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ABSTRACT

In practice, it is often the case that systems can be modeled as having unknown inputs.

For such systems, it may be necessary to estimate the states and inputs in order to achieve

certain control objectives. In this thesis, we study linear systems with unknown inputs, and

design observers to estimate the desired quantities. In particular, we consider the use of

delayed observers, which enlarges the class of systems for which state and input estimation

is possible.

We start by designing reduced-order observers that reconstruct the entire state. Our

design procedure is quite general in that it encompasses the design of full-order observers

via appropriate choices of design matrices. We provide necessary and sufficient conditions for

the existence of such observers, as well as a characterization of the minimum delay required

to reconstruct the entire state. Once the state observer is constructed, we show that it is

straightforward to obtain an estimate of the unknown inputs.

We then present an investigation of partial state and input observers for linear systems

with unknown inputs. Our approach characterizes the set of all linear functions of the states

and inputs that can be reconstructed through a linear observer with a given delay, and

directly produces the corresponding observer parameters. In comparison to previous work

on partial observers, the main contributions of our work are (i) an algebraic procedure to

design delayed linear observers with dimension no greater than that of the system, and (ii)

a unified treatment of both state and input observers.

Finally, we consider a stochastic setup and present a method for constructing linear

minimum-variance unbiased state estimators for discrete-time linear stochastic systems with

unknown inputs. Our design provides a characterization of estimators with delay, which

eases the established necessary conditions for existence of unbiased estimators with zero-

delay. A consequence of using delayed estimators is that the noise affecting the system

becomes correlated with the estimation error. We handle this correlation by increasing the

dimension of the estimator appropriately.
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CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

When designing control systems, there is frequently some degree of uncertainty surrounding

the plant. For example, some of the plant parameters may not be exactly known [1, 2],

or the plant may be subject to unmeasurable disturbances [3]. Similarly, in decentralized

control systems, it may not be possible to have knowledge of the control signals generated

by different controllers [4]. The system may also be affected by faults, the magnitude and

characteristics of which cannot be predicted a priori [5].

These uncertainties can often be incorporated into the system model by treating them as

unknown inputs. Traditional techniques for control system design must then be generalized

to handle these uncertainties. For example, researchers have studied ways to reconstruct

the unknown inputs by using only the output of the system and possibly the initial system

state [6–11]. These investigations have revealed that it will generally be necessary to use

delayed (or differentiated) outputs in order to reconstruct the inputs. A system is said to be

invertible if it is possible to reconstruct the inputs in the above manner. Researchers have

also extended the standard Luenberger state observers [12–14] to treat the problem of state

estimation in linear systems with unknown inputs [15–25]. It has been shown that system

invertibility is a necessary condition for the existence of unknown input observers [26], and

thus delayed observers may be required in order to estimate the entire system state.

In this thesis, we study state and input observers for linear systems with unknown inputs.

We start by examining the problem of observing the entire state and input in such systems,

and develop a design procedure to obtain the observer parameters. We then investigate

partial observers, which reconstruct a maximal subset of the states and inputs with a given

delay. Finally, we study linear stochastic systems with unknown inputs, and develop an

optimal state estimator that minimizes the mean square estimation error. Specifically, the

main contributions of this thesis are:

1. The development of a unified design procedure for both reduced and full-order state
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observers that incorporate delays.

2. The characterization of all possible linear functions of the state vector and input that

can be observed with a given delay.

3. A design procedure for optimal state estimators with delays for linear systems operating

in the presence of noise.

The fact that we consider delayed observers makes our investigation more general than

many of the other works currently present in the literature.

1.2 Preliminaries and Notation

In this thesis, we will be considering discrete-time linear systems of the form

xk+1 = Axk + Buk

yk = Cxk + Duk , (1.1)

with state vector x ∈ Rn, unknown input u ∈ Rm, output y ∈ Rp, and system matrices

(A,B,C,D) of appropriate dimensions. Note that we omit known inputs in the above

equations for clarity of development. We also assume without loss of generality that the

matrix [ B
D ] is full column rank. This assumption can always be enforced by an appropriate

transformation and renaming of the unknown inputs. Finally, while we consider discrete-time

systems in our development, our approach applies equally well to continuous-time systems by

replacing advances with differentiators (e.g., yk+α should be replaced by the α’th derivative

of y(t)).

The response of system (1.1) over α + 1 time units is given by




yk

yk+1

...

yk+α




︸ ︷︷ ︸
Yk:k+α

=




C

CA
...

CAα




︸ ︷︷ ︸
Θα

xk +




D 0 · · · 0

CB D · · · 0
...

...
. . .

...

CAα−1B CAα−2B · · · D




︸ ︷︷ ︸
Mα




uk

uk+1

...

uk+α




︸ ︷︷ ︸
Uk:k+α

. (1.2)

The matrices Θα and Mα in the above equation can be expressed in a variety of ways.
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We will be using the following identities in our derivations:

Θα =

[
C

Θα−1A

]
=

[
Θα−1

CAα

]
, (1.3)

Mα =

[
D 0

Θα−1B Mα−1

]
=

[
Mα−1 0

Cζα−1 D

]
, (1.4)

where

ζα−1 ≡
[
Aα−1B Aα−2B · · · B

]
.

1.3 Previous Results

We now summarize some important results on system inversion and state observation. These

results will be useful to our development later on.

1.3.1 Inversion

Consider the system response given by (1.2), and suppose that the value of the state xk is

known at time-step k. If we wish to determine uk from the output, we require that the first

m columns of Mα be linearly independent of each other and of the remaining αm columns

of Mα. Otherwise, there exists a nonzero sequence of inputs Uk:k+α such that MαUk:k+α = 0,

and this is indistinguishable from the input sequence Uk:k+α = 0. Using (1.4), we note that

the last αm columns of Mα have the same rank as Mα−1. This reasoning was used by Sain

and Massey to produce the following theorem for system invertibility [7].

Theorem 1.1 For any nonnegative integer α,

rank[Mα]− rank[Mα−1] ≤ m

with equality if and only if the system in (1.1) is invertible with delay α.

If the condition in the above theorem holds, then there exists a matrix S such that

uk = SYk:k+α − SΘαxk ,

and this can be substituted into (1.1) to obtain xk+1. Note that the expression on the left

side of the inequality in the above theorem is a monotonically nondecreasing function of

α, which indicates that more information can be obtained about the input by allowing a
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larger delay. An upper bound on the delay was obtained by Willsky, who studied system

invertibility in [27].

Theorem 1.2 Let q be the dimension of the nullspace of D. The system in (1.1) is invertible

if and only if

rank [Mn−q+1]− rank [Mn−q] = m ;

i.e., if (1.1) is invertible, its inherent delay α cannot exceed n− q + 1.

1.3.2 State observation

As mentioned earlier in this chapter, the problem of state estimation for the system in

(1.1) has also received considerable attention in the literature. The vast majority of these

investigations focus on zero-delay observers (i.e., observers that only make use of the cur-

rent measurement yk to estimate xk). The following theorem provides the well-established

conditions for the existence of a zero-delay state observer for (1.1) [19, 25, 28].

Theorem 1.3 The system (1.1) has an asymptotically stable state observer if and only if

1. rank

[
D 0

CB D

]
= m + rank[D] ,

2. rank

[
zI − A −B

C D

]
= n + m, ∀z ∈ C, |z| ≥ 1 .

The values of z for which the second condition fails are called the transmission zeros of

the system [29]. Thus, the second condition in the above theorem means that all transmission

zeros of the system must be stable in order to estimate the entire system state. Comparing

condition 1 to Theorem 1.1, we notice that the system must be invertible with a delay of

one time-step in order to construct a zero-delay observer. One would then expect that this

necessary condition could be met more easily through the use of a delayed observer. This

fact was verified in [26] by defining a new output equation for the system (1.1), with Θα

and Mα taking the place of the C and D matrices, respectively. These matrices were then

substituted into the necessary conditions for zero-delay observers, and reduced to produce

the following result.

Theorem 1.4 The system (1.1) has an asymptotically stable state observer with delay α if

and only if
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1. rank[Mα+1]− rank[Mα] = m ,

2. rank

[
zI − A −B

C D

]
= n + m, ∀z ∈ C, |z| ≥ 1 .

Note that the second condition in the above theorem is unchanged from the zero-delay

case, which indicates that delays do not affect the transmission zeros of the system.

We are now ready to pursue our investigation of observers for linear systems with un-

known inputs. The remainder of this thesis is organized as follows. In Chapter 2, we develop

a design procedure for both full and reduced-order delayed observers to estimate the entire

system state and input. In Chapter 3, we characterize the set of all linear functions of the

state and input that can be observed with a given delay. In Chapter 4, we consider the case

where the system is operating in the presence of noise, and develop a state estimator that

is optimal in the sense of minimizing the mean square estimation error. We summarize and

conclude the thesis in Chapter 5.

5



CHAPTER 2

FULL STATE AND INPUT
OBSERVERS

2.1 Introduction

In this chapter, we study the problem of observing the entire system state and input in linear

systems with unknown inputs. State observers for such systems have received considerable

attention over the past few decades [16, 19, 22, 23, 25], and various methods of realizing

both full and reduced-order zero-delay state observers have been presented. As discussed in

Chapter 1, it may be necessary to utilize delayed observers in order to estimate the system

state. While [26] established necessary and sufficient conditions for the existence of state

observers with delays, no design procedure was provided. In [30], the authors handled delayed

observers by constructing a higher-dimensional system that incorporated the delayed states

into the new state vector. An observer was then constructed for this augmented system,

and geometric conditions were given for the existence of such observers. In this chapter, we

provide a unified design procedure for both reduced and full-order observers with delays,

and present conditions for the existence of such observers. In contrast to the work in [30],

the dimension of our observer is no greater than the dimension of the original system, and

we present algebraic existence conditions. Our approach generalizes recently published work

on full-order zero-delay state observers [25], and allows us to treat the full-order observer as

a special case of a reduced-order observer where the dynamic portion reconstructs the entire

state vector. Once we have constructed a state observer, we show that it is straightforward

to obtain an estimate of the inputs.

2.2 State Observer

We first consider the problem of constructing an observer to estimate the system state. We

start by determining the set of states which can be directly obtained from the output of the

system over α + 1 time-steps. The following theorem provides an answer to this problem.
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Theorem 2.1 For system (1.1) with response over α + 1 time-steps given by (1.2), let

t = rank
[
Θα Mα

]
− rank

[
Mα

]
.

Then it is possible to perform a similarity transform on the system S to obtain a new system

S̄ such that exactly t of the states in S̄ are directly obtainable from the output of the system.

Proof: Assume rank
[
Θα Mα

]
− rank

[
Mα

]
= t. This implies that there are t linearly

independent vectors in the matrix Θα that cannot be written as a linear combination of

vectors in Mα. Thus, there exists a matrix P of dimension t× (α + 1)p such that PΘα has

full row-rank, and PMα = 0. Define the similarity transformation matrix

T ≡
[
PΘα

H

]
, (2.1)

where the matrix H is chosen so that T has full rank. Note that P and H can be chosen so

that T is orthogonal, if so desired. Consider the system S̄ with state-vector x̄k =

[
x̄1,k

x̄2,k

]
=

T xk. The system matrices in S̄ are given by

Ā ≡ T AT −1 =

[
A11 A12

A21 A22

]
,

B̄ ≡ T B =

[
PΘαB

HB

]
,

C̄ ≡ CT −1, D̄ ≡ D . (2.2)

Now it is readily seen from (1.2) that

PYk:k+α = PΘαT −1x̄k

=
[
It 0

]
x̄k ,

and thus the first t states of x̄k are immediately obtained.

