On Delayed Observers for Linear Systems with Unknown Inputs

Shreyas Sundaram and Christoforos N. Hadjicostis

Coordinated Science Laboratory

and

Department of Electrical and Computer Engineering

University of Illinois at Urbana-Champaign

Motivation

• Consider a linear system ${\cal S}$ of the form

$$x_{k+1} = Ax_k + Bu_k$$
$$y_k = Cx_k + Du_k ,$$

with state vector $x \in \mathbb{R}^n$, output $y \in \mathbb{R}^p$, and unknown input $u \in \mathbb{R}^m$

- Unknown inputs can be used to model
 - Faults
 - Parameter uncertainties
 - Noise with unknown statistics
 - Control inputs generated by controllers in decentralized control
- Can we (asymptotically) estimate the state of the system using only the outputs?
- Note: known inputs are easy to handle, so we omit them

Previous Work

- Problem has been investigated extensively over the past few decades
 - Wang, Davison, Dorato, Hautus, Kudva, Viswanadham, Ramakrishna, Darouach, Zasadzinski, Xu, Hou, Muller, Patton, Yang, Wilde, Valcher, ...
- These investigations typically focus on zero-delay observers
 - i.e., use y_k to estimate x_k
- Existence conditions for such observers are quite strict
- Conditions can be relaxed by using delayed outputs
 - Jin and Tahk (1997), Saberi, Stoorvogel and Sannuti (2000)
- Here, we present a design procedure for reduced-order observers with delays
 - Allows us to treat full-order observers as a special case

Preliminaries

• Output of system over $\alpha + 1$ time-steps is

$$\underbrace{ \begin{bmatrix} y_k \\ y_{k+1} \\ \vdots \\ y_{k+\alpha} \end{bmatrix}}_{Y_{k:k+\alpha}} = \underbrace{ \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{\alpha} \end{bmatrix}}_{\Theta_{\alpha}} x_k + \underbrace{ \begin{bmatrix} D & 0 & \cdots & 0 \\ CB & D & \cdots & 0 \\ \vdots \\ CA^{\alpha-1}B & CA^{\alpha-2}B & \cdots & D \end{bmatrix}}_{M_{\alpha}} \underbrace{ \begin{bmatrix} u_k \\ u_{k+1} \\ \vdots \\ u_{k+\alpha} \end{bmatrix}}_{U_{k:k+\alpha}}$$

What states can we directly measure from the output over $\alpha + 1$ time-steps?

• Let
$$\beta_{\alpha} = \operatorname{rank} \begin{bmatrix} \Theta_{\alpha} & M_{\alpha} \end{bmatrix} - \operatorname{rank} \begin{bmatrix} M_{\alpha} \end{bmatrix}$$

- Theorem: There are β_{α} linear functionals of the state that are directly available from the output.
- Proof:
 - There are β_{α} linearly independent columns in the matrix Θ_{α} that cannot be written as a linear combination of columns in M_{α}
 - Thus there exists a matrix \mathcal{P} with β_{α} rows such that $\mathcal{P}M_{\alpha} = \mathbf{0}$ and $\mathcal{P}\Theta_{\alpha}$ has full row-rank, which gives

$$\mathcal{P}Y_{k:k+\alpha} = \mathcal{P}\Theta_{\alpha}x_k + \mathcal{P}M_{\alpha}U_{k:k+\alpha}$$
$$= \mathcal{P}\Theta_{\alpha}x_k$$

Observing the Other States

• Choose a matrix
$$\mathcal{H}$$
 so that $\mathcal{T} \equiv \begin{bmatrix} \mathcal{P} \Theta_{\alpha} \\ \mathcal{H} \end{bmatrix}$ is square and invertible

Consider an observer of the form

$$z_{k+1} = E z_k + F Y_{k:k+\alpha} ,$$

$$\psi_k = z_k + G Y_{k:k+\alpha} ,$$

where E, F and G are chosen so that $\psi_k \to \mathcal{H} x_k$ as $k \to \infty$

