printf("p04p02Ratio = %.4f\n", p04p02Ratio); 
  printf("p05p04Ratio = %.4f\n", p05p04Ratio); 
  printf("p05p01Ratio = %.4f\n", p05p04Ratio*p04p02Ratio*p02p01Ratio); 
 
  printf("Normal Shock Case with Ma1 = %.1f:", Ma1); 
  printf("p02p01Ratio = %.4f\n", Determine_p02p01Ratio_Given_Ma1(k, Ma1)); 
 

return 0; 
} 
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C. Wassgren  Last Updated:  02 Jan 2017 
Chapter 13:  Gas Dynamics 

14. Expansion Waves 
 
Recall the piston experiment in our previous discussion regarding the formation of shock waves.  Now let’s 
consider what happens when we move the piston toward the left (as shown in the figure below) so that an 
expansion (or rarefaction) wave propagates down the length of the tube. 
 
 
 
 
 
 
 
 
 
 
When we first move the piston, an infinitesimal strength pressure wave travels down the cylinder at the 
sonic speed.  Behind the wave the pressure, temperature, and density decrease (refer to a previous set of 
notes concerning property changes across a sound wave).  In addition, the flow velocity behind the wave 
will move in the direction of the piston (away from the wave). 
 
If we continue to increase the piston velocity, additional pressure waves will propagate down the cylinder.  
However, these waves travel at a slightly lower speed relative to a fixed observer due to the decreased fluid 
temperature and leftward fluid velocity behind each wave.  Hence, the waves start to spread out.  This is the 
opposite of what occurred for compression waves.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Notes: 
1. Since the waves do not coalesce, the change in the properties across each wave are infinitesimal.  

Hence, the flow through each wave is considered isentropic. 
2. It is impossible to form an expansion shock wave since each subsequent wave travels slower than the 

previous wave.  The waves will never coalesce.  This can also be proven mathematically by showing 
that entropy would decrease across an “expansion shock.”  
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t, time 
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C. Wassgren  Last Updated:  02 Jan 2017 
Chapter 13:  Gas Dynamics 

Prandtl-Meyer Expansion Fans 
 
Now let’s consider expanding a steady supersonic flow around a gradual, outward-turning corner as shown 
in the figure below. 
 
 
 
 
 
 
 
 
 
The gradual curve can be approximated by a series of very small, discrete turns, each of which results in a 
small expansion Mach wave as shown in the previous figure.  Recall that Mach waves exist only for 
supersonic flows, are infinitesimally weak pressure waves, and are inclined at an angle (known as the Mach 
angle), µ = sin-1(1/Ma), with respect to the flow.  Note that across an expansion wave the Mach number 
will increase (refer to a previous set of notes concerning sound waves) so that successive expansion waves 
will have smaller Mach angles (Ma2 > Ma1 ⇒ µ2 < µ1 in the figure above).  As a result, the waves diverge, 
remain infinitesimally weak, and thus the flow across the waves is isentropic.  This type of expansion is 
sometimes referred to as a non-centered expansion fan.  For a sharp corner, the waves comprising the 
expansion fan start at the corner point then diverge outward as shown in the figure below.  This type of fan 
is known as a centered expansion fan. 
 
 
 
 
 
 
 
 
 
Notes: 
1. The flow into and out of each Mach wave is uniform (i.e., 1D). 
2. It is also possible to have isentropic compression waves resulting from gradual (infinitesimal), non-

centered turns as shown in the figure below.  Non-centered compression fans, however, will eventually 
converge to form oblique shock waves, which are non-isentropic.  A centered compression fan 
resulting from a finite angle corner is an oblique shock wave and thus is non-isentropic. 

 
 
 
 
 
 
 
 
 
 
 
 
3. A compression wave turns the flow toward the wave while an expansion wave turns the flow away 

from the wave.  

isentropic 
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C. Wassgren  Last Updated:  02 Jan 2017 
Chapter 13:  Gas Dynamics 

Now let’s analyze the steady, 2D flow through a single Mach wave as shown in the figure below.  Our 
analysis will be for a compression Mach wave (dδ > 0 in the figure below) but the analysis will also hold 
for an expansion Mach wave (dδ < 0).  Note that the upstream Mach number must be supersonic in order 
for Mach waves to exist. 

 
 
 
 
 
 
 
 
 
 

From geometry: 
cosTV V µ=  (231) 

( ) ( )cosT TV dV V dV dµ δ+ = + −  (232) 
 

From the LME in the tangential direction: 

   
!m VT + dVT( )− !mVT = 0   ⇒    dVT = 0  (233) 

 
Combining Eqs. (231)-(233): 

( ) ( )
( )( )

cos cos

cos cos cos sin sin
TV V V dV d

V V dV d d

µ µ δ
µ µ δ µ δ

= = + −

= + +
 

 
Since the turning angle, dδ, is very small we can write: 

( )( )cos cos sin

cos sin cos sin

V V dV d
V Vd dV dVd

µ µ δ µ
µ δ µ µ δ µ

= + +
= + + +

 

Neglecting H.O.T.s and simplifying: 

tandV d
V

δ µ= −  (234) 

 
Since the expansion wave is a Mach wave (with wave angle, sin µ = 1/Ma), we have: 

2

1tan
Ma 1

µ =
−

 

 
 
 
Substituting and simplifying: 

2Ma 1

dV d
V

δ−=
−

  (Note:  Since Ma > 1, dδ > 0 ⇒ dV < 0 and dδ < 0 ⇒ dV > 0.) (235) 

 

1 

(1-Ma2)1/2 

Ma 
µ 

V 

VT VN 

µ V+dV 

VT + dVT VN + dVN 

µ−dδ 

dδ 

dδ 

p, T, ρ 

p+dp, T+dT, ρ+dρ 

Note:  dδ is defined as being positive for 
counter-clockwise (i.e., compression) 
turns.  For an expansion, dδ < 0. 

µ 
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C. Wassgren  Last Updated:  02 Jan 2017 
Chapter 13:  Gas Dynamics 

For a perfect gas: 
( )2 2

1
2 2

0

Ma

1Ma 1 Ma
2

V RT

RT

γ

γγ
−

=

−⎛ ⎞= +⎜ ⎟⎝ ⎠

 

 
( )1

2 Ma11 Ma
2 Ma

ddV
V

γ −−⎛ ⎞= +⎜ ⎟⎝ ⎠
 (236) 

 
Substituting (236) into Eq. (235) gives: 

( )2

2

MaMa 1
1 Ma1 Ma
2

d
dδ γ

− −=
−+

 (237) 

Note:  Since Ma > 1, dδ > 0 ⇒ d(Ma) < 0 and dδ < 0 ⇒ d(Ma) > 0. 
 

Integrating Eq. (237) gives: 

( )1 2 1 21 1
tan Ma 1 tan Ma 1 constant
1 1

γ γδ
γ γ

− −⎡ ⎤+ −= − − + − +⎢ ⎥− +⎣ ⎦
 (238) 

 
The constant of integration can be determined if the initial Mach number, Ma1, and flow deflection angle, 
δ1, are known.  For convenience, we define a reference state where, Ma = 1, and δ = 0.  For these 
conditions, Eq. (238) becomes: 

( )1 2 1 21 1tan Ma 1 tan Ma 1
1 1

γ γν
γ γ

− −⎡ ⎤+ −= − − + −⎢ ⎥− +⎣ ⎦
 Prandtl-Meyer Angle (239) 

Note:  The symbol “δ” has been changed to a “ν” in order to signify that this is the Prandtl-Meyer 
angle.  The Prandtl-Meyer angle is the angle, ν, that the flow needs to be turned to go from sonic 
conditions to get to the new Mach number, Ma. 
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Chapter 13:  Gas Dynamics 

Notes: 
1. The angle, ν, is positive for counter-clockwise (compressive) rotations and negative for clockwise 

(expansive) rotations.  The convention, however, is to drop the negative sign when reporting Prandtl-
Meyer angles. 

 
2. The Prandtl-Meyer angle is plotted as a function of Mach number for γ = 1.4 in the figure below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3. For an arbitrary incoming Mach number (Ma1 > 1, ν1 = fcn(Ma1)) we can imagine that there is some 

imaginary upstream corner that expands the flow from Ma0 = 1 (ν0 = 0) to the current Mach number, 
Ma1 (ν1 = fcn(Ma1)), as shown in the figure below. 

 
 
 
 
 
 
 
 

To expand a flow from Ma1 to Ma2 (Ma2 > Ma1), we need to turn the flow by an angle of ν2-ν1.  For 
example, to get from sonic conditions (Ma0 = 1) to Ma1 = 2.0, we need to turn the flow by an angle of 
ν1-ν0 = -26.38° - 0 = -26.38° and to get the flow from sonic conditions to Ma2 = 3.0 we need to turn the 
flow by an angle of ν2-ν0 = -49.76° - 0 = -49.76°.  To go from Ma1 = 2.0 to Ma2 = 3.0, we need to turn 
the flow by an angle of ν2-ν1 = -49.76° - (-26.38°) = -23.38°.  Note that the negative signs indicate that 
we need to turn the flow away from the Mach wave, i.e., expand the flow. 

 
4. Compressive Mach waves turn the flow toward the Mach wave while expansive Mach waves turn the 

flow away from the Mach wave. 
 
 

Ma0 = 1 
ν0 = 0 

Ma1 > 1 
ν1 ≠ 0 

imaginary 
expansion 

 

compressive Mach wave expansive Mach wave 

dδ 
dδ 
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Chapter 13:  Gas Dynamics 

5. Since the expansion process is isentropic, the isentropic flow relations can be used throughout the 
expansion fan.  The isentropic relations may also be used in a limited region within a non-centered 
compression fan where the Mach waves do not intersect.  An oblique shock forms where the 
compression Mach waves merge. 

 
6. To expand the flow of air (γ = 1.4) from sonic conditions (Ma = 1) to an infinite Mach number, i.e., Ma 

→ ∞, we must turn the flow by νmax = -130.4°.   

max Ma

1
lim 1

2 1
π γν ν

γ→∞

⎛ ⎞+= = − +⎜ ⎟⎜ ⎟−⎝ ⎠
  (240) 

If the corner has an angle greater than this maximum angle, then a vacuum region forms.  Note that the 
continuum assumption would break down in the region adjacent to the vacuum. 

 
 
 
 
 
 
 
 

  
   

Ma = 1 

Ma → ∞  

130.4° 
Ma = 1 

Ma → ∞  

> νmax 

vacuum 
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Page 1 of 1 

A uniform supersonic flow at Mach 2.0, static pressure 10 psia, and temperature 400 °R expands around a 
10° corner.  Determine the downstream Mach number, pressure, temperature, and the fan angle. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
 
For Ma1 = 2.0  ⇒  ν1 = 26.38°  (using the Prandtl-Meyer expansion fan relation) (1) 
 

2 1 10 26.38 10 36.38ν ν= + = + =o o o o   
⇒  Ma2 = 2.38  (using the Prandtl-Meyer expansion fan relation) (2) 
 

Since the process is isentropic: 

1
2 1 2

0 22
2 1 1 1 2

1 12
0

1 Ma
1 Ma

p
p

p p p
p
p

γ
γγ

γ

−−

−

⎛ ⎞⎜ ⎟ ⎛ ⎞+⎝ ⎠= = ⎜ ⎟+⎛ ⎞ ⎝ ⎠⎜ ⎟⎝ ⎠

 (3) 

⇒  p2 = 5.53 psia  using p1 = 10 psia, Ma1 = 2.0, Ma2 = 2.38, γ = 1.4 (4) 
 

2 11 2
0 22

2 1 1 1 2
1 12

0

1 Ma
1 Ma

T
T

T T T
T
T

γ

γ

−−

−

⎛ ⎞⎜ ⎟ ⎛ ⎞+⎝ ⎠= = ⎜ ⎟+⎛ ⎞ ⎝ ⎠⎜ ⎟⎝ ⎠

 (5) 

⇒  T2 = 337 °R  using T1 = 400 °R, Ma1 = 2.0, Ma2 = 2.38, γ = 1.4 (6) 
 

Since each fan is a Mach wave, the fan angle may be found using: 

1
1

1

1sin 30
Ma

µ − ⎛ ⎞
= =⎜ ⎟

⎝ ⎠
o  and  1

2
2

1sin 24.85
Ma

µ − ⎛ ⎞
= =⎜ ⎟

⎝ ⎠
o (7) 

fan angle = µ1 – (µ2 – δ)  = 15.15° (8) 
 

10° 

fan angle 

10° 

fan angle 

1 

2 

µ2 
µ1 δ 

µ2 - δ 
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Page 1 of 1 

A wind tunnel nozzle is designed to yield a parallel uniform flow of air with a Mach number of 3.0.  The 
stagnation pressure of the air supply reservoir is 7000 kPa (abs), and the nozzle exhausts into the 
atmosphere (100 kPa).  Calculate the flow angle at the exit lip of the nozzle. 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
Determine the Prandtl-Meyer angle for the flow leaving the nozzle exit. 

Ma1 = 3.0  ⇒  ν1 = 49.76° (1) 
 

Since the expansion fan is isentropic: 
1

22
2

0

11 Ma
2

p
p

γ
γγ −−⎛ ⎞= +⎜ ⎟⎝ ⎠

  ⇒  Ma2 = 3.44    (using p2 = 100 kPa and p0 = 7000 kPa) (2) 

 
Calculate the Prandtl-Meyer angle for the flow downstream of the exit. 

Ma2 = 3.44  ⇒  ν2 = 57.54° (3) 
 

Thus, the turning angle is: 
δ = ν2 – ν1  ⇒  δ = 7.78° (4) 

 
 
 
 
 
 

7000 kPa 
Ma=3.0 100 kPa 

angle = ? 
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Find the lift and drag coefficients for the flow past the airfoil shown below.  Assume the airfoil has unit 
length into the page.  Base your drag coefficient on the chord length of the airfoil (= 1.0 m). 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
Do not treat the angles as being small (i.e., use the oblique shock and expansion fan relations).   
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
 
Use the oblique shock relations to determine the pressure in region 1 in terms of the upstream pressure. 

Ma∞ = 2.5, δ∞1 = 4°  ⇒  Ma1 = 2.3326;  ε∞1 = 26.6088°;  p1/p∞ = 1.2961  (1) 
 

Use Prandtl-Meyer angles to determine Mach numbers in regions 2 and 3. 
Ma∞ = 2.5  ⇒  ν∞ = 39.1235° (2) 
ν2 = ν∞ + δ∞2  ⇒  ν2 = 40.1235°    (δ∞2  = 1°) (3) 
ν2 = 40.1235°  ⇒  Ma2 = 2.5432 (4) 
ν3 = ν2 + δ23  ⇒  ν3 = 46.1235°  (δ23  = 6°) (5) 
ν3 = 46.1235°  ⇒  Ma3 = 2.8182 (6) 
 

Use isentropic relations to determine the pressures in regions 2 and 3.  Note that the stagnation pressure 
remains constant through the expansion fans. 

( )
( )

1

1

1 2
222

1 2
2

1 Ma

1 Ma

p
p

γ
γ

γ
γ

γ

γ

−

−

−

−∞
∞

+
=

+
  ⇒  p2/p∞ = 0.9351 (7) 

( )
( )

1

1

1 2
323

1 2
2

1 Ma

1 Ma

p
p

γ
γ

γ
γ

γ

γ

−

−

−

−∞
∞

+
=

+
  ⇒  p3/p∞ = 0.6124 (8) 

 

4° 

3° 

Ma∞ =2.5 
p∞ = 40 kPa (abs) 

T∞ = 273 K 

3° 

1.0 m 

4° 

3° 

Ma∞ =2.5 
p∞ = 40 kPa (abs) 

T∞ = 273 K 

3° 

1° 

1 

2 

3 
6° 

1° 

α 

β β 

α − β 

2β 

α − β 
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Now determine the lift and drag forces acting on the airfoil. 

( ) ( ) ( )
1 1
2 2

1 2 3cos cos cos
cos cos

l l
L p l p pα α β α β

β β
⎛ ⎞ ⎛ ⎞

= − − − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 (9) 

( ) ( ) ( )
1 1
2 2

1 2 3sin sin sin
cos cos

l l
D p l p pα α β α β

β β
⎛ ⎞ ⎛ ⎞

= − − − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 (10) 

 
 

Form lift and drag coefficients. 

21
2

L
Lc
V lρ∞ ∞

=    and   
21

2
D

Dc
V lρ∞ ∞

=  (11) 

where 

( )2 2 2Ma Ma
pV RT p
RT

ρ γ γ∞
∞ ∞ ∞ ∞ ∞ ∞

∞

⎛ ⎞
= =⎜ ⎟
⎝ ⎠

 (12) 

so that 

21
2 MaL

Lc
p lγ ∞ ∞

=    and   
21

2 MaD
Dc
p lγ ∞ ∞

=  (13) 

 
Substitute Eqs. (9) and (10) into the lift and drag coefficients and simplify. 

( ) ( ) ( )
1 1
2 2

1 2 3

21
2

cos cos cos
cos cos

MaL

l l
p l p p

c
p l

α α β α β
β β

γ ∞ ∞

⎛ ⎞ ⎛ ⎞
− − − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠=  (14) 

( ) ( )31 2
2

cos cos2 1 1
cos

2 cos 2 cosMaL
pp pc

p p p
α β α β

α
β βγ ∞ ∞ ∞∞

− +⎡ ⎤
∴ = − −⎢ ⎥

⎣ ⎦
 (15) 

( ) ( ) ( )
1 1
2 2

1 2 3

21
2

sin sin sin
cos cos

MaD

l l
p l p p

c
p l

α α β α β
β β

γ ∞ ∞

⎛ ⎞ ⎛ ⎞
− − − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠=  (16) 

( ) ( )31 2
2

sin sin2 1 1
sin

2 cos 2 cosMaD
pp pc

p p p
α β α β

α
β βγ ∞ ∞ ∞∞

− +⎡ ⎤
∴ = − −⎢ ⎥

⎣ ⎦
 (17) 

 
Using the given data and the pressure ratio data derived previously: 

cL = 0.1190  and  cD = 0.0103  (18) 
 
 

l 
β β 

½l/cosβ 

α α 

β β 

α − β 
α + β 
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Find an expression for the drag coefficient (based on frontal projected area) of the thin diamond-shaped 
body shown below: 
 
 
 
 
 
 
 
 
Do not assume that the angles are very small (i.e., use the oblique shock and expansion fan relations).  Now 
calculate the drag coefficient for the object when it is turned around (the 5° angle is at the leading edge).  
Compare your results with those found using thin airfoil theory and explain why the results are similar or 
different.  
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
Determine the conditions in regions 1 and 2.  For region 1, use the oblique shock relations. 

Ma∞ = 2.5, δ∞1 = 3°  ⇒  Ma1 = 2.37, ε∞1 = 25.8°, p1/p∞ =1.2164 (1) 
 

For region 2, use Prandtl-Meyer angles. 
Ma1 = 2.37  ⇒  ν1 = -36.02° (2) 
ν2 = ν1 + δ12  ⇒  ν2 = -44.02°  ⇒  Ma2 = 2.72 (3) 

The flow from region 2 to region 3 is isentropic, hence: 
11 2

22 2
1 2

1 12

1 Ma
1 Ma

p
p

γ
γγ

γ

−−

−

⎛ ⎞+
= ⎜ ⎟+⎝ ⎠

  ⇒  2

1

0.5810
p
p

=  (4) 

2 2 1

1

p p p
p p p∞ ∞

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

  ⇒  2 0.7067
p
p∞

=  (5) 

 
The drag force acting on the is: 

1 2DF p h p h= −  (6) 

( ) ( )
( )

1 2

1 2
2 2 21 1 1

2 2 2

2 2
2 Ma

D
D

p ppp h p h p pFc
V h V h RTρ ρ ρ γ

∞
∞ ∞

∞ ∞ ∞ ∞ ∞ ∞ ∞

⎛ ⎞−⎜ ⎟− ⎝ ⎠≡ = =  (7) 

1 2

21
2 Ma

D

p p
p pc
γ
∞ ∞

∞

−
∴ =  (8) 

Using the given data, cD = 0.117. 
 

3° 

air 
Ma∞ =2.5 

p∞ =40 kPa (abs) 3° 

5° 

5° 0.05 m 

2 

1 

δ∞1 

δ12 

h 
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Follow the same approach when the object is turned around.  For region 1, use the oblique shock relations. 
Ma∞ = 2.5, δ∞1 = 5°  ⇒  Ma1 = 2.29, ε∞1 = 27.42°, p1/p∞ =1.380 (9) 
 

For region 2, use Prandtl-Meyer angles. 
Ma1 = 2.29  ⇒  ν1 = -34.03° (10) 
ν2 = ν1 + δ12  ⇒  ν2 = -42.03°  ⇒  Ma2 = 2.63 (11) 

The flow from region 2 to region 3 is isentropic, hence: 
11 2

22 2
1 2

1 12

1 Ma
1 Ma

p
p

γ
γγ

γ

−−

−

⎛ ⎞+
= ⎜ ⎟+⎝ ⎠

  ⇒  2

1

0.5890
p
p

=  (12) 

2 2 1

1

p p p
p p p∞ ∞

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

  ⇒  2 0.8130
p
p∞

=  (13) 

 
The drag coefficient is: 

1 2

21
2 Ma

D

p p
p pc
γ
∞ ∞

∞

−
∴ =  (14) 

Using the given data, cD = 0.130. 
 