Remark 2.1 The problem of determining a particular set of states from the (delayed) output

was studied in [31], and the special case of perfect observability (i.e., t = n) was studied in

[4, 32]. The result in Theorem 2.1 appears to be new in that it deals with reconstructing a

maximal subset of states from the output.
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To estimate the remaining (n − t) states of x̄k (i.e., x̄2,k), we construct a reduced-order

observer of the form

zk+1 = Ezk + FYk:k+α

ψk = zk + GYk:k+α , (2.3)

where matrices E, F , and G are chosen such that ψk → x̄2,k as k → ∞. Using (1.2), the

observer error is given by

ek+1 ≡ ψk+1 − x̄2,k+1

= Ezk + FYk:k+α + GYk+1:k+α+1 −
[
A21 A22

]
x̄k −HBuk

= Eek + (F − EG) Θαxk + GΘαAxk + EHxk −
[
A21 A22

]
T xk

+ (F − EG) MαUk:k+α + GΘαBuk + GMαUk+1:k+α+1 −HBuk .

Using the identities (1.3) and (1.4), the expression for the error can be written as

ek+1 = Eek +
[
F − EG 0

]
Θα+1xk +

[
0 G

]
Θα+1xk + EHxk −

[
A21 A22

]
T xk

+
[
F − EG 0

]
Mα+1Uk:k+α+1 +

[
0 G

]
Mα+1Uk:k+α+1 −HBuk .

Partition the matrices F and G as

F =
[
F0 F1 · · · Fα

]
,

G =
[
G0 G1 · · · Gα

]

where each Fi and Gi are of dimension (n− t)× p, and define

K ≡
[
F0 − EG0 F1 − EG1 + G0 · · · Fα − EGα + Gα−1 Gα

]
. (2.4)

Note that since we are free to choose F and G, matrix K can be chosen to have any value

we require. The error can then be expressed as

ek+1 = Eek +
(
EH−

[
A21 A22

]
T + KΘα+1

)
xk + KMα+1Uk:k+α+1 −HBuk .

In order to force the error to go to zero, regardless of the values of xk and the inputs, the

following two conditions must hold:
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1. E must be a stable matrix,

2. The matrix K must satisfy

KMα+1 =
[
HB 0 · · · 0

]
, (2.5)

EH =
[
A21 A22

]
T −KΘα+1 . (2.6)

The solvability of condition (2.5) is given by the following theorem.

Theorem 2.2 There exists a matrix K such that

KMα+1 =
[
HB 0 · · · 0

]

if and only if

rank [Mα+1]− rank [Mα] = m . (2.7)

Proof: There exists a K satisfying (2.5) if and only if the matrix

R ≡
[
HB 0 · · · 0

]

is in the space spanned by the rows of Mα+1. This is equivalent to the condition

rank

[
Mα+1

R

]
= rank [Mα+1] .

Using (1.4), we get

rank

[
Mα+1

R

]
= rank




D 0

ΘαB Mα

HB 0




= rank







I 0 0

0 P 0

0 0 I

0 I 0







D 0

ΘαB Mα

HB 0







= rank







I 0 0

0 T 0

0 Θα I







D 0

B 0

0 Mα





 .
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By our assumption that the matrix [ B
D ] has full column rank, we get

rank

[
Mα+1

R

]
= m + rank [Mα] ,

thereby completing the proof.

Note that (2.7) is the condition for inversion of the inputs with known initial state, as

given in [7]. If we set α = 0, condition (2.7) becomes

rank

[
D 0

CB D

]
= m + rank [D] ,

which is the well-known necessary condition for unknown-input observers with zero delay

[19]. This is a fairly strict condition, and demonstrates the utility of a delayed observer.

When designing such an observer, one can start with α = 0 and increase α until a value is

found that satisfies (2.7). Using Theorem 1.2, we see that an upper bound on the observer

delay is n−q time-steps, where q is the nullity of D. If (2.7) is not satisfied even for α = n−q,

it is not possible to estimate all the states in the system.

Remark 2.2 As mentioned in Chapter 1, Condition (2.7) was obtained in [26] through a

different method. The approach in that paper was to define a new output equation for the

system, with Θα and Mα taking the place of the C and D matrices, respectively. These

matrices were then substituted into the necessary conditions for zero-delay observers, and

reduced to produce Equation (2.7). While this approach is quite intuitive, it may result in

unnecessarily large and redundant matrices when designing the observer parameters. Fur-

thermore, the upper bound on the observer delay provided in [26] is α = n− 1, which can be

tightened by applying the result of Theorem 1.2.

We now turn our attention to condition (2.6). Right-multiplying by T −1, we get the

equivalent condition [
0 E

]
=

[
A21 A22

]
−KΘα+1T −1 . (2.8)

From the above equation it is apparent that there is an additional constraint on K; namely,

K times the first t columns of Θα+1T −1 must produce A21. To satisfy this constraint, we

define

Ty ≡
[
P
Φ

]
, J ≡

[
Ty 0

0 Ip

]
, (2.9)
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where the matrix Φ is chosen so that Ty is square and invertible. Using (1.3) and (1.4), we

get

M̂ ≡ JMα+1 =




0 0

ΦMα 0

Cζα D


 , Θ̂ ≡ JΘα+1T −1 =




It 0

L1 L2

L3 L4


 , (2.10)

where [
L1 L2

L3 L4

]
=

[
ΦΘαT −1

CAα+1T −1

]
.

Since J is invertible, we can define a matrix K̄ such that K = K̄J . Partitioning K̄ as

K̄ =
[
K̄1 K̄2

]
,

where K̄1 has t columns, Equations (2.5) and (2.8) become

[
K̄1 K̄2

]



0 0

ΦMα 0

Cζα D


 =

[
HB 0 · · · 0

]
, (2.11)

[
0 E

]
=

[
A21 A22

]
−

[
K̄1 K̄2

]



It 0

L1 L2

L3 L4


 . (2.12)

It is clear from the above equations that K̄1 must be chosen such that

K̄1 = A21 − K̄2

[
L1

L3

]
,

and so the problem is reduced to finding the matrix K̄2 satisfying Equations (2.11) and

(2.12).

Recall that the first m columns of Mα+1 must be linearly independent of each other and

of the remaining (α + 1)m columns (by Theorem 2.2), and so the rank of

[
ΦMα 0

Cζα D

]
(2.13)

is m + rank[Mα]. Let N be a matrix whose rows form a basis for the left nullspace of the

last (α+1)m columns of (2.13). In particular, we can assume without loss of generality that

11



N satisfies

N
[
ΦMα 0

Cζα D

]
=

[
0 0

Im 0

]
. (2.14)

From (2.11), we see that K̄2 must be of the form

K̄2 = K̂N

for some K̂ =
[
K̂1 K̂2

]
, where K̂2 has m columns. Equation (2.11) then becomes

[
K̂1 K̂2

] [
0 0

Im 0

]
=

[
HB 0

]
, (2.15)

from which it is obvious that K̂2 = HB and K̂1 is a free matrix.

Returning to Equation (2.12), we have

E = A22 − K̄2

[
L2

L4

]

= A22 −
[
K̂1 HB

]
N

[
L2

L4

]
.

Defining [
ν1

ν2

]
≡ N

[
L2

L4

]
, (2.16)

where ν2 has m rows, we come to the final equation

E = (A22 −HBν2)− K̂1ν1 . (2.17)

Recall that we require E to be a stable matrix, and this is only possible if the pair

(A22 −HBν2, ν1)

is detectable. This detectability condition can be stated in terms of the original system

matrices as follows.

Theorem 2.3 The rank condition

rank

[
zI − A22 +HBν2

ν1

]
= n− t, ∀z ∈ C, |z| ≥ 1

12



is satisfied if and only if

rank

[
zI − A −B

C D

]
= n + m, ∀z ∈ C, |z| ≥ 1 .

To prove the theorem, we make use of the following lemma, which is obtained by a simple

modification of a theorem from [26].

Lemma 2.1 The rank condition

rank

[
zI − A −B

C D

]
= n + m, ∀z ∈ C, |z| ≥ 1

is satisfied if and only if

rank




zI − A −B 0

C D 0

ΘαA ΘαB Mα


 = n + m + rank[Mα], ∀z ∈ C, |z| ≥ 1 .

We are now in place to prove Theorem 2.3.

Proof: We start by noting from (2.14) that

[
It 0

0 N

]
J

[
D 0

ΘαB Mα

]
=

[
0 0

Im 0

]
.

Let N̄ be a matrix whose rows form a basis for the left nullspace of Mα. We can then write

[
It 0

0 N

]
J = W

[
Ip 0

0 N̄

]
(2.18)

for some invertible matrix W . Through a series of nonsingular transformations, we obtain

rank




zI − A −B 0

C D 0

ΘαA ΘαB Mα


 = rank




zI − A −B 0

C D 0

N̄ΘαA N̄ΘαB 0

ΘαA ΘαB Mα
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= rank




zI − A −B 0 0

C D 0 0

N̄ΘαA N̄ΘαB 0 0

zC 0 D 0

zΘα−1A 0 Θα−1B Mα−1




= rank




zI − A −B 0 0

C D 0 0

N̄ΘαA N̄ΘαB 0 0

0 −zD D 0

zΘα−1A 0 Θα−1B Mα−1




= rank




zI − A −B 0 0

C D 0 0

N̄ΘαA N̄ΘαB 0 0

0 0 D 0

zΘα−1A zΘα−1B Θα−1B Mα−1




.

Continuing in the above manner, we get

rank




zI − A −B 0

C D 0

ΘαA ΘαB Mα


 = rank




zI − A −B 0

C D 0

N̄ΘαA N̄ΘαB 0

0 0 Mα




,

and the rank of the top left submatrix in the above expression is given by

rank




zI − A −B

C D

N̄ΘαA N̄ΘαB


 = rank




zI − T AT −1 −T B

CT −1 D

N̄ΘαAT −1 N̄ΘαB




= rank




zI − A11 −A12 −PΘαB

−A21 zI − A22 −HB

CT −1(:, 1) CT −1(:, 2) D

N̄ΘαAT −1(:, 1) N̄ΘαAT −1(:, 2) N̄ΘαB




,

where T −1(:, 1) represents the first t columns of T −1, and T −1(:, 2) represents the last n− t

columns. By the definition of P , there exists a matrix V such that P = VN̄ . Using the fact
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that VN̄ΘαAT −1 =
[
A11 A12

]
, we get

rank




zI − A −B

C D

N̄ΘαA N̄ΘαB


 = rank




zIt 0 0

−A21 zI − A22 −HB

CT −1(:, 1) CT −1(:, 2) D

N̄ΘαAT −1(:, 1) N̄ΘαAT −1(:, 2) N̄ΘαB




.