• An estimate of the original states can then be obtained as

$$\hat{x}_k = \mathcal{T}^{-1} \begin{bmatrix} \mathcal{P}Y_{k:k+\alpha} \\ \psi_k \end{bmatrix} \to \mathcal{T}^{-1} \begin{bmatrix} \mathcal{P}\Theta_{\alpha}x_k \\ \mathcal{H}x_k \end{bmatrix} = x_k$$

• Can obtain a full-order observer by choosing \mathcal{P} to be the empty matrix and $\mathcal{H} = I_n$

Observer Design (1)

How do we choose E, F and G?

• The observer error is given as

$$e_{k+1} \equiv \psi_{k+1} - \mathcal{H}x_{k+1}$$
$$= Ez_k + FY_{k:k+\alpha} + GY_{k+1:k+\alpha+1} - \mathcal{H}Ax_k - \mathcal{H}Bu_k$$

• Partition *F* and *G* as

$$F = \begin{bmatrix} F_0 & F_1 & \cdots & F_\alpha \end{bmatrix} ,$$
$$G = \begin{bmatrix} G_0 & G_1 & \cdots & G_\alpha \end{bmatrix}$$

where each F_i and G_i are of dimension $(n - \beta) \times p$

• Define $K \equiv \begin{bmatrix} F_0 - EG_0 & F_1 - EG_1 + G_0 & \cdots & F_\alpha - EG_\alpha + G_{\alpha-1} & G_\alpha \end{bmatrix}$

• After some algebra, observer error can be written as

$$e_{k+1} = Ee_k + \left(\begin{bmatrix} 0 & E \end{bmatrix} - \begin{bmatrix} A_{21} & A_{22} \end{bmatrix} + K \begin{bmatrix} \Phi_1 & \Phi_2 \end{bmatrix} \right) \mathcal{T}x_k + \left(KM_{\alpha+1} - \begin{bmatrix} \mathcal{H}B & 0 \end{bmatrix} \right) U_{k:k+\alpha+1}$$

where
$$\begin{bmatrix} A_{21} & A_{22} \end{bmatrix} \equiv \mathcal{H}A\mathcal{T}^{-1}$$
 and $\begin{bmatrix} \Phi_1 & \Phi_2 \end{bmatrix} \equiv \Theta_{\alpha+1}\mathcal{T}^{-1}$

• To force the error to go to zero, we need:

• Input decoupling: $KM_{\alpha+1} - \begin{bmatrix} \mathcal{H}B & 0 \end{bmatrix} = 0$

• State decoupling:

$$0 = A_{21} - K\Phi_1$$
$$E = A_{22} - K\Phi_2$$

• *E* must be a stable matrix

$$KM_{\alpha+1} = \begin{bmatrix} \mathcal{H}B & 0 \end{bmatrix} \tag{1}$$

Theorem: There exists a matrix K satisfying (1) if and only if

 $\operatorname{rank}[M_{\alpha+1}] - \operatorname{rank}[M_{\alpha}] = m$.

- This is the Massey-Sain condition for system inversion with delay $\alpha + 1$ (1969)
 - We must invert the inputs in order to estimate the states
- The larger the delay, the better the chance of satisfying the condition
- Upper bound on inversion delay provided by Willsky (1974) as $\alpha = n \text{nullity}[D]$

Parametrizing the Gain

• The gain *K* must simultaneously satisfy

$$KM_{\alpha+1} = \begin{bmatrix} \mathcal{H}B & 0 \end{bmatrix}$$
 (input decoupling)
 $K\Phi_1 = A_{21}$ (state decoupling)

• To satisfy the above, we show that K can be parametrized as

$$K = \begin{bmatrix} L_1 - \widehat{K}L_2 & \widehat{K} & \mathcal{H}B \end{bmatrix} \mathcal{J} ,$$

for some matrices L_1 , L_2 and \mathcal{J}

• \hat{K} is a free matrix

Stability (1)