 
Using Thin Airfoil Theory: 

( ) ( )2 2

2
0

1 2 tan 2 tan
Ma 1

x l x c

D
x x l

c dx dx
c

α β
= =

= =∞

⎡ ⎤
= + −⎢ ⎥

− ⎣ ⎦
∫ ∫  (15) 

where  
( )tan tanh l c lα β= = −  (16) 

tan
tan tan

l
c

β β
α β α β

= ≈
+ +

 (17) 

 
Expanding Eqn. (15), keeping in mind that the angles are small, gives: 

2 2
2 2

2 2

2 1 2

Ma 1 Ma 1
Dc

β β α β αβα β
α β α β α β

∞ ∞

⎡ ⎤⎛ ⎞ ⎡ ⎤++ −⎢ ⎥⎜ ⎟ ⎢ ⎥+ + +⎝ ⎠⎣ ⎦ ⎣ ⎦= =
− −

 

( )
2

2

Ma 1
Dc

α β

∞

+
∴ =

−
  ⇒  ∴ cD = 0.122 (18) 

 
 

The drag coefficient predicted using the oblique shock and expansion fan relations is nearly the same as 
that predicted using thin airfoil theory.  This result is true because the angles through which the flow is 
turned are small. 
 
The drag coefficient is different when the object is turned around because the relations for large angles of 
turn (oblique shock and expansion fan relations) are non-linear.  The relations for very small angles of turn 
are linear (thin airfoil theory) and thus are independent of the object’s orientation. 

α β 

y 

x 

l 
c 

h 
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A stream of air (γ = 1.4, R = 280 J/(kg⋅K)) with a velocity of 1200 m/s and a temperature of 230 K is turned 
35° away from the flow. 
 
 
 
 
 
 
 
 
a. Find the Mach number, temperature, and velocity of the flow downstream of the corner.   
b. If the temperature of the upstream flow is lowered while its velocity remains at 1200 m/s, what is the 

theoretical minimum upstream temperature at which the flow will still be able to negotiate the turn? 
 
 
SOLUTION: 
  
 
 
 
 
 
 
First determine the upstream Mach number. 

1
1

1
Ma

V
RTγ

=   ⇒  Ma1 = 4.00 (1) 

 
Now determine the corresponding Prandtl-Meyer angle. 

Ma1 = 4.00 ⇒  ν1 = 65.78° (2) 
 

Determine the Prandtl-Meyer angle after the turn. 
ν2 = ν1 + δ  ⇒  ν2 = 100.78°     (where δ = 35°) (3) 
 

Using the Prandtl-Meyer angle, determine the corresponding Mach number downstream of the turn. 
ν2 = 100.78°  ⇒  Ma2 = 9.46 (4) 
 

Now find the downstream temperature and velocity. 

( )
( )

1 22
120

1 21 22
0

1 Ma

1 Ma

T
T

T
T

γ

γ

−

−

+
=

+
  ⇒  T2 = 51.1 K    (Note that flow through an expansion fan is isentropic.) (5) 

2 2 2MaV RTγ=   ⇒  V2 = 1340 m/s (6) 
 

Recall that as Ma→∞, the Prandtl-Meyer angle approaches 130.5° (for γ = 1.4).  Thus, the maximum 
upstream Prandtl-Meyer angle for a 35° turn is: 

ν1 = ν2 – δ  ⇒  ν1 = 95.4°   where δ = 35°  and ν2 = 130.5° (7) 
 

The Mach number corresponding to this Prandtl-Meyer angle is: 
ν1 = 95.4°  ⇒  Ma1 = 7.95 (8) 

The temperature at this Mach number and V1 = 1200 m/s is: 
2
1

1 2
1Ma

VT
Rγ

=   ⇒  T1 = 58.1 K (9) 

1200 m/s, 230 K 

35° 

1200 m/s, 230 K 

35° 

2 
1 
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Calculate the lift and drag coefficients (per unit depth into the page) for a flat-plate airfoil with a chord 
length of 1 m.  The plate is at an angle of attack of 6 degree with respect to the incoming flow which has a 
Mach number of 2.5.  Clearly sketch the wave patterns at both the leading and trailing edges of the airfoils.  
Note that the lift and drag coefficients are based on the planform area of the airfoil.    
 
 
 
 
 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
 
First consider side 1. 

Ma∞ = 2.5  ⇒  ν∞ = 39.1°  (from the Prandtl-Meyer angle relation) (1) 
ν1 = ν∞ + α  ⇒  ν1 = 45.1°    (note that α = 6°) (2) 
ν1 = 45.1°  ⇒  Ma1 = 2.77  (from the Prandtl-Meyer angle relation) (3) 

( )
( )

1

1

1 21
120

1 2
220

1 Ma

1 Ma

p
p

p
p

γ
γ

γ
γ

γ

γ

−

−

−

∞ −

+
=

+
  ⇒  p1/p∞ = 0.6591   (expansion fans are isentropic so p0 = constant) (4) 

 
Now consider side 2. 

Ma∞ = 2.5, δ = α = 6°  ⇒  ε = 28.26°, Ma2 = 2.25, p2/p∞ = 1.4679  (from the oblique shock relns.) (5) 
 

The drag coefficient is defined as: 

2 21 1
2 2 MaD
D Dc
V l p lρ γ∞ ∞ ∞ ∞

≡ =    (6) 

where l is the chord length of the plate, and 

( )2 2 2Ma Ma
pV RT p
RT

ρ γ γ∞
∞ ∞ ∞ ∞ ∞ ∞

∞

⎛ ⎞
= =⎜ ⎟
⎝ ⎠

 (7) 

 
The drag force is the force component parallel to the upstream flow.  Thus, 

1 2sin sinD p l p lα α= − +  (8) 
 

Substitute Eqn. (8) into Eqn. (6) and simplify. 

1 2 1 2
2 21

2

sin sin 2sin
Ma MaD

p l p l p pc
p pp l

α α α
γ γ ∞ ∞∞ ∞ ∞

⎛ ⎞− +
= = − +⎜ ⎟

⎝ ⎠
  ⇒  cD = 0.0193 (9) 

6° 

Ma=2.5 
1 m 

α 

1 

2 

α 

slipstream 

Ma∞ 

α 
p1l 

p2l 
α 
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The lift coefficient is defined as: 

2 21 1
2 2 MaL
L Lc
V l p lρ γ∞ ∞ ∞ ∞

≡ =    (10) 

  
The lift force is the force component perpendicular to the upstream flow.  Thus, 

1 2cos cosL p l p lα α= − +  (11) 
 

Substitute Eq. (11) into Eq. (10) and simplify. 

1 2 1 2
2 21

2

cos cos 2cos
Ma Ma

L
p l p l p pc

p pp l
α α α

γ γ ∞ ∞∞ ∞ ∞

⎛ ⎞− +
= = − +⎜ ⎟

⎝ ⎠
  ⇒  cL = 0.1839 (12) 
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A symmetric converging-diverging nozzle is design Mach number of 2.2.  With the nozzle exhausting to a 
back pressure of 14.7 psia and a reservoir pressure of 300 psia,  
 
 
 
 
 
 
 
 
 
 
 
a. Determine the Mach number in regions R1 and R2. 
b. Determine the angle of the flow with respect to the horizontal (in degrees) in regions R1 and R2. 
 
 
SOLUTION: 
 
Recall that at design conditions the flow is isentropic throughout the C-D nozzle. 

1
2

0

11 Ma
2

E
E

p
p

γ
γγ −−⎛ ⎞= +⎜ ⎟⎝ ⎠
  ⇒  pE/p0 = 0.0935  (using γ = 1.4 and MaE = 2.2) (1) 

 
In region 1, the pressure must equal the surrounding air pressure, i.e. 

p1 = pb = 14.7 psia (2) 
 

Thus, the pressure ratio between region E and region 1 is: 
1 1

0
0

0.5239
EE

p p
pp pp

= =
⎛ ⎞⎜ ⎟⎝ ⎠

  (using p1 = 14.7 psia, pE/p0 = 0.0935, and p0 = 300 psia) (3)  

Since the pressure in region 1 is less than the pressure in the exit region, the flow must go through an 
expansion fan at the exit.  Hence, the flow is underexpanded.  The Mach number in region 1 can be found 
by applying the isentropic relations between regions 1 and the exit. 

1

1

21 1
01

2
0

11 Ma
2

11 Ma
2

EE
E

p
pp

pp
p

γ
γ

γ
γ

γ

γ

−

−

−⎛ ⎞⎛ ⎞ +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠= =
⎛ ⎞ −⎛ ⎞⎜ ⎟ +⎝ ⎠ ⎜ ⎟⎝ ⎠

  ⇒  Ma1 = 2.6146 (4) 

 
The angle of the flow in region 1 may be found using Prandtl-Meyer angles for regions E and 1. 

MaE = 2.2  ⇒  νE = 31.73° (5) 
Ma1 = 2.6146  ⇒  ν1 = 41.74° (6) 

1 1 10.01E Eδ ν ν= − = o  (7) 
 
 
 
 
 
 
 
 
 

p0 = 300 psia 

pb = 14.7 psia 

R1 R2 

δE1 E 1 
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The expansion fan reflects off the axis of symmetry as another expansion fan in order to keep the flow in 
region 2 parallel to the centerline. 
 
 
 
 
 
 
 

δ12 = δE1 = 10.01° (8) 

12 2 1 2 12 110.01 51.75δ ν ν ν δ ν= − = ⇒ = + =o o    (9) 
n2 = 51.75°  ⇒  Ma2 = 3.11 (10) 

δ12 
E 1 

2 
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A symmetric converging-diverging nozzle is design Mach number of 2.0.  With the nozzle exhausting to a 
back pressure of 15 psia, however, and a reservoir pressure of 78.2 psia, the nozzle is overexpanded as is 
shown in the figure below. 
 
 
 
 
 
 
 
 
 
 
a. Determine the Mach number in regions R1, R2, and R3. 
b. Determine the angle of the flow with respect to the horizontal (in degrees) in regions R1, R2, and R3. 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
Recall that at design conditions the flow is isentropic throughout the C-D nozzle. 

1
2

0

11 Ma
2

E
E

p
p

γ
γγ −−⎛ ⎞= +⎜ ⎟⎝ ⎠
  ⇒  pE/p0 = 0.1278    (using γ = 1.4, MaE = 2.0) (1) 

 
In region R1, the pressure must equal the back pressure: 

1 15 psiabp p= =  (2) 
 

Thus, the pressure rise across the oblique shock (since the flow is over-expanded, oblique shocks will form 
at the exit) will be: 

1 1

0
0

1.501
EE

p p
pp pp

= =
⎛ ⎞⎜ ⎟⎝ ⎠

  (using p1 = 15 psia, p0 = 78.2 psia, pE/p0 = 0.1278) (3) 

 
The pressure rise across an oblique shock is determine by the normal component of the upstream Mach 
number: 

1 1.501
E

p
p

=   ⇒  MaEN = 1.195 (using the normal shock relations) (4) 

From geometry: 
1Ma Ma sinEN E Eε=   ⇒  εE1 = 36.7°  (using MaEN = 1.195 and MaE = 2.0) (5) 

 

p0 = 78.2 psia 

pb = 15 psia 

R1 R2 
R3 

p0 = 78.2 psia 

pb = 15 psia 

R1 R2 
R3 

εE1 
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From the oblique shock relations: 
MaE = 2.0, εE1 = 36.7°  ⇒  Ma1 = 1.73, δE1 = 7.5° (6) 
 
 
 
 
 
 
 
 
 

In region 2, the flow must be horizontal due to symmetry.  Hence, the turning angle must be δ12 = δE1 = 
7.5°.  Using the oblique shock relations: 

Ma1 = 1.73, δ12 = 7.5°  ⇒  Ma2 = 1.47, ε12 = 43.0°, p2/p1 = 1.4584   (7) 
 
 
 
 
 
 
 
 
 

In region 3 the pressure must equal the back pressure: 

3 15 psiabp p= =  (8) 
 

The flow from region 2 to region 3 passes through an expansion fan (since an oblique shock reflects as an 
expansion fan off a free pressure boundary).  The Mach number in region 3 can be found from the Mach 
number in region 2 and the pressure ratio, p3/p2, using the isentropic relations. 

1
2
3

3

22
2

11 Ma
2
11 Ma
2

p
p

γ
γγ

γ

−−⎛ ⎞+⎜ ⎟
= ⎜ ⎟−⎜ ⎟+⎜ ⎟⎝ ⎠

  ⇒  Ma3 = 1.73 (9) 

where γ = 1.4, Ma2 = 1.47, and 
3 3

22
1

1

p p
pp pp

=
⎛ ⎞⎜ ⎟⎝ ⎠

  (using p3 = 15 psia, p1 = 15 psia, p2/p1 = 1.4584) (10) 

 
The flow angle in region 3 is found using Prandtl-Meyer angles: 

Ma2 = 1.47  ⇒  ν2 = 11.02° (11) 
Ma3 = 1.73  ⇒  ν3 = 18.69° (12) 
δ23 = ν3 – ν2 = 7.7° (13) 

εE1 

δE1 
E 1 

MaE Ma1 

εE1 

δE1 
E 

1 

MaE Ma1 2 

Ma2 
δ12 

ε12 

εE1 

δE1 
E 1 

MaE Ma1 2 
Ma2 δ12 

ε12 

δ23 

Ma3 
3 
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Air flowing at a Mach number of 3.0 with a static temperature of 300 K and static pressure of 15 kPa (abs) 
approaches a symmetric bump as shown in the figure below. 
a. Determine the Mach number in region 2. 
b.  Determine the Mach number in region 3. 
c. Determine the Mach number in region 4. 
d. Determine the pressure in region 4. 
e. Why are the conditions at 4 not the same as the conditions at 1 even though the bump is symmetric?   
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
First examine region 2 using the oblique shock relations: 

Ma1 = 3.0, δ12 = 15° ⇒ Ma2 = 2.25 (1) 
  ε12 = 32.2° 
  p2/p1 = 2.8216 
 

Now examine region 3 using Prandtl-Meyer angles: 
Ma2 = 2.25 ⇒ ν2 = -33.0° (2) 
ν3 = ν2 - 30° = -63.0° ⇒ Ma3 = 3.80 (3) 

11 2
33 2

1 2
2 22

1 Ma
1 Ma

p
p

γ
γγ

γ

−−

−

⎛ ⎞+
= ⎜ ⎟+⎝ ⎠

 ⇒ p3/p2 = 0.1000 (4) 

 
Lastly, examine region 4 using the oblique shock relations: 

Ma3 = 3.80, δ12 = 15° ⇒ Ma4 = 2.80 (5) 
  ε34 = 27.8° 
  p4/p3 = 3.5053 
 

Determine the pressure in region 4 using the pressure ratios found in the previous calculations. 

34 2
4 1

3 2 1

pp pp p
p p p

⎛ ⎞⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠⎝ ⎠
 ⇒ p4 = 14.8 kPa      (using p1 = 15 kPa) (6) 

 
The flow is not symmetric over the bump since flow through the oblique shock waves occurs non-
isentropically (i.e., irreversibly).  If the bump angle was very small such that the oblique shocks could be 
replaced by isentropic compression waves, then the flow would be symmetric. 

1 
Ma1 = 3.0 

p1 = 15 kPa 
T1 = 300 K 2 3 

4 

15° 

δ12 δ23 

δ34 

ε12 ε34 

1 
Ma1 = 3.0 

p1 = 15 kPa (abs) 
T1 = 300 K 2 3 4 

15° 
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A two-dimensional double-wedge profile is at zero angle of attack in an air stream of Mach number 2.0. 
 
 
 
 
 
 
 
 
Calculate the drag coefficient for the airfoil based on the chord length, l. 
 
 
SOLUTION: 
 
 
 
 
 
 
Use the oblique shock relations to determine the conditions in region 2. 

Ma1 = 2.0, δ12 = 10°  ⇒ Ma2 = 1.6405, ε12 = 39.31°, p2/p1 = 1.7066 (1) 
 

Determine the Mach number in region 3 using the Prandtl-Meyer angle. 
Ma2 = 1.6405  ⇒  ν2 = 16.0574° (2) 
ν3 = ν2 + δ23 = 36.0574°  where δ23 = 20° (3) 
ν3 = 36.0574°  ⇒  Ma3 = 2.3717 (4) 
 

Determine the pressure ratio for region 3 using the isentropic relations. 
11 2

33 2
1 2

2 22

1 Ma

1 Ma
p
p

γ
γγ

γ

−−

−

⎛ ⎞+
⎜ ⎟=
⎜ ⎟+⎝ ⎠

  ⇒  p3/p2 = 0.3227 (5) 

Note that: 

3 3 2

1 2 1
0.5507

p p p
p p p

⎛ ⎞⎛ ⎞
= =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

 
The drag coefficient on the object is given by: 

21
1 12

D
D

Fc
V lρ

=  (6) 

where 
( )( )1
2 3 2 tanDF p p l θ= −  (7) 

and 

( )2 2 211 1 1
1 1 1 1 1 12 2 2

1
Ma Ma

pV RT p
RT

ρ γ γ
⎛ ⎞

= =⎜ ⎟
⎝ ⎠

 (8) 

So that: 
( )( )1
2 3 2 32

2 21
1 11 1 12

tan tan
Ma MaD

p p l ppc
p pp

θ θ
γ γ

− ⎛ ⎞
= = −⎜ ⎟

⎝ ⎠
 (9) 

∴cD = 0.036  using p2/p1 = 1.7066, p3/p1 = 0.5507, θ = 10°, γ = 1.4, and Ma1 = 2.0 (10) 

10° 10° Ma∞ = 2.0 

l 

1 
2 

3 ε12 

δ12 

δ23 

½l 

θ 
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Now solve the problem using thin airfoil theory. 
2 2

2
upper lower0

2

Ma 1

l

D
dy dy

c dx
dx dxl ∞

⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥= +⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥− ⎝ ⎠⎝ ⎠⎣ ⎦
∫  (11) 

where 

( )
( )

1
2

1
upper 2

tan 10 0

tan 10

x ldy
dx l x l

⎧ < <⎪= ⎨
− < <⎪⎩

o

o
 (12) 

lower

0
dy
dx

=  (13) 

Substitute and simplify. 

( ) ( )
1
2

1
2

2 2

2
0

2 tan 10 tan 10
Ma 1

l l

D
l

c dx dx
l ∞

⎧ ⎫⎪ ⎪⎡ ⎤ ⎡ ⎤= + −⎨ ⎬⎣ ⎦ ⎣ ⎦− ⎪ ⎪⎩ ⎭
∫ ∫o o  (14) 

( ) 2

2

2 tan 10

Ma 1
D

l
c

l ∞

⎡ ⎤⎣ ⎦=
−

o

 (15) 

( ) 2

2

2 tan 10
0.0359

Ma 1
Dc

∞

⎡ ⎤⎣ ⎦= =
−

o

 (16) 

This result is nearly identical to the result found previously despite the fact that 10° is on the edge of being 
considered a “small” angle. 
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Consider the asymmetric airfoil located near a wall as shown in the figure below. 
 
 
 
 
 
 
 
 
 
 
a. What must H be in order for the reflected shock to impinge on the airfoil point as shown? 
b. What is the drag coefficient for the airfoil based on the frontal projected area? 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
Use the oblique shock relations to determine the conditions in regions 2 and 3. 

Ma1 = 2, δ12 = 10°  ⇒  Ma2 = 1.6405, ε12 = 39.31°, p2/p1 = 1.7066 (1) 
Ma2 = 1.6405, δ23 = 10°  ⇒  Ma3 = 1.2849, ε23 = 49.38°, p3/p2 = 1.6423 (2) 
 

Use geometry to determine the height H at which the reflected shock impinges on the airfoil corner. 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

12
12

tan
tan

H Hl
l

ε
ε

= ⇒ =  (3) 

( )23 23tan H h
L l

ε δ −− =
−

 (4) 

Ma = 2 
10° H 

1 m 20° 

Ma = 2 
10° 

1 m 20° 

1 

2 

3 

4 
H 

δ12 

ε12 ε23 δ23 H 

L 
l 

h 

θ 

θ 
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Substitute Eq. (3) into Eq. (4) and solve for H. 

( )23 23

12

tan

tan

H h
HL

ε δ

ε

−− =
−

 (5) 

( )23 23
12

tan
tan
HL H hε δ
ε

⎛ ⎞
− − = −⎜ ⎟

⎝ ⎠
 

( )
( )
23 23

23 23

12

tan
tan

1
tan

L h
H

ε δ
ε δ

ε

− +
∴ =

−
+

 (6) 

Using δ23 = 10°, L = 1 m, ε23 = 49.38°, ε12 = 39.31°  ⇒  h = 0.176 m, H = 0.498 m. 
 

