Inversion of Linear Systems

Shreyas Sundaram

Coordinated Science Laboratory
and
Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign

Outline

- Motivation
- Approaches to inversion
- Massey-Sain algorithm
- Moylan's algorithm
- Partial invertibility
- Future work

What is Inversion?

- Given the system

- Left Inverse: Outputs u when y is the input

- Right Inverse: Given a desired y, outputs the necessary u

- Here, we will focus on linear time-invariant systems

Why Study Inversion?

Inverse systems are useful in a variety of situations

- Left inverses:
- Communication systems: determining input to a dynamical channel
- Fault detection and identification
- Coding theory
- Right inverses:
- Feed-forward control
- Disturbance decoupling

Approach 1: Transfer Function Matrix

- For SISO systems, inversion is easily handled through a transfer function approach

$$
\frac{Y(z)}{U(z)}=\mathcal{S}(z) \Rightarrow \frac{U(z)}{Y(z)}=\frac{1}{\mathcal{S}(z)}
$$

- Inverse may be non-causal!
- For MIMO systems, problem is more complicated

$$
\left[\begin{array}{c}
Y_{1}(z) \\
Y_{2}(z) \\
\vdots \\
Y_{p}(z)
\end{array}\right]=\underbrace{\left[\begin{array}{cccc}
\mathcal{S}_{11}(z) & \mathcal{S}_{12}(z) & \cdots & \mathcal{S}_{1 m}(z) \\
\mathcal{S}_{21}(z) & \mathcal{S}_{22}(z) & \cdots & \mathcal{S}_{2 m}(z) \\
\vdots & \vdots & \ddots & \vdots \\
\mathcal{S}_{p 1}(z) & \mathcal{S}_{p 2}(z) & \cdots & \mathcal{S}_{p m}(z)
\end{array}\right]}_{\mathcal{S}(z)}\left[\begin{array}{c}
U_{1}(z) \\
U_{2}(z) \\
\vdots \\
U_{m}(z)
\end{array}\right]
$$

- Left inverse: find $\mathcal{H}_{L}(z)$ such that $\mathcal{H}_{L}(z) \mathcal{S}(z)=\mathbf{I}_{m}$ (requires $p \geq m$)
- Right inverse: find $\mathcal{H}_{R}(z)$ such that $\mathcal{S}(z) \mathcal{H}_{R}(z)=\mathbf{I}_{p}$ (requires $m \geq p$)

Approach 2: State-Space Methods

State-space description of system \mathcal{S} is

$$
\begin{aligned}
x[k+1] & =A x[k]+B u[k] \\
y[k] & =C x[k]+D u[k]
\end{aligned}
$$

where $x \in \mathbb{R}^{n}, y \in \mathbb{R}^{p}$ and $u \in \mathbb{R}^{m}$

- Will focus on left-invertibility in rest of talk
- Definition: System \mathcal{S} has an inverse with delay L if $u[k]$ can be uniquely determined from $y[k], y[k+1], \cdots, y[k+L]$ (and perhaps $x[k]$)
- Smallest such L is called "inherent delay" of system
- What are the conditions on matrices A, B, C, D for the system to be invertible?

Massey-Sain Algorithm (1)

- Appeared in IEEE Transactions on Automatic Control, vol. 14, 1969
- Find expressions for output in terms of input:

$$
\begin{aligned}
y[k] & =C x[k]+D u[k] \\
y[k+1] & =C x[k+1]+D u[k+1] \\
& =C A x[k]+C B u[k]+D u[k+1]
\end{aligned}
$$

- Continuing in this way, we get

$$
\underbrace{\left[\begin{array}{c}
y[k] \\
y[k+1] \\
y[k+2] \\
\vdots \\
y[k+L]
\end{array}\right]}_{Y_{[k, L]}}=\underbrace{\left[\begin{array}{c}
C \\
C A \\
C A^{2} \\
\vdots \\
C A^{L}
\end{array}\right]}_{\mathcal{O}_{L}} x[k]+\underbrace{\left[\begin{array}{c|cccc}
D & 0 & 0 & \cdots & 0 \\
C B & D & 0 & \cdots & 0 \\
C A B & C B & D & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
C A^{L-1} B & C A^{L-2} B & C A^{L-3} B & \cdots & D
\end{array}\right]}_{M_{L}} \underbrace{\left[\begin{array}{c}
u[k] \\
u[k+1] \\
u[k+2] \\
\vdots[k+L]
\end{array}\right]}_{U_{[k, L]}}
$$

