Combinational Logic Gates in CMOS

References:

Adapted from*: Digital Integrated Circuits: A Design Perspective*, J. Rabaey, Prentice Hall © UCB *Principles of CMOS VLSI Design: A Systems Perspective*, N. H. E. Weste, K. Eshraghian, Addison Wesley Adapted from: EE216A Lecture Notes by Prof. K. Bult © UCLA

Combinational vs. Sequential Logic

 $Out = f(ln)$ Out = $f(ln, State)$

State is related to previous inputs Stored in registers, memory etc

Overview

- Static CMOS
	- Complementary CMOS
	- Ratioed Logic
	- Pass Transistor/Transmission Gate Logic
- Dynamic CMOS Logic
	- Domino
	- np-CMOS

Static CMOS Circuit

- At every point in time (except during the switching transients) each gate output is connected to either $\rm V_{\scriptscriptstyle \rm DD}$ or $\rm V_{\scriptscriptstyle SS}$ via a low-resistive path
- The outputs of the gates assume at all times the value of the Boolean function, implemented by the circuit
- In contrast, a dynamic circuit relies on temporary storage of signal values on the capacitance of high impedance circuit nodes

Digital Gates Fundamental Parameters

- Area and Complexity
- Performance
- Power Consumption
- Robustness and Reliability

What Can Go Wrong in CMOS Logic?

- \bullet Incorrect or insufficient power supplies
- •Power supply noise + Complementary CMOS is pretty
- • Noise on gate input safe against these
- •Faulty connections between transistors
- Clock frequency too high or circuit too slow

How about Ratioed or Dynamic Logic?

- All the previous and
- \bullet Incorrect ratios in ratioed logic
- Charge sharing in dynamic logic
- \bullet Incorrect clocking in dynamic logic

Complementary CMOS

PUN and PDN are dual networks

NMOS Transistors in Series/Parallel Connection

- Transistors can be thought as a switch controlled by its gate signal
- NMOS switch closes when switch control input is high

•NMOS passes a strong 0 but a weak 1

NMOS Transistors in Series/Parallel Connection

•Connect Y to GND

•Implement the complement of PDN PMOS Transistors in Series/Parallel Connection

• PMOS switch closes when switch control input is low

• PMOS passes a strong 1 but a weak 0

PMOS Transistors in Series/Parallel Connection

•Connect Y to VDD

• Combine series PDN and parallel PUN or parallel PDN and series PUN to complete the logic design to output good 1 and 0

Complementary CMOS Logic Style Construction

• PUN is the DUAL of PDN (can be shown using DeMorgan's Theorems)

$$
\overline{A+B} = \overline{A}\overline{B}
$$

$$
\overline{AB} = \overline{A} + \overline{B}
$$

$$
G(in_1, in_2, in_3, \ldots) \equiv F(in_1, in_2, in_3, \ldots)
$$

- The complementary gate is inverting
	- Implements NAND, NOR, …
	- Non-inverting boolean function needs an inverter

The NAND Circuit

 $G(in_1, in_2, in_3, ...) \equiv F(in_1, in_2, in_3, ...)$ PDN connected to GND :*G* ⁼ *A*.*B* PUN connected to $V_{DD}: F = A+B = AB$

The NOR Circuit

Example Gate: COMPLEX CMOS GATE

$$
F = ((A.B) + C.(A+B)) = carry
$$

Symmetrical !

Full Adder Circuit

4-input NAND Gate

In1 In2 In3 In4

Standard Cell Layout Methodology

Two Versions of (a+b).c

Logic Graph

Consistent Euler Path

Example: $x = ab + cd$

Properties of Complementary CMOS Gates

- High noise margin
	- $\rm V_{OH}$ and $\rm V_{OL}$ are at $\rm V_{DD}$ and $\rm G_{ND}$, respectively
- No static power consumption
	- In steady state, no direct path between $\mathsf{V}_{\texttt{DD}}$ and $\mathsf{V}_{\texttt{SS}}$
- Comparable rise and fall times under appropriate scaling of PMOS and NMOS transistors

Transistor Sizing

- •For symmetrical response (dc, ac)
- •For performance
- •Input dependent
- •Focus on worst-case

Propagation Delay Analysis - The Switch Model

 V_{DD} R_p \overline{A} $\mathcal F$ R_{n} C_L \boldsymbol{A}

 V_{DD} R_{ρ} R_p $\overline{\mathsf{A}}$ \overline{B} F R_{n} C_L B° R_{n} Α

(a) Inverter

(b) Two-input NAND

(c) Two-input NOR

Analysis of Propagation Delay

(b) Two-input NAND

- •Assume C_L dominates
- Assume $R_n = R_p =$ resistance of minimum sized NMOS inverter
	- For t_{plH}

•

 Worst case when only one PMOS pulls up the output node

$$
- t_{pLH} \propto R_p C_L
$$

- •For t_{pHL}
	- Worst case when two NMOS in series

 $-$ t_{pHL} \propto 2R_nC_L

3-Input NAND Gate

3-Input NAND Gate

Take
$$
W_n = (3/2)W_p
$$

Design for Worst Case

3-input NAND Gate with Parasitic Capacitors

Worst Case Approximation Using Lumped RC Model

 $(R_{N1} + R_{N2} + R_{N3}) \times (C_a + C_b + (C_c + C_{p+load}))$ df *pulldown* \sim *pulldown* $P = (R_{N1} + R_{N2} + R_{N3}) \times (C_a + C_b + (C_c + C_{p+1})$ $t_{\textit{df}} = \sum R_{\textit{pulldown}} \times \sum C$ (We ignore the constant term 0.69 or 1.22)

