
Distributed Consensus and Linear Functional Calculation
in Networks: An Observability Perspective

Shreyas Sundaram and Christoforos N. Hadjicostis

Coordinated Science Laboratory

and

Department of Electrical and Computer Engineering

University of Illinois at Urbana-Champaign

Overview

4.5

-0.3

-3.2

6.0
8.7

-1.9

-7.1

Consider a network (directed or undirected) with nodes X = {x1, x2, . . . , xN}

Each node i has some initial value xi[0]

e.g., temperature measurement, position, vote, fault status, etc.

Each node can only receive information from its neighbors

Objective: A subset of the nodes must calculate some function of the initial values
e.g., average, max, min, mode, etc.

Consensus: All nodes calculate the same function

Background on Consensus Protocols

Consensus problems studied for several decades (e.g., [Lynch, Distributed Algorithms])

Simple solution: Flooding
Each node repeatedly sends all received values to neighbors
All nodes will know all initial values after several time-steps

Another solution: “Convergecast”
Nodes organize themselves into a tree
Leaves propagate their values towards root
Root calculates function and broadcasts result back to leaves

Many other protocols that deal with node/link faults, etc.

Linear Iterations for Consensus

A different approach: Linear iterations
At each time-step, each node updates its value to be a linear combination of
itself and its neighbors:266664

x1[k + 1]

x2[k + 1]
...

xN [k + 1]

377775| {z }
x[k+1]

=

266664

w11 w12 · · · w1N

w21 w22 · · · w2N

...
...

. . .
...

wN1 wN2 · · · wNN

377775| {z }
W

266664
x1[k]

x2[k]
...

xN [k]

377775| {z }

x[k]

wij = 0 if xj is not a neighbor of xi

Choose weight matrix W so that limk→∞ x[k] = 1c
′x[0]

1 is column vector with all 1’s, and c
′ is some row vector

Special case: c
′ = 1

N
1
′ (distributed averaging)

Substantial analysis of convergence conditions available in the literature
(e.g., see survey paper by Olfati-Saber, Proc. IEEE, Jan. 2007)

Convergence in Time-Invariant Graphs

Linear iteration: x[k + 1] = Wx[k]

Necessary and sufficient conditions for x[k] → 1c
′x[0] [Xiao & Boyd, 2004]:

W1 = 1

c
′W = c

′

All other eigenvalues of W must have magnitude strictly less than 1

Rate of convergence given by second largest eigenvalue of W

For faster convergence, minimize second largest eigenvalue by choosing
weights appropriately [Xiao & Boyd, 2004]

However, almost all existing methods only consider asymptotic convergence

Contribution: We analyze linear iteration schemes using observability theory

Allows nodes to reach consensus in finite-time

Modeling the Values Seen by Each Node

Each node receives the values of its neighbors at each time-step

Let yi[k] = Eix[k] denote values received by node i at time-step k

Rows of Ei index portions of state-vector x[k] that are available to node i

e.g., for following graph,

x[k + 1] =

26664w11 w12 0 w14

w12 w22 0 w24

0 0 w33 w34

w14 w24 w34 w44

37775x[k], y2[k] =

2641 0 0 0

0 1 0 0

0 0 0 1

375x[k]

3

1

4

2

w11

w12

w14

w22

w24

w33

w34

w44

The Observability Matrix

Since x[k] = W kx[0], we have yi[k] = Eix[k] = EiW
kx[0]

Set of values seen by node i over L + 1 time-steps is26666664

yi[0]

yi[1]

yi[2]
...

yi[L]

37777775 =

26666664

Ei

EiW

EiW
2

...
EiW

L
37777775| {z }

Oi,L

x[0]

Oi,L is the observability matrix for the pair (W,Ei)

Row-space of Oi,L characterizes all linear functionals that can be calculated by
node i after L + 1 time-steps

Calculating the Consensus Value

Assume W is designed so that c′ is in the row-space of the observability matrix for
every node

For each node i, find smallest Li such that rank

"
Oi,Li

c
′

#
= rank [Oi,Li

]

Find a vector Γ′

i for each i satisfying Γ′

iOi,Li
= c

′

Protocol:

Nodes run linear iteration for maxi Li + 1 time-steps

Each node i calculates c
′x[0] after Li + 1 time-steps as

Γ′

i

266664
yi[0]

yi[2]
...

yi[Li]

377775 = Γ′

iOi,Li
x[0] = c

′
x[0]

The Observability Index

From observability theory:

There exists a positive integer νi such that

rank(Oi,0) < rank(Oi,1) < · · · < rank(Oi,νi−1) = rank(Oi,νi
) = rank(Oi,νi+1) = · · ·

Rank of Oi,L increases until L = νi − 1, and then stops increasing

νi is known as the observability index

Implication for linear iteration model:

Values seen by node i after time-step νi − 1 are linear combinations of
yi[0], yi[1], . . . , yi[νi − 1]

If node i can calculate c
′x[0], it will require at most νi time-steps

We show νi is upper-bounded by

νi ≤ N − degree(i)

Row-Space of the Observability Matrix

How do we choose the weight matrix so that c′ is in the row-space of Oi,νi−1?