Using (2.10), (2.16), and (2.18), we left-multiply the last two block rows in the above matrix

by W to obtain

rank




zI − A −B

C D

N̄ΘαA N̄ΘαB


 = rank




zIt 0 0

−A21 zI − A22 −HB

It 0 0

∗ ν1 0

∗ ν2 Im




= t + rank




zI − A22 −HB

ν1 0

ν2 Im




= t + m + rank

[
zI − A22 +HBν2

ν1

]
,

where ∗ represents unimportant matrices. This gives

rank




zI − A −B 0

C D 0

ΘαA ΘαB Mα


 = t + m + rank[Mα] + rank

[
zI − A22 +HBν2

ν1

]
.

Using Lemma 2.1, we get the desired result.

We can now state the following theorem, whose proof is immediately given by the dis-

cussion so far.

Theorem 2.4 The system S in (1.1) has an observer with delay α if and only if

1. rank [Mα+1]− rank [Mα] = m,

2. rank

[
zI − A −B

C D

]
= n + m, ∀z ∈ C, |z| ≥ 1 .
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Recall that the first condition in Theorem 2.4 means that the system is invertible with

delay α + 1. In fact, it has been shown in [11] that condition 2 is sufficient for the existence

of a stable inverse for system S. This fact leads to the following theorem.

Theorem 2.5 The system S in (1.1) has an observer (possibly with delay) if and only if

rank

[
zI − A −B

C D

]
= n + m, ∀z ∈ C, |z| ≥ 1 .

The result in the above theorem has also been noted in [33], which studied the problem

of reconstructing the unknown inputs. The difference between Theorem 2.4 and Theorem

2.5 is that the latter does not provide a characterization of the delay in the observer. Note

that the conditions in Theorem 2.4 (and the equivalent condition in Theorem 2.3) are a

generalization of those given in [19, 25, 34] for the existence of zero-delay observers, and

verify the conditions in [26].

Once the matrix K̂1 is chosen to make E stable, we can obtain the matrix K in (2.5)

and (2.6) by calculating

K̄2 =
[
K̂1 HB

]
N

K̄1 = A21 − K̄2

[
L1

L3

]

K =
[
K̄1 K̄2

] [
Ty 0

0 Ip

]
. (2.19)

We can then use (2.4) to map this K matrix to the observer gains F and G. Note that this

mapping is not unique. In particular, one can choose G0 = G1 = · · · = Gα−1 = 0, thereby

getting

K =
[
F0 F1 · · · Fα − EGα Gα

]
.

This choice corresponds to using only the most delayed measurement in the output of the

observer. Similarly, one can choose F1 = F2 = · · · = Fα = 0, which corresponds to using only

the earliest measurement in the dynamic portion of the observer. Other combinations are

also possible. Note that this freedom does not exist when designing a zero-delay observer.

The final observer is given by Equation (2.3), and the estimate of the original system states

is obtained as

x̂k = T −1

[
PYk:k+α

ψk

]
. (2.20)
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Remark 2.3 It is of interest to note that while we have pursued the development of a

reduced-order observer, the above approach and conditions immediately apply to full-order

observers as well. This is because a full-order observer can be viewed as a special case of

a reduced-order observer, where the dynamic portion reconstructs the entire state. This can

be accomplished by setting P to be an empty matrix (i.e., by choosing t = 0, T = H = In,

Ty = I(α+1)p).

2.3 Input Observer

We now turn our attention to reconstructing the unknown inputs. Recall from the previous

section that the system had to be invertible in order for a state observer to exist. This means

that once we have constructed a state observer, it is straightforward to obtain an estimate

of the inputs. The procedure is a generalization of a technique presented in [26] to the case

where D 6= 0. We start by rewriting (1.1) as

[
xk+1 − Axk

yk − Cxk

]
=

[
B

D

]
uk . (2.21)

Since [ B
D ] is assumed to be full column rank, there exists a matrix S such that

S

[
B

D

]
= Im . (2.22)

Left-multiplying (2.21) by S and replacing xk with the estimated value x̂k from (2.20), we

get the estimate of the input to be

ûk = S

[
x̂k+1 − Ax̂k

yk − Cx̂k

]
. (2.23)

Since x̂k → xk as k →∞, the above estimate will asymptotically approach the true value of

the input. Since the estimate of x̂k+1 requires access to the output yk+α+1 (from (2.3)), the

above estimate of the input will actually be delayed by α + 1 time-steps. This agrees with

(2.7), which indicates that the minimum delay for inversion of the inputs is α+1 time-steps.
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2.4 Design Procedure

We now summarize the design steps that can be used in designing a delayed observer for the

system given in (1.1).

1. Find the smallest α such that rank[Mα+1] − rank [Mα] = m. If the condition is not

satisfied for α = n−nullity [D], it is not possible to reconstruct the entire system state.

2. Find the matrix P such that PΘα is full row rank and PMα is zero. Use Theorem 2.1

for a reduced-order observer, or set P to be the empty matrix for a full-order observer.

Choose H and form the matrix T in (2.1) to obtain the transformed system given by

(2.2). Also choose Φ and form the matrix Ty given in (2.9).

3. Find the matrix N satisfying (2.14).

4. Form the matrices Θ̂ and [ ν1
ν2 ] from (2.10) and (2.16).

5. If the detectability condition in Theorem 2.3 is satisfied, choose the matrix K̂1 such

that the eigenvalues of E = (A22 −HBν2)− K̂1ν1 are stable.

6. Calculate K by using Equation (2.19).

7. Use (2.4) to map this K matrix to F and G.

8. Find the matrix S satisfying (2.22).

9. The final observer is given by Equation (2.3). An estimate of the original system states

is obtained from (2.20), and an estimate of the unknown inputs is given by (2.23).

2.5 Example

Consider the system given by the matrices

A =




1 0 0

0 1 1

0 0 1


 , B =




0 1

1 1

1 0


 ,

C =

[
0 1 −1

1 0 0

]
, D =

[
0 1

0 1

]
.
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It is found that condition (2.7) holds for α = 1, so our observer must have a minimum delay

of one time-step. Using Theorem 2.1, we find t = 2 and choose

P =

[
−1 1 0 0

0 0 −1 1

]
,

H =
[
0 1 1

]
,

Φ =

[
0 1 0 0

0 0 0 1

]
.

Performing the similarity transformation, we get

[
A21 A22

]
=

[
1 −1 1

]
.

The matrices M̂ and Θ̂ from (2.10) are found to be

M̂ =




0 0 0 0 0 0

0 0 0 0 0 0

0 1 0 0 0 0

0 1 0 1 0 0

1 1 0 1 0 1

0 1 0 1 0 1




, Θ̂ =




1 0 0

0 1 0

−1 2 1

−1 2 1

0 0 1

−1 2 1




.

In this example, the last (α + 1)m = 4 columns of M̄ have a rank of two, and thus the

matrix N in (2.14) will only have two rows:

N =

[
0 0 1 −1

1 0 0 0

]
.

Equation (2.15) becomes [
K̂1 K̂2

] [
I2 0

]
=

[
HB 0

]
,

and since K̂2 has m = 2 columns, K̂1 is the empty matrix. This implies that we will have

no freedom in choosing the eigenvalues of our observer.

Next, we use Equation (2.16) to obtain

[
ν1

ν2

]
=

[
0

1

]
.
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Again, since ν2 has m = 2 rows, ν1 is the empty matrix. We now check the detectability of

our system by computing

E = A22 −HBν2 = 0 ,

which implies that we are able to design a stable observer. Using (2.19), we get

K̄2 =
[
1 0 2 −2

]
,

K̄1 =
[
0 1

]
,

K =
[
0 1 −1 1 2 −2

]
.

Finally, we obtain the F and G matrices by choosing G0 = 0. Since E = 0, we have

F =
[
F0 F1

]
=

[
0 1 −1 1

]
,

G =
[
G0 G1

]
=

[
0 0 2 −2

]
.

The final observer is given by

zk+1 = FYk:k+1 ,

ψk = zk + GYk:k+1 ,

and an estimate of the original system states can be obtained via (2.20).

To test this observer, the system is simulated with an initial non-zero state, and driven by

a sinusoidal input. The observer is initialized with an initial state of zero, and as seen from

the plots in Figure 2.1, catches up with the system state to produce a perfect estimate that

is delayed by one time-step. Note that the observer starts operation at k = 1, to account

for the one-step delay.

To estimate the inputs, we find the matrix S satisfying (2.22) to be

S =

[
0 0 1 0 0

0 0 0 0 1

]
.

Using (2.23), we get the results shown in Figure 2.2. Note that the estimate is delayed by

α + 1 = 2 time-steps, to account for the fact that we need yk+2 in order to reconstruct uk.
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Figure 2.1: Simulation of state observer.

2.6 Summary

We have provided a characterization of unknown input observers with delays, and have

developed a streamlined design procedure to obtain the observer parameters. Our approach

is quite general in that it treats both reduced and full-order observers by selecting the design

matrices appropriately. Once the state observer is constructed, it is straightforward to obtain

an estimate of the unknown inputs.
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Figure 2.2: Simulation of input observer.
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CHAPTER 3

PARTIAL STATE AND INPUT
OBSERVERS

3.1 Introduction

We have already seen from the discussions in Chapters 1 and 2 that some strict conditions

must be satisfied in order to estimate the entire system state. In particular, the requirement

that the system be invertible (which might require the use of delayed measurements) means

it will not be possible to build a full state observer for a large class of systems. Even if the

system is invertible, the delay required to do so may be intolerably high. In this chapter,

we present a method to determine the set of all linear functions of the state and input that

can be reconstructed through a linear observer with a given delay.

The problem of reconstructing a particular function of the inputs and states was studied

in [30] through a geometric approach. Delayed observers were handled in that paper by

constructing a higher dimensional system which incorporated the delayed states and inputs

into the new state vector. However, this approach might cause the dimension of the ob-

server to be much larger than the dimension of the system. In [34] and [24], the authors

examined partial state observers for continuous-time systems, but did not make use of delays

(differentiators in continuous-time), and did not characterize the set of observable inputs.

The problem of partial state observation was also studied in [35] for the specific case where

the measurements are free of unknown inputs. That paper also did not allow the use of

delays, and these two facts simplified the analysis considerably. The problem of partial in-

put reconstruction was studied in [36] under the assumption that the initial system state is

known. Consequently, the input observers constructed in that paper may be unstable. In

comparison to the works considered above, the main contributions of this chapter are (i) an

algebraic procedure to design delayed linear observers with dimension no greater than that

of the system, and (ii) the characterization of all possible linear functions of the state and

input that can be reconstructed with a given delay. Our approach directly produces the

observer parameters in addition to the set of observable states and inputs. Our design does

not assume knowledge of the initial system state, but can easily incorporate that information

to increase the number of functionals that are reproduced.
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3.2 Partial State Observer

We start by constructing a partial state observer for (1.1). This state observer will then be

used in the next section to construct an input observer.