Massey-Sain Algorithm (2)

$$
\begin{aligned}
& M_{L}=\left[\begin{array}{c|cccc}
D & 0 & 0 & \cdots & 0 \\
C B & \left.\begin{array}{ccc}
D & 0 & \cdots \\
C A B \\
\vdots & D & D \\
\vdots & \vdots & \ddots
\end{array}\right] \\
C A^{L-1} B & C A^{L-2} B & C A^{L-3} B & \cdots & D
\end{array}\right] \\
& \quad \operatorname{rank}\left(M_{L}\right) \leq \operatorname{rank}\left(M_{L-1}\right)+m
\end{aligned}
$$

- Theorem: System \mathcal{S} has an inverse with delay L if and only if

$$
\operatorname{rank}\left(M_{L}\right)-\operatorname{rank}\left(M_{L-1}\right)=m
$$

Massey-Sain Algorithm (3)

$$
M_{L}=\left[\begin{array}{c|cccc}
D & 0 & 0 & \cdots & 0 \\
C B & D & 0 & \cdots & 0 \\
C A B & C B & D & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
C A^{L-1} B & C A^{L-2} B & C A^{L-3} B & \cdots & D
\end{array}\right]
$$

Proof of Theorem:

- If $\operatorname{rank}\left(M_{L}\right)-\operatorname{rank}\left(M_{L-1}\right)<m$, there exists a $U_{[k, L]}$ in the null-space of M_{L}, with $u[k] \neq 0$, which is indistinguishable from the all-zero input
- If $\operatorname{rank}\left(M_{L}\right)-\operatorname{rank}\left(M_{L-1}\right)=m$, the first m columns are linearly independent of each other, and of the rest of the columns in M_{L}.
- There exists a matrix \mathcal{K} such that

$$
\begin{aligned}
\mathcal{K} M_{L} & =\left[\begin{array}{l|l}
\mathbf{I}_{m} & \mathbf{0}
\end{array}\right] \\
\Rightarrow \mathcal{K} Y_{[k, L]} & =\mathcal{K} \mathcal{O}_{L} x[k]+u[k]
\end{aligned}
$$

Massey-Sain Algorithm (4)

Construction of inverse:

- Input is given by

$$
\begin{equation*}
u[k]=-\mathcal{K} \mathcal{O}_{L} x[k]+\mathcal{K} Y_{[k, L]} \tag{1}
\end{equation*}
$$

- Substitute into state-transition equation

$$
\begin{align*}
x[k+1] & =A x[k]+B u[k] \\
& =A x[k]-B \mathcal{K} \mathcal{O}_{L} x[k]+B \mathcal{K} Y_{[k, L]} \\
& =\left(A-B \mathcal{K} \mathcal{O}_{L}\right) x[k]+B \mathcal{K} Y_{[k, L]} \tag{2}
\end{align*}
$$

- Equations (1) and (2) together form the state-space model of the inverse

Example of Massey-Sain Algorithm (1)

$$
\begin{aligned}
x[k+1] & =\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] x[k]+\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] u[k] \\
y[k] & =\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] x[k]+\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] u[k]
\end{aligned}
$$

- Test for invertibility:

$$
\begin{array}{ll}
M_{0}=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right], & \operatorname{rank}\left(M_{0}\right)=1 \\
M_{1}=\left[\begin{array}{ll|ll}
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1
\end{array}\right], & \operatorname{rank}\left(M_{1}\right)=3
\end{array}
$$

- Since $\operatorname{rank}\left(M_{1}\right)-\operatorname{rank}\left(M_{0}\right)=2$, system is invertible with delay 1

Example of Massey-Sain Algorithm (2)