For the linear iteration model, we show:
If µ is a simple eigenvalue of W , with right eigenvector d that has all entries
nonzero, and left-eigenvector c

′, then c
′ is in the row-space of Oi,νi−1 for all i

Recall: need W1 = 1 for asymptotic consensus
Any matrix that provides asymptotic consensus also allows finite-time
consensus

Do not need to restrict attention to matrices that provide asymptotic consensus

Perron-Frobenius Theorem:
If W is nonnegative and the graph is strongly connected, then W has a
simple eigenvalue µ with left and right-eigenvectors that have all positive
entries.

Example: The Network and Weights

0.2

0.2

0.2

0.2

−0.1

0.4

0.4

0.2

0.2 0.2

0.2

0.2

0.2

0.2

0.20.2
0.2

2

3

4

5

6

7

0.2

8

0.2
0.2

0.2

0.2

0.2

−0.1

−0.1

1

Consider example from [Xiao & Boyd, 2004]

Weights on edges and nodes chosen to maximize asymptotic rate of convergence

W has simple eigenvalue 1, with W1 = 1, 1
8
1
′W = 1

8
1
′

Vector c
′ = 1

8
1
′ will be in the row-space of observability matrix for every node

Example: Finding the Coefficient Vector

Consider node 2 in the network

y2[k] =

266641 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1
37775| {z }

E2

x[k]

Find smallest L2 such that rank

"
O2,L2

1
8
1
′

#
= rank[O2,L2

]

L2 = 0: O2,0 = E2

L2 = 1: O2,1 =

"
E2

E2W
√

Node 2 can calculate c
′x[0] after two time-steps

Calculate Γ′
2 =h

−0.2679 −0.4464 −0.3214 −0.1964 0.6250 −0.2098 2.6965 −0.8795

i

Example: Running the Linear Iteration

In this example, Li = 1 for all nodes and consensus can be reached in 2
time-steps

Suppose initial values of the nodes are

x[0] =

h

−1.3256 −13.6558 4.2533 5.8768 − 8.4647 14.9092 14.8916 2.6237

i′
with mean 2.3885

Run iteration x[k + 1] = Wx[k] for 2 time-steps:

h
x[0] x[1]

i
=

26666666666664
−1.3256 −3.5040

−13.6558 −1.8860

4.2533 1.3574

5.8768 5.1774

−8.4647 5.1774

14.9092 5.1774

14.8916 3.0078

2.6237 4.6009

37777777777775

Example: Calculating the Consensus Value

Values seen by node 2:

y2[0] =

26664 −1.3256

−13.6558

4.2533

2.6237

37775 , y2[1] =

26664 −3.5040

−1.8860

1.3574

4.6009

37775
Node 2 calculates c

′x[0] as Γ′
2

"
y2[0]

y2[1]

#
= 2.3885

All other nodes calculate c
′x[0] in the same manner

Note: diameter and radius of network are both 2, so this scheme is time-optimal
for consensus in this example

Finding the Coefficients: Decentralized Method

Nodes require coefficient vectors Γ′

i to calculate c
′x[0]

If W is not known to any node, can the nodes calculate their coefficients in a
decentralized manner?

Strategy: reconstruct observability matrix by running linear iterations with
appropriate choices of initial conditions

Algorithm:

Nodes run N different linear iterations, each for N − 1 time-steps
For the j’th run, node j sets initial value to be 1 and others set initial value to
be 0

Denote values seen by node i during time-step k of j’th run as yi,j [k]

Finding the Coefficients: Decentralized Method

Values seen by node i during j’th run:266664

yi,j [0]

yi,j [1]
...

yi,j [Li]

377775 = Oi,Li

2666666664
0
...
1
...
0

3777777775
After all runs are completed, node i has access to matrix266664

yi,1[0] yi,2[0] · · · yi,N [0]

yi,1[1] yi,2[1] · · · yi,N [1]
...

...
. . .

...
yi,1[Li] yi,2[Li] · · · yi,N [Li]

377775 = Oi,Li

266664
1 0 · · · 0

0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

377775 = Oi,Li

Node i can now calculate Γ′

i as before

Summary and Future Work

Summary:

Used observability theory to study problem of distributed consensus and linear
functional calculation

Can obtain distributed consensus after running linear iteration for a finite number
of time-steps

Method does not depend on magnitudes of eigenvalues of weight matrix

Nodes can learn their coefficients after running N linear iterations

Future Work:
Choose weights to minimize number of time-steps for consensus

Incorporate robustness to link/node faults

Find more efficient methods to perform decentralized computation of coefficients

	Overview
	Background on Consensus Protocols
	Linear Iterations for Consensus
	Convergence in Time-Invariant Graphs
	Modeling the Values Seen by Each Node
	The Observability Matrix
	Calculating the Consensus Value
	The Observability Index
	Row-Space of the Observability Matrix
	Example: The Network and Weights
	Example: Finding the Coefficient Vector
	Example: Running the Linear Iteration
	Example: Calculating the Consensus Value
	Finding the Coefficients: Decentralized Method
	Finding the Coefficients: Decentralized Method
	Summary and Future Work

