Non-Concurrent Error Detection and Correction in Switched Linear Controllers

Shreyas Sundaram and Christoforos N. Hadjicostis

Coordinated Science Laboratory and

Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign

Switched Control

- Better handling of modelling uncertainty
- Stabilizes systems that cannot be stabilized otherwise

Fault Tolerance

Fault tolerance describes ability to:

- Withstand internal faults
- Produce overall desirable "behavior"

Necessary or desirable in:

- Life-threatening circumstances (military, transportation, medical)
- Systems in inaccessible environments (space missions)
- Reliable systems from unreliable components (faster, less expensive, less power)

Universal approach: Modular Redundancy

- Problems:
- Replication
- Voter reliability

Fault Detection and Correction in Switched Controllers (1)

- Switched linear controller given by:

$$
\mathcal{S}: \quad x[k+1]=\mathbf{A}_{\sigma[k]} x[k]+\mathbf{B}_{\sigma[k]} u[k], \quad x[k] \in \mathbb{R}^{n}
$$

- Goal: Detect and correct transient state-transition faults

Fault Detection and Correction in Switched Controllers (2)

- Embed \mathcal{S} in a redundant system of dimension $\eta=n+d$:

$$
\mathcal{H}: \quad x_{h}[k+1]=\mathcal{A}_{\sigma[k]} x_{h}[k]+\mathcal{B}_{\sigma[k]} u[k], \quad x_{h}[k] \in \mathbb{R}^{\eta}
$$

- Enforce linear encoding and decoding:

$$
\begin{aligned}
x[k] & =\mathbf{L} x_{h}[k] \\
x_{h}[k] & =\mathbf{G} x[k]
\end{aligned}
$$

- Fault detection: Choose parity check matrix \mathbf{P} such that:
- If there is no error, $\mathbf{P} x_{h}[k]=0$
- If $x_{h}[k]$ is not in the column space of $\mathbf{G}, \mathbf{P} x_{h}[k] \neq 0$

Characterization of Redundant Controller Implementations

$$
\begin{array}{ll}
\mathcal{S}: & x[k+1]=\mathbf{A}_{\sigma[k]} x[k]+\mathbf{B}_{\sigma[k]} u[k], \\
\mathcal{H}: & x_{h}[k+1]=\mathcal{A}_{\sigma[k]} x_{h}[k]+\mathcal{B}_{\sigma[k]} u[k],
\end{array} \quad x_{h}[k] \in \mathbb{R}^{n} .
$$

- \mathcal{H} is a redundant implementation of \mathcal{S} iff \mathcal{H} is similar to the following standard form:

$$
\begin{gathered}
x_{r}[k+1]=\underbrace{\left[\begin{array}{cc}
\mathbf{A}_{\sigma[k]} & \mathbf{A}_{12_{\sigma[k]}} \\
\mathbf{0} & \mathbf{A}_{22_{\sigma[k]}}
\end{array}\right]}_{\mathcal{A}_{r_{\sigma[k]}}=\mathcal{T}^{-1} \mathcal{A}_{\sigma[k]} \mathcal{T}} x_{r}[k]+\underbrace{\left[\begin{array}{c}
\mathbf{B}_{\sigma[k]} \\
\mathbf{0}
\end{array}\right]}_{\mathcal{B}_{r_{\sigma[k]}}=\mathcal{T}^{-1} \mathcal{B}_{\sigma[k]}} u[k] \\
\mathbf{P} \mathcal{T}=\left[\begin{array}{ll}
\mathbf{0} & \mathbf{I}_{d}
\end{array}\right] \equiv \mathbf{P}_{r}
\end{gathered}
$$

for some sets of matrices $\mathbf{A}_{12_{\sigma[k]}}$ and $\mathbf{A}_{22_{\sigma[k]}}$, and some invertible \mathcal{T}.

Non-Concurrent Detection and Identification (1)

- Motivation: relax checking requirements (e.g., periodic checking)
- Design redundant implementation so that parity check at time N allows detection and identification of errors in $[0, N-1]$
- For each error (j), need to identify:
- affected state variable $\left(e_{i_{j}}\right)$
- value of error $\left(v_{j}\right)$
- time-step $\left(N-t_{j}\right)$

Non-Concurrent Detection and Identification (2)

- Additive error model: fault at time-step $N-t$ causes

$$
x_{f}[N-t]=\underbrace{x_{h}[N-t]}_{\text {fault-free }}+v e_{i}
$$

- With D errors, faulty state at step N given by

$$
x_{f}[N]=x_{h}[N]+\sum_{j=1}^{D}\left\{v_{j}\left(\prod_{i=N-t_{j}}^{N-1} \mathcal{A}_{\sigma[i]}\right) e_{i_{j}}\right\}
$$

- Parity check at step N yields

$$
\mathbf{s}[N] \equiv \mathbf{P} x_{f}[N]=\sum_{j=1}^{D}\left\{v_{j} \mathbf{P}\left(\prod_{i=N-t_{j}}^{N-1} \mathcal{A}_{\sigma[i]}\right) e_{i_{j}}\right\}
$$