- Find \mathcal{K} such that $\mathcal{K} M_{1}=\left[\begin{array}{l|l}\mathbf{I}_{2} & \mathbf{0}_{2}\end{array}\right]$

$$
\Rightarrow \mathcal{K}=\left[\begin{array}{rrrr}
0 & 0 & 1 & -1 \\
0 & 1 & -1 & 1
\end{array}\right]
$$

- Inverse is given by

$$
\begin{aligned}
x[k+1] & =\left(A-B \mathcal{K}\left[\begin{array}{c}
C \\
C A
\end{array}\right]\right) x[k]+B \mathcal{K}\left[\begin{array}{c}
y[k] \\
y[k+1]
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right] x[k]+\left[\begin{array}{cccc}
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
y[k] \\
y[k+1]
\end{array}\right] \\
u[k] & =-\mathcal{K}\left[\begin{array}{c}
C \\
C A
\end{array}\right] x[k]+\mathcal{K}\left[\begin{array}{c}
y[k] \\
y[k+1]
\end{array}\right] \\
& =\left[\begin{array}{rr}
1 & -1 \\
-1 & 0
\end{array}\right] x[k]+\left[\begin{array}{rrrr}
0 & 0 & 1 & -1 \\
0 & 1 & -1 & 1
\end{array}\right]\left[\begin{array}{c}
y[k] \\
y[k+1]
\end{array}\right]
\end{aligned}
$$

Massey-Sain Algorithm: Upper Bound

- When can we stop iterating?
- Theorem: If system is not invertible for $L=n$, it is not invertible at all
- Willsky later tightened upper bound to $L=n-q+1$, where q is the nullity of D

Moylan's Algorithm (1)

- Appeared in IEEE Transactions on Automatic Control, vol. 22, 1977
- Define the matrix

$$
M(\lambda)=\left[\begin{array}{cc}
A-\lambda I & B \\
C & D
\end{array}\right]
$$

- Theorem: \mathcal{S} is invertible if and only if $\operatorname{rank}(M(\lambda))=n+m$ for some real λ
- Proof of Necessity:
- Assume rank $(M(\lambda))<n+m$ for all λ
- Then for any λ_{i}, there exist x_{i} and u_{i} such that

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{l}
x_{i} \\
u_{i}
\end{array}\right]=\left[\begin{array}{c}
\lambda_{i} x_{i} \\
0
\end{array}\right]
$$

- It is possible to find scalars α_{i} such that $\sum_{i=0}^{n} \alpha_{i} x_{i}=0$
- The input $u[k]=\sum_{i=0}^{n} \alpha_{i} \lambda_{i}^{k} u_{i}$ results in $y[k]=0$ for all k
- Thus, the system is not invertible

Moylan's Algorithm (2)

Proof of sufficiency follows from the following construction:

- Consider the more general system

$$
\begin{aligned}
x[k+1] & =A x[k]+B u[k]+v[k] \\
y[k] & =C x[k]+D u[k]
\end{aligned}
$$

- Suppose D has rank $r<p$
- There exists a non-singular $p \times p$ matrix Q_{1} such that

$$
Q_{1} D=\left[\begin{array}{c}
D_{0} \\
0
\end{array}\right], \quad Q_{1} C=\left[\begin{array}{l}
C_{1} \\
C_{2}
\end{array}\right]
$$

- There exists a non-singular $(p-r) \times(p-r)$ matrix Q_{2} such that

$$
Q_{2} C_{2}=\left[\begin{array}{c}
\tilde{C}_{2} \\
0
\end{array}\right]
$$

Moylan's Algorithm (3)

- Let

$$
\tilde{y}[k]=\underbrace{\left[\begin{array}{cc}
I & 0 \\
0 & Q_{2}
\end{array}\right] Q_{1} y[k]}_{Q}
$$

- This gives

$$
\left[\begin{array}{c}
\tilde{y}_{1}[k] \\
\tilde{y}_{2}[k] \\
\tilde{y}_{3}[k]
\end{array}\right]=\left[\begin{array}{c}
C_{1} \\
\tilde{C}_{2} \\
0
\end{array}\right] x[k]+\left[\begin{array}{c}
D_{0} \\
0 \\
0
\end{array}\right] u[k]
$$

