On Delayed Observers for Linear Systems with Unknown Inputs

Shreyas Sundaram and Christoforos N. Hadjicostis

Coordinated Science Laboratory and

Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign

Motivation

- Consider a linear system \mathcal{S} of the form

$$
\begin{aligned}
x_{k+1} & =A x_{k}+B u_{k} \\
y_{k} & =C x_{k}+D u_{k},
\end{aligned}
$$

with state vector $x \in \mathbb{R}^{n}$, output $y \in \mathbb{R}^{p}$, and unknown input $u \in \mathbb{R}^{m}$

- Unknown inputs can be used to model
- Faults
- Parameter uncertainties
- Noise with unknown statistics
- Control inputs generated by controllers in decentralized control
- Can we (asymptotically) estimate the state of the system using only the outputs?
- Note: known inputs are easy to handle, so we omit them

Previous Work

- Problem has been investigated extensively over the past few decades
- Wang, Davison, Dorato, Hautus, Kudva, Viswanadham, Ramakrishna, Darouach, Zasadzinski, Xu, Hou, Muller, Patton, Yang, Wilde, Valcher, ...
- These investigations typically focus on zero-delay observers
- i.e., use y_{k} to estimate x_{k}
- Existence conditions for such observers are quite strict
- Conditions can be relaxed by using delayed outputs
- Jin and Tahk (1997), Saberi, Stoorvogel and Sannuti (2000)
- Here, we present a design procedure for reduced-order observers with delays
- Allows us to treat full-order observers as a special case

Preliminaries

- Output of system over $\alpha+1$ time-steps is

$$
\underbrace{\left[\begin{array}{c}
y_{k} \\
y_{k+1} \\
\vdots \\
y_{k+\alpha}
\end{array}\right]}_{Y_{k: k+\alpha}}=\underbrace{\left[\begin{array}{c}
C \\
C A \\
\vdots \\
C A^{\alpha}
\end{array}\right]}_{\Theta_{\alpha}} x_{k}+\underbrace{\left[\begin{array}{cccc}
D & 0 & \cdots & 0 \\
C B & D & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
C A^{\alpha-1} B & C A^{\alpha-2} B & \cdots & D
\end{array}\right]}_{M_{\alpha}} \underbrace{\left[\begin{array}{c}
u_{k} \\
u_{k+1} \\
\vdots \\
u_{k+\alpha}
\end{array}\right]}_{U_{k: k+\alpha}}
$$

Directly Measurable States

What states can we directly measure from the output over $\alpha+1$ time-steps?

- Let $\beta_{\alpha}=\operatorname{rank}\left[\begin{array}{ll}\Theta_{\alpha} & M_{\alpha}\end{array}\right]-\operatorname{rank}\left[M_{\alpha}\right]$
- Theorem: There are β_{α} linear functionals of the state that are directly available from the output.
- Proof:
- There are β_{α} linearly independent columns in the matrix Θ_{α} that cannot be written as a linear combination of columns in M_{α}
- Thus there exists a matrix \mathcal{P} with β_{α} rows such that $\mathcal{P} M_{\alpha}=\mathbf{0}$ and $\mathcal{P} \Theta_{\alpha}$ has full row-rank, which gives

$$
\begin{aligned}
\mathcal{P} Y_{k: k+\alpha} & =\mathcal{P} \Theta_{\alpha} x_{k}+\mathcal{P} M_{\alpha} U_{k: k+\alpha} \\
& =\mathcal{P} \Theta_{\alpha} x_{k}
\end{aligned}
$$

Observing the Other States

- Choose a matrix \mathcal{H} so that $\mathcal{T} \equiv\left[\begin{array}{c}\mathcal{P} \Theta_{\alpha} \\ \mathcal{H}\end{array}\right]$ is square and invertible
- Consider an observer of the form

$$
\begin{aligned}
z_{k+1} & =E z_{k}+F Y_{k: k+\alpha}, \\
\psi_{k} & =z_{k}+G Y_{k: k+\alpha},
\end{aligned}
$$

where E, F and G are chosen so that $\psi_{k} \rightarrow \mathcal{H} x_{k}$ as $k \rightarrow \infty$

- An estimate of the original states can then be obtained as

$$
\hat{x}_{k}=\mathcal{T}^{-1}\left[\begin{array}{c}
\mathcal{P} Y_{k: k+\alpha} \\
\psi_{k}
\end{array}\right] \rightarrow \mathcal{T}^{-1}\left[\begin{array}{c}
\mathcal{P} \Theta_{\alpha} x_{k} \\
\mathcal{H} x_{k}
\end{array}\right]=x_{k}
$$

- Can obtain a full-order observer by choosing \mathcal{P} to be the empty matrix and $\mathcal{H}=I_{n}$

Observer Design (1)

How do we choose E, F and G ?