Non-Concurrent Detection and Identification (3)

Theorem

- If \mathcal{H} is a redundant implementation of \mathcal{S}, syndrome $\mathrm{s}[N]$ can be expressed as

$$
\mathbf{s}[N]=\sum_{j=1}^{D}\left\{v_{j}\left(\prod_{i=N-t_{j}}^{N-1} \mathbf{A}_{22_{\sigma[i]}}\right) \mathbf{P} e_{i_{j}}\right\}
$$

- If all $\mathbf{A}_{22_{\sigma[k]}}=\mathbf{A}_{22}$, syndrome is independent of switching sequence

$$
\mathbf{s}[N]=\sum_{j=1}^{D}\left\{v_{j} \mathbf{A}_{22}^{t_{j}} \mathbf{P} e_{i_{j}}\right\}
$$

Syndrome Generation

Syndrome $\mathbf{s}[N]$ is a linear combination of D columns of

$$
\mathbf{S}=\left[\begin{array}{lllll}
\mathbf{P} & \mathbf{A}_{22} \mathbf{P} & \mathbf{A}_{22}^{2} \mathbf{P} & \cdots & \mathbf{A}_{22}^{N-1} \mathbf{P}
\end{array}\right]
$$

- To detect D errors, need all sets of D columns of \mathbf{S} to be linearly independent
- Require at least D extra state variables
- To identify D errors, need all sets of $2 D$ columns of \mathbf{S} to be linearly independent
- Require at least $2 D$ extra state variables

Construction of a Redundant Implementation (1)

- Fact: Any $2 D$ columns of \mathbf{V} are linearly independent iff w_{i} 's are distinct.

$$
\mathbf{V}\left(w_{1}, w_{2}, \ldots, w_{\rho}\right)=\left[\begin{array}{cccc}
w_{1} & w_{2} & \ldots & w_{\rho} \\
w_{1}^{2} & w_{2}^{2} & \ldots & w_{\rho}^{2} \\
\vdots & \vdots & \ddots & \vdots \\
w_{1}^{2 D} & w_{2}^{2 D} & \ldots & w_{\rho}^{2 D}
\end{array}\right]
$$

- Basic idea: Make S look like a Vandermonde matrix

$$
\mathbf{S}=\left[\begin{array}{lllll}
\mathbf{P} & \mathbf{A}_{22} \mathbf{P} & \mathbf{A}_{22}^{2} \mathbf{P} & \cdots & \mathbf{A}_{22}^{N-1} \mathbf{P}
\end{array}\right]
$$

- Define $\Lambda=\operatorname{diag}\left(w, w^{2}, w^{3}, \ldots, w^{2 D-1}, w^{2 D}\right)$
- $\Lambda^{k} \mathbf{V}\left(w_{1}, w_{2}, \ldots, w_{\rho}\right)$ is also a Vandermonde matrix

Construction of a Redundant Implementation (2)

- Construction:
- $2 D$ additional state variables $(d=2 D)$
- Select appropriate parameters $w, w_{1}, w_{2}, \ldots, w_{n+d}$
- $\Lambda=\operatorname{diag}\left(w, w^{2}, w^{3}, \ldots, w^{2 D-1}, w^{2 D}\right), \quad \mathbf{M}=\mathbf{V}\left(w_{n+1}, w_{n+2}, \ldots, w_{n+d}\right)$
- In standard implementation, set $\mathbf{A}_{22}=\mathbf{M}^{-1} \Lambda \mathbf{M}, \quad \mathbf{A}_{12_{\sigma[k]}}=0$
- For similarity transformation, use $\mathcal{T}=\left[\begin{array}{cc}\mathbf{I}_{n} & \mathbf{0} \\ \mathbf{C} & \mathbf{I}_{2 D}\end{array}\right]$ where

$$
\mathbf{C}=-\mathbf{M}^{-1} \mathbf{V}\left(w_{1}, w_{2}, \ldots, w_{n}\right)
$$

- Theorem: Resulting implementation allows non-concurrent identification of D errors (detection of $2 D$ errors)
- Efficient decoding of errors
- Modified Peterson-Gorenstein-Zierler (PGZ) algorithm

Example (1)

- Switched system: $\quad x[k+1]=\mathbf{A}_{\sigma[k]} x[k]+\mathbf{B}_{\sigma[k]} u[k], \sigma[k] \in\{1,2\}$

$$
\begin{array}{ll}
\mathbf{A}_{1}=\left[\begin{array}{rrr}
-1 / 2 & 1 & 0 \\
1 / 4 & 0 & 1 \\
1 / 5 & 0 & 0
\end{array}\right], & \mathbf{B}_{1}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] ; \\
\mathbf{A}_{2}=\left[\begin{array}{rrr}
-1 / 5 & 1 & 0 \\
1 / 3 & 0 & 1 \\
1 / 9 & 0 & 0
\end{array}\right], & \mathbf{B}_{2}=\left[\begin{array}{c}
1.5 \\
1 \\
0
\end{array}\right]
\end{array}
$$