We wish to determine the set of linear functions of the state vector xk that can be

reproduced through a linear observer of the form

zk+1 = Ezk + FYk:k+α

ψk = zk + GYk:k+α , (3.1)

where the nonnegative integer α is the observer delay, and the matrices E, F and G are

chosen such that ψk → Txk as k → ∞ for some matrix T . The delay α is assumed to be

a design parameter. The objective will be to find the matrix T of largest rank for which a

stable observer can be constructed. We will show later in this section that the rows of T

will then form a basis for all possible linear functions of the state. Using (1.2), the observer

error is given by

ek+1 ≡ ψk+1 − Txk+1

= Ezk + FYk:k+α + GYk+1:k+1+α − TAxk − TBuk

= Eek + (F − EG) Θαxk + GΘαAxk + (ET − TA) xk

+ (F − EG) MαUk:k+α + GΘαBuk

+ GMαUk+1:k+α+1 − TBuk .

As in Chapter 2, we partition the matrices F and G as

F =
[
F0 F1 · · · Fα

]
,

G =
[
G0 G1 · · · Gα

]
,

where Fi and Gi have p columns, and define

K ≡
[
F0 − EG0 F1 − EG1 + G0 · · · Fα − EGα + Gα−1 Gα

]
. (3.2)

Using identities (1.3) and (1.4), the error can then be expressed as

ek+1 = Eek + (ET − TA + KΘα+1) xk +
(
KMα+1 −

[
TB 0 · · · 0

])
Uk:k+α+1 . (3.3)
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In order to force the error to go to zero regardless of the values of xk and the inputs, the

following conditions must hold:

1. E must be a stable matrix,

2. The matrix K must satisfy

KMα+1 =
[
TB 0 · · · 0

]
, (3.4)

ET − TA + KΘα+1 = 0 . (3.5)

We start with condition (3.4). Using (1.4), we can write this condition as

K

[
D 0

ΘαB Mα

]
=

[
TB 0

]
. (3.6)

Let N be a basis for the left nullspace of Mα (i.e., NMα = 0). We can see from the above

expression that the matrix K must be of the form

K = K̄

[
Ip 0

0 N

]
, (3.7)

for some K̄. Equation (3.6) then becomes

K̄

[
D

NΘαB

]
= TB , (3.8)

where the rank of
[

D
NΘαB

]
is given by

r = rank[Mα+1]− rank[Mα] .

We note that r is a monotonically nondecreasing function of α [7], and this shows that a

larger value of α may allow greater freedom in choosing the matrix T . Returning to (3.8),

there exists a pair of nonsingular matrices U and V such that

U

[
D

NΘαB

]
V =

[
0 0

Ir 0

]
. (3.9)

Define

K̄ = K̂U (3.10)
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for some K̂ ≡
[
K̂1 K̂2

]
, where K̂2 has r columns. Right-multiplying Equation (3.8) by V ,

we get

[
K̂1 K̂2

] [
0 0

Ir 0

]
= TBV

≡ T
[
Γ1,1 Γ1,2

]
, (3.11)

where Γ1,1 is the first r columns of BV , and Γ1,2 is the last m− r columns. From the above

expression, we see that T must satisfy TΓ1,2 = 0. Let N1 be a basis for the left nullspace of

Γ1,2. This implies that T must be of the form

T = T1N1 (3.12)

for some T1, and thus we have to maximize the rank of T1 in order to maximize the rank

of T . If the rank of N1 is zero, it is not possible to reconstruct any of the states. Equation

(3.11) also shows that K̂2 = TΓ1,1 = T1N1Γ1,1, and K̂1 is a free matrix.

Returning to condition (3.5), we use (3.7), (3.10), and (3.12) to obtain

ET1N1 − T1N1A +
[
K̂1 T1N1Γ1,1

]
U

[
Ip 0

0 N

]
Θα+1 = 0 . (3.13)

Defining [
ν1

ν2

]
≡ U

[
Ip 0

0 N

]
Θα+1 ,

where ν2 has r rows, Equation (3.13) becomes

ET1N1 −
[
K̂1 T1

] [
−ν1

N1 (A− Γ1,1ν2)

]
= 0 . (3.14)

Since N1 has full row rank, there exists a nonsingular matrix V1 such that

N1V1 =
[
Ir1 0

]
, (3.15)

where r1 is the rank of N1. Right-multiplying (3.14) by V1, we get

[
ET1 0

]
−

[
K̂1 T1

] [
Γ2,1 Γ2,2

]
= 0 , (3.16)
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where [
Γ2,1 Γ2,2

]
≡

[
−ν1

N1 (A− Γ1,1ν2)

]
V1

and Γ2,1 has r1 columns. Let N2 ≡
[
N2,1 N2,2

]
denote a basis for the left nullspace of Γ2,2,

where N2,2 has r1 columns. From (3.16), we see that

[
K̂1 T1

]
= T2N2 , (3.17)

for some matrix T2, and thus we have

T1 = T2N2,2 . (3.18)

Substituting the above expressions into (3.16), we get

ET2N2,2 − T2N2Γ2,1 = 0 .

We can now use the following algorithm to find values for T2, T1, and T . Note that this

algorithm starts with i = 2, in order to maintain consistency with the notation used so far.

1. The equation at the ith iteration is

ETiNi,2 − TiNiΓi,1 = 0 . (3.19)

2. Terminal conditions:

(a) If the rank of Ni,2 is zero, it is not possible to reconstruct any linear functions of

the states. Stop iterating.

(b) If Ni,2 is full column rank, stop iterating.

3. If none of the terminal conditions are satisfied, let ri denote the rank of Ni,2. Find the

nonsingular matrices Ui and Vi such that

UiNi,2Vi =

[
0 0

Iri
0

]
.

4. Set Ti = T̄iUi, and right-multiply (3.19) by Vi to obtain

ET̄i

[
0 0

Iri
0

]
− T̄iUiNiΓi,1Vi = 0 .
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5. Define [
Γi+1,1 Γi+1,2

]
≡ UiNiΓi,1Vi ,

where Γi+1,1 has ri columns.

6. Let Ni+1 be a basis for the left nullspace of Γi+1,2, and let Ni+1,2 be the last ri columns

of Ni+1.

7. Set T̄i = Ti+1Ni+1 and proceed to iteration i + 1.

At this point, either the rank of Ni,2 is zero, or Ni,2 is full column rank. Note that one of

these two conditions is guaranteed to occur after a sufficient number of iterations, since the

rank of Ni will either decrease at each iteration or stay the same. The latter will occur only

if Ni is a square nonsingular matrix, in which case Ni,2 will have full column rank. To see

why no state observer exists if the rank of Ni,2 is ri = 0, assume that the above iteration is

performed one more time. In step 6 of the procedure, we see that Ni+1,2 will be the empty

matrix. Since this has rank zero, we can take it to have full column rank. The following

analysis will then reveal that the matrix T will also have zero rank, implying that no state

functionals can be obtained.

If Ni,2 is full column rank, there exists a matrix Ui such that

UiNi,2 =

[
0

Iri

]
. (3.20)

Define Ti = T̄iUi, and partition the matrix T̄i as

T̄i =
[
L H

]
, (3.21)

where H has ri columns. The matrix T1 from (3.18) is then given by

T1 = T2N2,2

= T̄2U2N2,2

= T3N3U2N2,2

...

= T̄iUiNiUi−1Ni−1 · · ·U3N3U2N2,2 . (3.22)

Recall that we have to maximize the rank of T1 in order to maximize the rank of T . Since

the matrices Vi are nonsingular, we can repeatedly multiply the above expression on the
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right by V2, V3, . . . , Vi−1 to get

rank[T1] = rank[T1V2]

= rank
[
T̄iUiNiUi−1Ni−1 · · ·U3N3,2V3

]

= rank
[
T̄iUiNiUi−1Ni−1 · · ·U4N4,2V4

]

...

= rank
[
T̄iUiNi,2

]

= rank

[[
L H

] [
0

Iri

]]

= rank[H] .

Since N1 is full row rank in (3.12), the rank of T will be the same as the rank of H, which

is upper bounded by ri. This shows that if ri = 0, no state functionals can be produced.

We now continue with the construction of the observer. Substituting (3.21) into (3.19),

we get

EH −
[
L H

]
UiNiΓi,1 = 0 . (3.23)

Denoting

UiNiΓi,1 =

[
C
A

]
(3.24)

where A has ri rows, Equation (3.23) becomes

EH −HA− LC = 0 . (3.25)

The above equation is in the form of the Sylvester observer equation which is frequently

encountered in functional observer design [37, 38].

To solve this equation, we first note that there is a nonsingular matrix P which transforms

the pair (A, C) into the form

Ā ≡ PAP−1 =



Ao 0 0

A21 Aō,s 0

A31 A32 Aō,s̄


 ,

C̄ ≡ CP−1 =
[
Co 0 0

]
, (3.26)

where the pair (Ao, Co) is observable, all modes of Aō,s are unobservable and stable, and all
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modes of Aō,s̄ are unobservable and unstable. The dimensions of Ao, Aō,s, and Aō,s̄ are taken

to be no × no, nō,s × nō,s, and nō,s̄ × nō,s̄, respectively. Note that the above form is simply

a slightly modified version of the Kalman observable canonical form [29]. Right-multiplying

(3.25) by P−1 and setting H = H̄P , we get

EH̄ − H̄Ā − LC̄ = 0 . (3.27)

Let L = H̄L1 + L2 for some L1 and L2. Partitioning H̄ and L1 as

H̄ =
[
H̄1 H̄2

]
, L1 =




L11

L12

L13


 ,

Equation (3.27) becomes

[
EH̄1 EH̄2

]
−

[
H̄1 H̄2

]


Ao + L11Co 0 0

A21 + L12Co Aō,s 0

A31 + L13Co A32 Aō,s̄


−

[
L2Co 0 0

]
= 0 . (3.28)

Since (Ao, Co) is observable, the matrix L11 can be chosen to place the eigenvalues of Ao +

L11Co at arbitrary (stable) locations. Denoting

As =

[
Ao + L11Co 0

A21 + L12Co Aō,s

]
,

Λ =
[
A31 + L13Co A32

]
, (3.29)

where the dimension of As is ns × ns, we get

[
EH̄1 EH̄2

]
−

[
H̄1As + H̄2Λ H̄2Aō,s̄

]
−

[
L2Co 0 0

]
= 0 . (3.30)

To analyze the above equation, we will make use of the following lemma [39].

Lemma 3.1 Suppose A and B are square matrices. The matrix equation

AX −XB = 0

has the unique solution X = 0 if and only if A and B have no common eigenvalues.
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Examining (3.30), we see that

EH̄2 − H̄2Aō,s̄ = 0 .

For E to be stable, it must not share any eigenvalues with the matrix Aō,s̄. By Lemma 3.1,

we see that H̄2 must be the zero matrix. Substituting this fact into (3.30), we get

EH̄1 − H̄1As −
[

L2Co 0
]

= 0 .

To maximize the rank of H̄, we choose H̄1 to be Ins and L2 = 0, which gives us E = As.