• The second state-decoupling condition was

$$E = A_{22} - K\Phi_2$$

• Using the parametrization of *K*, we get

$$E = A_{22} - \begin{bmatrix} L_1 - \widehat{K}L_2 & \widehat{K} & \mathcal{H}B \end{bmatrix} \mathcal{J}\Phi_2$$

• We show that
$$\mathcal{J}\Phi_2 = \begin{bmatrix} 0 \\ \nu \end{bmatrix}$$
 for some matrix ν

• This leads to

$$E = A_{22} - \begin{bmatrix} \widehat{K} & \mathcal{H}B \end{bmatrix} \nu$$
$$\equiv A_{22} - \begin{bmatrix} \widehat{K} & \mathcal{H}B \end{bmatrix} \begin{bmatrix} \nu_1 \\ \nu_2 \end{bmatrix}$$
$$= (A_{22} - \mathcal{H}B\nu_2) - \widehat{K}\nu_1$$

• For *E* to be stable, $(A_{22} - \mathcal{H}B\nu_2, \nu_1)$ must be detectable

Theorem: The pair $(A_{22} - \mathcal{H}B\nu_2, \nu_1)$ is detectable if and only if $\operatorname{rank} \begin{bmatrix} zI - A & -B \\ C & D \end{bmatrix} = n + m, \ \forall z \in \mathbb{C}, \ |z| \ge 1$.

• Putting this together with the inversion condition, we get

Theorem: The system S has an observer with delay α if and only if 1. rank $[M_{\alpha+1}]$ - rank $[M_{\alpha}] = m$, 2. rank $\begin{bmatrix} zI - A & -B \\ C & D \end{bmatrix} = n + m, \ \forall z \in \mathbb{C}, \ |z| \ge 1$.

Stable Inversion

- In fact, the second condition is equivalent to the existence of a stable inverse (Moylan, 1977)
- Thus, we get

Theorem: The system ${\mathcal S}$ has a (delayed) observer if and only if

$$\operatorname{rank} \begin{bmatrix} zI-A & -B \\ C & D \end{bmatrix} = n+m, \ \forall z \in \mathbb{C}, \ |z| \ge 1 \ .$$

Final Observer Equations

• Choose \widehat{K} to make $E = (A_{22} - \mathcal{H}B\nu_2) - \widehat{K}\nu_1$ stable

• Set
$$K = \begin{bmatrix} L_1 - \widehat{K}L_2 & \widehat{K} & \mathcal{H}B \end{bmatrix} \mathcal{J}$$

- Map this *K* matrix back to *F* and *G* via $K \equiv \begin{bmatrix} F_0 - EG_0 & F_1 - EG_1 + G_0 & \cdots & F_\alpha - EG_\alpha + G_{\alpha-1} & G_\alpha \end{bmatrix}$
 - Mapping is not unique
- Final observer given by

$$z_{k+1} = E z_k + F Y_{k:k+\alpha} ,$$

$$\psi_k = z_k + G Y_{k:k+\alpha}$$

Example (1)

Consider the system given by the matrices

$$A = \begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ 0 & \frac{1}{2} & 1 & -2 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -\frac{1}{2} & \frac{3}{2} \end{bmatrix}, B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & -1 \\ 0 & 0 \end{bmatrix},$$
$$C = \begin{bmatrix} 1 & -1 & 0 & -3 \\ 0 & 1 & 0 & 2 \\ 0 & 1 & -1 & 4 \end{bmatrix}, D = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \end{bmatrix}$$

- We find that $rank[M_2]$ $rank[M_1] = 2$, so observer must have a minimum delay of $\alpha = 1$
- We have $\beta_1 = \operatorname{rank} \begin{bmatrix} \Theta_1 & M_1 \end{bmatrix} \operatorname{rank}[M_1] = 3$

• Can obtain three linear functionals directly from the output

Example (2)