The drag on the airfoil is found by summing the pressure forces. 
2 4DF p h p h= −  (7) 

2 4
1

1 12 4
2 2 21 1 1

1 1 1 1 1 1 12 2 2 Ma
D

D

p pp p pF p h p hc
V h V h RTρ ρ ρ γ

⎛ ⎞−⎜ ⎟− ⎝ ⎠≡ = =  (8) 

2 4

1 1
21
12 Ma

D

p p
p pc
γ

−
∴ =  (9) 

 
The pressure in region 4 is found using Prandtl-Meyer angles. 

Ma3 = 1.2849  ⇒  ν3 = -5.7595° (10) 
ν4 = ν3 + θ   ⇒  ν4 = -25.7595°  ⇒  Ma4 = 1.9776  where θ = 20°   (11) 

 
The flow from region 3 to region 4 is isentropic. 

11 2
44 2

1 2
3 32

1 Ma
1 Ma

p
p

γ
γγ

γ

−−

−

⎛ ⎞+
= ⎜ ⎟+⎝ ⎠

  ⇒  4

3

0.3592
p
p

=  (12) 

34 4 2

1 3 2 1

pp p p
p p p p

⎛ ⎞⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠⎝ ⎠
  ⇒  4

1

1.0067
p
p

=  (13) 

 
Substitute values into Eq. (9). 

cD = 0.2500 
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15. Reflection and Interaction of Oblique Shock Waves 
 
In this set of notes we’ll consider the interaction between oblique shocks and solid boundaries, free 
surfaces, and with other oblique shocks. 
 
Reflection with a Solid Boundary 
 
When an oblique shock intersects a solid, straight boundary, it will reflect as another oblique shock in order 
for the flow to remain parallel to the boundary as shown in the figure below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
The flow properties through the incident and reflected shocks can be determined using the following 
procedure. 
1. For the given Ma1 and δ, determine Ma2 and p2/p1. 
2. For this value of Ma2 and since the turning angle of the second wave is also δ (in order to keep the flow 

parallel to the flat wall), one can determine Ma3, ε2, and p3/p2. 
3. The pressure ratio across both waves, p3/p1, is found using: 

3 3 2

1 2 1

p p p
p p p

=  

4. The angle that the reflected wave makes with the wall is ε2-δ. 
 

Notes: 
1. The wave angle, ε, and the turning angle, δ, are measured with respect to the incoming flow direction. 
 
2. Without viscous effects the pressure change is discontinuous across the shock at the wall.  Due to the 

boundary layer, the flow drops to zero velocity at the wall and so the flow adjacent to the wall is 
subsonic and thus cannot sustain pressure discontinuities.  Thus the boundary layer causes the pressure 
distribution to “spread out” as shown in the figure below. 

 
 
 
 
 

 
 
The details of the shock interaction with the wall depend on whether the boundary layer is laminar or 
turbulent, the thickness of the boundary layer, and the shock strength.  A flow separation bubble may 
also occur due to an adverse pressure gradient. 

 

ε1 

ε2 

δ 
δ 

Ma1, p1 

Ma2, p2 Ma3, p3 

ε1 ε2−δ 

p1 
p3 

without BL 

p1 
p3 

with BL 

1 
2 

3 

 
wall 

Image from:  Shapiro, A.H., The Dynamics and 
Thermodynamics of Compressible Fluid Flow Vol. I, Wiley. 
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3. Recall that there is a maximum possible angle through which the flow can be turned using an oblique 
shock. This maximum angle (δmax) decreases as the incoming Mach number decreases.  Thus, when the 
flow passes through the initial oblique shock, there exists the possibility that the reflected flow must be 
turned by an angle that is greater than the maximum turning angle in order to remain parallel to the 
wall.  In this case, a Mach reflection appears where a curved strong shock occurs adjacent to the wall 
behind which there is subsonic flow.  Since this subsonic flow need not be parallel to the wall, the flow 
above the wall shock layer also does not have to be parallel to the wall.  The flow behind the curved 
wall shock is divided from the flow behind the “reflected” oblique shock by a slipline (aka contact 
surface, slipstream, vortex sheet).  Across the slipline there are changes in velocity, temperature, and 
entropy.  Since the flow is subsonic, the details of the flow may be affected by downstream conditions 
and, as a result, the analytical modeling of the Mach reflection is difficult. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
4. Instead of a flat wall, consider the reflection from a wall that is turned at some angle.  The flow must 

still remain parallel to the downstream wall.  The oblique shock reflected from a wall turned away 
from the flow will be weaker than one reflected from a flat wall.  It is even possible to “cancel” the 
reflected oblique shock by turning the downstream shock at the angle through which the flow is turned 
by the initial shock.  Turning the wall by an angle greater than this results in an expansion fan. 

 

Ma < 1 
slipline 

Ma > 1 
flow is not parallel to the wall 

flow direction 

incident 
shock 

incident 
shock 

reflected 
shock 

reflected 
shock 

Image from:  Shapiro, A.H., The Dynamics and 
Thermodynamics of Compressible Fluid Flow Vol. I, Wiley. 
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Oblique Shock Reflection from a Free Surface 
 
When an oblique shock intersects a free surface, the reflection must be an expansion fan so that the flow 
pressure remains equal to the free surface pressure as shown in the figure below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Ma1 

p0 

p1 = p0 

p3 = p0 

p0 

p2 > p0 

Ma2 

Ma3 

expansion fan oblique shock 

free surface 

free surface 
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Interaction of Oblique Shock Waves 
 
When two oblique shock waves intersect, each wave will be transmitted through, but be affected by, the 
other wave.  For example, consider the interaction of two oblique shocks as shown in the following 
diagram. 
 
 
 
 
 
 
 
 
 
 
 
 
The flow in regions 2 and 3 are found given the conditions in region 1 and the wall turning angles.  The 
flow in regions 4 and 5 must be parallel to one another and, hence, from the linear momentum equation the 
pressures in regions 4 and 5 must be the same.  An iterative procedure can be used to solve for the flows 
from regions 2 and 3 into regions 4 and 5.  A slipline occurs between regions 4 and 5 since these regions, in 
general, have different entropy, temperature, and velocity.   
 
Notes: 
1. There may be oblique shock intersection situations where no solution exists using oblique shocks.  In 

this case, more complicated flow patterns may occur that include normal shock waves (Mach 
reflections). 

Ma < 1 

slipline 

slipline 

1 
2 

3 

4 

5 slipline 

 

 

Image from:  Shapiro, A.H., The Dynamics and 
Thermodynamics of Compressible Fluid Flow Vol. I, Wiley. 
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Now consider flow in a corner with several small, discrete changes in the wall angle as shown in the figure 
below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
The oblique shocks will intersect and coalesce into a single oblique shock which is stronger than any of the 
initial oblique shock waves.  Sliplines and weak reflected waves appear at the intersection of the waves. 
 
Notes: 
1. An oblique shock is generally considered to form when two or more compression waves coalesce. 
 
2. For a continuously inward curving wall, the slipstreams are spaced an infinitesimal distance apart so 

the downstream flow has continuously changing entropy, velocity, and temperature.  The oblique 
shock that forms from the interacting compression waves will have a strength such that it turns the 
flow by the wall angle, δ, for the given incoming Mach number. 

 
 
 
 
 
 
 
 
 
3. When waves travel in the same direction as viewed by an observer oriented so that they’re looking 

downstream, the waves are said to be of the same family.  The waves are further classified as being 
either left-running or right-running depending on what direction the waves are oriented.  Examples 
of this notation are given below. 

 
  

weak oblique shocks 

stronger oblique shock 

sliplines 

weak reflected waves required in 
order to equalize the pressure on both 

sides of the slipstream 
(can be compression or expansion 
depending on the flow situation) 

δ 

Region of continuously varying 
velocity, entropy and temperature 
in the direction perpendicular to 
the wall. 

left-running 
compression wave 

right-running 
expansion wave 

These waves are of different families since one 
is left-running and the other is right running. 

flow direction 

observer looking 
downstream All of the compression waves shown in the 

figure above are of the same family since they 
are all left-running waves. 
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16. Reflection and Interaction of Expansion Waves 
 
Reflection with a Solid Boundary 
 
When an expansion wave intersects a solid boundary, it will reflect as another expansion fan (of opposite 
family) in order for the flow to remain parallel to the boundary as shown in the figure below. 
 
 
 
 
 
 
 
 
 
 
 
The flow through the incident and reflected expansion fans can be determined using the following 
procedure. 
1. For the given (Ma1, ν1) and δ12, determine (Ma2, ν2) using ν2 = ν1 + δ12. 
2. For this value of (Ma2, ν2) and since the turning angle of the second wave is also δ23 = δ12 (in order to 

keep the flow parallel to the flat wall), one can determine (Ma3, ν3):  ν3 = ν2+ δ23. 
3. The pressure ratio across both waves, p3/p1, is found using the isentropic relations: 

1
22
2

01

11 Ma
2

p
p

γ
γγ −−⎛ ⎞= +⎜ ⎟⎝ ⎠
 

1
23
3

01

11 Ma
2

p
p

γ
γγ −−⎛ ⎞= +⎜ ⎟⎝ ⎠
 

 
Notes: 
1. The flow through the expansion fans is isentropic. 
 
2. The region where the expansion fans interact is known as a non-simple region.  This region is not 

amenable to our Prandtl-Meyer expansion fan analysis.  Instead, we use can the Method of 
Characteristics (a topic that will be discussed in a later set of notes) to analyze the flow in this region. 

 
3. An expansion wave may be canceled by turning the flow inward by the same amount as the flow 

turning angle. 
 

δ12 

δ23 = δ12 Ma1, p1 

Ma2, p2 
Ma3, p3 

non-simple region 

δ 

δ 
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Expansion Fan Reflection from a Free Surface 
 
When an expansion fan intersects a free surface, the reflection must be an oblique shock (of opposite 
family) so that the flow pressure remains equal to the free surface pressure as shown in the figure below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Interaction of Expansion Waves 
 
When expansion fans intersect, each expansion wave will be transmitted through, but be affected by, the 
other waves.  There can be many regions of non-simple flow as shown in the figure below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Notes: 
 
1. No slipstreams occur with expansion fans since the flow properties change continuously through the 

fan. 

Ma1 

p0 

p1 = p0 

p3 = p0 

p0 

p2 < p0 

Ma2 

Ma3 

expansion fan 

oblique shock 

free surface 

free surface 

non-simple region 
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Mach Diamonds 
 
A phenomenon known as Mach Diamonds (aka shock diamonds) can form when a supersonic stream exits 
a device and interacts with the surrounding atmosphere.  Consider supersonic flow from an exit, with 
pressure pe, into the surrounding atmosphere with pressure, pb. 
 
Over-Expanded Case 
 
 
 
 
 
 
 
 
 
Under-Expanded Case 
 
 
 
 
 
 
 
 
 
Notes: 
1. At design conditions, pe = pb, so additional expansion or compression of the flow is not required.  

Hence, Mach diamonds do not appear at design conditions. 
2. If the flow turning angle is sufficiently large, Mach reflections (aka Mach disks in 3D) will appear as 

shown in the figure below. 
 
 
 
 
 
 
 
 
3. The bright regions in the Mach diamond shown in the photograph above are caused by heating of the 

gas as it passes through the oblique shocks. 
4. Viscous interaction with the external fluid results in dissipation of the Mach diamond pattern. 
5. Even without viscous effects, the sequence of oblique shocks and expansion fans will eventually 

dissipate since the stagnation pressure decreases after each shock.  This can be shown by considering 
the Mach number in the regions downstream of an oblique shock (referred to by the subscript i) which 
are in contact with the free surface such that: 

1
2

0

11 Ma
2

b
i

i

p
p

γ
γγ −−⎛ ⎞= +⎜ ⎟⎝ ⎠
 

Since p0i decreases after passing through an oblique shock and pb is a constant, the ratio pb/p0i increases 
and Mai decreases. Thus, the sequence of oblique shocks gets weaker. 

pe < pb 

pe > pb 

 

pe < pb 
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Interaction Between An Oblique Shock and an Expansion Fan 
 
When an oblique shock interacts with an expansion fan of the same family, the shock will be weakened and 
become curved.  Behind the shock wave the flow becomes rotational.  In addition, the incident expansion 
waves will be reflected. 
 
 
 
 
 
 
 
 
 
 
 
Notes: 
1. Waves will also be reflected from where waves intersect the slip line.  These waves were left off the 

previous schematic for the sake of clarity. 
2. The region of rotational flow is not isentropic (the entropy varies continuously behind this curved 

section of shock wave).  This will be discussed in a later set of notes concerning Crocco’s Theorem. 
 

curved, weakened shock region of rotational flow 

straight  shock 
slip line 

straight  shock 
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17. Equations of Motion in Terms of the Velocity Potential 

 
Now let’s consider the irrotational, isentropic flow of a compressible fluid where body forces are 
negligible.  Recall that the momentum equations for a fluid in which viscous and body forces are negligible 
are given by Euler’s Equations: 

( ) p
t

ρ ∂⎡ ⎤+ ⋅∇ = −∇⎢ ⎥∂⎣ ⎦
u u u  

We can re-write the pressure gradient term in terms of the speed of sound, c, as is shown below: 
dp dpp d dp d d
d d

dpp
d

ρ ρ
ρ ρ

ρ
ρ

∇ ⋅ = = = ∇ ⋅

∴∇ = ∇

x x
 

but since the flow is isentropic, we have:  
2

s

dp dpp c
d d

ρ ρ ρ
ρ ρ

∇ = ∇ = ∇ = ∇  

Thus, the momentum equations can be written as: 

( ) 2c
t

ρ ρ∂⎡ ⎤+ ⋅∇ = − ∇⎢ ⎥∂⎣ ⎦
u u u  

Now take the dot product of this equation with the velocity and re-arrange: 

( )
2c

t
ρ

ρ
∂ ⎡ ⎤⋅ + ⋅ ⋅∇ = − ⋅∇⎣ ⎦∂
uu u u u u  

( ) ( )
21

2
c

t
ρ

ρ
∂ ⎡ ⎤⋅ + ⋅ ⋅∇ = − ⋅∇⎣ ⎦∂
u u u u u u  

The continuity equation can be used to re-write the RHS of the previous equation: 

( ) 0
t t

t

ρ ρρ ρ ρ

ρρ ρ

∂ ∂+∇⋅ = + ∇⋅ + ⋅∇ =
∂ ∂

∂∴ ⋅∇ = − − ∇ ⋅
∂

u u u

u u
 

Thus, the momentum equations become: 

( ) ( )
2

21
2

c c
t t

ρ
ρ

∂ ∂⎡ ⎤⋅ + ⋅ ⋅∇ = + ∇⋅⎣ ⎦∂ ∂
u u u u u u  (241) 

The density in the previous equation may be eliminated using Bernoulli’s equation.  Since the flow is 
irrotational, we can write Bernoulli’s equation as: 

( ) ( )1
2

dp F t
t
φ φ φ

ρ
∂ + + ∇ ⋅∇ =
∂ ∫  

where the velocity has been written in terms of a velocity potential, φ.   
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Taking the time derivative of Bernoulli’s equation gives: 

 ( ) ( )
2

'
2

1
2

dp F t
t tt

φ
ρ

∂ ∂ ∂+ + ⋅ =
∂ ∂∂ ∫ u u  

But, 
2

2

2

dp dp d dc
t t d t

c d
t

c
t

ρ ρ
ρ ρ ρ ρ

ρρ
ρ ρ

ρ
ρ

∂ ∂ ∂= =
∂ ∂ ∂

⎛ ⎞∂ ∂⎛ ⎞= ⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠
∂⎛ ⎞= ⎜ ⎟∂⎝ ⎠

∫ ∫ ∫

∫  

so that: 

( ) ( )

( ) ( )

2 2
'

2

2 2
'

2

1
2

1
2

c F t
t tt

c F t
t tt

φ ρ
ρ

ρ φ
ρ

∂ ∂ ∂⎛ ⎞+ + ⋅ =⎜ ⎟∂ ∂∂ ⎝ ⎠
∂ ∂ ∂⎛ ⎞ = − − ⋅⎜ ⎟∂ ∂∂⎝ ⎠

u u

u u

 

 
Substituting into Eq. (241) gives: 

( ) ( ) ( ) ( )
2

' 2
2

1 1
2 2

F t c
t tt

φ∂ ∂ ∂⎡ ⎤⋅ + ⋅ ⋅∇ = − − ⋅ + ∇⋅⎣ ⎦∂ ∂∂
u u u u u u u u  

( ) ( ) ( )

( ) ( ) ( )

2
'

2 2

2

1

1

F t
tc t

F t
t tc

φ

φ

⎧ ⎫∂ ∂⎪ ⎪⎡ ⎤∇ ⋅ = + ⋅ + ⋅ ⋅∇ −⎨ ⎬⎣ ⎦∂∂⎪ ⎪⎩ ⎭
⎧ ⎫∂ ∂⎡ ⎤ ⎡ ⎤= + ⋅ − + ⋅ ⋅∇⎨ ⎬⎢ ⎥ ⎣ ⎦∂ ∂⎣ ⎦⎩ ⎭

u u u u u u

u u u u u

 

 
Re-writing the velocities in terms of the potential function gives: 

( ) ( ) ( )2
2
1 F t

t tc
φφ φ φ φ φ φ⎧ ⎫∂ ∂⎡ ⎤ ⎡ ⎤∇ = + ∇ ⋅∇ − +∇ ⋅ ∇ ⋅∇ ∇⎨ ⎬⎢ ⎥ ⎣ ⎦∂ ∂⎣ ⎦⎩ ⎭

 (242) 

Governing equation for the isentropic, irrotational flow of a compressible fluid where body forces 
are negligible 
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Notes: 
1. Consider the flow of an incompressible fluid.  If the flow is incompressible, then the speed of sound in 

the fluid will be infinite.  Thus, the governing equation for the irrotational flow of an incompressible 
fluid becomes: 

2 0φ∇ =  (243) 
Governing equation for the irrotational flow of an incompressible fluid in which body forces 
are negligible 

Note that this is just Laplace’s equation!  A significant point regarding Eq. (243) is that it is a linear 
PDE which means that the principle of superposition may be used to add together “building block” 
solutions to form new and more complex solutions. 

 
2. For a steady, compressible flow, Eq. (242) simplifies to: 

( ){ }2
2
1
c

φ φ φ φ⎡ ⎤∇ = ∇ ⋅ ∇ ⋅∇ ∇⎣ ⎦  (244) 

Governing equation for the steady, isentropic, irrotational flow of a compressible fluid in 
which body forces are negligible 

 
3. Equations (242) and (244) are non-linear PDEs which are complex to solve by hand.  There is 

currently no known method for analytically solving these equations in a general way (computational 
techniques can be used, however).  Instead, we must resort to special cases for solving these equations.  
One of these methods, known as small-perturbation theory, is described in the following section. 
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18. Small Perturbation Theory 

 
Recall that the equation of motion for an irrotational flow where body and viscous forces are negligible is: 

( ) ( ) ( )2
2
1 F t

t tc
φφ φ φ φ φ φ⎧ ⎫∂ ∂⎡ ⎤ ⎡ ⎤∇ = + ∇ ⋅∇ − +∇ ⋅ ∇ ⋅∇ ∇⎨ ⎬⎢ ⎥ ⎣ ⎦∂ ∂⎣ ⎦⎩ ⎭

 (245) 

where the velocity is given in terms of a potential function, u=∇φ,  and c is the speed of sound.  For a 
steady flow, this equation simplifies to: 

( ){ }2
2
1
c

φ φ φ φ⎡ ⎤∇ = ∇ ⋅ ∇ ⋅∇ ∇⎣ ⎦  (246) 

 
Suppose that a uniform flow approaches an object that is sufficiently slender so that it produces only a 
small perturbation to the incoming stream as shown in the figure below.    