From (3.21), we have

T̄i =
[
H̄L1 H̄P

]

=
[
Ins 0

] [
L1 P

]
,

and we can use (3.22), (3.17) and (3.12) to obtain

T = T̄iUiNiUi−1Ni−1 · · ·U3N3U2N2,2N1 , (3.31)

K̂1 = T̄iUiNiUi−1Ni−1 · · ·U3N3U2N2,1 . (3.32)

From (3.7) and (3.10), we have

K =
[
K̂1 TΓ1,1

]
U

[
Ip 0

0 N

]
,

and we can use (3.2) to map this K matrix to F and G. As discussed in Chapter 2, this

mapping is not unique. The final state observer is given by (3.1).

Remark 3.1 Many of the early papers on input reconstruction (invertibility) assumed the

initial state of the system to be known [7, 8, 10, 36]. This assumption implies that the initial

state observer error in (3.3) will be zero, and consequently, it may not be necessary for the

matrix E to be stable. In this case, the matrix H in (3.25) can simply be taken to be the

identity matrix, and this might increase the number of state and input functionals that can

be observed.

We now revisit our claim that the rows of T will form a basis for all possible linear

functionals of the state vector. We first note that our algorithm produces a matrix T

of maximum rank satisfying Equations (3.4)-(3.5), with corresponding matrices E and K.
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Suppose that there exists another set of matrices T̃ , Ẽ, and K̃ satisfying the same conditions,

but such that the row space of T̃ is not completely contained within the row space of T .

However, this would imply that the matrices

T ≡
[
T

T̃

]
, E ≡

[
E 0

0 Ẽ

]
, K ≡

[
K

K̃

]

also satisfy Equations (3.4)-(3.5), and the rank of T will be greater than that of T . This is

not possible, since the rank of T is maximal. Thus, the row space of T contains all possible

linear functionals of the state that can be obtained through a linear observer.

3.3 Partial Input Observer

We now turn our attention to determining the largest subset of the unknown inputs that

can be reconstructed through a linear observer. Specifically, we seek an observer of the form

ηk = Rψk + SYk:k+α , (3.33)

where ηk → Tuuk as k →∞ for some matrix Tu, and ψk is the output of the state observer

in (3.1). We use the output of the state observer in the above equation because it represents

the largest amount of information that is available about the state of the system. The rank

of Tu should be maximized in order to obtain the largest amount of information on the input

uk. As in the previous section, the rows of Tu will form a basis for all possible linear functions

of the input.

To find the observer parameters and the matrix Tu, we left-multiply (1.2) by S to obtain

SYk:k+α = SΘαxk + S

[
D 0

Θα−1B Mα−1

]
Uk:k+α . (3.34)

In order to obtain Tuuk from the above equation, the matrix S must satisfy

S

[
D 0

Θα−1B Mα−1

]
=

[
Tu 0

]
.

Following the same procedure as in the partial state observer design, we note that S must

be of the form

S = S̄

[
Ip 0

0 N̄

]
(3.35)
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for some S̄, where N̄ is a basis for the left nullspace of Mα−1. In the equation

S̄

[
D

N̄Θα−1B

]
= Tu , (3.36)

let r̄ be the rank of
[

D
N̄Θα−1B

]
. Then there exists a pair of nonsingular matrices Ū and V̄

such that

Ū

[
D

N̄Θα−1B

]
V̄ =

[
0 0

Ir̄ 0

]
. (3.37)

Define

S̄ = ŜŪ (3.38)

for some Ŝ =
[
Ŝ1 Ŝ2

]
, where Ŝ2 has r̄ columns. Right-multiplying Equation (3.36) by V̄ ,

we get

[
Ŝ1 Ŝ2

] [
0 0

Ir̄ 0

]
= TuV̄

≡ Tu

[
V̄1 V̄2

]
, (3.39)

where V̄1 is the first r̄ columns of V̄ , and V̄2 is the last m − r̄ columns. From the above

expression, we see that Tu must satisfy TuV̄2 = 0. Let Nv be a basis for the left nullspace of

V̄2. This implies that Tu must be of the form

Tu = T̄uNv (3.40)

for some T̄u, and thus the problem is reduced to maximizing the rank of T̄u. If the rank of

Nv is zero, it is not possible to reconstruct any of the inputs. Equation (3.39) also shows

that Ŝ2 = TuV̄1 = T̄uNvV̄1, and Ŝ1 is a free matrix.

Defining

[
Ŷ1

Ŷ2

]
≡ Ū

[
Ip 0

0 N̄

]
Yk:k+α ,

[
ν̂1

ν̂2

]
≡ Ū

[
Ip 0

0 N̄

]
Θα ,
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where Ŷ2 and ν̂2 have r̄ rows, Equation (3.34) becomes

[
Ŝ1 T̄uNvV̄1

] [
Ŷ1

Ŷ2

]
=

[
Ŝ1 T̄uNvV̄1

] [
ν̂1

ν̂2

]
xk + Tuuk . (3.41)

The above equation shows that we need access to the state functional

[
Ŝ1 T̄u

] [
ν̂1

NvV̄1ν̂2

]
xk (3.42)

in order to reconstruct Tuuk. From the previous section, we recall that the output of the

observer in (3.1) will be Txk, and that the rows of T form a basis for all possible linear

functions of the state. Thus we require that the functional in (3.42) be a linear combination

of the rows in T . Mathematically, this means that there should exist a matrix Q such that

[
Ŝ1 T̄u

] [
ν̂1

NvV̄1ν̂2

]
= QT .

Rearranging, we have

[
Ŝ1 T̄u Q

]



ν̂1

NvV̄1ν̂2

−T




︸ ︷︷ ︸
Π

= 0 , (3.43)

which implies that [
Ŝ1 T̄u Q

]
= TΠNΠ ,

where NΠ is a basis for the left nullspace of the matrix Π defined in (3.43) and TΠ is chosen

to maximize the rank of T̄u. In particular, we can assume without loss of generality that NΠ

is of the form

NΠ =




Ŝ11 0 Q1

Ŝ12 T̄u,1 0

Ŝ13 T̄u,2 Q2


 , (3.44)

where the matrices
[

T̄u,1

T̄u,2

]
and Q2 are full row rank. This form can always be obtained by

left-multiplying NΠ by an appropriate nonsingular matrix. From the above expressions, we

see that TΠ should be of the form TΠ =
[
0 I

]
in order to maximize the rank of T̄u. This

results in

T̄u =

[
T̄u,1

T̄u,2

]
,
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and allows us to use (3.40) to obtain

Tu =

[
T̄u,1

T̄u,2

]
Nv . (3.45)

Substituting this into (3.41), we get

[
Ŝ12 T̄u,1NvV̄1

Ŝ13 T̄u,2NvV̄1

][
Ŷ1

Ŷ2

]
=

[
0

Q2

]
Txk +

[
T̄u,1

T̄u,2

]
Nvuk . (3.46)

The above expression shows that the functional T̄u,1Nvuk can be obtained directly from the

output without relying on the value of the state, and the functional T̄u,2Nvuk depends on

the state functional Q2Txk. As an aside, note that (3.44) also characterizes the set of state

functionals which are directly available from the output. Specifically, the state functional

Q1Txk can be obtained by setting Ŝ1 = Ŝ11 in (3.41).

Comparing (3.46) to (3.33), we see that R should be chosen as

R = −
[

0

Q2

]
, (3.47)

and S can obtained from (3.35) and (3.38) as

S =

[
Ŝ12 T̄u,1NvV̄1

Ŝ13 T̄u,2NvV̄1

]
Ū

[
Ip 0

0 N̄

]
. (3.48)

The combined state and input observer can be obtained from (3.1) and (3.33) as

zk+1 = Ezk + FYk:k+α ,

ψk = zk + GYk:k+α ,

ηk = Rψk + SYk:k+α , (3.49)

where ψk → Txk and ηk → Tuuk as k →∞.
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3.4 Example

Consider a linearized model of the dynamics of a VTOL aircraft from [2]:

ẋ(t) =




−0.0366 0.0271 0.0188 −0.4555

0.0482 −1.0100 0.0024 −4.0208

0.1002 0.3681 −0.7070 1.4200

0 0 1 0




︸ ︷︷ ︸
A

x(t) +




0.4422 0 0 0

3.5446 0 0 0

−5.52 0 0 0

0 0 0 1




︸ ︷︷ ︸
B




a1(t)

s1(t)

s2(t)

p1(t)




︸ ︷︷ ︸
u(t)

y(t) =




1 0 0 0

0 1 0 0

0 0 1 0

0 1 1 1




︸ ︷︷ ︸
C

x(t) +




0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0




︸ ︷︷ ︸
D

u(t) , (3.50)

where a1(t) represents an actuator fault, s1(t) and s2(t) represent sensor faults, and p1(t)

represents a disturbance due to parameter uncertainties. We will assume that no prior

information is available about the characteristics of these signals, and they will be modeled

as unknown inputs. For this example, we will assume that the first derivative of the outputs

is available. We wish to determine the largest subset of the states that can be obtained

through an observer of the form

ż(t) = Ez(t) + F

[
y(t)

ẏ(t)

]

ψ(t) = z(t) + G

[
y(t)

ẏ(t)

]
.

This is equivalent to α = 1 for the discrete time observer in (3.1). From the discussion

in Section 3.2, we see that we will require the following matrices to derive the observer

parameters:

M1 =

[
D 0

CB D

]
, Θ1 =

[
C

CA

]
,

M2 =

[
D 0

Θ1B M1

]
, Θ2 =

[
C

Θ1A

]
.
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A basis for the left nullspace of M1 is given by

N =

[
1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

]
,

and the matrix
[

D
NΘ1B

]
has a rank of 4. The matrices U and V from (3.9) are found to be

U =




1 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 2.2614 0

0 0 1 0 0 0

0 1 0 0 0 0

0 0 0 0 4.4672 1




, V = I4 .

From (3.11), we get

Γ1,1 =




0.4422 0 0 0

3.5446 0 0 0

−5.52 0 0 0

0 0 0 1




,

and Γ1,2 is the empty matrix of dimension 4 × 0. A basis for the left nullspace of Γ1,2 is

taken to be N1 = I4. This means that matrix V1 = I4 in (3.15), and

Γ2,1 =




−1 0 0 0

0 −1 −1 −1

0 0 0 0

0.3416 −1.2272 −0.1483 −0.3696

−0.3567 0.7064 −0.4723 −4.2660

0.0151 0.5208 0.6206 4.6356




.

Once again, Γ2,2 is the empty matrix of dimension 6×0. A basis for the left nullspace of Γ2,2

is taken to be N2 = I6, which means that the matrix N2,2 in (3.18) is N2,2 =
[

0
I4

]
. Since this

is full column rank, one of the terminal conditions of the iteration is satisfied. The matrix
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U2 in (3.20) can be taken to be the identity matrix. From (3.24), we get

[
C
A

]
= U2N2Γ2,1

=




−1 0 0 0

0 −1 −1 −1

0 0 0 0

0.3416 −1.2272 −0.1483 −0.3696

−0.3567 0.7064 −0.4723 −4.2660

0.0151 0.5208 0.6206 4.6356




.

The matrix P in (3.26) is given by

P =




1 0 0 0

0 1 1 1

0 0 1 0.9566

0 0 1 52.0961




,

which gives

Ā ≡ PAP−1 =




0 0 0 0

0 0 0 0

−0.3422 1.2046 −1.0833 0

0.4300 27.8401 0 4.0193




,

C̄ ≡ CP−1 =

[
−1 0 0 0

0 −1 0 0

]
.