- The observer error is given as

$$
\begin{aligned}
e_{k+1} & \equiv \psi_{k+1}-\mathcal{H} x_{k+1} \\
& =E z_{k}+F Y_{k: k+\alpha}+G Y_{k+1: k+\alpha+1}-\mathcal{H} A x_{k}-\mathcal{H} B u_{k}
\end{aligned}
$$

- Partition F and G as

$$
\begin{aligned}
F & =\left[\begin{array}{llll}
F_{0} & F_{1} & \cdots & F_{\alpha}
\end{array}\right], \\
G & =\left[\begin{array}{llll}
G_{0} & G_{1} & \cdots & G_{\alpha}
\end{array}\right]
\end{aligned}
$$

where each F_{i} and G_{i} are of dimension $(n-\beta) \times p$

- Define $K \equiv\left[\begin{array}{lllll}F_{0}-E G_{0} & F_{1}-E G_{1}+G_{0} & \cdots & F_{\alpha}-E G_{\alpha}+G_{\alpha-1} & G_{\alpha}\end{array}\right]$

Observer Design (2)

- After some algebra, observer error can be written as

$$
\begin{aligned}
e_{k+1}=E e_{k}+\left(\left[\begin{array}{ll}
0 & E
\end{array}\right]-\left[\begin{array}{ll}
A_{21} & A_{22}
\end{array}\right]+\right. & \left.K\left[\begin{array}{ll}
\Phi_{1} & \Phi_{2}
\end{array}\right]\right) \mathcal{T} x_{k} \\
& +\left(K M_{\alpha+1}-\left[\begin{array}{ll}
\mathcal{H} B & 0
\end{array}\right]\right) U_{k: k+\alpha+1}
\end{aligned}
$$

where $\left[\begin{array}{ll}A_{21} & A_{22}\end{array}\right] \equiv \mathcal{H} A \mathcal{T}^{-1}$ and $\left[\begin{array}{ll}\Phi_{1} & \Phi_{2}\end{array}\right] \equiv \Theta_{\alpha+1} \mathcal{T}^{-1}$

- To force the error to go to zero, we need:
- Input decoupling: $K M_{\alpha+1}-\left[\begin{array}{ll}\mathcal{H} B & 0\end{array}\right]=0$
- State decoupling:

$$
\begin{aligned}
0 & =A_{21}-K \Phi_{1} \\
E & =A_{22}-K \Phi_{2}
\end{aligned}
$$

- E must be a stable matrix

Input Decoupling

$$
K M_{\alpha+1}=\left[\begin{array}{ll}
\mathcal{H} B & 0 \tag{1}
\end{array}\right]
$$

Theorem: There exists a matrix K satisfying (1) if and only if

$$
\operatorname{rank}\left[M_{\alpha+1}\right]-\operatorname{rank}\left[M_{\alpha}\right]=m .
$$

- This is the Massey-Sain condition for system inversion with delay $\alpha+1$ (1969)
- We must invert the inputs in order to estimate the states
- The larger the delay, the better the chance of satisfying the condition
- Upper bound on inversion delay provided by Willsky (1974) as $\alpha=n$ - nullity $[D]$

Parametrizing the Gain

- The gain K must simultaneously satisfy

$$
\begin{aligned}
K M_{\alpha+1} & =\left[\begin{array}{ll}
\mathcal{H} B & 0
\end{array}\right] & & \text { (input decoupling) } \\
K \Phi_{1} & =A_{21} & & \text { (state decoupling) }
\end{aligned}
$$

- To satisfy the above, we show that K can be parametrized as

$$
K=\left[\begin{array}{lll}
L_{1}-\widehat{K} L_{2} & \widehat{K} & \mathcal{H} B
\end{array}\right] \mathcal{J},
$$

for some matrices L_{1}, L_{2} and \mathcal{J}

- \widehat{K} is a free matrix

Stability (1)

- The second state-decoupling condition was

$$
E=A_{22}-K \Phi_{2}
$$

- Using the parametrization of K, we get

$$
E=A_{22}-\left[\begin{array}{lll}
L_{1}-\widehat{K} L_{2} & \widehat{K} & \mathcal{H} B
\end{array}\right] \mathcal{J} \Phi_{2}
$$

