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What is Inversion?

Given the system

S

uy

Left Inverse: Outputs u when y is the input

HL S

uyu

Right Inverse: Given a desired y, outputs the necessary u

S HR

yuy

Here, we will focus on linear time-invariant systems



Why Study Inversion?

Inverse systems are useful in a variety of situations

Left inverses:
Communication systems: determining input to a dynamical channel
Fault detection and identification
Coding theory

Right inverses:
Feed-forward control
Disturbance decoupling



Approach 1: Transfer Function Matrix

For SISO systems, inversion is easily handled through a transfer function
approach

Y (z)

U(z)
= S(z) ⇒

U(z)

Y (z)
=

1

S(z)

Inverse may be non-causal!

For MIMO systems, problem is more complicated









Y1(z)

Y2(z)
...

Yp(z)









=









S11(z) S12(z) · · · S1m(z)

S21(z) S22(z) · · · S2m(z)
...

...
. . .

...
Sp1(z) Sp2(z) · · · Spm(z)









︸ ︷︷ ︸

S(z)









U1(z)

U2(z)
...

Um(z)









Left inverse: find HL(z) such that HL(z)S(z) = Im (requires p ≥ m)

Right inverse: find HR(z) such that S(z)HR(z) = Ip (requires m ≥ p)



Approach 2: State-Space Methods

State-space description of system S is

x[k + 1] = Ax[k] + Bu[k]

y[k] = Cx[k] + Du[k]

where x ∈ R
n, y ∈ R

p and u ∈ R
m

Will focus on left-invertibility in rest of talk

Definition: System S has an inverse with delay L if u[k] can be uniquely
determined from y[k], y[k + 1], · · · , y[k + L] (and perhaps x[k])

Smallest such L is called “inherent delay” of system

What are the conditions on matrices A, B, C, D for the system to be invertible?



Massey-Sain Algorithm (1)

Appeared in IEEE Transactions on Automatic Control, vol. 14, 1969

Find expressions for output in terms of input:

y[k] = Cx[k] + Du[k]

y[k + 1] = Cx[k + 1] + Du[k + 1]

= CAx[k] + CBu[k] + Du[k + 1]

Continuing in this way, we get














y[k]

y[k + 1]

y[k + 2]

...

y[k + L]














︸ ︷︷ ︸

Y[k,L]

=














C

CA

CA2

...

CAL














︸ ︷︷ ︸

OL

x[k]+














D 0 0 · · · 0

CB D 0 · · · 0

CAB CB D · · · 0

...
...

...
. . .

...

CAL−1B CAL−2B CAL−3B · · · D














︸ ︷︷ ︸

ML














u[k]

u[k + 1]

u[k + 2]

...

u[k + L]














︸ ︷︷ ︸

U[k,L]



Massey-Sain Algorithm (2)

ML =











D 0 0 · · · 0

CB D 0 · · · 0

CAB CB D · · · 0
...

...
...

. . .
...

CAL−1B CAL−2B CAL−3B · · · D











Notice that
rank(ML) ≤ rank(ML−1) + m

Theorem: System S has an inverse with delay L if and only if

rank(ML) − rank(ML−1) = m



Massey-Sain Algorithm (3)

ML =











D 0 0 · · · 0

CB D 0 · · · 0

CAB CB D · · · 0
...

...
...

. . .
...

CAL−1B CAL−2B CAL−3B · · · D











Proof of Theorem:

If rank(ML) − rank(ML−1) < m, there exists a U[k,L] in the null-space of ML, with
u[k] 6= 0, which is indistinguishable from the all-zero input

If rank(ML) − rank(ML−1) = m, the first m columns are linearly independent of
each other, and of the rest of the columns in ML.

There exists a matrix K such that

KML =
[

Im 0

]

⇒ KY[k,L] = KOLx[k] + u[k]



Massey-Sain Algorithm (4)

Construction of inverse:

Input is given by
u[k] = −KOLx[k] + KY[k,L] (1)

Substitute into state-transition equation

x[k + 1] = Ax[k] + Bu[k]

= Ax[k] − BKOLx[k] + BKY[k,L]

= (A − BKOL) x[k] + BKY[k,L] (2)

Equations (1) and (2) together form the state-space model of the inverse



Example of Massey-Sain Algorithm (1)

x[k + 1] =

[

0 1

1 0

]

x[k] +

[

1 0

0 0

]

u[k]

y[k] =

[

1 0

0 1

]

x[k] +

[

1 1

1 1

]

u[k]

Test for invertibility:

M0 =

[

1 1

1 1

]