- Define similarity transformation $\tilde{x}[k]=T x[k]$ such that

$$
\tilde{C}_{2} T^{-1}=\left[\begin{array}{ll}
0 & I
\end{array}\right]
$$

Moylan's Algorithm (4)

- New system:

$$
\begin{aligned}
{\left[\begin{array}{l}
\tilde{x}_{1}[k+1] \\
\tilde{x}_{2}[k+1]
\end{array}\right] } & =\left[\begin{array}{cc}
\tilde{A}_{11} & \tilde{A}_{12} \\
\tilde{A}_{21} & \tilde{A}_{22}
\end{array}\right]\left[\begin{array}{c}
\tilde{x}_{1}[k] \\
\tilde{x}_{2}[k]
\end{array}\right]+\left[\begin{array}{c}
\tilde{B}_{1} \\
\tilde{B}_{2}
\end{array}\right] u[k]+\left[\begin{array}{l}
\tilde{v}_{1}[k] \\
\tilde{v}_{2}[k]
\end{array}\right] \\
{\left[\begin{array}{c}
\tilde{y}_{1}[k] \\
\tilde{y}_{2}[k] \\
\tilde{y}_{3}[k]
\end{array}\right] } & =\left[\begin{array}{cc}
\tilde{C}_{11} & \tilde{C}_{12} \\
0 & I \\
0 & 0
\end{array}\right]\left[\begin{array}{c}
\tilde{x}_{1}[k] \\
\tilde{x}_{2}[k]
\end{array}\right]+\left[\begin{array}{c}
D_{0} \\
0 \\
0
\end{array}\right] u[k]
\end{aligned}
$$

- Note that $\tilde{y}_{2}[k]=\tilde{x}_{2}[k]$
- Define

$$
\begin{aligned}
z_{1}[k] & =\tilde{y}_{1}[k]-\tilde{C}_{12} \tilde{y}_{2}[k] \\
z_{2}[k] & =\tilde{y}_{2}[k+1]-\tilde{A}_{22} \tilde{y}_{2}[k]-\tilde{v}_{2}[k] \\
w[k] & =\tilde{v}_{1}[k]+\tilde{A}_{12} \tilde{y}_{2}[k] \\
q[k] & =\tilde{x}_{1}[k]
\end{aligned}
$$

Moylan's Algorithm (5)

- System can be written as

$$
\begin{aligned}
q[k+1] & =\hat{A} q[k]+\hat{B} u[k]+w[k] \\
z[k] & =\hat{C} q[k]+\hat{D} u[k]
\end{aligned}
$$

where

$$
\begin{array}{ll}
\hat{A}=\left[\begin{array}{l}
\tilde{A}_{11}
\end{array}\right], & \hat{B}=\left[\tilde{B}_{1}\right] \\
\hat{C}=\left[\begin{array}{l}
\tilde{C}_{11} \\
\tilde{A}_{12}
\end{array}\right], & \hat{D}=\left[\begin{array}{l}
D_{0} \\
\tilde{B}_{2}
\end{array}\right]
\end{array}
$$

- This system has $\hat{p} \leq p$ outputs and $\hat{n} \leq n$ states
- If $\operatorname{rank}(\hat{D})=m$, inverse is given by $\hat{D}^{\dagger} z[k]=\hat{D}^{\dagger} \hat{C} q[k]+u[k]$
- If $\operatorname{rank}(\hat{D})<m$, repeat procedure on new system
- What if $\hat{p}<m$?

Moylan's Algorithm (6)

- Define

$$
\begin{aligned}
\hat{M}(\lambda) & =\left[\begin{array}{cc}
\hat{A}-\lambda I & \hat{B} \\
\hat{C} & \hat{D}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\tilde{A}_{11}-\lambda I & \tilde{B}_{1} \\
\tilde{C}_{11} & D_{0} \\
\tilde{A}_{12} & \tilde{B}_{2}
\end{array}\right]
\end{aligned}
$$

- If $\operatorname{rank}(M(\lambda))=n+m$ for $\lambda=\lambda_{i}$, then

$$
\operatorname{rank}\left(\hat{M}\left(\lambda_{i}\right)\right)=\hat{n}+m
$$

- This implies $\hat{p} \geq m$!