- We show that $\mathcal{J} \Phi_{2}=\left[\begin{array}{l}0 \\ \nu\end{array}\right]$ for some matrix ν
- This leads to

$$
\begin{aligned}
E & =A_{22}-\left[\begin{array}{ll}
\widehat{K} & \mathcal{H} B
\end{array}\right] \nu \\
& \equiv A_{22}-\left[\begin{array}{ll}
\widehat{K} & \mathcal{H} B
\end{array}\right]\left[\begin{array}{l}
\nu_{1} \\
\nu_{2}
\end{array}\right] \\
& =\left(A_{22}-\mathcal{H} B \nu_{2}\right)-\widehat{K} \nu_{1}
\end{aligned}
$$

Stability (2)

- For E to be stable, $\left(A_{22}-\mathcal{H} B \nu_{2}, \nu_{1}\right)$ must be detectable

Theorem: The pair $\left(A_{22}-\mathcal{H} B \nu_{2}, \nu_{1}\right)$ is detectable if and only if

$$
\operatorname{rank}\left[\begin{array}{cc}
z I-A & -B \\
C & D
\end{array}\right]=n+m, \forall z \in \mathbb{C},|z| \geq 1
$$

- Putting this together with the inversion condition, we get

Theorem: The system \mathcal{S} has an observer with delay α if and only if

1. $\operatorname{rank}\left[M_{\alpha+1}\right]-\operatorname{rank}\left[M_{\alpha}\right]=m$,
2. $\operatorname{rank}\left[\begin{array}{cc}z I-A & -B \\ C & D\end{array}\right]=n+m, \forall z \in \mathbb{C},|z| \geq 1$.

Stable Inversion

- In fact, the second condition is equivalent to the existence of a stable inverse (Moylan, 1977)
- Thus, we get

Theorem: The system \mathcal{S} has a (delayed) observer if and only if

$$
\operatorname{rank}\left[\begin{array}{cc}
z I-A & -B \\
C & D
\end{array}\right]=n+m, \forall z \in \mathbb{C},|z| \geq 1
$$

Final Observer Equations

- Choose \widehat{K} to make $E=\left(A_{22}-\mathcal{H} B \nu_{2}\right)-\widehat{K} \nu_{1}$ stable
- Set $K=\left[\begin{array}{lll}L_{1}-\widehat{K} L_{2} & \widehat{K} & \mathcal{H} B\end{array}\right] \mathcal{J}$
- Map this K matrix back to F and G via
$K \equiv\left[\begin{array}{lllll}F_{0}-E G_{0} & F_{1}-E G_{1}+G_{0} & \cdots & F_{\alpha}-E G_{\alpha}+G_{\alpha-1} & G_{\alpha}\end{array}\right]$
- Mapping is not unique
- Final observer given by

$$
\begin{aligned}
z_{k+1} & =E z_{k}+F Y_{k: k+\alpha}, \\
\psi_{k} & =z_{k}+G Y_{k: k+\alpha}
\end{aligned}
$$

Example (1)

Consider the system given by the matrices

$$
\begin{aligned}
& A=\left[\begin{array}{rrrr}
1 & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\
0 & \frac{1}{2} & 1 & -2 \\
0 & 0 & 0 & 1 \\
0 & 0 & -\frac{1}{2} & \frac{3}{2}
\end{array}\right], \quad B=\left[\begin{array}{rr}
1 & 0 \\
0 & 0 \\
0 & -1 \\
0 & 0
\end{array}\right], \\
& C=\left[\begin{array}{rrrr}
1 & -1 & 0 & -3 \\
0 & 1 & 0 & 2 \\
0 & 1 & -1 & 4
\end{array}\right], \quad D=\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
1 & 0
\end{array}\right]
\end{aligned}
$$

- We find that $\operatorname{rank}\left[M_{2}\right]-\operatorname{rank}\left[M_{1}\right]=2$, so observer must have a minimum delay of $\alpha=1$
- We have $\beta_{1}=\operatorname{rank}\left[\begin{array}{ll}\Theta_{1} & M_{1}\end{array}\right]-\operatorname{rank}\left[M_{1}\right]=3$
- Can obtain three linear functionals directly from the output

Example (2)

- Design matrices are chosen as

$$
\begin{aligned}
& \mathcal{P}=\left[\begin{array}{rrrrrr}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 1 & 0 & 0 \\
0 & 2 & 0 & 0 & 1 & 0
\end{array}\right], \\
& \mathcal{H}
\end{aligned}
$$