This system has one unobservable and unstable mode at 4.0193 and one unobservable and

stable mode at −1.0833. We choose to place the eigenvalues of the observable subsystem at

{−10,−11}, and this requires that

L11 =

[
10 0

0 11

]
.

The matrices L12 and L13 will be taken to be the zero matrices. Following the discussion in

Section 3.2, we choose H̄ =
[
I3 0

]
, and this gives
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E =




−10 0 0

0 −11 0

−0.3422 1.2046 −1.0833


 .

From (3.31) and (3.32) we get

T = H̄
[
L1 P

]
U2N2,2N1 =




1 0 0 0

0 1 1 1

0 0 1 0.9566


 ,

K̂1 = H̄
[
L1 P

]
U2N2,1 =




10 0

0 11

0 0


 ,

which produces

K =




10 0 0 0 1 0 0 0 0 0 0 0

0 0 0 11 0 0 0 1 0 0 0 0

0 0 0 0 −8.2097 0 0 0.9566 0 0 0 0


 .

We will map this to the F and G matrices by using (3.2) and choosing F1 = 0. This gives

F =




0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

8.5511 0 0 0.1684 0 0 0 0


 ,

G =




1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

−8.2097 0 0 0.9566 0 0 0 0


 .

Note that the entries corresponding to ẏ(t) are zero in the above matrices, and thus the

partial state observer is given by

ż(t) =




−10 0 0

0 −11 0

−0.3422 1.2046 −1.0833


 z(t) +




0 0 0 0

0 0 0 0

8.5511 0 0 0.1684


 y(t)

ψ(t) = z(t) +




1 0 0 0

0 0 0 1

−8.2097 0 0 0.9566


 y(t) .

39



We now turn our attention to determining the set of input functionals that can be

observed. The matrix N̄ in (3.35) is given by

N̄ =

[
1 0 0 0

0 0 0 1

]
,

and the matrices Ū and V̄ in (3.37) are found to be the same as U and V from the design of

the state observer. The basis for the left nullspace of the empty matrix V̄2 in (3.39) is taken

to be Nv = I4. Using (3.43), we get

Π =




1 0 0 0

0 1 1 1

−0.0828 0.0613 0.0425 −1.0301

0 0 1 0

0 1 0 0

−0.0151 −0.5208 0.3794 −4.6356

−1 0 0 0

0 −1 −1 −1

0 0 −1 −0.9566




,

with corresponding left nullspace given by

NΠ =




0 1 0 0 0 0 0 1 0

1 0 0 0 0 0 1 0 0

−0.297 0.752 −3.770 −0.971 0 1 0 0 0

0.076 0.944 0.916 −0.983 −1 0 0 0 0

−0.072 0.054 −0.876 0.984 0 0 0 0 1




,

where the partitions correspond to Ŝ1, T̄u and Q from (3.43). From (3.45), we obtain

Tu =



−3.770 −0.971 0 1

0.916 −0.983 −1 0

−0.876 0.984 0 0


 , (3.51)
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and we use (3.47) and (3.48) to obtain

R =




0 0 0

0 0 0

0 0 −1


 ,

S =



−0.297 0 −0.971 0.752 −4.059 0 0 1

0.076 −1 −0.983 0.944 2.072 0 0 0

−0.072 0 0.984 0.054 −1.982 0 0 0


 .

To test these observers, the system in (3.50) is initialized with a nonzero initial state and

driven by a set of unknown inputs. The initial state of the partial state observer is set to be

zero, and the results of the simulation are shown in Figure 3.1. The output of the partial

input observer and the corresponding input functionals are shown in Figure 3.2. As indicated

by the above NΠ matrix, the first two input functionals are immediately obtained from the

output, and the convergence of the third input functional depends on the convergence rate

of the third state functional. Since the first two state and input functionals are directly

available from the output, the actual and estimated signals for these functionals coincide in

Figures 3.1 and 3.2. It is of interest to note that the second and third input functionals in

(3.51) reproduce functions of the fault inputs a1(t), s1(t) and s2(t), and do not contain the

disturbance input p1(t). These input functionals can therefore be used for fault detection

and diagnosis.

3.5 Summary

We have provided a characterization of partial state observers for linear systems with un-

known inputs. Our approach involves an iterative procedure which decouples the estimator

error from the values of the state and unknown inputs. The overall procedure produces

the observer parameters in addition to a characterization of all possible linear functions

of the state. We have also used the partial state observer to determine all possible input

functionals which can be observed from the output, and have constructed a partial input

observer which produces these functionals. Both the state and input observers allow the use

of delays, which enables a larger number of state and input functionals to be reproduced.

The resulting observers are more general than those currently present in the literature, and

can be used in applications such as fault diagnosis and control system design for uncertain

systems.
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Figure 3.1: Simulation of partial state observer.
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Figure 3.2: Simulation of partial input observer.
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CHAPTER 4

OPTIMAL STATE ESTIMATORS

4.1 Introduction

In the preceding chapters, we have focused on constructing observers for deterministic sys-

tems. We now extend our investigation to the case where the system is affected by noise.

The problem of state estimation in the presence of both unknown inputs and noise has been

studied in [30, 40–43], among others. These papers have demonstrated that the necessary

conditions for the existence of an unbiased zero-delay estimator are the same as those for

zero-delay observers. Furthermore, it was shown in [43] that forcing the estimator to be

unbiased might cause the system noise to become correlated with the estimation error (i.e.,

the noise behaves as if it is colored). In [30], Saberi et al. showed through a geometric ap-

proach that allowing delays in the estimator can relax the necessary conditions for optimal

estimation. Delayed estimators were also studied in [44], but the design procedure outlined

in that paper did not fully utilize the freedom in the estimator gain matrix, and ignored

the correlation between the noise and error. Here, we study the general case of delayed

estimators for linear systems with unknown inputs, and develop a methodology to construct

optimal linear estimators. More specifically, our goal is to estimate the entire system state

through linear recursive estimators that minimize the mean square estimation error. In ad-

dition, we require that the estimator be unbiased (i.e., the expected value of the estimation

error must be zero). Our approach is an extension of the results in Chapter 2. The fact that

we incorporate delays in our design procedure allows us to construct optimal estimators for

a much larger class of systems than that considered by [40–43]. Our approach is more direct

than the method in [30], which first transforms the estimator into a dual system and then

uses techniques from H2-optimal control in order to obtain the gain matrix. Furthermore,

our estimators will generally be of smaller dimension than the estimators considered in [30],

and our approach allows us to obtain a tighter bound on the maximum estimator delay. Our

design procedure also makes full use of the freedom in the gain matrix, which produces bet-

ter results than the method in [44]. In addition, our method avoids the problem of colored

noise described in [43] by increasing the dimension of the estimator appropriately.
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4.2 Preliminaries

Consider a discrete-time stochastic linear system S of the form

xk+1 = Axk + Buk + wk

yk = Cxk + Duk + vk , (4.1)

with state vector x ∈ Rn, unknown input u ∈ Rm, output y ∈ Rp, and system matrices

(A,B,C,D) of appropriate dimensions. The noise processes wk and vk are assumed to

be uncorrelated, white, and zero mean, with covariance matrices Qk and Rk, respectively.

As in the previous chapters, we omit known inputs in the above equations for clarity of

development, and assume without loss of generality that the matrix [ B
D ] is full column rank.

The response of system (4.1) over α + 1 time units is given by




yk

yk+1

...

yk+α




︸ ︷︷ ︸
Yk:k+α

=




C

CA
...

CAα




︸ ︷︷ ︸
Θα

xk +




D 0 · · · 0

CB D · · · 0
...

...
. . .

...

CAα−1B CAα−2B · · · D




︸ ︷︷ ︸
Mα




uk

uk+1

...

uk+α




︸ ︷︷ ︸
Uk:k+α

+




0 0 · · · 0

C 0 · · · 0
...

...
. . .

...

CAα−1 CAα−2 · · · C




︸ ︷︷ ︸
Mw,α




wk

wk+1

...

wk+α−1




︸ ︷︷ ︸
Wk:k+α−1

+




vk

vk+1

...

vk+α




︸ ︷︷ ︸
Vk:k+α

. (4.2)

In the rest of the chapter, we will be using E{·} to denote the expected value of a

stochastic parameter. The notation Ir represents the r×r identity matrix, and (·)T indicates

matrix transpose. We are now in place to proceed with the construction of an estimator for

the states in S.

4.3 Unbiased Estimation

We start by considering a linear recursive estimator of the same dimension as the state vector

of S. We will demonstrate that it will generally be necessary to use delayed measurements

in order to construct an unbiased estimator, and that this will cause the system noise to

behave as if it were colored.

44



Consider an estimator of the form

zk+1 = Azk + Kk (Yk:k+α −Θαzk) , (4.3)

where the nonnegative integer α is the estimator delay, and the matrix Kk is chosen to (i)

make the estimator unbiased and (ii) minimize the mean square error between zk+1 and xk+1.

Note that for α = 0, the above estimator is in the form of the optimal estimator for systems

with no unknown inputs [45]. Using (4.2), we obtain the estimation error as

ek+1 ≡ zk+1 − xk+1

= (A−KkΘα) zk + KkYk:k+α − Axk −Buk − wk

= (A−KkΘα) ek + KkVk:k+α + KkMαUk:k+α −Buk

+ KkMw,αWk:k+α−1 − wk . (4.4)

In order for the estimator to be unbiased (i.e., E{ek} = 0 for all k, regardless of the

values of the unknown inputs), we require that

KkMα =
[
B 0 · · · 0

]
. (4.5)

The solvability of the above condition is given by the following theorem.

Theorem 4.1 There exists a matrix Kk such that

KkMα =
[
B 0 · · · 0

]

if and only if

rank [Mα]− rank [Mα−1] = m . (4.6)

The proof of the above theorem is similar to the proof of Theorem 2.2 from Chapter 2,

and so we omit it here. The result in the above theorem was also obtained in [44] for the

specific case of D = 0. Once again, (4.6) is the condition for inversion of the inputs with

known initial state [7], and demonstrates the utility of a delayed observer. An upper bound

on α is provided by the following theorem.

Theorem 4.2 Let q be the dimension of the nullspace of D. Then the delay of the unbiased

estimator (4.3) will not exceed α = n − q + 1 time-steps. If (4.6) is not satisfied for
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α = n− q + 1, then unbiased estimation of all the states is not possible with an estimator of

the form given in (4.3).

The proof of the above theorem is readily obtained by making use of the result in Theorem

1.2.

It is apparent from (4.4) that for α > 0, the error will generally be a function of multiple

time-samples of the noise processes wk and vk. In other words, the noise behaves as if it were

colored. Darouach et al. [43] studied this situation for α ∈ {0, 1}, and proposed certain strict

conditions for the existence of unbiased optimal estimators with dimension n. Consequently,

the estimators proposed in that paper can only be applied to a restricted class of systems.