The potential function for such a flow can be written as: 
U xφ ∞= +Φ  (247) 

where U∞ is the velocity of the incoming flow and Φ is the 
potential function for the velocity perturbations, u’, i.e.: 

' =∇Φu  
(Note:  

    
∇φ = ∇ U∞x +Φ( ) =U∞êx +∇Φ

=u '
!"# ) 

 
Substituting Eq. (247) into Eq. (246) gives: 

( ) ( )( )( ){ }2
2
1 ˆ ˆ ˆx x xU U U
c ∞ ∞ ∞⎡ ⎤∇ Φ = +∇Φ ⋅ +∇Φ ⋅∇ +∇Φ⎣ ⎦e e e  (248) 

The speed of sound, c, should also be written in terms of a velocity perturbation.  This is accomplished by 
recalling that for a steady, isentropic flow, the stagnation enthalpy will remain constant: 

2 21 1
0 0, 2 2      h h h U h U∞ ∞ ∞= ⇒ + = +  

where h and U are the local enthalpy and velocity.  If we consider the fluid to be a perfect gas, then: 

( )2
1 1p

cR Th c T γ
γ γ

ΔΔΔ = Δ = =
− −

 

so that: 
22

2 21 1
2 21 1

cc U U
γ γ

∞
∞+ = +

− −
 

2
2 2 2

2
11 Ma
2

Uc c
c

γ
∞ ∞

∞

⎡ ⎤⎛ ⎞−= + −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 (249) 

where 
( ) ( )2 ˆ ˆx xU U Uφ φ ∞ ∞=∇ ⋅∇ = +∇Φ ⋅ +∇Φe e  

 

U∞ 

x 

y 
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Substituting Eq. (249) into Eq. (248) and expanding (refer to the Appendix): 

( )

( ) ( )

( )

2 2 2
2

2 2 2

'' '2 2 2 2 2
2 2 2

2 2 2

2 '' 2
21

2 2

1 Ma

          Ma 1 1 2 Ma 2 Ma

           + 1 Ma

yx z

yx

x y z

uu u
U U x y U x zx y z

uu
U Ux

γ γ

γ

∞

∞ ∞ ∞
∞ ∞ ∞

∞
∞ ∞

∂ Φ ∂ Φ ∂ Φ− + + =
∂ ∂ ∂

⎛ ⎞⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞∂ Φ ∂ Φ ∂ Φ ∂ Φ ∂ Φ⎜ ⎟+ + − + + +⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ∂ ∂ ∂ ∂∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎣ ⎦ ⎝ ⎠

⎛⎛ ⎞ ∂ Φ ⎜+ +⎜ ⎟⎜ ⎟ ∂⎝ ⎠ ⎝

( )

2 2'2 2

2 2

22 2'' '2 2 2 2 2 2
21

2 2 2 2 2 2 2

'
2

          1 Ma

 

          2Ma

z

yx z

x

u
Uy z

uu u
U U Uy z x z x y

u

γ

∞

∞
∞ ∞ ∞

∞

⎡ ⎤⎞ ⎛ ⎞∂ Φ ∂ Φ⎢ ⎥⎟ + ⎜ ⎟⎜ ⎟⎢ ⎥⎜ ⎟ ∂ ∂⎝ ⎠⎠⎢ ⎥⎣ ⎦
⎧ ⎫⎛ ⎞⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤∂ Φ ∂ Φ ∂ Φ ∂ Φ ∂ Φ ∂ Φ⎪ ⎪⎜ ⎟+ − + + + + +⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎨ ⎬⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎪ ⎪⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠⎝ ⎠ ⎝ ⎠⎩ ⎭

+
' ' '' '2 2 2

2 22Ma 2May y xz zu u uu u
U U y x U U z y U U z x∞ ∞

∞ ∞ ∞ ∞ ∞ ∞

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞∂ Φ ∂ Φ ∂ Φ⎜ ⎟ ⎜ ⎟+ +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

 

Note that the small perturbation assumption has not been used in deriving the previous equation.  Now, if 
we assume that the velocity perturbations are indeed small, i.e.: 

'' '
2 2 2

22 2'' '
2 2 2

' '' ' ' '
2 2 2

Ma ,Ma ,Ma 1

Ma ,Ma ,Ma 1

Ma ,Ma ,Ma

yx z

yx z

y yx x z z

uu u
U U U

uu u
U U U

u uu u u u
U U U U U U

∞ ∞ ∞
∞ ∞ ∞

∞ ∞ ∞
∞ ∞ ∞

∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

=

=

1
⎞
⎟⎜ ⎟⎠
=

 (250) 

then the PDE simplifies to: 

( ) ( )
'2 2 2 2

2 2
2 2 2 21 Ma 1 Ma  xu

Ux y z x
γ∞ ∞

∞

⎛ ⎞∂ Φ ∂ Φ ∂ Φ ∂ Φ− + + = + ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
 (251) 

Eq of Motion for Small Perturbations when Ma∞≈1 
 

Note that the ∂2Φ/∂x2 term on the RHS has been retained in the previous equation.  This is because when 
Ma∞ is near unity, the ∂2Φ/∂x2 term on the LHS may be of the same order of magnitude as the RHS and 
thus the RHS cannot be neglected.  Thus, Eq. (251) is the appropriate form for the equation of motion when 
the free stream Mach number is near unity. 
 
Note that Eq. (251) is non-linear.  If we can assume further that: 

'2

2
Ma

1
1 Ma

xu
U

∞

∞∞

⎛ ⎞
⎜ ⎟⎜ ⎟− ⎝ ⎠

=  (252) 

then Eq. (251) simplifies to: 

( )
2 2 2

2
2 2 21 Ma 0 
x y z∞

∂ Φ ∂ Φ ∂ Φ− + + =
∂ ∂ ∂

 (253) 

Eq of Motion for Small Perturbations, Ma∞ not near unity 
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Notes: 
1. Note that the assumptions (Eq. (250)) used in deriving Eq. (253) also indicate that the Mach number 

cannot be too large (e.g., we can’t use Eq. (253) to model hypersonic flows).  
 
2. Equation (253) is a linear PDE.  This means that we can use the principle of superposition to add 

together solutions of the equation to form new solutions. 
 
3. It is instructive to examine the mathematics of Eq. (253) in greater detail.  For simplicity, let’s consider 

only 2D flows.  The general form for a 2nd order, linear PDE (with x and y as the independent 
variables) is: 

2 2 2

2 2A B C D E F G
x y x yx y

∂ Φ ∂ Φ ∂ Φ ∂Φ ∂Φ+ + + + + Φ =
∂ ∂ ∂ ∂∂ ∂

   

The behavior of the PDE will vary significantly depending on the value of its principle part, which is 
given by: 

2
0 elliptic PDE

4 0 parabolic PDE
0 hyperbolic PDE

B AC
<⎧

⎪− =⎨
⎪>⎩

 

The details of the differences in behavior between the three types of PDEs will not be examined here 
except for dependence on boundary conditions.  For an elliptic PDE, the solution at a particular point 
in the domain will depend on all of the boundary conditions.  In the language of mathematics, this is 
the same as saying that there are no real characteristic directions (we will discuss characteristic curves 
later in the course).  The prototype elliptic PDE is Laplace’s equation: 

2 0φ∇ =  
For a hyperbolic PDE, the solution at a particular point in the domain will depend only on a particular 
region of the boundary conditions (termed the zone of dependence).  Furthermore, the solution at that 
point will have an effect only on a particular region termed the zone of influence.  Mathematically 
speaking, there are two real characteristic directions for hyperbolic PDEs.  The prototype equation for 
hyperbolic PDEs is the wave equation: 

2 2
2

2 2
u u

c
t x

∂ ∂=
∂ ∂

 

We will not discuss parabolic PDEs here since we will only be concerned with elliptic and hyperbolic 
PDEs in the following analyses.  In addition, we already stated that Eq. (253) is for the case when Ma∞ 
is not near a value of one, and -4AC only equals zero when Ma∞ = 1. 

 
How does all of this relate to the small perturbation equation of motion?  Consider Eq. (253) simplified 
for 2D flow: 

( )
2 2

2
2 21 Ma 0 
x y∞

∂ Φ ∂ Φ− + =
∂ ∂

 (254) 

The behavior of the flow will vary significantly depending on the Mach number: 
1 elliptic PDE

Ma
1 hyperbolic PDE∞

<⎧
⎨>⎩

 A = 1-Ma∞2, B = 0, C = 1 ⇒ B2-4AC = 4(Ma∞2 - 1)  

Recall that when Ma∞≈1 (the transonic region), we must use Eq. (251) rather than Eq. (253).  The 
analysis in the transonic region is complex due to the non-linearity of the governing equation. 

 
Based on our previous analyses of 1D, compressible flow, the behavior of subsonic and supersonic 
flows can be quite different.  The same holds true here even though the governing equation (Eq. (254)) 
looks fairly simple.  A deeper investigation of the differences between subsonic and supersonic flows 
will be given in a following section. 
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4. Since we linearized the governing PDE using the small perturbation assumption, we should also 
linearize the boundary conditions.  The appropriate boundary condition at a solid boundary for an 
inviscid flow is not the no-slip condition since the fluid can slip tangent to the surface.  Instead, we 
specify that the flow will not penetrate the solid object, i.e.: 

0
n
φ∂ =
∂

 

where n is the direction normal to the object’s surface.  This is the same as stating that the surface of 
the object is a streamline for the flow (recall that there is no flow across a streamline).  Thus, we can 
write: 

'
'

' '
surface 1

y
y

x x

u
u Udy

dx U u u
U

∞

∞
∞

= =
+ +

 

Since we’re assuming that the perturbation velocities are small in comparison with the free stream 
velocity, we have: 

'
surface

surface

yudy
dx U∞

≈    
'

1xu
U∞

⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠

=  

Since the object is considered to be slender, we can use a Taylor series to show that the y-perturbation 
velocity at y=0 can be used rather using the velocity on the surface: 

( ) ( )
( )

( )

'
' '

,0

'

, ,0

,0
s

y
y s s y s s

x

y s

u
u x y u x y

y

u x

∂
= + +

∂

≈

L
 

where (xs, ys) are the coordinates of the object surface and ys is assumed to be very small.  Thus, the 
appropriate boundary condition at the object surface becomes: 

( )
'

,0

surface

s
y x
u

dy
dx U∞

≈  (255) 

 

U∞ x 
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5. An additional quantity that is often helpful when analyzing external flows is the pressure coefficient, 
Cp, which is defined as: 

21
2

p
p pC

Uρ
∞

∞ ∞

−
≡  

This can be written for a perfect gas as: 

21
2

1

Map

p
pC
γ
∞

∞

−
≡  (256) 

The pressure ratio can be written in terms of the free stream and perturbation velocities by using the 
energy equation for an isentropic (2D) flow: 

( ) ( )2 2' ' 21 1
2 2x y
p p

T U u u T U
c c∞ ∞ ∞

⎡ ⎤+ + + = +⎢ ⎥⎣ ⎦
 

where  

1p
Rc γ

γ
=

−
 

so that 

( ) ( )2 22 ' ' ' 21 12
2 2x x yT U U u u u T U
R R

γ γ
γ γ∞ ∞ ∞ ∞
− −⎡ ⎤+ + + + = +⎢ ⎥⎣ ⎦

 

( )
22 '' '

21
21 1 Ma 2 yx x uu uT

T U U U
γ ∞

∞ ∞ ∞ ∞

⎡ ⎤⎛ ⎞⎛ ⎞⎢ ⎥⎜ ⎟= − − + +⎜ ⎟⎜ ⎟⎢ ⎥⎜ ⎟⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

 

For an isentropic flow of a perfect gas: 

( )
122 '' '1

21
21 1 Ma 2 yx x uu up T

p T U U U

γ
γγ

γ
γ

−
−

∞
∞ ∞ ∞ ∞ ∞

⎧ ⎫⎡ ⎤⎛ ⎞⎛ ⎞⎛ ⎞ ⎪ ⎪⎢ ⎥⎜ ⎟= = − − + +⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟⎝ ⎠ ⎪ ⎪⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦⎩ ⎭

 (257) 

The previous relation may be simplified further by use of the binomial theorem, which states that for 
x<1: 

   
1+ x( )n

= 1+ nx +
n n−1( )x2

2!
+!  

Since the perturbations are small: 

   

1− 1
2 γ −1( )Ma∞

2 2
ux
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U∞
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ux
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⎛

⎝
⎜
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⎠
⎟
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+
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⎝
⎜
⎜
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⎠
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⎟
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⎢
⎢
⎢
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⎥
⎥
⎥
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⎨
⎪

⎩
⎪

⎫

⎬
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⎪

γ
γ −1
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                                     1− 1
2 γ Ma∞
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⎜
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⎠
⎟
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⎜
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Using the assumption that the perturbation velocities are small in comparison to the free stream 
velocity, the remaining terms in the series can be neglected.  Substituting this result into Eq. (257) and 
then substituting this result back into the definition of the pressure coefficient (Eq. (256)) gives: 

22 '' '
21

2 22 '' '

21
2

Ma 2

2
Ma

yx x

yx x
p

uu u
U U U uu u

C
U U U

γ

γ

∞
∞ ∞ ∞

∞ ∞ ∞∞

⎡ ⎤⎛ ⎞⎛ ⎞⎢ ⎥⎜ ⎟− + +⎜ ⎟⎜ ⎟⎢ ⎥⎜ ⎟ ⎡ ⎤⎝ ⎠ ⎛ ⎞⎝ ⎠ ⎛ ⎞⎢ ⎥⎣ ⎦ ⎢ ⎥⎜ ⎟= = − + +⎜ ⎟⎜ ⎟⎢ ⎥⎜ ⎟⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

 

Again, using the small perturbation assumption we observe that the squared terms in the previous 
equation will be very small compared to the remaining term so that the pressure coefficient is given by: 

'
2 x

p
u

C
U∞

⎛ ⎞
= − ⎜ ⎟⎜ ⎟⎝ ⎠

 (258) 
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6. Equation (254) for a subsonic flow may be reduced to Laplace’s equation using an appropriate 
transformation of variables.  This is useful since there has been a large body of work in determining 
the solution to Laplace’s equation for various boundary conditions.  In particular, the equation of 
motion for an incompressible flow is Laplace’s equation.   

 
To transform Eq. (254), define a new coordinate system using the variables (ξ, η) and a transformed 
perturbation potential, Φ , in the following manner: 

x
y

ξ
η β

β

=
=

Φ = Φ
 where 21-Maβ ∞=  (259) 

Note that: 

   

∂2Φ
∂x2 = ∂

∂x
∂Φ
∂x

⎛
⎝⎜

⎞
⎠⎟
= ∂
∂x

1
β
∂Φ
∂x

⎛
⎝⎜

⎞
⎠⎟
= ∂

∂ξ
∂ξ
∂x
=1
!

+ ∂
∂η

∂η
∂x
=0
!

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
β

∂Φ
∂ξ

∂ξ
∂x
=1
!

+ ∂Φ
∂η

∂η
∂x
=0
!

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= 1
β
∂2Φ
∂ξ 2

 (260) 

   

∂2Φ
∂y2 = ∂

∂y
∂Φ
∂y

⎛
⎝⎜

⎞
⎠⎟
= ∂
∂y

1
β
∂Φ
∂y

⎛
⎝⎜

⎞
⎠⎟
= ∂

∂ξ
∂ξ
∂y
=0
!

+ ∂
∂η

∂η
∂y
=β
!

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
β

∂Φ
∂ξ

∂ξ
∂y
=0
!

+ ∂Φ
∂η

∂η
∂y
=β
!

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= β ∂2Φ
∂η2

 (261) 

 
Substituting Eqs. (260) and (261) into Eq. (254) gives: 

2 2
2

2 2
1 0β β
β ξ η

⎛ ⎞ ⎛ ⎞∂ Φ ∂ Φ+ =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
 

2 2

2 2 0
ξ η

∂ Φ ∂ Φ+ =
∂ ∂

 (262) 

This is Laplace’s Equation in the (ξ, η) plane!  This is the same equation of motion as for an 
incompressible fluid (∇2φ = 0). 

 
Since we transformed the governing equation, we also need to transform boundary conditions.  Let the 
shape of a boundary surface in the (x, y) plane be described by: 

( )s sy f x=  (263) 
and the corresponding surface in the (ξ, η) plane be: 

( )s sfη ξ=  (264) 
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Recall from Eq. (255) that the boundary condition at a surface in the actual flow (in the (x, y) plane) is: 

( ) ( )
,0

surface,0s
s

y x
x

dy
u U

y dx∞
∂Φ′ = =
∂

 (265) 

The same boundary condition expressed in the transformed flow, i.e., in the (ξ, η) plane, is: 

( ) ( )
,0

,0 surfaces
s

dfu U
dη ξ

ξη ξ∞
∂Φ′ = =
∂

 (266) 

Note however that: 

   

∂Φ
∂y xs ,0( )

= ∂
∂ξ

∂ξ
∂y
=0
!

+ ∂
∂η

∂η
∂y
=β
!

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
β
Φ

⎛
⎝⎜

⎞
⎠⎟

ξs ,0( )

= ∂Φ
∂η ξs ,0( )

 (267) 

Hence, since the left hand sides of Eqs. (265) and (266) are equal, we also have: 

surface surfacesurface

dy df df
dx dx dξ

= =  (268) 

Since the slope of the actual boundary surface is (df/dx)surface, Eq. (268) tells us that the shape of the 
boundary surface in the transformed plane ((ξ, η)) is the same as that in the real ((x, y)) plane.  
Furthermore, since the boundary surface is the same in the transformed plane, and since Eq. (262) is 
the equation of motion for an incompressible fluid, then Φ  must be the perturbation velocity potential 
for an incompressible flow past the same boundary surface.  Hence, if we can determine Φ  assuming 
incompressible flow over the surface, the corresponding compressible flow solution can be determined 
using the scaling relationships given in Eq. (259). 

 
Recall that the pressure coefficient (Eq. (258)) is given by: 

   

Cp = −2
ux

'

U∞

⎛

⎝
⎜

⎞

⎠
⎟ = − 2

U∞

∂Φ
∂x

= − 2
U∞

1
β
∂Φ
∂x

= 1
β

− 2
U∞

∂Φ
∂ξ

⎛

⎝⎜
⎞

⎠⎟

=Cp

! "# $#
 (269) 

Note that the last term in parentheses in the previous equation is the pressure coefficient determined 
from the incompressible (i.e., transformed plane) solution, 0pC .  Hence, the pressure coefficient for 
the subsonic, compressible flow can be determined by scaling the incompressible pressure coefficient 
by: 

21 Ma

p
p

C
C

∞

=
−

 (270) 

This scaling relationship is known as the Prandtl-Glauert Rule. 
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Notes: 
a. It can also be shown that the lift and moment coefficients are scaled in a similar manner for 

linearized, subsonic compressible flow (note that the drag coefficient is always zero for subsonic 
potential flow): 

21 Ma
L

L
CC

∞

=
−

 (271) 

21 Ma
M

M
CC

∞

=
−

 (272) 

 
b. The effect of compressibility on the flow perturbation velocities can be determined from Eq. 

(259): 

   

′u = ∇Φ = 1
β
∇Φ
= ′u
! = ′u

1− Ma∞
2

 (273) 

Compressibility acts to increase the magnitude of the perturbations (since the denominator is 
always less than one).  Hence, a disturbance to a compressible flow reaches further into the flow 
than for an incompressible flow. 

 
c. The Prandtl-Glauert rule tends to underpredict the pressure coefficient for real flows.  It is only 

reasonably accurate up to a Mach number of about 0.7.  This is because the rule is based on 
linearization of the governing equations.  Other rules have been proposed (e.g., the Karman-Tsien 
rule and the Laitone rule) that incorporate non-linear flow effects to give improved predictions to 
the pressure coefficient. 

 
d. Recall that for an isentropic flow that 

1
1 1

1
cp cT dp dT

γ
γ γγ

γ
− −= ⇒ =

−
 

so that a decrease in pressure corresponds to a decrease in temperature.  So, for subsonic flow over 
the suction side of an airfoil near sonic conditions, not only will the pressure drop, but the 
temperature will drop as well.  This drop in temperature in humid conditions can result in water 
vapor turning to liquid water, i.e., condensation.  This effect is often visible on the surface of high 
speed aircraft in humid environments. 

  
(Images from:  http://en.wikipedia.org/wiki/Prandtl%E2%80%93Glauert_singularity ) 
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Appendix 
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 (274) 

Recall that from the speed of sound equation: 
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Substituting (275) into Eq. (274) gives,
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19. Method of Characteristics 
 

The method of characteristics is a procedure by which non-linear, hyperbolic PDEs may be solved in an 
algorithmic fashion. 

 
Before beginning with the algorithm, we must first discuss a few details regarding hyperbolic PDEs.  To 
begin, let’s first define a characteristic curve.  A characteristic curve is a curve across which the value 
of some parameter is continuous, but the derivatives of that parameter are indeterminate.  Consider 
for example the flow through a Mach wave.  Recall from our previous analysis that velocity changes across 
a Mach wave are very small, i.e., the velocity across a Mach wave goes from V to V+dV.  This infinitesimal 
velocity change (dV) occurs over zero distance since the Mach wave has no thickness.  Thus, although the 
velocity changes continuously across the Mach wave, the velocity gradient is indeterminate (dV/0=?).  
Hence, a Mach wave is a characteristic curve according to our definition.  Characteristic curves have 
additional useful properties but we will not discuss them at this time.   
 