- These matrices give us

$$
\mathcal{T}=\left[\begin{array}{c}
\mathcal{P} \Theta_{1} \\
\mathcal{H}
\end{array}\right]=\left[\begin{array}{rrrr}
1 & -1 & 0 & -3 \\
1 & -2 & 1 & -7 \\
0 & \frac{5}{2} & 0 & 5 \\
1 & -2 & 2 & 1
\end{array}\right]
$$

Example (3)

- We find

$$
\begin{aligned}
& {\left[\begin{array}{l|l}
A_{21} & A_{22}
\end{array}\right]=\mathcal{H} A \mathcal{T}^{-1}=\left[\begin{array}{lll|l}
\frac{9}{2} & -4 & -\frac{8}{5} & \frac{1}{2}
\end{array}\right]} \\
& {\left[\Phi_{1} \mid \Phi_{2}\right]=\Theta_{\alpha+1} \mathcal{T}^{-1}=\left[\begin{array}{rrr|r}
1 & 0 & 0 & 0 \\
0 & 0 & \frac{4}{10} & 0 \\
1 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & \frac{2}{10} & 0 \\
1 & -1 & -\frac{2}{10} & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{10} & 0 \\
1 & -1 & -\frac{3}{10} & 0
\end{array}\right]}
\end{aligned}
$$

- Note that $\Phi_{2}=0$

Example (4)

- The matrix K is parametrized as

$$
K=\left[\begin{array}{lll}
L_{1}-\widehat{K} L_{2} & \widehat{K} & \mathcal{H} B
\end{array}\right] \mathcal{J},
$$

where

$$
\begin{aligned}
L_{1} & =\left[\begin{array}{rrr}
\frac{11}{2} & -\frac{13}{2} & -2
\end{array}\right], L_{2}=\left[\begin{array}{cccccc}
0 & 0 & 0 \\
0 & 0 & \frac{1}{10}
\end{array}\right] \\
\mathcal{J} & =\left[\begin{array}{rrrrrrrrr}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & -\frac{1}{2} & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 1 & -1 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Example (5)

- Calculate ν_{1} and ν_{2} :

$$
\left[\begin{array}{c}
0 \\
\nu_{1} \\
\nu_{2}
\end{array}\right]=\mathcal{J} \Phi_{2}=0
$$

- Matrix E is given by $E=\left(A_{22}-\mathcal{H} B \nu_{2}\right)-\widehat{K} \nu_{1}=\frac{1}{2}$
- E has magnitude less than 1 , so observer will be stable
- Choose $\widehat{K}=0$
- Gain matrix given by

$$
\begin{aligned}
K & =\left[\begin{array}{llllllll}
L_{1}-\widehat{K} L_{2} & \widehat{K} & \mathcal{H} B
\end{array}\right] \mathcal{J} \\
& =\left[\begin{array}{llllllll}
\frac{11}{2} & -4 & 6 & -7 & -2 & -2 & 2 & 0
\end{array}\right]
\end{aligned}
$$

Example (6)

- Obtain F and G by choosing $G_{0}=0$

$$
\begin{aligned}
& F=\left[\begin{array}{ll}
F_{0} & F_{1}
\end{array}\right]=\left[\begin{array}{llllll}
\frac{11}{2} & -4 & 6 & -6 & -2 & -2
\end{array}\right] \\
& G=\left[\begin{array}{ll}
G_{0} & G_{1}
\end{array}\right]=\left[\begin{array}{llllll}
0 & 0 & 0 & 2 & 0 & 0
\end{array}\right]
\end{aligned}
$$

- Final observer given by

$$
\begin{aligned}
z_{k+1} & =\frac{1}{2} z_{k}+F Y_{k: k+1} \\
\psi_{k} & =z_{k}+G Y_{k: k+1}
\end{aligned}
$$

- Estimate of original state given by

$$
\hat{x}_{k}=\mathcal{T}^{-1}\left[\begin{array}{c}
\mathcal{P} Y_{k: k+1} \\
\psi_{k}
\end{array}\right]
$$

Summary

- Provided a design procedure for delayed observers for linear systems with unknown inputs
- Focused on reduced-order observers, allowing full-order observers as special case
- System inversion is necessary in order to construct an observer
- Characterized the minimum and maximum delays required for state estimation
- Provided a parametrization of the observer gain to perform state and input decoupling
- Remaining freedom used to ensure stability