, rank(M0) = 1

M1 =








1 1 0 0

1 1 0 0

1 0 1 1

0 0 1 1








, rank(M1) = 3

Since rank(M1) − rank(M0) = 2, system is invertible with delay 1



Example of Massey-Sain Algorithm (2)

Find K such that KM1 =
[

I2 02

]

⇒ K =

[

0 0 1 −1

0 1 −1 1

]

Inverse is given by

x[k + 1] =

(

A − BK

[

C

CA

])

x[k] + BK

[

y[k]

y[k + 1]

]

=

[

1 0

1 0

]

x[k] +

[

0 0 1 −1

0 0 0 0

][

y[k]

y[k + 1]

]

u[k] = −K

[

C

CA

]

x[k] + K

[

y[k]

y[k + 1]

]

=

[

1 −1

−1 0

]

x[k] +

[

0 0 1 −1

0 1 −1 1

][

y[k]

y[k + 1]

]



Massey-Sain Algorithm: Upper Bound

When can we stop iterating?

Theorem: If system is not invertible for L = n, it is not invertible at all

Willsky later tightened upper bound to L = n − q + 1, where q is the nullity of D



Moylan’s Algorithm (1)

Appeared in IEEE Transactions on Automatic Control, vol. 22, 1977

Define the matrix

M(λ) =

[

A − λI B

C D

]

Theorem: S is invertible if and only if rank(M(λ)) = n + m for some real λ

Proof of Necessity:

Assume rank(M(λ)) < n + m for all λ

Then for any λi, there exist xi and ui such that

[

A B

C D

][

xi

ui

]

=

[

λixi

0

]

It is possible to find scalars αi such that
∑n

i=0 αixi = 0

The input u[k] =
∑n

i=0 αiλ
k
i ui results in y[k] = 0 for all k

Thus, the system is not invertible



Moylan’s Algorithm (2)

Proof of sufficiency follows from the following construction:

Consider the more general system

x[k + 1] = Ax[k] + Bu[k] + v[k]

y[k] = Cx[k] + Du[k]

Suppose D has rank r < p

There exists a non-singular p × p matrix Q1 such that

Q1D =

[

D0

0

]

, Q1C =

[

C1

C2

]

There exists a non-singular (p − r) × (p − r) matrix Q2 such that

Q2C2 =

[

C̃2

0

]



Moylan’s Algorithm (3)

Let

ỹ[k] =

[

I 0

0 Q2

]

Q1

︸ ︷︷ ︸

Q

y[k]

This gives





ỹ1[k]

ỹ2[k]

ỹ3[k]




 =






C1

C̃2

0




 x[k] +






D0

0

0




u[k]

Define similarity transformation x̃[k] = Tx[k] such that

C̃2T
−1 =

[

0 I
]



Moylan’s Algorithm (4)

New system:

[

x̃1[k + 1]

x̃2[k + 1]

]

=

[

Ã11 Ã12

Ã21 Ã22

][

x̃1[k]

x̃2[k]

]

+

[

B̃1

B̃2

]

u[k] +

[

ṽ1[k]

ṽ2[k]

]






ỹ1[k]

ỹ2[k]

ỹ3[k]




 =






C̃11 C̃12

0 I

0 0






[

x̃1[k]

x̃2[k]

]

+






D0

0

0




u[k]

Note that ỹ2[k] = x̃2[k]

Define

z1[k] = ỹ1[k] − C̃12ỹ2[k]

z2[k] = ỹ2[k + 1] − Ã22ỹ2[k] − ṽ2[k]

w[k] = ṽ1[k] + Ã12ỹ2[k]

q[k] = x̃1[k]



Moylan’s Algorithm (5)

System can be written as

q[k + 1] = Âq[k] + B̂u[k] + w[k]

z[k] = Ĉq[k] + D̂u[k]

where

Â =
[

Ã11

]

, B̂ =
[

B̃1

]

Ĉ =

[

C̃11

Ã12

]

, D̂ =

[

D0

B̃2

]

This system has p̂ ≤ p outputs and n̂ ≤ n states

If rank(D̂) = m, inverse is given by D̂†z[k] = D̂†Ĉq[k] + u[k]

If rank(D̂) < m, repeat procedure on new system

What if p̂ < m?



Moylan’s Algorithm (6)

Define

M̂(λ) =

[

Â − λI B̂

Ĉ D̂

]

=






Ã11 − λI B̃1

C̃11 D0

Ã12 B̃2






If rank(M(λ)) = n + m for λ = λi, then

rank(M̂(λi)) = n̂ + m

This implies p̂ ≥ m!