Our first task will instead be to determine the slope of a characteristic curve in a general flow situation.  
Recall from our previous analysis that the equation of motion for a steady, irrotational, isentropic 
compressible flow with negligible body and viscous forces is given by: 
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⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂= + + ⋅ +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

e e e

e

e e e
2 2

2

2 2 2

2

2 2 2 2

2

2

2

ˆ

ˆ

1

y

z

z z yy

x x z y y z z z

x x y y x x z z xx

y x x y yc

φ φ φ

φ φ φ φ φ φ

φ φ φ φ φ φ φ φ

φ φ φ φ

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥

⎛ ⎞⎪ ⎪∂ ∂⎪ ⎪⎢ ⎥+ +⎜ ⎟⎨ ⎬⎢ ⎥⎜ ⎟∂ ∂ ∂∂⎪ ⎪⎝ ⎠⎢ ⎥
⎪ ⎪⎢ ⎥⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎪ ⎪⎢ ⎥+ +⎜ ⎟⎜ ⎟⎪ ⎪⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ + + +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂⎝ ⎠

⎛ ⎞∂ ∂ ∂ ∂= + ⎜∂ ∂ ∂ ∂ ∂⎝

e

e

2 2 2

2

22 2 2

2

y z z yy

z x x z z y y z z z

φ φ φ φ

φ φ φ φ φ φ φ φ

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪

∂ ∂ ∂ ∂⎪ ⎪+ +⎨ ⎬⎟ ∂ ∂ ∂ ∂∂⎠⎪ ⎪
⎪ ⎪
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞⎪ ⎪+ + ⎜ ⎟⎪ ⎪∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎩ ⎭  

22 22 2 2

2 2 2 2 2 2

2 2 2 2 2 2 2

1

2 2 2

x y zx y z
x y z c

x y y x y z z y x z z x

φ φ φ φ φ φ
φ φ φ

φ φ φ φ φ φ φ φ φ

⎧ ⎫⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞⎪ ⎪+ + +⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂∂ ∂ ∂ ⎪ ⎪∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠+ + = ⎨ ⎬
∂ ∂ ∂ ⎪ ⎪∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂+ +⎪ ⎪∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎩ ⎭

 (276) 
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For 2D flow, the previous equation can be written as: 
22 2 2 2

2 2
2 22 0c c

x x y x y yx y
φ φ φ φ φ φ φ⎡ ⎤⎡ ⎤ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎢ ⎥− − + − =⎢ ⎥ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥∂ ∂⎝ ⎠⎢ ⎥ ⎝ ⎠⎣ ⎦ ⎣ ⎦

 (277) 

This non-linear equation has the form: 
2 2 2

2 22 0A B C
x yx y

∂ Φ ∂ Φ ∂ Φ+ + =
∂ ∂∂ ∂

 (278) 

where A, B, and C depend on ∂φ/∂x and ∂φ/∂y.   
 
For an isentropic flow, the velocities, i.e., ∂φ/∂x and ∂φ/∂y, are continuous.  Since we’re interested in 
finding the velocity characteristic curves, we should consider differential changes in the velocities: 

2 2

2xdu d dx dy
x x yx
φ φ φ∂ ∂ ∂⎛ ⎞= = +⎜ ⎟∂ ∂ ∂∂⎝ ⎠

 (279) 

2 2

2ydu d dx dy
y x y y
φ φ φ⎛ ⎞∂ ∂ ∂= = +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

 (280) 

Now let’s rewrite Eqs. (278) through (280) as a system of linear equations where the independent variables 
are the velocity gradients (∂2φ/∂x2, ∂2φ/∂x∂y, and ∂2φ/∂y2): 

2 2 2

2 2

2 2

2

2 2

2

2 0

0

0

A B C
x yx y

dx dy d
x y xx

dx dy d
x y yy

φ φ φ

φ φ φ

φ φ φ

∂ ∂ ∂+ + =
∂ ∂∂ ∂

∂ ∂ ∂⎛ ⎞+ + = ⎜ ⎟∂ ∂ ∂∂ ⎝ ⎠
⎛ ⎞∂ ∂ ∂+ + = ⎜ ⎟∂ ∂ ∂∂ ⎝ ⎠

 (281) 

Recall from linear algebra that Kramer’s rule states that a system of equations has a unique solution if and 
only if the determinant of the system is not equal to zero, i.e.: 

2 2
2

0 2 0
0

A B C
dx dy Ady Bdxdy Cdx

dx dy
= − + ≠  (282) 

Thus, if this determinant is equal to zero, then the velocity derivatives (or gradient) (∂2φ/∂x2,  ∂2φ/∂y2, and 
∂2φ/∂x∂y) will be indeterminate.  The slope of such a curve is given by: 

2 2

2 2

2 0

2 4 4
2

Ady Bdxdy Cdx

dy B B AC B B AC
dx A A

− + =

± − ± −= =
 

where 
2

2 2 2

2
2 2 2

x

x y

y

A c c u
x

B u u
x y

C c c u
y

φ

φ φ

φ

⎡ ⎤∂⎛ ⎞= − = −⎢ ⎥⎜ ⎟∂⎝ ⎠⎢ ⎥⎣ ⎦
∂ ∂= − = −
∂ ∂

⎡ ⎤⎛ ⎞∂⎢ ⎥= − = −⎜ ⎟∂⎢ ⎥⎝ ⎠⎣ ⎦
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Thus, 

( )( )

( )

( )

2 2 2 2 2 2

2 2

2 2 4 2 2 2 2 2 2

2 2

2 2 2 4

2 2

x y x y x y

x

x y x y x y x y

x

x y x y

x

u u u u c u c udy
dx c u

u u u u c c u c u u u

c u

u u c u u c

c u

− ± − − −
=

−

− ± − − − +
=

−

− ± + −
=

−

 

2
2

2

2

Ma 1

1

x y

x

u u
dy c
dx u

c

− ± −
=

−
 slope of characteristic curves (283) 

Recall from our previous discussion that a curve across which the velocity derivatives (or gradient) are 
indeterminate are referred to as characteristic curves. 
 
Notes: 
1. For Ma<1 there are no real characteristic curves (elliptic PDE).  For Ma=1 there is one characteristic 

curve (parabolic PDE), and for Ma>1 there are two characteristic curves (hyperbolic PDE). 
 
2. Recall from our previous, linearized (small perturbation) analysis that the governing PDE was linear: 

2 2 2

2 22 0A B C
x yx y

∂ Φ ∂ Φ ∂ Φ+ =
∂ ∂∂ ∂

 

where 

( )21 Ma

0
1

A

B
C

∞= −

=
=

 

Thus, the slope of the characteristic curves are given by: 
2

2

1

Ma 1

dy B B AC
dx A

∞

± − ±= =
−

 Mach lines!  

Thus, the characteristic curves for linearized flow are straight Mach lines. 
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3. It can be shown that the characteristic curves are inclined at the Mach angle to the local flow direction.  
To show this, first re-write the velocity components in terms of the velocity magnitude, V, and the 
local flow inclination, θ: 

cos
sin

x

y

u V
u V

θ
θ

=
=

  (284) 

Substituting into Eq. (283) and noting that, sinµ = 1/Ma (where µ is the Mach angle), gives: 
2 2

2 2

2
2

2
2

2

2 2

Ma sin cos Ma 1
1 Ma cos

1sin cos Ma 1
Ma

1 cos
Ma

sinsin cos
tan

sin cos

dy
dx

θ θ
θ

θ θ

θ

µθ θ
µ

µ θ

− ± −=
−

− ± −
=

−

− ±
=

−

 

After considerable rearrangement and simplification using trig identities we find that: 

   

dy
dx

= tan θ ∓ µ( )  (285) 

The “-” corresponds to the right-running characteristic while the “+” corresponds to the left-running 
characteristic. 
  
Thus, the slope of the characteristic lines will be inclined at the Mach angle to the local flow 
direction. 

 
 
 
 
 
 
 
 
 

 
 
 
 

 
Notes: 
a. The direction of a characteristic curve or Mach line is determined by facing downstream.  The left-

running waves are on the LHS while the right-running waves are on the RHS. 
 
b. The characteristic curves are the “Mach curves” for the flow.   

 

θ µ 
µ 

V 

right-running 
Mach line 

left-running 
Mach line 

x 

y 

right-running 
characteristic curve 

left-running 
characteristic curve 

θ 
V 

x 

y 

µ 
1 Ma 

(Ma2-1)1/2 

tan µ = (Ma2-1)-1/2 
sin µ = 1/Ma 
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c. Although we now have an expression for the slope of the characteristic curves (Eq. (285)), we still 
need to have some relation for determining how the velocities change along a characteristic curve.  
Recall from the system of equations from Eq. (281): 

2 2 2

2 2

2 2

2

2 2

2

2 0

0

0

x

y

A B C
x yx y

dx dy d du
x y xx

dx dy d du
x y yy

φ φ φ

φ φ φ

φ φ φ

∂ ∂ ∂+ + =
∂ ∂∂ ∂

∂ ∂ ∂⎛ ⎞+ + = =⎜ ⎟∂ ∂ ∂∂ ⎝ ⎠
⎛ ⎞∂ ∂ ∂+ + = =⎜ ⎟∂ ∂ ∂∂ ⎝ ⎠

 

where  
2

2 2 2

2
2 2 2

x

x y

y

A c c u
x

B u u
x y

C c c u
y

φ

φ φ

φ

⎡ ⎤∂⎛ ⎞= − = −⎢ ⎥⎜ ⎟∂⎝ ⎠⎢ ⎥⎣ ⎦
∂ ∂= − = −
∂ ∂

⎡ ⎤⎛ ⎞∂⎢ ⎥= − = −⎜ ⎟∂⎢ ⎥⎝ ⎠⎣ ⎦

 

The solution for the gradient of the x-velocity component in the x-direction (using Kramer’s rule) 
is: 

2

2 2 2

0 2
0

2
2 2

0
0

x

y x y xx

B C
du dy
du dx dy Cdxdu Cdydu Bdyduu
A B Cx x Ady Bdxdy Cdx
dx dy

dx dy

φ − −∂ ∂= = =
∂ ∂ − +

 

(Note:  We could also consider the other velocity gradients such as ∂uy/∂x and would get the same 
result given below.)  Recall that along a characteristic curve the denominator in the previous 
expression will be zero.  Thus, in order for ∂ux/∂x to remain finite (we’re assuming that the 
velocities in the flow will be finite so that velocity gradients will also be finite), the numerator 
must also be zero: 

2 0

2  

x y x

y

x

Cdxdu Cdydu Bdydu

du dx B
du dy C

− − =

⇒ = −
 

Substituting in for the characteristic curve slope (Eq. (285)) and simplifying gives: 

2
2

2

2

Ma 1

1

x y

y

x y

u u
du c
du u

c

−
=

−

m
 (286) 
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Re-write the velocity components in terms of the velocity magnitude, V, and direction, θ: 
cos           cos sin
sin           sin cos

x x

y y

u V du dV V d
u V du dV V d

θ θ θ θ
θ θ θ θ

= ⇒ = −
= ⇒ = +

 

Substituting into Eq. (286) and simplifying: 

   

1
V

dV
dθ

= ∓1

Ma2 −1
= ∓ tanµ  (287) 

We now need to integrate the previous expression as we move along a characteristic line.  We’ve 
performed this same integration before when discussing Prandtl-Meyer expansion fans (refer to 
Eq. (236) and (237)).  Instead of re-deriving the result again, we’ll just copy the result here: 

   
dθ

a

b

∫ = ∓ Ma2 −1 dV
V

a

b

∫ = ∓ νb −νa( )  

  
θb −θa = ∓ νb −νa( )  (288) 

where νa and νb are the Prandtl-Meyer angles for the flow at locations a and b, both of which lie on 
the same characteristic curve.  Again, θa and θb are the flow velocity directions at points a and b.  
If we let the point a be some reference point on the characteristic curve, then: 

 
constantν θ+ =  along a right-running characteristic curve (289) 

 
constantν θ− =  along a left-running characteristic curve (290) 

 
Equations (289), (290), and (285) can be combined together in an algorithm for solving steady, 
supersonic, irrotational compressible flows.   
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Method of Characteristics Algorithm 
 
Suppose that the flow conditions are known along some curve CD: 
 
 
 
 
 
 
 
 
 
 
Since the flow conditions are known on this curve, the flow angle, θ, and Prandtl-Meyer angle, ν, are 
known at the two points A and B.  We now move along the right-running characteristic curve from point A 
until it intersects with the left-running characteristic curve from point B.   Call this intersection point P.  At 
point P we have: 

P P A A R

P P B B L

C
C

ν θ ν θ
ν θ ν θ

+ = + =
− = − =

 

where CR and CL are constants.  Re-arrange the previous expressions to get: 
( )
( )

1
2

1
2

P R L

P R L

C C

C C

ν
θ

= +

= −
 

Since we now know the Prandtl-Meyer angle and flow direction at point P, we can determine the remainder 
of the flow properties for this isentropic flow (e.g., Mach number, pressure, temperature, velocity 
components, etc.)  However, we still don’t know the location of point P.  Since the Mach number changes, 
in general, from point to point in the flow field, the characteristics curves will not necessarily be straight 
lines.  However, if we choose the points A and B to be very close together, then we can approximate the 
position of point P by the intersection of the left- and right-running Mach lines passing through A and B 
(call this point P’). 
 
 
 
 
 
 
 
 
 
 
 
Obviously the location of point P’ approaches P as the distance between A and B becomes smaller.   
 
We can determine the conditions at other points in the flow field by repeating this procedure for other 
points where the flow conditions are known. 
 

A 

B 

P C 

D 

P’ 
Mach lines 

A 

B 

P C 

D 
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Note that along a right-running characteristic, CR = constant so: 

   

ν = 1
2 CR +CL( )⇒Δν = 1

2 ΔCR

=0
! + ΔCL

⎛

⎝
⎜

⎞

⎠
⎟ = 1

2 ΔCL

θ = 1
2 CR −CL( )⇒Δθ = 1

2 ΔCR

=0
! − ΔCL

⎛

⎝
⎜

⎞

⎠
⎟ = − 1

2 ΔCL

⎫

⎬

⎪
⎪
⎪

⎭

⎪
⎪
⎪

⇒ Δν = −Δθ  (291) 

Similarly, along a left-running characteristic, CL = constant so: 
 

   

ν = 1
2 CR +CL( )⇒Δν = 1

2 ΔCR + ΔCL

=0
!

⎛

⎝
⎜

⎞

⎠
⎟ = 1

2 ΔCR

θ = 1
2 CR −CL( )⇒Δθ = 1

2 ΔCR − ΔCL

=0
!

⎛

⎝
⎜

⎞

⎠
⎟ = 1

2 ΔCR

⎫

⎬

⎪
⎪
⎪

⎭

⎪
⎪
⎪

⇒ Δν = Δθ  (292) 
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Method of Characteristics 
This section remains incomplete. 

 
Types of Points: 

Interior Points: 
CL and CR are known, determine ν and θ 

 
Solid Boundary Points: 

either CL or CR is known and θ is known 
 

Free Boundary Points: 
either CL or CR is known and ν is known  
(Since p is known ⇒ can determine Ma ⇒ can determine ν) 

 
Interaction of Waves 

reflections off solid boundaries 
 
cancellation of waves 
 
reflections off free boundaries 
 
intersection of waves 

 
Region-to-Region Method 
Can cross characteristics too.  Recall from our previous work that across a Mach wave (a characteristic 
curve), we have: 

ν θΔ = −Δ   
 
 

where ν is the Prandtl-Meyer angle and θ is the flow orientation.  These expressions can be written as: 
2 2 1 1ν θ ν θ− = −  across a right-running characteristic 

and 
2 2 1 1ν θ ν θ+ = +  across a left-running characteristic 

 
(same as moving along the opposite characteristic) 
 

Angle of lines separating regions 

( ) ( )1
2ij i i j jα θ µ θ µ⎡ ⎤= − + −⎣ ⎦   (across R-running) 

( ) ( )1
2ik i i k kα θ µ θ µ= + + +⎡ ⎤⎣ ⎦   (across L-running) 

 

Δθ  

u 

R 

L 

µ 
µ θ 

i 

j 

k 
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Design of a Supersonic Wind Tunnel Nozzle 
 
One simple application of the Method of Characteristics is in the design of a supersonic wind tunnel nozzle.  
Recall that the function of a supersonic nozzle is to accelerate a flow from Ma=1 to some final supersonic 
Mach number.  In order to simulate free flight, the flow through the test section of the wind tunnel should 
be parallel and uniform. 
 
Consider a symmetric nozzle so that only the upper half of the nozzle must be considered.  For simplicity, 
assume that the incoming flow at the throat is uniform and at Mach 1.0 (of course in a real nozzle the 
incoming flow would not be uniform).  The flow will first expand in the region from points a through b as 
shown in the figure below.  Four of the expansion waves (right-running characteristics) are shown in the 
sketch.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The expansion waves reflect off the centerline at points g through j as expansion waves which act to turn 
the flow back toward the horizontal (these are left-running characteristics).  These waves impinge on the 
nozzle wall at points c through f.  In order to avoid further reflections, the wall contour at points c through f 
should be sloped at the wave turning angle so that the waves are cancelled. 
 
Notes: 
1. As more waves are included in the analysis, the nozzle contour will become smoother. 
 
2. The initial expansion from a to b is arbitrary in the design.  The critical points in the analysis are points 

c through f which must designed to provide wave cancellation. 
 
3. To design a nozzle with the shortest length, the expansion from points a to b should take place as a 

centered Prandtl-Meyer expansion fan: 
 
 
 
 
 
 
 
 
 
 
 
 
4. The design of a real nozzle should also factor in boundary layer effects in order to give the correct flow 

area and avoid boundary layer separation. 

a 

b 

c 
d e f 

g h i j 

test section 

a,b 

c d e f 

g h i j 
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  methodofcharacteristics_05 

Page 1 of 2 

Design the diverging section of a supersonic nozzle to produce uniform Mach 1.8 flow.  Assume that the 
length of the nozzle should be kept to a minimum. 
 
 
SOLUTION: 
 
For the minimum length nozzle, a centered expansion fan should immediately follow the throat. 
 
 
 
 
 
 
 
 
 
 
Assume that sonic flow occurs at the throat so that AT = A* (and Ma1 = 1).  The test section area ratio may 
be found from the test section Mach number. 

( )
1

2 11 2
2

* 1
2

1 Ma1
Ma 1

TSTS

TS

A
A

γ
γγ

γ

+
−−

−

⎛ ⎞+
⎜ ⎟=
⎜ ⎟+⎝ ⎠

  ⇒  
* 1.4390TSA
A

=  (1) 

 
For simplicity, consider only two (equally spaced) waves in the expansion fan so that the flow will travel 
through a total of four expansion waves between the throat and the test section.  The total change in 
Prandtl-Meyer angle will be: 

Ma1  =  1.0  ⇒  ν1 = 0°   and   Ma6 = MaTS = 1.8  ⇒  ν6 = 20.73°  (2)   
∴ Δν = (20.73° – 0°)/4 = 5.18° (3) 

Hence, through each wave the Prandtl-Meyer angle will change by 5.18°.  
 
Note that when crossing left-running characteristic lines: 

θ νΔ = −Δ   (4) 
and when crossing right-running characteristic lines: 

θ νΔ = Δ    (5) 
 
The corresponding Mach numbers (and Prandtl-Meyer and Mach angles) are summarized in the table 
below. 
 

Region ν  [deg] Ma µ  [deg] θ  [deg] 
1 0 1 90 0 
2 5.18 1.26 52.33 5.18 
3 10.37 1.45 43.69 10.37 
4 10.37 1.45 43.69 0 
5 15.55 1.62 38.03 5.18 
6 20.73 1.80 33.75 0 

 
The angle of the characteristic lines separating the regions with respect to the flow in the upstream region 
may be found by taking the average of the Mach angles in the neighboring regions.  For example, the angle 
of the characteristic line separating regions 1 and 2 is: 

( )1
12 1 22 71.17α µ µ≈ + = o (6) 

Similarly for the other regions: 
( )1

23 2 32 48.01α µ µ≈ + = o (7) 

( )1
24 2 42 48.01α µ µ≈ + = o  (8) 

½AT 

y 

x 1 2 
3 

4 
5 6 

½ATS 
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  methodofcharacteristics_05 

Page 2 of 2 

( )1
35 3 52 40.86α µ µ≈ + = o (9) 

( )1
45 4 52 40.86α µ µ≈ + = o (10) 

( )1
56 5 62 35.89α µ µ≈ + = o (11) 

Note again that these are the average angles separating the various regions with respect to the upstream 
region. 
 
 
 
 
 
 
 
 
 
The location of point A may be found as: 

( )( )1 12tanA O A Oy y x xθ α− = − −  (12) 
where (xO, yO) = (0, ½AT), yA = 0, θ1 = 0°, and α12 = 71.17°. 
 
The location of point B is found by the intersection of two lines: 

( )( )2 24tanB A B Ay y x xθ α− = + −  (13) 

( )( )2 23tanB O B Oy y x xθ α− = − −  (14) 
 

The location of point C is found using: 
( )( )4 45tanC B C By y x xθ α− = − −  (15) 

where yC = 0. 
 
The location of point D is found from the intersection of two lines: 

( )( )3 35tanD B D By y x xθ α− = + −  (16) 

( )( )3tanD O D Oy y x xθ− = −   (The wall is parallel to the flow in Region 3.) (17) 
 

The location of point E is found from the intersection of two lines: 
( )( )5 56tanE C E Cy y x xθ α− = + −  (18) 

( )( )5tanE D E Dy y x xθ− = −   (The wall is parallel to the flow in Region 5.) (19) 
 

 
 
 

 
 

½AT 

y 

x 
1 2 

3 
4 

5 6 
½ATS 

A 

B 

C 

D E 
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20. Flow Past a Wavy Wall Using Small Perturbation Theory 
 
Recall that for a steady, irrotational, 2D flow with negligible body and viscous forces, the equation of 
motion assuming small velocity perturbations, is: 

( )2
2 2

2 21 Ma 0
x y
φ φ

∞− =
∂ ∂+
∂ ∂

 (293) 

The linearized boundary condition at the object surface is: 

( ),0

surface

'
xyudy

dx U∞

=  (294) 

Far from the object (y→∞), the velocity perturbations must remain finite. 
 