- Goal: Protect against two errors in $[0,4] \Rightarrow$ use 4 additional state variables
- Choose $\left\{w_{1}, w_{2}, w_{3}, w_{4}, w_{5}, w_{6}, w_{7}, w\right\}=\left\{-1,1,-3,3,-5,5,7, \frac{1}{2}\right\}$

Example (2)

- Construct required matrices

$\mathbf{M}=\mathbf{V}\left(w_{4}, w_{5}, w_{6}, w_{7}\right)$	$\Lambda=\operatorname{diag}\left(w, w^{2}, w^{3}, w^{4}\right)$
$\left[\begin{array}{rrrr}3 & -5 & 5 & -7 \\ 9 & 25 & 25 & 49 \\ 27 & -125 & 125 & -343 \\ 81 & 625 & 625 & 2401\end{array}\right]$	$\left[\begin{array}{cccc}1 / 2 & 0 & 0 & 0 \\ 0 & 1 / 4 & 0 & 0 \\ 0 & 0 & 1 / 8 & 0 \\ 0 & 0 & 0 & 1 / 16\end{array}\right]$
$\mathbf{C}=-\mathbf{M}^{-1} \mathbf{V}\left(w_{1}, w_{2}, w_{3}\right)$	$\mathrm{A}_{22}=\mathrm{M}^{-1} \Lambda \mathrm{M}$
$\left[\begin{array}{rrr}0.300 & -0.400 & 0.400 \\ -0.180 & 0.080 & -0.720 \\ -0.080 & 0.080 & -0.120 \\ 0.057 & -0.029 & 0.171\end{array}\right]$	$\left[\begin{array}{rrrr}0.604 & -0.440 & 0.928 & -0.325 \\ -0.084 & 0.580 & -0.037 & 0.846 \\ -0.104 & 0.129 & -0.074 & 0.100 \\ 0.030 & -0.154 & 0.014 & -0.173\end{array}\right]$

Example (3)

- Resulting fault-tolerant implementation:

$$
\left.\begin{array}{c}
x_{h}[k+1]=\left[\begin{array}{c|c}
\mathbf{A}_{\sigma[k]} & \mathbf{0} \\
\hline \mathbf{C A}_{\sigma[k]}-\mathbf{A}_{22} \mathbf{C} & \mathbf{A}_{22}
\end{array}\right] x_{h}[k]+\left[\frac{\mathbf{B}_{\sigma[k]}}{\hdashline \mathbf{\mathbf { C B } _ { \sigma [k] }}}\right] u[k] \\
\mathbf{P}=\left[-\mathbf{C} \mid \mathbf{I}_{2 D}\right.
\end{array}\right]
$$

- Errors affect variable 2 at time step 2 , and variable 6 at time step 4 :

$$
\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right] \Rightarrow\left[\begin{array}{r}
1.50 \\
1.00 \\
0 \\
0.05 \\
-0.19 \\
-0.04 \\
0.06
\end{array}\right] \Rightarrow\left[\begin{array}{r}
1.25 \\
0.88 \\
1.30 \\
0.74 \\
-1.13 \\
-0.23 \\
0.28
\end{array}\right] \Rightarrow\left[\begin{array}{r}
2.12 \\
2.72 \\
0.14 \\
-0.30 \\
-0.29 \\
0.01 \\
0.08
\end{array}\right] \Rightarrow\left[\begin{array}{r}
2.65 \\
0.67 \\
1.42 \\
1.15 \\
-1.46 \\
0.56 \\
0.38
\end{array}\right]
$$

Example (4)

- Compute syndrome

$$
\mathbf{s}[4]=\mathbf{P} x_{f}[4]=\left[\begin{array}{r}
0.047 \\
-0.015 \\
0.889 \\
0.005
\end{array}\right]
$$

- Use PGZ to find the corresponding linear combination of 2 columns of

$$
\mathbf{S}=\left[\begin{array}{lllll}
\mathbf{P} & \mathbf{A}_{22} \mathbf{P} & \mathbf{A}_{22}^{2} \mathbf{P} & \mathbf{A}_{22}^{3} \mathbf{P} & \mathbf{A}_{22}^{4} \mathbf{P}
\end{array}\right]
$$

- $\mathbf{s}[4]=0.9 \mathbf{P}(:, 6)+0.5\left(\mathbf{A}_{22}^{2} \mathbf{P}\right)(:, 2)$
\Rightarrow Error at time step 4 affected variable 6 by value 0.9 , and error at time step 2 affected variable 2 by value 0.5

Summary

- Reflection of hardware faults through appropriate error models
- Systematic embedding of switched controllers into redundant systems
- Completely characterizes non-concurrent fault identification
- Construction of fault-tolerant system through use of Vandermonde matrices
- Future work:
- Robustness to finite precision effects
- Utilize flexibility in choice of $\mathbf{A}_{12_{\sigma[k]}}$
- Investigate designs that minimize redundant arithmetic operations