In the study of Kalman filters for systems with no unknown inputs, it has been shown that

colored noise can be handled by increasing the dimension of the estimator [45, 46]. In the

next section, we will apply this technique to construct an optimal estimator for the system

in (4.1). The fact that our estimator uses delays allows it to be applied to a much larger

class of systems than the estimators presented in [40–43].

4.4 Optimal Estimator

In this section, we will consider estimators for the case α > 0. If Theorem 4.1 is satisfied

for α = 0, the noise in (4.4) will not be colored, and an optimal estimator of dimension n

can be constructed. The resulting estimator is called an optimal predictor in [43], and can

be found by using the method in that paper. To construct an optimal estimator for α > 0,

we will rewrite system S to obtain a new system S̄ given by

x̄k+1 = Āx̄k + B̄uk + B̄nnk

yk = C̄x̄k + Duk , (4.7)

where

x̄k =




xk

Wk:k+α−2

Vk:k+α−1


 , nk =

[
wk+α−1

vk+α

]
,
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Ā =




A In 0 · · · 0 0 0 0 · · · 0

0 0 In · · · 0 0 0 0 · · · 0
...

...
...

. . .
...

...
...

...
. . .

...

0 0 0 · · · In 0 0 0 · · · 0

0 0 0 · · · 0 0 0 0 · · · 0

0 0 0 · · · 0 0 Ip 0 · · · 0

0 0 0 · · · 0 0 0 Ip · · · 0
...

...
...

. . .
...

...
...

...
. . .

...

0 0 0 · · · 0 0 0 0 · · · Ip

0 0 0 · · · 0 0 0 0 · · · 0




, B̄ =




B

0
...

0

0

0

0
...

0

0




, B̄n =




0 0

0 0
...

...

0 0

In 0

0 0

0 0
...

...

0 0

0 Ip




,

C̄ =
[

C 0 · · · 0 0 Ip 0 · · · 0 0
]

.

Note that the state vector in this new system has dimension n̄ = α(n + p) for α > 0. We

will construct a linear recursive estimator for this augmented system, and demonstrate that

the problem with colored noise from the last section no longer occurs. We will then extract

an estimate of the original state vector from the estimate of the new state vector.

From (4.2), the output of this augmented system over α + 1 time-steps is given by

Yk:k+α =




C 0 · · · 0 Ip 0 · · · 0

CA C · · · 0 0 Ip · · · 0
...

...
. . .

...
...

...
. . . 0

CAα−1 CAα−2 · · · C 0 0 · · · Ip

CAα CAα−1 · · · CA 0 0 · · · 0




︸ ︷︷ ︸
Θ̄α

x̄k + MαUk:k+α +




0 0

0 0
...

...

0 0

C Ip




︸ ︷︷ ︸
Mn,α

nk .

(4.8)

We notice that a portion of this equation is independent of the noise vector nk, and so

we can obtain some linear functions of the states directly from the output. The following

theorem characterizes the set of states for which this is possible.

Theorem 4.3 For system (4.7) with response over α + 1 time-steps given by (4.8), let t

be the dimension of the left nullspace of Mα−1. Then it is possible to perform a similarity

transformation on the system S̄ to obtain a new system Ŝ such that exactly t of the states

in Ŝ are directly obtainable from the output of the system.

Proof: Let P̄ be a basis for the left nullspace of Mα−1 (i.e., P̄Mα−1 = 0). Note that
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the dimension of P̄ is equal to

t = αp− rank[Mα−1] . (4.9)

Define the matrix P =
[
P̄ 0

]
, where the zero matrix has p columns. Using (1.4), we see

that PMα = 0, and from (4.8), it is apparent that PΘ̄α is full row rank. Define the similarity

transformation matrix

T ≡
[
PΘ̄α

H

]
,

where the matrix H is chosen so that T is invertible. In particular, P and H can be chosen

so that T is orthogonal. Consider the system Ŝ with state-vector x̂k =

[
x̂1,k

x̂2,k

]
= T x̄k. The

system matrices in Ŝ are given by

Â ≡ T ĀT T =

[
A11 A12

A21 A22

]
,

B̂ ≡ T B̄ =

[
PΘ̄αB̄

HB̄

]
,

B̂n ≡ T B̄n =

[
PΘ̄αB̄n

HB̄n

]
,

Ĉ ≡ C̄T T , D̂ ≡ D .

Now it is readily seen from (4.8) that

PYk:k+α = PΘ̄αT T x̂k

=
[
It 0

]
x̂k ,

and thus the first t states of x̂k are immediately obtained.

The remaining (n− t) states of x̂k evolve according to the equation

x̂2,k+1 = A21x̂1,k + A22x̂2,k +HB̄uk +HB̄nnk

= A22x̂2,k + A21PYk:k+α +HB̄uk +HB̄nnk . (4.10)
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Let Φ be a matrix such that

[
P̄
Φ

]
is square and invertible. Define

G ≡
[
Φ 0

0 Ip

]
, J ≡

[
P
G

]
. (4.11)

Using (1.3), (1.4) and (4.8), we note that

JMα =

[
0

GMα

]
,

JMn,α =

[
0

GMn,α

]
= Mn,α ,

J Θ̄αT T =

[
It 0

L1 L2

]
,

where [
L1 L2

]
= GΘ̄αT T . (4.12)

Left-multiplying (4.8) by J , we get

[
P
G

]
Yk:k+α =

[
It 0

L1 L2

]
x̂k +

[
0

GMα

]
Uk:k+α +

[
0

GMn,α

]
nk .

We see that the first t rows of the above equation do not contain any information about x̂2,k.

The remaining rows can be written as

(G − L1P) Yk:k+α = L2x̂2,k + GMαUk:k+α + GMn,αnk . (4.13)

To estimate x̂2,k, we use (4.10) and (4.13) to construct an estimator of the form

zk+1 = A22zk + A21PYk:k+α + Kk ((G − L1P) Yk:k+α − L2zk) , (4.14)

where Kk is chosen to (i) make the estimator unbiased, and (ii) minimize the mean square

error between zk+1 and x̂2,k+1. Using (4.10) and (4.13), we find the error between the two
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quantities to be

ek+1 ≡ zk+1 − x̂2,k+1

= (A22 −KkL2) ek +
(
KkGMn,α −HB̄n

)
nk

+
(
KkGMα −

[
HB̄ 0 · · · 0

])
Uk:k+α . (4.15)

Note that the noise in (4.15) is no longer colored from the perspective of the error, allowing

us to construct an optimal estimator. For an unbiased estimator (i.e., E{ek} = 0), we require

that

KkGMα =
[
HB̄ 0 · · · 0

]
. (4.16)

The solvability of the above condition is given by the following theorem.

Theorem 4.4 There exists a matrix Kk such that

KkGMα =
[
HB̄ 0 · · · 0

]

if and only if

rank [Mα]− rank [Mα−1] = m .

Proof: Arguing as in the proof of Theorem 2.2, there exists a Kk satisfying (4.16) if

and only if the matrix

S ≡
[
HB̄ 0 · · · 0

]

is in the space spanned by the rows of GMα. This is equivalent to the condition

rank

[
GMα

S

]
= rank [GMα] . (4.17)

Since PMα = 0, we use (1.4) to get

rank

[
GMα

S

]
= rank



PMα

GMα

S


 = rank

[
Mα

S

]
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= rank




D 0

Θ̄α−1B̄ Mα−1

HB̄ 0




= rank




D 0

Θ̄α−1B̄ Mα−1

P̄Θ̄α−1B̄ 0

HB̄ 0




.

Using the fact that P̄Θ̄α−1 = PΘ̄α and our assumption that the matrix [ B
D ] has full column

rank, we obtain

rank

[
GMα

S

]
= rank




D 0

Θ̄α−1B̄ Mα−1

B̄ 0




= m + rank [Mα−1] .

Finally, we note that rank[GMα] = rank[Mα] in (4.17), and this concludes the proof.

The condition in the above theorem is the same as the one in Theorem 4.1. This means

that the upper bound on the delay provided by Theorem 4.2 also applies to the reduced

order estimator in (4.14).

To solve (4.16), we note that if the condition in Theorem 2.2 is satisfied, then the rank

of GMα will also be m + rank[Mα−1]. Let N be a matrix whose rows form a basis for the

left nullspace of the last αm columns of GMα. In particular, we can assume without loss of

generality that N satisfies

NGMα =

[
0 0

Im 0

]
. (4.18)

Note that GMα has (α +1)p− t rows, and the last αm columns of the matrix have the same

rank as Mα−1. Using the expression for t given in (4.9), the number of rows in N is given

by

dim (N ) = (α + 1)p− t− rank[Mα−1]

= p .

From (4.16), we see that Kk must be of the form

Kk = K̂kN (4.19)
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for some K̂k =
[
K̂1,k K̂2,k

]
, where K̂1,k has p − m columns and K̂2,k has m columns.

Equation (4.16) then becomes

[
K̂1,k K̂2,k

] [
0 0

Im 0

]
=

[
HB̄ 0

]
, (4.20)

from which it is obvious that K̂2,k = HB̄ and K̂1,k is a free matrix.

Returning to Equation (4.15), define

[
ν1

ν2

]
≡ NL2 , (4.21)

[
ρ1

ρ2

]
≡ NGMn,α , (4.22)

where ν2 and ρ2 have m rows. The expression for the estimation error from (4.15) can now

be written as

ek+1 =
((

A22 −HB̄ν2

)− K̂1,kν1

)
ek +

(
H (

B̄ρ2 − B̄n

)
+ K̂1,kρ1

)
nk . (4.23)

Denoting

A = A22 −HB̄ν2

= H (
ĀHT − B̄ν2

)
,

B = H (
B̄ρ2 − B̄n

)
,

Πk =

[
Qk+α−1 0

0 Rk+α

]
, (4.24)

the error covariance matrix is given by

Σk+1 ≡ E{ek+1e
T
k+1}

= AΣkAT + BΠkBT − K̂1,k

(AΣkν
T
1 − BΠkρ

T
1

)T

− (AΣkν
T
1 − BΠkρ

T
1

)
K̂T

1,k + K̂1,k

(
ν1Σkν

T
1 + ρ1Πkρ

T
1

)
K̂T

1,k . (4.25)

The matrix K̂1,k must be chosen to minimize the mean square error (or equivalently, the

trace of the error covariance matrix). Recall from the definition of K̂k in (4.19) that K̂1,k

will have p −m columns. This means that there will be no freedom to minimize the mean

square error if the number of outputs is equal to the number of unknown inputs. Taking the
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gradient of (4.25) with respect to K̂1,k and setting it equal to zero, we get the optimal gain

to be

K̂1,k =
(AΣkν

T
1 − BΠkρ

T
1

) (
ν1Σkν

T
1 + ρ1Πkρ

T
1

)−1
. (4.26)

Substituting this expression into (4.25), we get the optimal covariance update equation to

be

Σk+1 = AΣkAT +BΠkBT −(AΣkν
T
1 − BΠkρ

T
1

) (
ν1Σkν

T
1 + ρ1Πkρ

T
1

)−1 (AΣkν
T
1 − BΠkρ

T
1

)T
.

(4.27)

The optimal gain and update equations in (4.26) and (4.27) require the calculation of a

matrix inverse. If the inverse fails to exist, we can replace it with a pseudo-inverse [45]. The

following theorem provides a sufficient condition for the existence of the inverse.