Moylan’s Algorithm (7)

The following can be proved in a similar manner:

System S has a stable inverse if and only if rank(M(λ)) = n + m for all |λ| > 1

System S is invertible with unknown initial state if and only if rank(M(λ)) = n + m

for all λ



Partial Invertibility (1)

What if we only want to invert some of the inputs?

Suppose u[k] =

[

u1[k]

u2[k]

]

, with u1[k] ∈ R
m1 , u2[k] ∈ R

m2

Partition B and D as B =
[

B1 B2

]

, D =
[

D1 D2

]

System S becomes

x[k + 1] = Ax[k] + B1u1[k] + B2u2[k]

y[k] = Cx[k] + D1u1[k] + D2u2[k]

What are the conditions on the system such that u1[k] is invertible?



Partial Invertibility (2)

Suppose x[k] is unknown

Can we invert u1[k] based only on y[k], y[k + 1], . . . , y[k + L], for some L?

The response of system S over L + 1 time units is given by











y[k]

y[k + 1]

...

y[k + L]











=











C

CA

...

CAL











x[k] +











D1 0 · · · 0

CB1 D1 · · · 0

...
...

. . .
...

CAL−1B1 CAL−2B1 · · · D1





















u1[k]

u1[k + 1]

...

u1[k + L]











+











D2 0 · · · 0

CB2 D2 · · · 0

...
...

. . .
...

CAL−1B2 CAL−2B2 · · · D2





















u2[k]

u2[k + 1]

...

u2[k + L]













Partial Invertibility (3)

Previous expression can be written more compactly as














y[k]

y[k + 1]

y[k + 2]

...

y[k + L]














︸ ︷︷ ︸

Y[k,L]

=














D1 D2 0 · · · 0 C

CB1 CB2 D · · · 0 CA

CAB1 CAB2 CB · · · 0 CA2

...
...

...
. . .

...
...

CAL−1B1 CAL−1B2 CAL−2B · · · D CAL














︸ ︷︷ ︸

JL
















u1[k]

u2[k]

u[k + 1]

...

u[k + L]

x[k]
















︸ ︷︷ ︸

I[k,L]

Partition JL as JL =
[

ΓL ΨL

]

Theorem: u1[k] is invertible with delay L and unknown state x[k] if and only if

rank(JL) − rank(ΨL) = m1 .



Partial Invertibility (4)

Proof of Theorem:

If rank(JL) − rank(ΨL) < m1, there exists a I[k,L] in the null-space of JL, with
u1[k] 6= 0, which is indistinguishable from the all-zero input

If rank(JL) − rank(ΨL) = m1, the first m1 columns are linearly independent of
each other, and of the rest of the columns in JL.

There exists a matrix K such that

KJL =
[

Im1 0

]

⇒ KY[k,L] = u1[k]



Example: Fault Detection (1)

Consider a model of the F-8 aircraft (Teneketzis et al.)

ẋ(t) =










−0.01357 −32.2 −46.3 0

0.00012 0 1.214 0

−0.0001212 0 −1.214 1

0.00057 0 −9.01 −0.6696










︸ ︷︷ ︸

A

x(t) +










−0.433

0.1394

−0.1394

−0.1577










︸ ︷︷ ︸

Bu

u(t) +










−46.3

1.214

−1.214

−9.01










︸ ︷︷ ︸

Bd

d(t)

y(t) =




0 1 0 0

1 0 0 0





︸ ︷︷ ︸

C

x(t)

where u(t) is the elevator deflection in radians, and d(t) is the wind disturbance

We wish to detect failures in the elevator
Invert u(t) and compare to the specified value



Example: Fault Detection (2)

Perform test for inversion:

J0 =
[

Du Dd C
]

, rank(J0) − rank(Ψ0) = 0

J1 =

[

Du Dd 0 0 C

CBu CBd Du Dd CA

]

, rank(J1) − rank(Ψ1) = 1

Find K such that KJ1 =
[

1 0 0 0 0
]

Input is given by

u(t) =
[

−0.0018 −6.5936 −0.2048 −7.8097
]

︸ ︷︷ ︸

K

[

y(t)

ẏ(t)

]

Thus u(t) is invertible with “delay” 1



Example: Multiplexing in Communication Channels

Channel

Receiver 1

Receiver 2

Receiver M

Sender 1

Sender 2

Sender N

...
.
.
.

Suppose multiple users broadcast through a dynamic channel
Is it possible for Receiver i to only decode messages from a certain subset of
senders?



Future Work

Partial inversion:
Finish proof of upper bound on L for partial inversion with unknown state
Study construction of partial inverses for systems with known initial conditions
Develop partial inverses of minimum dimension

Investigate invertibility of hybrid/switched systems

Design system inverses that are robust to parameter variations
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