Moylan's Algorithm (7)

The following can be proved in a similar manner:

- System \mathcal{S} has a stable inverse if and only if $\operatorname{rank}(M(\lambda))=n+m$ for all $|\lambda|>1$
- System \mathcal{S} is invertible with unknown initial state if and only if $\operatorname{rank}(M(\lambda))=n+m$ for all λ

Partial Invertibility (1)

What if we only want to invert some of the inputs?

- Suppose $u[k]=\left[\begin{array}{l}u_{1}[k] \\ u_{2}[k]\end{array}\right]$, with $u_{1}[k] \in \mathbb{R}^{m_{1}}, u_{2}[k] \in \mathbb{R}^{m_{2}}$
- Partition B and D as $B=\left[\begin{array}{ll}B_{1} & B_{2}\end{array}\right], D=\left[\begin{array}{ll}D_{1} & D_{2}\end{array}\right]$
- System \mathcal{S} becomes

$$
\begin{aligned}
x[k+1] & =A x[k]+B_{1} u_{1}[k]+B_{2} u_{2}[k] \\
y[k] & =C x[k]+D_{1} u_{1}[k]+D_{2} u_{2}[k]
\end{aligned}
$$

- What are the conditions on the system such that $u_{1}[k]$ is invertible?

Partial Invertibility (2)

Suppose $x[k]$ is unknown

- Can we invert $u_{1}[k]$ based only on $y[k], y[k+1], \ldots, y[k+L]$, for some L ?
- The response of system \mathcal{S} over $L+1$ time units is given by

$$
\left.\begin{array}{rl}
{\left[\begin{array}{c}
y[k] \\
y[k+1] \\
\vdots \\
y[k+L]
\end{array}\right]=} & {\left[\begin{array}{c}
C \\
C A \\
\vdots \\
C A^{L}
\end{array}\right] x[k]+}
\end{array} \begin{array}{ccccc}
D_{1} & 0 & \cdots & 0 \\
C B_{1} & D_{1} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
C A^{L-1} B_{1} & C A^{L-2} B_{1} & \cdots & D_{1}
\end{array}\right]\left[\begin{array}{c}
u_{1}[k] \\
u_{1}[k+1] \\
\vdots \\
u_{1}[k+L]
\end{array}\right], ~\left[\begin{array}{cccc}
D_{2} & 0 & \cdots & 0 \\
C B_{2} & D_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
C A^{L-1} B_{2} & C A^{L-2} B_{2} & \cdots & D_{2}
\end{array}\right]\left[\begin{array}{c}
u_{2}[k] \\
u_{2}[k+1] \\
\vdots \\
u_{2}[k+L]
\end{array}\right] .
$$

Partial Invertibility (3)

- Previous expression can be written more compactly as

$$
\underbrace{\left[\begin{array}{c}
y[k] \\
y[k+1] \\
y[k+2] \\
y[k+L]
\end{array}\right]}_{Y_{[k, L]}}=\underbrace{\left[\begin{array}{c|ccccc}
D_{2} & 0 & \cdots & 0 & C \\
C B_{1} & C B_{2} & D & \cdots & 0 & C A \\
C A B_{1} & C A B_{2} & C B & \cdots & 0 & C A^{2} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
C A^{L-1} B_{1} & C A^{L-1} B_{2} & C A^{L-2} B & \cdots & D & C A^{L}
\end{array}\right]}_{D_{1}} \underbrace{\left[\begin{array}{c}
u_{1}[k] \\
u_{2}[k] \\
u[k+1] \\
\vdots \\
u[k+L] \\
x[k]
\end{array}\right]}_{J_{L}}
$$