Recall that the pressure coefficient at the object surface is given by: 

'2 x
p

u
C

U∞

−
=  (295) 

 
 
Now consider flow past a wavy wall.  Let the profile of the wall be given by: 

2
sins

x
y A

π
λ

= ⎛ ⎞
⎜ ⎟⎝ ⎠

 

 
 
 
 
 
 
 
 
We’ll assume that the wall causes small perturbations in the flow, i.e.: 

A λ=  
 
Thus, the boundary condition at the wall is: 

( ),0
surface

' 2 2
cos

xy

AUdy x
u U

dx

π π
λ λ

∞
∞= = ⎛ ⎞

⎜ ⎟⎝ ⎠
 (296) 

  

x 

y 

A 

λ 

Ma∞ 
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Subsonic Flow 
 
First let’s examine the case when Ma∞

2 < 1 so that (1-Ma∞
2) > 0.  Equation (293) will be an elliptic PDE for 

this case.  One method for solving elliptic, linear PDEs is to use separation of variables where we assume 
that the solution can be written as some function of x multiplied by some function of y: 

( ) ( ) ( ),x y X x Y yΦ =  
Substituting into Eq. (293) and simplifying gives: 

( )21 Ma 0X Y XY∞
′′ ′′− + =  

( )
2

2

1
1 Ma

X Y
k

X Y∞

′′ ′′−
= = −

−
 

Since the LHS of the previous equation is a function only of x, and the RHS is a function only of y, then in 
order for the two sides to be equal, they must equal a constant, which we’ll call -k2.  Thus, we can write the 
following two equations: 

2 0X k X′′ + =  

( )2 21 Ma 0Y k Y∞
′′ − − =  

The solution to the first differential equation involving X is: 
( ) ( )1 2cos sinX c kx c kx= +  

and the solution to the differential equation involving Y is: 

( ) ( )2 2
3 4exp 1 Ma exp 1 MaY c ky c ky∞ ∞= − + − −  

Note that the square root term results in a real quantity since the incoming flow is subsonic.  Substituting 
these functions into the perturbation potential and determining the corresponding velocity perturbations 
gives: 

( ) ( )[ ] ( ) ( )2 2
1 2 3 4cos sin exp 1 Ma exp 1 Mac kx c kx c ky c ky∞ ∞Φ = + − + − −⎡ ⎤

⎣ ⎦  

( ) ( )[ ] ( ) ( )2 2
1 2 3 4

' sin cos exp 1 Ma exp 1 Maxu k c kx c kx c ky c ky
x ∞ ∞

∂Φ
= = − + − + − −

∂
⎡ ⎤
⎣ ⎦

 

( ) ( )[ ] ( ) ( )' 2 2 2
1 2 3 41 Ma cos sin exp 1 Ma exp 1 Mayu k c kx c kx c ky c ky

y ∞ ∞ ∞

∂Φ
= = − + − − − −

∂
⎡ ⎤
⎣ ⎦  

The constants c1, c2, c3, and c4 are determined from the boundary conditions at the wall and at y→∞.  In 
order for the perturbation velocities to remain finite as y→∞ we must have c3=0.  At the wall (y = 0) we 
have (Eq. (296)): 

( ) ( ) ( )[ ]2
4 1 2,0

2 2
cos 1 Ma cos siny x

AU x
u c k c kx c kx

π π
λ λ

∞
∞

′ = = − − +⎛ ⎞
⎜ ⎟⎝ ⎠

 

Thus we see that c2=0, k=(2π/λ), and   

1 4 22

2
2 1 Ma1 Ma

U AUA
c c

π
π λ
λ

∞ ∞

∞∞

− −
= =

−−

⎛ ⎞
⎜ ⎟⎛ ⎞ ⎝ ⎠

⎜ ⎟⎝ ⎠
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Thus, the perturbation potential and perturbation velocities become: 
2

2

' 2

2

' 2

2 2
cos exp 1 Ma

1 Ma

2 2 2
sin exp 1 Ma

1 Ma

2 2
cos exp 1 Ma

2

x

y

AU x y

AU x y
u

x y
u

AU

π π
λ λ

π π π
λ λλ

π π
λ λ

π
λ

∞
∞

∞

∞
∞

∞

∞
∞

−
Φ = − −

−

= − −
−

= − −

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 (297) 

 
The pressure coefficient at the wall (refer to Eq. (295)) is: 

2

4 2
sin

1 Ma
p

A x
C

π π
λλ ∞

−
=

−

⎛ ⎞
⎜ ⎟⎝ ⎠

 (298) 

 
 
Notes: 
1. The disturbance of the wall dies out as y→∞. 
 
 
 
 
 
 
 
 
 
 
 
2. The pressure peaks occur in the troughs of the wall and vice versa, i.e., the pressure is in-phase with 

the wall.  As a result, there will be no drag force on the wall. 
 
 
 
 
 
 
 
 
 
 
 

x 

y, Cp 

x 

y 

streamlines 

pressure profile is symmetric ⇒ net 
horizontal force is zero 
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3. We can also examine this compressible subsonic flow using the coordinate transformation discussed in 
a previous set of notes concerning the Prandtl-Glauert rule.  Recall that if we examine flow in the (ξ, 
η) plane where: 

x
y

ξ
η β

β

=
=

Φ = Φ
   where 21-Maβ ∞=  (299) 

then the governing equation becomes Laplace’s equation, i.e.: 
2 2

2 2 0
ξ η

∂ Φ ∂ Φ+ =
∂ ∂

  (This is the governing equation for an incompressible flow!) (300) 

Furthermore, the shape of the boundary surface in the (ξ, η) plane is the same as the boundary surface 
shape in the (x, y) plane.  Solving (300) using separation of variables gives: 

( ) ( )[ ] ( ) ( )[ ]1 2 3 4cos sin exp expc k c k c k c kξ ξ η ηΦ = + + −  (301) 

Since the flow must have finite velocities as η → ∞ (this is true for both the compressible and 
incompressible flow cases), we can conclude that c3 must be zero.  The boundary condition at the wavy 
wall surface: 

( ) ( ) ( )[ ]4 1 2,0

2 2
cos cos sin

AU
u c k c k c kη ξ

π πξ
ξ ξ

λ λ
∞′ = = − +⎛ ⎞

⎜ ⎟⎝ ⎠
 (302) 

indicates that c2 must be zero, k must be (2π/λ), and c1c4 must be -AU∞.  Thus: 
2 2

cos expAU
πξ πη
λ λ∞Φ = − ⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 (303) 

Transforming back into the (x, y) plane using Eq. (299) gives: 
2

2

1 2 2
cos exp 1 Ma

1 Ma

AU x yπ π
β λ λ

∞
∞

∞

−
Φ = Φ = ⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠−

 (304) 

This is precisely the same relation derived in Eq. (297).  The pressure coefficient corresponding to the 
incompressible flow (i.e., the (ξ, η) plane) is: 

   

Cp η=0
= − 2

U∞

∂Φ
∂ξ
= ′uξ
!

= − 4π A
λ

sin 2πξ
λ

⎛
⎝⎜

⎞
⎠⎟

 (305) 

Using the Prandtl-Glauert rule, the pressure coefficient for the compressible flow (i.e., the (x, y) plane) 
is: 

2 2

4 2sin
1 Ma 1 Ma

p
p

C A x
C

π π
λλ∞ ∞

− ⎛ ⎞= = ⎜ ⎟⎝ ⎠− −
 (306) 

Equation (306) is the same as Eq. (298), as expected. 
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Supersonic Flow 
 
Now consider the case where  Ma∞

2 > 1 so that (1-Ma∞
2) < 0 and Eq. (293) becomes a hyperbolic PDE with 

a form identical to that of the wave equation.  Thus, we’ll utilize d’Alembert’s solution to the wave 
equation, which has the form: 

( ) ( )2 2Ma 1 Ma 1L Rf x y f x y∞ ∞Φ = − − + + −   

or  
( ) ( )L Rf fη ξΦ = +  (307) 

where 
2

2

Ma 1

Ma 1

x y

x y

η

ξ
∞

∞

= − −

= + −
 

 
Note that the functions fL and fR are unknown at this point but will eventually be determined using the 
boundary conditions.  To verify that Eq. (307) is indeed a general solution, substitute it back into Eq. (293) 
and simplify: 

( )
2 2

2

2 2
1 Ma 0

x y∞

∂ Φ ∂ Φ
− + =

∂ ∂
 

where 

( )

2

2

2
2

2

2 22 2 2 2

2 2 2 2

2 22 2 2 2

2 2 2 2Ma 1

L L L L

L L L L

d f d f d f d f

x d d d d

y

x x

d f d f d f d f
y yd d d d

η ξ η ξ
η ξ

η ξ
η ξ η ξ∞

∂ Φ
= +

∂

∂ Φ
= −

∂

∂ ∂⎛ ⎞ ⎛ ⎞ = +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂+ = +⎜ ⎟ ⎜ ⎟ ⎢ ⎥∂ ∂⎝ ⎠ ⎝ ⎠ ⎣ ⎦

 

 
Of particular interest for this solution are the curves corresponding to fL=constant and fR=constant (along 
these curves Φ and, hence ux’ and uy’, will remain constant).  Note that the form of these functions will be 
dictated by the boundary conditions.  Thus, the value of the perturbation potential, Φ, (as well as the 
perturbation velocities) will be propagated from the boundary conditions into the rest of the flow along the 
curves where fL and fR are constant.  The shape of these curves can be determined from: 

fL=constant ⇒ 2Ma 1 constantx y ∞− − =  ⇒ 
2

constant

1

Ma 1Lf

dy
dx = ∞

=
−

 

fR=constant ⇒ 2Ma 1 constantx y ∞+ − =  ⇒ 
2

constant

1

Ma 1Rf

dy
dx = ∞

−=
−

 

Thus we see that the two curves are, in fact, lines with opposite slopes.  Moreover, the slope of these lines 
is equal to the slope of a Mach line: 

1
sin

Ma
µ

∞

=  ⇒ 
2

1
tan

Ma 1
µ

∞

=
−

 

 
It is worthwhile to re-iterate these last two important points: 
1. Information propagates along the curves where fL and fR are constant. 
2. Curves along which fL and fR are constant correspond to Mach lines of opposite slope. 

  

1 
Ma∞ 

(Ma∞-1)1/2 

µ 

Recall that the wave equation has the form: 

  

and has the (d’Alembert) solution: 
  
where f and g are functions determined by the initial 
and boundary conditions.  For our case, the governing 
equation is: 
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For the problem at hand (supersonic flow over a wavy wall), the perturbation potential should only include 
the function fL since if we included fR in the solution, then information could propagate upstream along the 
Mach line with negative slope – an impossibility in supersonic flows. 
 
 
 
 
 
 
 
    
 
Thus, the perturbation potential is: 

( )Lf ηΦ =  where 2Ma 1x yη ∞= − −  (308) 
 
The form of fL will be dependent on the boundary conditions.  Recall that the boundary condition at the 
wall is given by Eq. (296): 

( ),0
surface

' 2 2
cos

xy

AUdy x
u U

dx

π π
λ λ

∞
∞= = ⎛ ⎞

⎜ ⎟⎝ ⎠
 

Substituting Eq. (308) into the boundary condition gives: 

' 2

0
0 0

2 2
cosMa 1L L

y y
y y

AU xdf df
u

y d y dx
π π
λ λ

η
η

∞
∞=

= =

=
⎛ ⎞∂Φ ∂ ⎛ ⎞= = = − − ⎜ ⎟⎜ ⎟∂ ∂ ⎝ ⎠⎝ ⎠

 

2

2 2
cos

Ma 1

L AU xdf
dx

π π
λλ

∞

∞

−

−

⎛ ⎞= ⎜ ⎟⎝ ⎠
 

Note that in the previous equations the fact that at y=0, dfL/dη = dfL/dx, has been used.  Integrating gives: 

( )
2

2
sin

Ma 1
constantL

AU x
f x

π
λ

∞

∞

−

−

⎛ ⎞= +⎜ ⎟⎝ ⎠
 

Thus, 

( )
2

2
sin

Ma 1
constantL

AUf πη
λ

η ∞

∞

−

−

⎛ ⎞= +⎜ ⎟⎝ ⎠
 

The resulting perturbation potential and corresponding perturbation velocities are: 

( )

( )

( )

2

2

2

2

2

'

'

2
sin Ma 1 constant

Ma 1

2 2
cos Ma 1

Ma 1

2
cos Ma 1

2

x

y

AU
x y

AU
u x y

u x y
AU

π
λ

π π
λλ

π
λ

π
λ

∞
∞

∞

∞
∞

∞

∞
∞

−
Φ = − − +

−

−
= − −

−

= − −

⎡ ⎤
⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥⎣ ⎦

 (309) 

 

x 

Ma∞ 

fL=constant 
fR=constant 
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The pressure coefficient at the wall (Eq. (295)) for this flow is: 
'

2

2 4 2
cos

Ma 1

x
p

u A x
C

U

π π
λλ∞ ∞

= − =
−

⎛ ⎞
⎜ ⎟⎝ ⎠

 (310) 

 
 
Notes: 
1.   Along lines of x-y(Ma∞

2-1)1/2=constant (recall that these are the Mach lines), the perturbation potential 
and velocities are constant.  Thus, the disturbances produced by the wall are felt equally along the 
same Mach line.  Recall that in the subsonic flow case, the disturbances die out as y→∞. 

 
 
 
 
 
 
 
 
 
 
 
 
2.   In the subsonic case the drag on the wall is zero.  For supersonic flow, however, the drag is not zero.  

This is because the pressure coefficient is out of phase with the wall shape (shown below).  This type 
of drag is commonly referred to as supersonic wave drag. 

 
 
 
 
 
 
 
 
 
 
3.  In an actual flow, the drag coefficient on the wall as a function of Mach number look like:   
 
 
 
 
 
 
 
 
 

The drag occurring in real subsonic flows is due solely to viscous effects.  For real supersonic flows 
around slender bodies, the wave drag is typically much larger than the viscous drag.  Note that the 
assumptions for perturbation analysis do not allow for the investigation near Ma∞≈1.  

 

x 

y 

streamlines 

Mach lines 

µ 

x 

y, Cp 

Ma∞ 

CD 

1 

perturbation model 
experimental data 

pressure profile is asymmetric ⇒ net 
horizontal force is not zero 
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21. Thin Airfoils in Supersonic Flow 

 
Recall that for steady, irrotational, supersonic, compressible flow with negligible body and surface forces 
and small perturbations, the perturbation potential is given by: 

( ) ( )2 2Ma 1 Ma 1R Lf x y f x y∞ ∞Φ = + − + − −  

where fL and fR are arbitrary functions that are dependent on the boundary conditions.   
 
 
 
 
 
 
 
 
 
 
Since information cannot be propagated upstream in a supersonic flow, the perturbation potential for flow 
over the top of the airfoil (y>0) should only include left-running Mach waves: 

( )2Ma 1Lf x y ∞Φ = − −  

while under the bottom of the airfoil (y<0) the solution should contain only right-running Mach waves: 

( )2Ma 1Rf x y ∞Φ = + −  

 
The boundary condition on the upper surface of the airfoil is: 

'
upper

upper upper

1yudy
dx U U y∞ ∞

∂Φ= =
∂

 

so 
2

'

upper upper

Ma 11
L

dy
f

dx U y U
∞

∞ ∞

⎡ ⎤− −∂Φ ⎢ ⎥= =
⎢ ⎥∂
⎣ ⎦

          (Note:  Ldf
y d y

η
η

∂Φ ∂=
∂ ∂

.) 

'
2 upperMa 1

L
U dy

f
dx

∞

∞

−
=

−
 (311) 

The pressure coefficient on the upper surface is given by: 
'

0 '
,upper

0

2 2 2x y
p L

y

u
C f

U U x U
=

∞ ∞ ∞=

− ⎛ ⎞ ⎛ ⎞− ∂Φ −= = =⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠
      (Note:  Ldf

x d x
η

η
∂Φ ∂=
∂ ∂

.) (312) 

Substituting Eq. (311) into Eq. (312) gives: 

,upper 2 upper

2

Ma 1
p

U dy
C

U dx
∞

∞ ∞

⎛ ⎞⎛ ⎞ −− ⎜ ⎟= ⎜ ⎟⎜ ⎟⎝ ⎠ −⎝ ⎠
 

,upper 2 upper

2

Ma 1
p

dy
C

dx
∞

=
−

 (313) 

fR=constant 

fL=constant 

x 

y 

Ma∞ 
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A similar approach can be taken to determine that: 

,lower 2 lower

2

Ma 1
p

dy
C

dx
∞

−=
−

 (314) 

 
 
Notes: 
1. The slope of the upper and lower surfaces relative to the incoming flow depends not only on the airfoil 

shape, but also on the airfoil’s angle of attack, α. 
 
 
 
 
 
 
 
 
  
  (a) (b) 
 

For example, the local slope of the surface relative to the incoming flow, (dy/dx), for case (a) is 
different than the slope of the surface at the same point for case (b).  In order to isolate the effects of 
the airfoil shape and angle of attack, let’s define the quantity, σ, as: 

dy
dx

σ
′

=
′
 (315) 

so that σ represents the airfoil’s surface slope relative to the airfoil’s chord line, i.e., with respect to the 
(x’, y’) axes in the figures above.  The slope of the surface relative to the incoming flow, θ, will be: 

 
 
 

tanθ σ α σ α= − ≈ −  (316) 
Note that θ and σ are slopes, 
not angles. 

 
 

Note that tan α ≈ α since we’re concerned only with small perturbations to the flow.  The pressure 
coefficients (Eqs. (313) and (314)) may be written as: 

( )
, 2

2

Ma 1
U

p UC
σ α

∞

−
=

−
 (317) 

( )
, 2

2

Ma 1
L

p LC
σ α

∞

− −
=

−
 (318) 

where the subscripts “U” and “L” refer to the upper and lower airfoil surfaces, respectively. 
 

x 

y 

Ma∞ 
α 

x, x’ 

y, y’ 

Ma∞ 

y’ 

x’ c c 

dy 
σ 

α 

θ 

dx 
dx’ dy’ 

airfoil surface 

slope at point on surface 
relative to flow is different 
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2. The airfoil’s lift and drag can be determined by integrating the net pressure force acting over the entire 
airfoil surface.  The pressures acting on the upper and lower airfoil surfaces are: 

( ) ( )
( )

2 21 1
, ,2 2

2

2

Ma

Ma

Ma 1

U p U p U

U

p p C U C p

p

ρ γ

γ σ α

∞ ∞ ∞ ∞ ∞

∞
∞

∞

− = =

= −
−

 (319) 

( )
2

2

Ma

Ma 1
L Lp p pγ σ α∞

∞ ∞
∞

− = − −
−

 (320) 

Resolving the pressure force acting on the upper surface on a small area element, ds (Note that the 
airfoil distance into the page, also known as the span, is assumed to have unit depth.), into lift (L) and 
drag (D) components gives: 

   

dLU = − pU dscos σU −α( )
≈dx

! "## $##
= − pU dx ≈ − pU d ′x    (since the slopes are small, dx’ ≈ dx) 

   

dDU = pU dssin σU −α( )
=dy

! "## $##
= pU

dy
dx

dx ≈ pU σU −α( )d ′x  

Similarly, for the lower surface: 

   

dLL = pL dscos σ L −α( )
=dx

! "## $##
= pLdx ≈ pLd ′x  

   

dDL = − pL dssin σ L −α( )
=dy

! "## $##
= − pL

dy
dx

dx ≈ − pL σ L −α( )d ′x  

Note that the small angle approximation has been used in the expressions above.  The net lift and drag 
are determined by integrating over the entire airfoil surface.   