Theorem 4.5 The matrix
(
ν1Σkν

T
1 + ρ1Πkρ

T
1

)
is invertible if the matrix

CQk+α−1C
T + Rk+α

is positive definite.

Proof: Let N1 =
[
N11 N12

]
represent the first p − m rows of N , where N12 has p

columns. Using (4.22), (4.24) and the fact that GMn,α =
[

0 0
C Ip

]
we get

ρ1Πkρ
T
1 = N12

(
CQk+α−1C

T + Rk+α

)N T
12 .

It remains to show that the matrix N12 is full row rank. If N12 is not full row rank, there

exists a nonzero row vector d such that

d
[
N11 N12

]
=

[
f 0

]
,

for some f . From (4.18), (4.11), and (1.4) we have

N11ΦMα−1 +N12Cζα−1 = 0 .

Multiplying on the left by d, we get

fΦMα−1 = 0 .

Since the matrix
[ P̄

Φ

]
is nonsingular and P̄ is a basis for the left nullspace of Mα−1, the

matrix ΦMα−1 is full row rank. This implies that f = 0, which means that d must also be
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the zero vector (since N1 is full row rank). Therefore, N12 is full row rank, which means

that ρ1Πkρ
T
1 is positive definite if the condition given in the theorem is true. Since ν1Σkν

T
1

is positive semidefinite, the theorem is proved.

We can now obtain an estimate of the original system states as follows. Using (4.19), we

get the estimator gain in (4.14) to be

Kk =
[
K̂1,k HB̄

]
N . (4.28)

The estimator is initialized with initial state z0 = HE{x̄0}, which will ensure that e0 will

have an expected value of zero. The estimate of the original state vector in (4.1) is given by

[
In 0

]
T T

[
PYk:k+α

zk

]
, (4.29)

and the estimation error in the transformed coordinates is given by

êk+1 =

[
0

ek+1

]
,

where ek+1 is defined in (4.15). The error for the augmented system in (4.7) can then be

obtained as

ēk+1 = T T êk+1 = HT ek+1 , (4.30)

and the error covariance matrix of the original state vector is given by

Σx,k+1 =
[
In 0

]
E{ēk+1ē

T
k+1}

[
In

0

]

=
[
In 0

]
HT Σk+1H

[
In

0

]
, (4.31)

where Σk+1 is given by (4.27). The trace of the above covariance matrix will be the mean

square estimation error for the state vector in the original system. The initial error covariance

matrix for the update equation (4.27) can also be obtained from (4.30) as

Σ0 = HΣ̄0HT ,

where Σ̄0 is the initial error covariance matrix for the augmented system in (4.7).

Remark: At this point, it is worth noting that the estimator considered in this section
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may not necessarily be of minimum dimension. As discussed earlier, there might be certain

conditions under which one could construct an optimal estimator of smaller dimension (e.g.,

see [43]). For the commonly considered case of α = 1, the dynamic portion of our estimator

will have dimension n + p− t. If p− t is much smaller than n, the extra complexity will not

have a large effect. In particular, if D = 0, then by Theorem 4.3 we have t = p, and the

dimension of the estimator will not increase. Interestingly, this corresponds to the case of

Markovian output noise described in [45].

4.5 Design Procedure

We now summarize the steps that can be used in designing a delayed estimator for the

system given in (4.1).

1. Find the smallest α such that rank[Mα] − rank [Mα−1] = m. If the condition is not

satisfied for α = n − nullity [D] + 1, it is not possible to obtain an unbiased estimate

of the entire system state.

2. Construct the augmented system given in (4.7).

3. Choose P =
[
P̄ 0

]
and H so that T =

[ PΘ̄α
H

]
is orthogonal, and P̄ is a basis for the

left nullspace of Mα−1. Also choose Φ and form the matrix G given in (4.11).

4. Find the matrix N satisfying

NGMα =

[
0 0

Im 0

]
.

5. Form the matrices

[
L1 L2

]
= GΘ̄αT T ,

[
ν1 ρ1

ν2 ρ2

]
= N

[
L2 GMn,α

]
.

6. At each time-step k, calculate K̂1,k using Equation (4.26), and update the error co-

variance matrix using Equation (4.27).

7. Use (4.28) to obtain the estimator gain Kk.

55



8. The final estimator is given by Equation (4.14). The estimate of the original state

vector is given by (4.29), with error covariance matrix given by (4.31).

4.6 Examples

4.6.1 Example 1

Consider the system given by the matrices

A =

[
0.1 1

0 0.2

]
, B =

[
1 1

0 1

]
,

C =

[
0 1

1 1

]
, D =

[
0 0

0 1

]
,

Qk = 0.01I2, Rk = 0.04I2 .

It is found that condition (4.6) holds for α = 2, so our estimator must have a minimum

delay of two time-steps. The state and noise vectors in the augmented system will be

x̄k =




xk

wk

vk

vk+1




, nk =

[
wk+1

vk+2

]
.

Using Theorem 1, we find t = 2 and choose

P̄ =

[
0.64 −0.34 0.34 0

−0.36 −0.34 0.34 0

]
,

Φ =

[
0 1 1 0

0 0 0 1

]
,

H =




0 0 1 0 0 0 0 0

0.4 0.13 0 0.85 −0.13 0.15 −0.15 0

0.4 −0.64 0 −0.03 0.64 0.03 −0.03 0

−0.4 −0.13 0 0.15 0.13 0.85 0.15 0

0.4 0.13 0 −0.15 −0.13 0.15 0.85 0

0 0 0 0 0 0 0 1




.
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In this example, the last αm = 4 columns of GMα have a rank of two, and thus, the matrix

N in (4.18) will only have two rows:

N =

[
−0.9 1 −1 0

0.5 0 0 0

]
.

Thus, Equation (4.20) becomes

[
K̂1,k K̂2,k

] [
I2 0

]
=

[
HB̄ 0

]
,

and since K̂2,k has m = 2 columns, K̂1,k is the empty matrix. This implies that we will have

no freedom to minimize the trace of the covariance matrix.

From (4.12), we have

L1 =




0.4367 −0.7633

0.7429 −0.4571

0.0826 0.0426

0.5286 0.1886




,

L2 =




0 1.4538 −0.3759 0.5462 1.4538 0

1 1.0545 −0.7558 −0.0545 0.0545 1

0 0.1754 −0.0316 0.0246 −0.0246 0

0.1 1.0699 −0.2493 0.1301 −0.1301 0




,

and we use Equations (4.21) and (4.22) to obtain

[
ν1

ν2

]
= NL2

=

[
1 −0.43 −0.39 −0.57 −1.23 1

0 0.73 −0.19 0.27 0.73 0

]
,

[
ρ1

ρ2

]
= N




0 0 0 0

0 0 0 0

0 1 1 0

1 1 0 1




=

[
0 −1 −1 0

0 0 0 0

]
.
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Again, since ν2 and ρ2 have m = 2 rows, ν1 and ρ1 are empty matrices. Using (4.28), we get

Kk =




0 0 0 0

−0.1108 0.4436 −0.4436 0

−0.4888 0.4221 −0.4221 0

0.1108 −0.4436 0.4436 0

−0.1108 0.4436 −0.4436 0

0 0 0 0




.

The final estimator is given by (4.14) and an estimate of the original system states can be

obtained via Equation (4.29). To test this estimator, the system is initialized with a random

state with zero mean and covariance matrix I2. A set of sinusoidal signals is used as the

unknown inputs to the system. The estimator is initialized with an initial state of zero, and

the resulting estimates are shown in Figure 4.1. The error covariance matrix of the system

state is obtained from (4.31), and converges to

Σx =

[
0.1156 −0.0320

−0.0320 0.0400

]
,

which has a trace of 0.1556. The convergence of the trace (mean square error) is shown in

Figure 4.2.
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Figure 4.1: Simulation of system and estimator.
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Figure 4.2: Mean square estimation error for the system state.

4.6.2 Example 2

Consider the following example from [44].

A =




0.1 0 0 0

0 0.2 0 0

0 0 0.3 0

0 0 0 0.9




, B =




1 0

0 1

1 0

0 1




,

C =

[
1 0 0 0

−1 1 1 −1

]
, D =

[
0 0

0 0

]
,

Qk = 0.01I4, Rk = 0.01I2 .

Once again, we find that (4.6) is satisfied for α = 2. Following the procedure outlined in

this paper, we find that the error covariance matrix converges to

Σx =




0.0100 0.0029 0.0100 0.0029

0.0029 0.1359 −0.0164 0.1038

0.0100 −0.0164 0.0324 0.0061

0.0029 0.1038 0.0061 0.1041




,

which has a trace of 0.2824. In contrast, the trace of the error covariance matrix for the

estimator constructed in [44] converges to 0.3778, which is approximately 34% worse than

the performance achieved by our estimator. This discrepancy arises from the fact that the

procedure in [44] ignores the correlation between the error and the noise, which leads to an
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incorrect covariance update equation.

4.7 Summary

We have provided a characterization of linear minimum-variance unbiased estimators for

linear systems with unknown inputs, and have provided a design procedure to obtain the

estimator parameters. We have shown that it will generally be necessary to use delayed

measurements in order to obtain an unbiased estimate, and that these delays cause the

system noise to become colored. We increase the dimension of our estimator in order to

handle this colored noise.

As pointed out earlier, the estimators proposed in this chapter may not be of minimum

dimension. An investigation of minimum dimension optimal estimators may provide an

interesting direction for future research.
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CHAPTER 5

SUMMARY AND CONCLUSIONS

In this thesis, we have considered the problem of constructing state and input observers for

linear systems with unknown inputs. We started by studying the problem of observing the

entire state and input, and developed a streamlined design procedure to obtain the observer

parameters. Our approach is quite general in that it treats both reduced and full-order

observers by selecting the design matrices appropriately. We then provided a characterization

of partial state observers for linear systems with unknown inputs. Our approach involves

an iterative procedure which decouples the estimator error from the values of the state and

unknown inputs. The overall procedure produces a characterization of all possible linear

functionals of the state that can be observed, along with the observer parameters. We have

also used the partial state observer to determine all possible input functionals which can

be observed from the output, and have constructed a partial input observer which produces

these functionals. Finally, we studied linear minimum-variance unbiased state estimators

for linear systems with unknown inputs. We have shown that it will generally be necessary

to use delays in order to construct an unbiased estimator, which causes the system noise to

behave as if it were colored. To handle this, we increased the dimension of the estimator

appropriately. The observers described in this thesis can be used in applications such as

fault detection and diagnosis, and control system design for uncertain systems.

There are some interesting directions for future research. One logical extension of our

work is an investigation of unknown input observers for hybrid and switched linear systems.

A zero-delay observer has recently been developed for switched systems [47], and we expect to

develop delayed observers for such systems by using the ideas from our thesis. Another topic

meriting further investigation is that of minimum dimension optimal estimators. As pointed

out earlier, the estimators proposed in Chapter 4 may be larger than necessary. Therefore,

an explicit characterization of the smallest dimension required for optimal estimation will

further increase the attractiveness of our work.
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