Penfield-Rubenstein Model (Elmore Delay Model)

$$
t_d = \sum R_i C_i
$$

with: C_i = capacitance at node i
 R_i = total resistance between C_i and supply

$$
t_{df} = [R_{N1}C_a] + [(R_{N1} + R_{N2})C_b] +
$$

$$
[(R_{N1} + R_{N2} + R_{N3})(C_c + C_{p+load})]
$$

Distributed RC Effects

Comparison

RP-Model

Macro Modeling

$$
\left| \begin{array}{c} t_d = T_{d,\text{ internal}} + \lambda \times C_{\text{load}} \end{array} \right|
$$

Effect of Loading

Effect of Fan-In and Fan-Out on Delay

$$
t_d = a_1 FI + a_2 FI^2 + a_3 FO
$$

- Fan-out: number of gates connected
	- 2 gate capacitance per fan-out
- \bullet Fan-in: number of inputs to a gate
	- Quadratic effect due to increasing resistance and capacitance

*t*_p as a function of Fan-In

AVOID LARGE FAN-IN GATES! (Typically not more than FI < 4)

Example 3-Input NAND gate with Parasitic Capacitors

Worst Case Approximation by Lumped Model

 $\rm t_{dr}$ = $\rm R_p$ x (C $_{\rm c}$ + C $_{\rm p+load}$) = 10000 x 0.4 \times 10⁻¹² = 4.0ns $\bm{{\mathsf{t}}}_{\mathsf{df}} = \Sigma \bm{\mathsf{R}}_{\mathsf{pulldown}}$ x $\Sigma \bm{\mathsf{C}}_{\mathsf{pulldown}}$ $=(R_{N1}+R_{N2}+R_{N3})\times (C_a+C_b+(C_c+C_{p+load}))$ $= (3 \times 5000) \times (3 \times 0.05 + 0.15 + 0.20) \times 10^{-12}$ $= 7.5$ ns

Penfield-Rubenstein Model

$$
t_{dr} = R_p \times (C_c + C_{p+load}) = 10000 \times 0.4 \times 10^{-12} = 4.0
$$
ns
\n $t_{dr} = [R_{N1}C_a] + [(R_{N1} + R_{N2})C_b] + [(R_{N1} + R_{N2} + R_{N3})(C_c + C_{p+load})]$
\n $= 5000 \times 0.05pF + 10000 \times 0.05pF + 15000 \times 0.4pF = 6.75$ ns

Worst Case Approximation by Lumped Model

Make $\,$ W $_{\textrm{n}}$ = 2W $_{\textrm{p}}$

 $\rm t_{dr}$ = $\rm R_p$ x (C $_{\rm c}$ + C $_{\rm p+load}$) = 10000 x 0.45 \times 10⁻¹² = 4.5ns

$$
t_{df} = \Sigma R_{\text{pulldown}} \times \Sigma C_{\text{pulldown}}
$$

 $=(R_{N1}+R_{N2}+R_{N3})\times (C_a+C_b+(C_c+C_{p+load}))$ $= (3 \times 2500) \times (3 \times 0.10 + 0.15 + 0.20) \times 10^{-12}$ = 4.875ns

Penfield-Rubenstein Model

Make
$$
W_n = 2W_p
$$

\n $t_{dr} = R_p \times (C_c + C_{p+load}) = 10000 \times 0.45 \times 10^{-12} = 4.5 \text{ns}$
\n $t_{dr} = [R_{N1}C_a] + [(R_{N1} + R_{N2})C_b] + [(R_{N1} + R_{N2} + R_{N3})(C_c + C_{p+load})]$
\n $= 2500 \times 0.10pF + 5000 \times 0.10pF + 7500 \times 0.45pF = 4.125 \text{ns}$

Rewriting Penfield-Rubenstein Equation

$$
t_{d} = [R_{N1}C_{a}] + [(R_{N1} + R_{N2})C_{b}] +
$$

\n
$$
[(R_{N1} + R_{N2} + R_{N3})(C_{c} + C_{p+load})]
$$

\n
$$
\implies t_{d} = [R_{N1}(C_{a} + C_{b} + C_{c} + C_{p+load})] +
$$

\n
$$
[R_{N2}(C_{b} + C_{c} + C_{p+load})] +
$$

\n
$$
[R_{N3}(C_{c} + C_{p+load})]
$$

 $\boldsymbol{\mathsf{t}}_\mathsf{d} = \Sigma \; \boldsymbol{\mathsf{R}}_\mathsf{ii} \boldsymbol{\mathsf{C}}_\mathsf{downstream}$ -i

with: $C_{downstream-i} = downstream$ capacitance at node i $\mathsf{R}_{\boldsymbol{\mathfrak{ij}}}$ = resistance at node i

Progressive Sizing

- When parasitic capacitance is significant (e.g., when fanin is large), needs to consider distributed RC effect
- Increasing the size of M1 has the largest impact in terms of delay reduction
- $\bullet~~ \mathsf{M}_1 > \mathsf{M}_2 > \mathsf{M}_3 > \ldots > \mathsf{M}_\mathsf{N}$

Delay Optimization by Transistor Ordering

Critical signal next to supply

Critical signal next to output