- Partition J_{L} as $J_{L}=\left[\boldsymbol{\Gamma}_{L} \mid \boldsymbol{\Psi}_{L}\right]$
- Theorem: $u_{1}[k]$ is invertible with delay L and unknown state $x[k]$ if and only if

$$
\operatorname{rank}\left(J_{L}\right)-\operatorname{rank}\left(\boldsymbol{\Psi}_{L}\right)=m_{1} .
$$

Partial Invertibility (4)

Proof of Theorem:

- If $\operatorname{rank}\left(J_{L}\right)-\operatorname{rank}\left(\Psi_{L}\right)<m_{1}$, there exists a $I_{[k, L]}$ in the null-space of J_{L}, with $u_{1}[k] \neq 0$, which is indistinguishable from the all-zero input
- If $\operatorname{rank}\left(J_{L}\right)-\operatorname{rank}\left(\boldsymbol{\Psi}_{L}\right)=m_{1}$, the first m_{1} columns are linearly independent of each other, and of the rest of the columns in J_{L}.
- There exists a matrix \mathcal{K} such that

$$
\begin{aligned}
\mathcal{K} J_{L} & =\left[\mathbf{I}_{m_{1}} \mid \mathbf{0}\right] \\
\Rightarrow \mathcal{K} Y_{[k, L]} & =u_{1}[k]
\end{aligned}
$$

Example: Fault Detection (1)

- Consider a model of the F-8 aircraft (Teneketzis et al.)

$$
\dot{x}(t)=\underbrace{\left[\begin{array}{rrrr}
-0.01357 & -32.2 & -46.3 & 0 \\
0.00012 & 0 & 1.214 & 0 \\
-0.0001212 & 0 & -1.214 & 1 \\
0.00057 & 0 & -9.01 & -0.6696
\end{array}\right]}_{A} x(t)+\underbrace{\left[\begin{array}{r}
-0.433 \\
0.1394 \\
-0.1394 \\
-0.1577
\end{array}\right]}_{B_{u}} u(t)+\underbrace{\left[\begin{array}{r}
-46.3 \\
1.214 \\
-1.214 \\
-9.01
\end{array}\right]}_{B_{d}} d(t)
$$

$$
y(t)=\underbrace{\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]}_{C} x(t)
$$

where $u(t)$ is the elevator deflection in radians, and $d(t)$ is the wind disturbance

- We wish to detect failures in the elevator
- Invert $u(t)$ and compare to the specified value

Example: Fault Detection (2)

- Perform test for inversion:

$$
\begin{array}{ll}
J_{0}=\left[\begin{array}{c|cc}
D_{u} & D_{d} & C
\end{array}\right], & \operatorname{rank}\left(J_{0}\right)-\operatorname{rank}\left(\mathbf{\Psi}_{0}\right)=0 \\
J_{1}=\left[\begin{array}{c|cccc}
D_{u} & D_{d} & 0 & 0 & C \\
C B_{u} & C B_{d} & D_{u} & D_{d} & C A
\end{array}\right], & \operatorname{rank}\left(J_{1}\right)-\operatorname{rank}\left(\mathbf{\Psi}_{1}\right)=1
\end{array}
$$

- Find \mathcal{K} such that $\mathcal{K} J_{1}=\left[\begin{array}{l|llll}1 & 0 & 0 & 0 & 0\end{array}\right]$
- Input is given by

$$
u(t)=\underbrace{\left[\begin{array}{llll}
-0.0018 & -6.5936 & -0.2048 & -7.8097
\end{array}\right]}_{\mathcal{K}}\left[\begin{array}{l}
y(t) \\
\dot{y}(t)
\end{array}\right]
$$

- Thus $u(t)$ is invertible with "delay" 1

Example: Multiplexing in Communication Channels

- Suppose multiple users broadcast through a dynamic channel
- Is it possible for Receiver i to only decode messages from a certain subset of senders?

Future Work

- Partial inversion:
- Finish proof of upper bound on L for partial inversion with unknown state
- Study construction of partial inverses for systems with known initial conditions
- Develop partial inverses of minimum dimension
- Investigate invertibility of hybrid/switched systems
- Design system inverses that are robust to parameter variations