( ) ( )

( ) ( )

0 0

2

2
0

Ma

Ma 1

x c c

U L U L
x

c

U L

L dL dL p p dx

p dxγ σ α σ α

′=

′=

∞
∞

∞

′= + = − +

′⎡ ⎤= − − − −⎣ ⎦
−

∫ ∫

∫
 

[ ]
2

2
0

Ma
2

Ma 1

c

L UL p dxγ σ σ α∞
∞

∞

′= − − +
− ∫  (321) 

( ) ( ) ( )

( ) ( )

0 0

2
2 2

2
0

Ma

Ma 1

x c c

U L U U L L
x

c

U L

D dD dD p p dx

p dx

σ α σ α

γ σ α σ α

′=

′=

∞
∞

∞

′⎡ ⎤= + = − − −⎣ ⎦

⎡ ⎤ ′= − + −⎣ ⎦−

∫ ∫

∫
 

( )
2

2 2 2
2

0

Ma
2 2

Ma 1

c

U L U LD p dxγ σ σ α σ σ α∞
∞

∞

⎡ ⎤ ′= + − + +⎣ ⎦− ∫  (322) 

dy 
σ 

α dx 
dx’ dy’ 

σ − α 

pds 
ds 
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Note, however, that: 

0 0 0

0
c c c

dy
dx dx dy

dx
σ

′′ ′ ′= = =
′∫ ∫ ∫   

so that Eqs. (321) and (322) become: 
2

2

Ma
2

Ma 1
L p cγ α∞

∞
∞

=
−

 (323) 

( )
2

2 2 2
2

0

Ma
2

Ma 1

c

U LD p dx cγ σ σ α∞
∞

∞

⎡ ⎤
⎢ ⎥′= + +
⎢ ⎥− ⎣ ⎦
∫  (324) 

Written in terms of the lift and drag coefficients (based on the chord length): 

21 2
2

4
Ma Ma 1

L
LC

p c
α

γ ∞ ∞ ∞

= =
−

 (325) 

 

( )
2

2 2
21 2 2

2 0

2 4
Ma Ma 1 Ma 1

c

D U L
D

C dx
p c c

ασ σ
γ ∞ ∞ ∞ ∞

′= = + +
− −∫  (326) 

 
 

3. The lift coefficient is directly proportional to the angle of attack for thin supersonic airfoils at small 
angles of attack.  Note that there is also a component to the drag coefficient that depends only on the 
angle of attack.  This component is often referred to as the wave drag due to lift: 

2

,wave drag 2due to lift

4

Ma 1
DC

α

∞

=
−

 (327) 

The other part of the drag coefficient depends only the shape of the airfoil and is known as the wave 
drag due to thickness since the thicker the airfoil, the larger the integral term (the slopes will be 
larger): 

( )2 2
, wave drag 2due to thickness 0

2

Ma 1

c

D U LC dx
c

σ σ
∞

′= +
− ∫  (328) 

 
These previous results suggest that in order to minimize the drag acting on a supersonic airfoil, the 
airfoil should be as thin as possible.  Furthermore, the lift acting on the airfoil will be unaffected by the 
shape of the airfoil. 

 

Recall that this is the chord 
length so that: 
   

y’ 

x’ 
c 
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4. Let’s now consider subsonic flow around the airfoil shown below.   
 
 
 

For sufficiently small free stream Mach numbers, Ma∞, the flow over the entire airfoil surface will 
remain subsonic and the corresponding drag coefficient for the airfoil will remain at a relatively small 
value (Point A on the plot shown below.  Note that the total drag will be due to skin friction and form 
drag.).   

 
 
 
 
 
 
 
 
 
As the free stream Mach number is increased, a critical free stream Mach number, Macr, will be 
reached where a sonic Mach number will occur at the minimum pressure point on the airfoil surface. 

 
 
 
 
 
At free stream Mach numbers slightly greater than Macr, a small region of supersonic flow will occur 
near the minimum pressure point.  The drag coefficient for these flow conditions (point B in the 
diagram above) remains close to, but only slightly greater than, the drag coefficient for purely subsonic 
flow. 

 

 
 
 
 

 
At another critical Mach number, known as the drag divergence Mach number, Madd (Macr < Madd < 
1), the drag on the airfoil increases suddenly (point C in the CD vs. Ma∞ plot shown above) due to the 
formation of a terminating shock wave.  The shock wave on the airfoil surface causes the boundary 
layer to separate (due to the large adverse pressure gradient across the shock wave) resulting in a 
significant increase in the form drag.   

 
 
 
 
 
 
 
This sudden increase in the drag at Madd is the origin of the concept of the sound barrier. 

 

Ma∞ < 1 

CD 

Ma∞ 

A B 

C 

Macr Madd 

Ma∞ = Macr < 1 Ma = 1 

(Ma∞ > Macr) < 1 

Ma > 1 

Ma < 1 

1 

(Ma∞ > Madd) < 1 

Ma > 1 

Ma < 1 

shock wave 

separated flow 
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In order to minimize the drag acting on the airfoil when operating near sonic conditions, the drag 
divergence Mach number should be pushed as close to sonic conditions as much as possible.  
a. One approach to increasing Madd is to decrease the thickness of the airfoil.  Recall that the largest 

Mach numbers will occur in the vicinity of the minimum pressure region.  If the minimum 
pressure can be brought closer to the free stream pressure, then the corresponding local Mach 
number will deviate less from the free stream Mach number (which is subsonic).  Making the 
airfoil thinner will result in less expansion of the flow and hence the Mach numbers over the 
airfoil will be smaller.  As a result, the drag divergence Mach number for the thin airfoil will occur 
at a higher free stream Mach number than a thicker airfoil.  Thinner airfoils also produce less drag 
for supersonic conditions as discussed previously in Note 3. 

 
b. Another approach to reducing the drag is to use a supercritical airfoil (shown below), which is 

designed to give Madd ≈ 1.  The airfoil shape is designed to give mostly supersonic flow and 
discourage the formation of shock waves. 

 
 
 
 

c. A third approach to delaying Madd is to use a swept-wing design.  Consider flow over straight and 
swept wings (inclined by an angle Λ from the straight wing)  that have identical airfoil cross-
sections.  Note that only the component of the flow normal to the airfoil will be important in 
determining the drag divergence Mach number since the flow tangential to the surface does not 
“see” variations in the airfoil geometry.  Hence, the effective free stream Mach number for the 
swept-back wing is smaller than that for the straight wing (Ma∞eff = Ma∞cosΛ).  As a result, the 
negative effects associated with shock formation on the airfoil can be delayed until a higher free 
stream Mach number is reached.  The downsides of swept wings are that the wing area must be 
increased to generate the same lift as a straight wing (since the lift decreases as a result of the 
lower effective free stream Mach number), and the structural design of the wing is more complex. 

 
 
 
 
 
 
 
 
 

Swept-wings are also advantageous in supersonic flight since the wing may be subject to a 
subsonic effective Mach number and, as a result, the penalty of supersonic wave drag can be 
avoided. 

 

Ma∞ 
Ma∞ 

Ma∞cos Λ 
Λ 

Λ 
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Consider supersonic flow past a flat plate airfoil with a deflected flap as shown in the 
figure below.  Plot the lift and drag coefficients a function of angle of attack, α, for 
various flap angles, δ.  Note that these angles are assumed very small.  Compare the lift 
and drag coefficients from your small angle approximation for Ma∞ = 2.0, α = 3°, and δ = 
1° to the lift and drag coefficients on the airfoil using the oblique shock and expansion 
fan relations. 
 
 
 
 
 
 
 
 
 
 

α 

δ 

Ma∞

0.75c
0.25c 
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22. Unsteady, 1D Compressible Flow 
 
Applications that might be approximated as being, 1D and unsteady: 
a. accelerating piston in a cylinder 
b. projectile moving through a cylinder 
c. shock tube 
d. start-up and shut-down transients in a wind tunnel 

 
Governing equations for 1D, unsteady flow (ignoring viscous forces, body forces, and area changes): 

continuity: ( ) 0u
t x
ρ ρ∂ ∂+ =
∂ ∂

  ⇒  0u
u

t x x
ρ ρ ρ∂ ∂ ∂+ + =
∂ ∂ ∂

 (329) 

 

momentum: 1u u p
u

t x xρ
∂ ∂ ∂+ = −
∂ ∂ ∂

 (330) 

 
Assume that the flow is isentropic: 

   

p = p ρ( )    ⇒    ∂p
∂x

= dp
dρ
=c2
!

∂ρ
∂x

= c2 ∂ρ
∂x

 (331) 

Note that in the previous expression, the sound speed, c, has been used because the flow is isentropic. 
 
To make our analysis here look similar in form to the analysis we used while investigating steady, 2D 
flows, let’s re-write the velocity in the following manner: 

xu
x
φ φ∂= =
∂

 

where the subscript “x” signifies a partial differentiation with respect to x.  Using this notation and 
substituting Eq. (331) into Eq. (330) and simplifying, Eqs. (329) and (330) become: 

0x xxt x
ρ ρφ ρφ∂ ∂+ + =
∂ ∂

 (332) 

2

0xt x xx
c

x
ρφ φ φ

ρ
∂+ + =
∂

 (333) 

Multiply Eq. (333) with dx and integrate with respect to x (note that Eq. (333) is a function of both x and t): 

( )
0

2
21

2t x
c
d f t

ρ

ρ

φ φ ρ
ρ

+ + =∫  (334) 

where f(t) is an unknown function of time.  Taking the partial derivative of Eq. (334) with respect to t 
gives: 

( )
2

tt x xt
c

f t
t
ρφ φ φ

ρ
∂ ′+ + =
∂

 (335) 

We can substitute Eqs. (333) and (335) into Eq. (332)  to give an expression that does not include the 
density: 

( ) 2 2 0tt x xt x xt x xx xxf t cφ φ φ φ φ φ φ φ′ − − − − + =  

( ) ( )2 2 2x xx x xt ttc f tφ φ φ φ φ ′− − − = −  (336) 
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The unknown function of time may be eliminated by defining: 

  
!φ ≡ φ + f t( )dt∫  (337) 

   

!φx = φx = u              ⇒      !φxx = φxx

!φt = φt + f t( )         ⇒      !φtt = φtt + ′f t( )
!φxt = φxt

 

so that Eq. (336) becomes: 

   
c2 − u2( ) !φxx − 2u !φxt − !φtt = 0  (338) 

Note also that Eqs. (334) and (335) become: 

   

!φt + 1
2
!φx

2 + c2

ρ
dρ

ρ0

ρ

∫ = 0  (339) 

   
!φtt + !φx

!φxt +
c2

ρ
∂ρ
∂t

= 0  (340) 

 
Now let’s examine the nature of Eq. (338) more closely.  This 2nd order PDE in two-independent variables 
(x and t) will always be hyperbolic since: 

( )( )2 2 2 2 24 4 4 1 4 0B AC u c u c− = − − − = >  

where 2 2;    2 ;    1A c u B u C= − = − = − . 
 
The slope of the characteristic curves for Eq. (338) can be found using an approach similar to that used 
when investigating 2D, steady supersonic flows.  We can write the following system of equations: 

   

c2 − u2 −2u −1
dx dt 0
0 dx dt

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

!φxx

!φxt

!φtt

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

=
0

d !φx

d !φt

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

  where 
  

d !φx = du

d !φt = dφ + ′f
 (341) 

Across a characteristic curve, the derivatives of   
!φx  and   

!φt  are indeterminate.  In order for this to occur, the 
determinant of the matrix on the LHS of the previous equation must be zero: 

( )
2 2

2 2 2 2

2 1
0 2 0

0

c u u
dx dt c u dt dx udxdt

dx dt

− − −
= − − + =  

( )
2

2 22 0dx dx
u c u

dt dt
⎛ ⎞ ⎛ ⎞− − − =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 

dx
u c

dt
= ±   and 1dt

dx u c
=

±
 (342) 

Slope of the characteristic curves in the x-t plane.  The “+” sign represent a right-running 
characteristic and the “-” represents a left-running characteristic. 

 
Since disturbances propagate along characteristic curves, we see that disturbances will propagate at the 
speed of sound relative to the local flow velocity. 
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In order to ensure that the velocity of the flow will always remain finite, we must also have finite velocity 
gradients.  The velocity gradient can be found from the system of equations given in Eq. (341) using 
Kramer’s rule: 

   

!φxx =
∂u
∂x

=

0 −2u −1
d !φx dt 0

d !φt dx dt

c2 − u2 −2u −1
dx dt 0
0 dx dt

=
−d !φxdx + d !φtdt + 2ud !φxdt
c2 − u2( )dt2 − dx2 + 2udxdt

 (343) 

Since along a characteristic curve the denominator of the previous expression is zero, the only way for the 
velocity gradient to remain finite is for the numerator to also be zero.  Hence, we have the following 
relation: 

   −d !φxdx + d !φtdt + 2ud !φxdt = 0   

   
du

dx
dt

− 2u
⎛
⎝⎜

⎞
⎠⎟
= d !φt  (344) 

The RHS of the previous equation is found with the aid of Eq. (339): 

   
d !φt = − !φxd !φx − c2 dρ

ρ
= −udu − c2 dρ

ρ
 

Substituting back into Eq. (344) and utilizing Eq. (342): 

( ) 22 ddu u c u udu c ρ
ρ

± − = − −    

2

1du d dp
c c

ρ
ρ ρ

= =m   (Note:  
2

1d dp
c

ρ
ρ ρ

=  since 2

s

pc
ρ
∂=
∂

.) (345) 

Conditions along a characteristic curve.  The “-” corresponds to a right-running characteristic 
while the “+” corresponds to a left-running characteristic. 

 
Notes: 
1. We could have also solved Eq. (341) for finite   

!φxt  or   
!φtt  to arrive at Eq. (345). 

 
2. The numerical algorithms given during our previous notes on the method of characteristics for 2D, 

steady flow may also be applied here. 
 
3. For an ideal gas, Eq. (345) can be written as: 

1 2
1 1

du d dT dc
c T c

ρ
ρ γ γ

= = =
− −

m  

2
1

du dc
γ

± =
−

 (346) 

Integrating along the characteristic curve gives: 

( ) ( )2 1 2 1
2
1

u u c c
γ

± − = −
−

  or  
( )

2
along  a R-running characteristic

1
2

along  a L-running characteristic
1

c
u

c

γ

γ

⎧ Δ⎪ −⎪Δ = ⎨
⎪ −Δ
⎪ −⎩

 (347) 

Conditions along a characteristic curve in a perfect gas.  The “+” corresponds to a right-
running characteristic while the “-” corresponds to a left-running characteristic. 
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4. We can also determine how properties change across a characteristic curve by considering that by 
moving along a right-running characteristic we cross left-running characteristics and vice-versa. 

2

1du d dp
c c

ρ
ρ ρ

± = =   (Note:  compression ⇒ dp > 0, expansion ⇒ dp < 0.) (348) 

 
2
1

du dc
γ

± =
−

 (349) 

 

( ) ( )2 1 2 1
2
1

u u c c
γ

± − = −
−

 (350) 

Conditions across a characteristic curve in a perfect gas.  The “+” corresponds to a right-
running characteristic while the “-” corresponds to a left-running characteristic. 

 
5. A sketch of characteristic curves on the t-x plane looks as follows: 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6. For an isentropic flow of a perfect gas we have: 

11
2 2

2 2 2

1 1 1

c T p
c T p

γ
γ

−

⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (351) 

so that Eq. (350) can be written as: 

2 1 2

1 1 1

2 1
1

u u c
c c cγ

⎛ ⎞ ⎛ ⎞
± − = −⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

 

1
2

2 1 2

1 1 1

2 1
1

u u p
c c p

γ
γ

γ

−⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥± − = −⎜ ⎟ ⎜ ⎟− ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
 (352) 

Conditions across a characteristic curve in a perfect gas.  The “+” corresponds to a right-
running characteristic while the “-” corresponds to a left-running characteristic. 

 
7. The previous relations do not apply to a shock wave.  Shock waves are non-isentropic processes and, 

hence, the isentropic assumption used in deriving the equations is not valid.  In addition, shock waves 
travel at speeds greater than the sonic speed. 

t 

x 
initial data line 

right-running 
characteristics 

left-running 
characteristics 

uninfluenced 
by initial data uninfluenced 

by initial data 

uninfluenced 
by initial data 

influenced 
by initial data 

influenced 
by initial data 

Note:  The orientation of left 
and right running characteristics 
are relative to the pathline 
direction of fluid particles. 

R-running 

L-running pathline 
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Simple Waves 
 
Flows involving simple waves contain either left or right-traveling waves but not both.  A simple wave 
flow can be produced using an accelerating piston as shown in the figure below: 
 
 
 
 
 
 
 
 
 
 
Let’s consider two cases of simple waves in a perfect gas using this piston geometry.  First we’ll consider a 
piston moving to the left and then we’ll consider a piston moving to the right. 
 
Piston Moving to the Left 
 
The movement of the piston can be shown on the t-x diagram.  Note that we’ll assume that the piston 
velocity increases with time. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
At t=0, a sound wave leaves the piston and travels into the undisturbed fluid.  This wave will travel at the 
sound speed in the undisturbed fluid, c0, and thus is a straight line on the t-x plot.  Across this right-running 
characteristic, we have from Eq. (349): 

 2
1

du dc
γ

+ =
−

  (or ( )2
1

u c
γ

Δ = −Δ
−

 along a left running characteristic) (353) 

Since du < 0 (the piston moves to the left so the fluid velocity should also move to the left), then dc < 0.  
Thus, the next pressure pulse will travel at a slightly slower speed, which corresponds to a larger slope on 
the t-x plot.  Each characteristic curve will, in fact, be a straight line since u and c are constant in the 
regions between the pressure waves (refer to Eq. (342)).  Thus, the characteristic lines diverge and the 
influence of the piston motion is “stretched” out as the waves propagate downstream. 
 
Notes: 
1. The motion of an individual fluid particle, known as a pathline, can be determined using: 

particle
particle

dx
u

dt
=  (354) 

 

waves undisturbed gas 

t 

x 

piston path 

right-running 
characteristics 

region uninfluenced 
by the piston 
(dead zone) 

particle path 
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2. Now let’s consider what happens if we accelerate the piston to the left from rest (u0 = 0) to a very large 
speed.  From Eq. (350) (we’re crossing right-running characteristics) we have: 

   
+ u − u0

=0
!

⎛

⎝
⎜

⎞

⎠
⎟ =

2
γ −1

c − c0( )    ⇒    
c
c0

= γ −1
2

u
c0

+1  ⇒    
umax

c0

= −2
1−γ

= 2
γ −1

   

Since the piston is moving to the left, u < 0.  Thus, the largest speed we can have that results in a non-
negative speed of sound (c ≥ 0) is: 

max

0

2
1

u
c γ

=
−

 (355) 

This is known as the escape speed.  If the piston continues to accelerate, a vacuum (called the 
cavitation zone) will form on the face of the piston as shown in the diagram below. 

 
 
  
 
 

 
 

 
 

  
 

  
 
 
4. An impulsive withdrawal to the left results in an expansion fan as shown below: 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

t 

x 
piston path 

vacuum  
(cavitation zone) 1/c0 

 

t 

x 

piston path 1/c0 

particle path 

uniform flow 
region 

undisturbed 
region 

expansion fan 

1/uP 

 

Crossing R-running waves: 
  uP – u0 = 2/(γ – 1) (cp – c0) 
where u0 = 0 so that 
  cP  = c0 + ½(γ – 1) up  
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Piston Moving to the Right 
 

Now let’s consider the case where the piston moves to the right to produce compression waves (refer to the 
figure shown below). 
 

 
 
 
 

 
 
 
 
 
 
 

Across each compression wave (right-running characteristics as shown in the diagram above) we have from 
Eq. (349): 

2
1

du dc
γ

=
−

 

where du > 0.  Hence, dc > 0 and the characteristic curves become steeper (refer to Eq. (342)).  Eventually 
these compression waves will intersect and the isentropic assumption breaks down since the velocity 
gradients across the wave are no longer infinitesimal and viscous (irreversible) losses become significant.  
The point of the first intersection is defined as the start of a shock wave (refer to the previous figure). 

 
Notes: 
1. Consider the diagram shown below where the piston is accelerated in very small, discrete increments 

of du each at every time step dt. 
 
 
 
 

 
 
 
 
 
This section remains incomplete. 

 
2. An impulsive acceleration to the right will immediately form a shock wave as shown in the following 

figure. 
 
 
 
 
 
 
 

 
 
 
 

The strength of the shock wave will be such that the fluid velocity behind the shock will equal the 
piston velocity. 

t 

x 

piston path 

1/c0 

shock wave 

t 

x 

piston path 
shock wave 

particle path 

shock wave t 

x 

piston path 

1/c0 dt 

complex system 
of sliplines and 
reflected waves 
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Interactions with Boundaries 
 
Stationary Boundaries 
 
Near a stationary wall the fluid velocity must equal zero.  This implies that a wave must reflect in a similar 
sense as shown in the diagram below.  For example, consider a right-running compression wave (dp > 0 
and, according to Eq. (348), du > 0) impinging against a stationary wall.  In order for the velocity to remain 
zero at the wall we must have for the reflected wave (a left-running characteristic), du < 0.  Hence, 
according to Eq. (348) we see that dp > 0 and thus we have another compression wave. 
 
Note that a fluid particle follows a compression wave and moves away from an expansion wave. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
Free Surface Boundaries 
This section remains incomplete. 
 
Reflections from an open end are more complicated since we must consider four different cases:  the flow 
may be either inflow or outflow and it may be either subsonic or supersonic.  
 

Subsonic Outflow/Inflow 
For low speed subsonic outflow or inflow, it is reasonable to assume that the pressure at the end of the 
duct is equal to the ambient pressure.   As a result, waves will reflect in an unlike sense. 

 
For example, consider a right-running compression wave (dp > 0, du > 0) impinging on an open end.  
In order for the pressure to remain constant at the open end (and equal to the ambient pressure), we 
must have dp < 0 which implies that the reflected wave is an expansion wave.  Across the left-running 
reflected wave we observe from Eq. (348) that du > 0.  A similar approach may be taken to determine 
the conditions for an incident expansion wave. 

 
 
 
 
 
 
 
 
 
 
 
 

t 

x 

stationary 
boundary 

particle path for 
compression wave 

particle path for 
expansion wave 

incident 
wave 

reflected 
wave 

u = 0 

u = 0 

Across: 
  R-running:  du/c = 1/c2 (dp/ρ) 
  L-running:  -du/c = 1/c2 (dp/ρ) 

t 

x 

free surface 
boundary 

(p = constant) 

particle path 

incident 
wave (comp.) 

reflected 
wave (exp.) 

u = 0 

u > 0 

t 

x 

free surface 
boundary 

(p = constant) 

particle path 

incident 
wave (exp.) 

reflected 
wave (comp.) 

u = 0 

u < 0 
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For high speed subsonic outflow or inflow, the unsteady effects at the open end must be included 
making the analysis much more difficult. 

 
Supersonic Outflow/Inflow 
Since for supersonic flow the flow velocity is larger than the propagation velocity of the reflected 
waves, the reflected waves are unable to propagate from the open end of the duct.  Hence there are no 
reflected waves. 
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23. Description of a Shock Tube 
 
A shock tube is a device consisting, in its simplest form, of a long tube of constant area divided into two 
sections by a diaphragm.  One of the sections contains a high pressure gas (aka driver gas) while the other 
contains a low pressure gas (aka driven gas).  A sketch of the device is shown below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
When the diaphragm between the two sections is broken, either by mechanical means or by increasing the 
pressure on the high pressure side and using a “scored” diaphragm designed to burst at a specified 
presssure, a shock wave propagates into the low pressure section and an expansion wave propagates into 
the high pressure section.  Between the shock wave and the expansion wave is a region of uniform velocity. 
 
 
 
 
 
 
 
Shock tubes are used: 
- as an inexpensive, but short duration (usually on the order of milliseconds), wind tunnel, 
- to study of transient aerodynamic effects, 
- to study dynamic and thermal response, 
- to study relaxation effects and reaction rates, and 
- to generate high enthalpies for studying dissociation and ionization. 

 

high pressure low pressure 
diaphragm 

expansion  
wave 

shock  
wave 
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Analysis of the Flow in a Shock Tube 
 
The velocity and pressure behind the shock wave must be equal to the velocity and pressure behind the 
expansion wave as shown in the figure below.  The temperatures (and densities and entropies) are not 
necessarily equal however.  If the temperature in the tube is initially uniform, then behind the expansion fan 
the temperature will be lower than the initial temperature while behind the shock wave the temperature will 
be higher than the initial temperature.  The interface separating the two regions is called the contact 
surface.  The contact surface is the interface dividing the gases that were originally separated by the 
diaphragm.  Over time, diffusion will cause this interface to spread out. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

expansion  
wave 

shock  
wave 

contact  
surface 

velocity 

pressure 

temperature 

position 

4 1 2 3 

position 

time 

current time for drawing 
shown above 

diaphragm 
location 
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We know the following about the flow: 
1. The gas properties are assumed identical on either side of the diaphragm, i.e., γ1 = γ2 = γ3 = γ4 and R1 = 

R2 = R3 = R4.  
2. The velocities in regions 1 and 4 are zero, i.e., u1 = u4 = 0. 
3. The pressures and temperatures in regions 1 and 4 are known, i.e., p1, p4, T1, and T4 are known. 
4. The pressure and velocity across the contact surface are equal, i.e., p2 = p3 and u2 = u3. 

 
The remainder of the flow field is most easily analyzed using an iterative procedure as described below. 
1. Assume a value for p2 = p3. 
 
2. The value of u2 can be determined from the pressure ratio, p2/p1, and a relationship developed 

previously in our notes concerning 1D, unsteady, and isentropic compressible flow: 
1
2

2 2

1 1

2 1
1

u p
c p

γ
γ

γ

−⎡ ⎤⎛ ⎞⎢ ⎥− = −⎜ ⎟− ⎢ ⎥⎝ ⎠⎣ ⎦
  (crossing L-running waves) (356) 

where c1 = (γRT1)1/2. 
 

3. Use the normal shock relations to determine MaS and u3: 
23

4

2 1Ma
1 1S

p
p

γ γ
γ γ

−= −
+ +

 (determine MaS) (357) 

( )
( )

2

2
3

1 Ma

1 Ma 2
SS

S S

u
u u

γ
γ

+−
=

− − +
 

where uS = MaS(γRT4)1/2. 
 (358) 

4. Is u3 = u2?  If not, then go back to step 1.  If so, then we’ve correctly determine the pressure and 
velocity in regions 2 and 3. 

 
5. Now that the pressure and velocity in regions 1-4 are known, we can also determine the temperature in 

region 2 since we know the speed of sound there: 

2 2

1 1

2 1
1

u c
c cγ

⎡ ⎤
− = −⎢ ⎥− ⎣ ⎦

 

2
2

2
cT
Rγ

=  

or  
1

2 2

1 1

T p
T p

γ
γ

−

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 

We can also determine the temperature in region 3 using the normal shock relations: 

( ) ( )
( )

2
23

2 2
4

2 Ma 1
2 1 Ma

1 Ma
S

S
S

T
T

γ γ
γ

γ

⎡ ⎤− −⎡ ⎤ ⎢ ⎥= + −⎣ ⎦ ⎢ ⎥+⎣ ⎦
 

 
6. The speed of the contact surface can be determined by noting that it has the same velocity as the gas in 

regions 2 and 3, i.e., uCS = u2 = u3. 
 
 
 

uS u3 – uS 

velocities are given w/r/t the ground 
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A shock tube containing air has a high pressure section at 300 kPa (abs) and a low pressure section at 30 
kPa (abs).  The temperature of the air is uniform at 15 °C.  The diaphragm separating the two sections is 
suddenly ruptured.  Find: 
a. the velocity of the air between the shock wave and the expansion wave relative to the ground, 
b. the speed of the shock wave relative to the ground, and 
c. the speed of the front and back of the expansion fan relative to the ground. 
d. Sketch the process on a t-x diagram. 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
 
Determine the speed of sound in regions 1 and 4. 

1 1c RTγ=   ⇒  c1 = 340.2 m/s  (using γ = 1.4 and R = 287 J/(kg⋅K)) (1) 

4 4c RTγ=   ⇒  c4 = 340.2 m/s   (2) 
 
Use the following algorithm to determine the properties in the various regions. 
 
1. Assume a value for p2 = p3. 
 
2. The value of u2 can be determined from the pressure ratio, p2/p1, and a relationship developed 

previously in our notes concerning 1D, unsteady, and isentropic compressible flow: 
1
2

2 2

1 1

2 1
1

u p
c p

γ
γ

γ

−⎡ ⎤⎛ ⎞⎢ ⎥− = −⎜ ⎟− ⎢ ⎥⎝ ⎠⎣ ⎦
 (1.3) 

where c1 = (γRT1)1/2. 
 

3. Use the normal shock relations to determine MaS and u3: 
23

4

2 1Ma
1 1S

p
p

γ γ
γ γ

−= −
+ +

 (determine MaS) (1.4) 

( )
( )

2

2
3

1 Ma

1 Ma 2
SS

S S

u
u u

γ
γ

+−
=

− − +
 

where uS = MaS(γRT4)1/2. 
 (1.5) 

4. Is u3 = u2?  If not, then go back to step 1.  If so, then we’ve correctly determine the pressure and 
velocity in regions 2 and 3. 

 
5. Now that the pressure and velocity in regions 1-4 are known, we can also determine the temperature in 

region 2 since we know the speed of sound there: 

2 2

1 1

2 1
1

u c
c cγ

⎡ ⎤
− = −⎢ ⎥− ⎣ ⎦

 

diaphragm 

p1, T1 p4, T4 p1 = 300 kPa (abs) 
p4 = 30 kPa (abs) 
T1 = T4 = 15 °C = 288 K 
u1 = u4 = 0 

contact surface 

1 4 3 2 
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2
2

2
cT
Rγ

=  

or  
1

2 2

1 1

T p
T p

γ
γ

−

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 

We can also determine the temperature in region 3 using the normal shock relations: 

( ) ( )
( )

2
23

2 2
4

2 Ma 1
2 1 Ma

1 Ma
S

S
S

T
T

γ γ
γ

γ

⎡ ⎤− −⎡ ⎤ ⎢ ⎥= + −⎣ ⎦ ⎢ ⎥+⎣ ⎦
 

 
6. The speed of the contact surface can be determined by noting that it has the same velocity as the gas in 

regions 2 and 3, i.e., uCS = u2 = u3. 
 
 
 
 
Using the algorithm described above: 

u2 = u3 = uCS = 279.3 m/s (answer to part (a)) 
p2/p1 = 0.2848 
p2 = p3 = 85.4 kPa 
MaS = 1.607 
uS = 546.7 m/s (answer to part (b)) 
c2 = 284.3 m/s  
u2 – c2 = -5.0 m/s (answer to part (c) – back part of fan) 
T2 = 201.2 K 
T3 = 401.1 K 
c3 = 401.5 m/s 
u1 = u4 = 0 
c1 = 340.2 m/s  
u1 – c1 = -340.2 m/s  (answer to part (c) – front part of fan) 
c4 = 340.2 m/s 
 
 
 
 

contact surface 

1 4 3 2 

x 

t 

contact surface 

initial diaphragm 
location 

shock wave 

expansion fan 

1 
2 

3 

4 1/uS -1/c1 

1/(u2 – c2) 
1/uCS 
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A shock tube is to be used to subject an object to momentary conditions of high pressure and temperature.  
To provide an adequate measuring time the tube is to be made long enough so that a period of 100 ms is 
provided between the time of passage over the body of the initial shock and the time of passage of the 
shock reflected from the closed end of the tube.  The initial pressure ratio across the diaphragm is such as to 
yield an initial shock with a pressure ratio of 10 to 1, with the object located 3 m from the diaphragm.  The 
initial temperature of the air in the shock tube is 35 °C.  Determine a suitable length for the low-pressure 
end of the tube.  Assume the contact surface travels much more slowly than the shock waves. 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Use the given pressure ratio to determine the Mach number of the incident shock wave. 

22

1

2 110 Ma
1 1i

p
p

γ γ
γ γ

−= = −
+ +

  ⇒  Mai = 2.952 (1) 

Use this Mach number and the temperature to determine the speed of the incident shock wave relative to 
the ground. 
 
 
 
 
 
 
 
 

1Mai iu RTγ=   ⇒  ui = 1038 m/s (2) 

( ) ( )
( )

2
22

2 2
1

2 Ma 1
2 1 Ma

1 Ma
i

i
i

T
T

γ γ
γ

γ

⎡ ⎤− −
⎡ ⎤= + − ⎢ ⎥⎣ ⎦ +⎢ ⎥⎣ ⎦

  ⇒  T2 = 807.9 K (3) 

u = 0 
T = (35 + 273) = 308 K 

diaphragm 

l 

L 

1 2 

object 

object 

u1 = 0 
T1 = 308 K 

ti 

tr 

x 

t 

Δt 

l L – l 

u2 

ui 

u1 = 0 change to the shock 
frame of reference 

ui – u2 ui  

u2, T2 

u3 = 0 
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( )
( )

2

2
2

1 Ma
1 Ma 2

ii

i i

u
u u

γ
γ

+
=

− − +
  ⇒  u2 = 766.1 m/s  (wind velocity w/r/t ground following the shock) (4) 

 
The air downstream of the reflected shock (w/r/t the ground) must be zero due to the presence of the 
stationary wall.  
 
 
 
 
 
 
 
 
The velocity ratio across the shock may be related to the Mach number upstream of the shock (in the shock 
frame of reference): 

( )
( )

2
2

2

1 Ma
1 Ma 2

rr

r r

u u
u

γ
γ

++
=

− +
   (5) 

In addition, the Mach number of the flow into the shock may also be determined using the upstream flow 
conditions: 

2

2

Ma r
r

u u
RTγ
+

=  (6) 

Solve Eqs. (5) and (6) iteratively to find ur = 425.6 m/s and Mar = 2.092. 
 
The time for the incident shock to travel from the object ot the wall is: 

i
i

L lt
u
−=  (7) 

and the time for the reflected shock to travel from the wall to the object is: 

r
r

L lt
u
−=  (8) 

The goal is to have the total time, Δt, equal 100 ms: 

i r
i r

L l L lt t t
u u
− −Δ = + = +  (9) 

( ) ( ) ( ) ( )i r r i r i r iu u t u L l u L l u u L u u lΔ = − + − = + − +  (10) 

i r

r i

u uL t l
u u

= Δ +
+

 (11) 

Substituting the given numbers, L = 33.2 m.  

u2 

ur 

u3 = 0 change to the shock 
frame of reference 

u2 + ur ur  
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A normal shock moves down an open-ended tube with a velocity of 415 m/s (with respect to the stationary 
air upstream of the shock).  The ambient air pressure and temperature are 101 kPa (abs) and 25 °C 
upstream of the shock wave.  Determine the velocity, with respect to the ground, of the first and last 
expansion waves that move down the tube after reflection of the shock from the open end. 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The first and last reflected expansion waves are left running characteristics.  Thus, the speed of these waves 
with respect to the ground will be: 

,w/r/t ground 2 2Au u c= −  (1)  

,w/r/t ground 3 3Bu u c= −  (2) 
 
The Mach number of the shock wave is: 

1 1

Ma S S
S

u u
c RTγ

= =   ⇒  MaS = 1.199 (3) 

where uS = 415 m/s, γ = 1.4, R = 287 J/(kg.K), and T1 = 298 K. 
 

p = 101 kPa (abs) 
T = (25 + 273) = 298 K 

uS = 415 m/s 

p = 101 kPa (abs) 

t 

x 

1/uS 

1/(u2 – c2) 

1/(u3 – c3) 
pathline of an 
air particle 

1 

2 

3 

initially 
stationary air 

1/u2 

1/u3 

open tube 
p = 101 kPa (abs) 

VS = 415 m/s 

incident 

reflected 

uA,w/r/t ground = ? 
uB,w/r/t ground = ? 
 
 

Note:  The speeds, u, are 
measured with respect to 
the ground. 
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Using the normal shock relations, the Mach number and the velocity, temperature, and pressure ratios 
across the shock are: 

( )
( )
2
12

2 2
1

1 Ma 2
Ma

2 Ma 1
γ
γ γ
− +

=
− −

  ⇒  Ma2 = 0.8426  (relative to the shock) (4) 

( ) ( )
( )

2
122

1 2
1 1

2 Ma 1
2 1 Ma

1 Ma

T
T

γ γ
γ

γ

− −
⎡ ⎤= + −⎣ ⎦ +⎡ ⎤⎣ ⎦

  ⇒  T2/T1 = 1.1276 (5) 

22
1

1

2 1Ma
1 1

p
p

γ γ
γ γ

−= −
+ +

  ⇒  p2/p1 = 1.5114 (6) 

1
22
2

02

11 Ma
2

p
p

γ
γγ −−⎛ ⎞= +⎜ ⎟⎝ ⎠
  ⇒  p2/p02 = 0.6283 (7) 

1
22
2

02

11 Ma
2

T
T

γ −−⎛ ⎞= +⎜ ⎟⎝ ⎠
  ⇒  T2/T02 = 0.8757 (8) 

( )
( )

2
12

2
1

2 1 Ma
1 Ma

S

S

u u
u

γ
γ
+ −−

=
+

   ⇒  (uS – u2)/uS = 0.7460  ⇒  u2 = 105.4 m/s (9) 

 
 
 
 
 
 
 
 
 

The air velocity and speed of sound downstream of the shock wave are: 

2 2c RTγ=   ⇒  c2 = 367.4 m/s  (T2 = 336.0 K) (10) 
p2 = 153.1 kPa (abs) (11) 

 
The shock wave reflects as an expansion fan from the free surface boundary in order to maintain a constant 
pressure boundary condition.  The speed of the first expansion wave front relative to the ground is: 

uA= u2 – c2  ⇒  uA = -262.0 m/s (to the left) (12) 
 

The speed of sound in region 3 may be found from the pressure ratio and noting that the process in going 
from 2 to 3 is isentropic: 

1
2

3 3

2 2

c p
c p

γ
γ
−

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

  ⇒ c3/c2 = 0.9427  ⇒  c3 = 346.4 m/s (13) 

 
The velocity in region 3 may be found by noting that we’re crossing left-running characteristic curves in 
going from region 2 to region 3: 

( ) ( )3 2 3 2 3 2
2 2
1 1

u u c c c c
γ γ

− = − − = −
− −

  ⇒  u3 = 210.7 m/s (14) 

Thus, the speed of the last expansion wave front relative to the ground is: 
uB = u3 – c3  ⇒  uB = -135.7 m/s (to the left) (15) 
 

Alternately, the velocity in region 3 may be found directly in terms of the pressure ratio using: 
1

2
3 32

2 2 2

2 1
1

u pu
c c p

γ
γ

γ

−⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥− − = −⎜ ⎟ ⎜ ⎟⎢ ⎥−⎝ ⎠ ⎝ ⎠⎣ ⎦
  ⇒ 

1
2

32
3 2

2

2
1

1
pcu u
p

γ
γ

γ

−⎡ ⎤⎛ ⎞⎢ ⎥= + −⎜ ⎟⎢ ⎥− ⎝ ⎠⎣ ⎦
  ⇒  u3 = 210.7 m/s (16) 

uS uS – u2 

shock is stationary in this 
frame of reference 

u1 = 0 u2 

shock moves in this frame 
of reference 

uS 
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High speed air flows past an object is to be studied using the shock tube shown below. 
 
 
 
 
 
 
 
 
 
The pressure rise across the shock wave is 4.5:1.  The right hand side of the tube is open to the atmosphere. 
 
a. Sketch the process on an x-t diagram. 
b. How long will it take the incident shock wave to reach the object? 
c. How much time passes between when the incident shock wave reaches the object to when the first 

reflected wave reaches the object? 
d. What will be the air velocity out of the right side of the tube following the reflected waves? 
 
You may ignore the contact surface for this problem. 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note that a shock wave reflects from the free surface outlet boundary as an expansion fan in order to 
maintain a constant pressure. 
 
Across the normal shock wave: 

2

1
4.5

p
p

=   ⇒  MaS = 2.0  (using the normal shock relations) (1) 

1MaS Su RTγ=   ⇒  uS = 686.2 m/s  (2) 
The time it takes for the incident shock to reach the object is: 

i
S

lt
u

=   ⇒  ti = 4.4 ms (3) 

 

end open to 
atmosphere 

patm = 100 kPa (abs) 
T = 293 K 

10 m 
3 m 

diaphragm 
location 

high pressure 
region 

…
. 

…
. 

shock wave 

t 

x 

tl to L 

l = 3 m 
(sphere location) 

L = 10 m 
(tube end) 

1/uS 

1/(u2 – c2) 

 Region 1 

 Region 2 

 Region 3 u1 = 0 
p1 = 100 kPa (abs) 
T1 = 293 K 
 
u2 = ? 
p2 = 450 kPa (abs)  (pressure ratio of 4.5 to 1) 
T2 = ? 
 
u3 = ? 
p3 = 100 kPa (abs)  (pressure at free surface is constant) 
T3 = ? 

ti 

tL to l 
1/u3 
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The conditions in region 2 may be found using the normal shock relations. 

MaS = 2.0  ⇒  2

1
1.6875

T
T

=    ⇒  T2 = 494.4 K (4) 

2 2c RTγ=   ⇒  c2 = 445.7 m/s (5) 
 

The gas velocity behind the shock may be found by applying the normal shock relations in the shock 
wave’s frame of reference (a steady frame of reference). 
 
 
 
 
 
 

MaS = 2.0  ⇒  1

2 2
2.6667S

S

uV
V u u

= =
−

  ⇒  2
2.6667 1
2.6667 Su u−⎛ ⎞= ⎜ ⎟⎝ ⎠

 (6) 

u2 = 428.9 m/s (7) 
Note that: 

Ma2 = u2/c2  ⇒  Ma2 = 0.9623 (8) 
 

The time for the shock to travel from the object to the tube end is: 

 to l L
S

L lt
u
−=   ⇒  tl to L = 10.2 ms (9) 

 
The time for the reflected expansion wave to travel from the tube end to the object is: 

 to 
2 2

L l
l Lt
u c
−=
−

  ⇒  416.1 ms (10) 

 
Thus, the total time between the passing of the shock wave and the first expansion wave is: 

 to  to l L L lt t tΔ = +   ⇒  Δt = 426.3 ms (11) 
 

The velocity in region 3 may be found by noting that we’re crossing left-running characteristic curves in 
going from region 2 to region 3: 

1
2

3 32

2 2 2

2 1
1

u pu
c c p

γ
γ

γ

−⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥− − = −⎜ ⎟ ⎜ ⎟⎢ ⎥−⎝ ⎠ ⎝ ⎠⎣ ⎦
  ⇒ 

1
2

32
3 2

2

2
1

1
pcu u
p

γ
γ

γ

−⎡ ⎤⎛ ⎞⎢ ⎥= + −⎜ ⎟⎢ ⎥− ⎝ ⎠⎣ ⎦
 (12) 

 u3 = 859.8 m/s (13) 
 

Note that: 
1

2
3 3

2 2

c p
c p

γ
γ
−

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

  ⇒  c3 = 359.5 m/s (14) 

3
3

3
Ma

u
c

=   ⇒  Ma3 = 2.392 (15) 

 

uS 

u2 u1 = 0 change 
FOR 

uS – u2 uS 
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