• Design matrices are chosen as

$$\mathcal{P} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 & 1 & 0 \end{bmatrix} ,$$
$$\mathcal{H} = \begin{bmatrix} 1 & -2 & 2 & 1 \end{bmatrix}$$

• These matrices give us

$$\mathcal{T} = \begin{bmatrix} \mathcal{P}\Theta_1 \\ \mathcal{H} \end{bmatrix} = \begin{bmatrix} 1 & -1 & 0 & -3 \\ 1 & -2 & 1 & -7 \\ 0 & \frac{5}{2} & 0 & 5 \\ 1 & -2 & 2 & 1 \end{bmatrix}$$

• We find

$$\begin{bmatrix} A_{21} \mid A_{22} \end{bmatrix} = \mathcal{H}A\mathcal{T}^{-1} = \begin{bmatrix} \frac{9}{2} & -4 & -\frac{8}{5} \mid \frac{1}{2} \end{bmatrix}$$
$$\begin{bmatrix} 1 & 0 & 0 \mid 0 \\ 0 & 0 & \frac{4}{10} \mid 0 \\ 1 & -1 & 0 \mid 0 \\ 1 & 0 & 0 \mid 0 \\ 0 & 0 & \frac{2}{10} \mid 0 \\ 1 & -1 & -\frac{2}{10} \mid 0 \\ 1 & 0 & 0 \mid 0 \\ 0 & 0 & \frac{1}{10} \mid 0 \\ 1 & -1 & -\frac{3}{10} \mid 0 \end{bmatrix}$$

• Note that $\Phi_2 = 0$

Example (4)

• The matrix *K* is parametrized as

$$K = \begin{bmatrix} L_1 - \widehat{K}L_2 & \widehat{K} & \mathcal{H}B \end{bmatrix} \mathcal{J} ,$$

where

$$L_{1} = \begin{bmatrix} \frac{11}{2} & -\frac{13}{2} & -2 \end{bmatrix}, \ L_{2} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & \frac{1}{10} \end{bmatrix}$$
$$\mathcal{J} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & -\frac{1}{2} & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 1 & -1 & 0 & 0 \end{bmatrix}$$

Example (5)

• Calculate ν_1 and ν_2 :

$$\begin{bmatrix} 0\\\nu_1\\\nu_2 \end{bmatrix} = \mathcal{J}\Phi_2 = 0$$

- Matrix *E* is given by $E = (A_{22} \mathcal{H}B\nu_2) \widehat{K}\nu_1 = \frac{1}{2}$
 - E has magnitude less than 1, so observer will be stable
 - Choose $\hat{K} = 0$
- Gain matrix given by

$$K = \begin{bmatrix} L_1 - \widehat{K}L_2 & \widehat{K} & \mathcal{H}B \end{bmatrix} \mathcal{J}$$
$$= \begin{bmatrix} \frac{11}{2} & -4 & 6 & -7 & -2 & -2 & 2 & 0 & 0 \end{bmatrix}$$

Example (6)

• Obtain F and G by choosing $G_0 = 0$

$$F = \begin{bmatrix} F_0 & F_1 \end{bmatrix} = \begin{bmatrix} \frac{11}{2} & -4 & 6 & -6 & -2 & -2 \end{bmatrix}$$
$$G = \begin{bmatrix} G_0 & G_1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 2 & 0 & 0 \end{bmatrix}$$

• Final observer given by

$$z_{k+1} = \frac{1}{2}z_k + FY_{k:k+1}$$
$$\psi_k = z_k + GY_{k:k+1}$$

• Estimate of original state given by

$$\hat{x}_k = \mathcal{T}^{-1} \begin{bmatrix} \mathcal{P}Y_{k:k+1} \\ \psi_k \end{bmatrix}$$

Example (7)

Summary

- Provided a design procedure for delayed observers for linear systems with unknown inputs
 - Focused on reduced-order observers, allowing full-order observers as special case
- System inversion is necessary in order to construct an observer
 - Characterized the minimum and maximum delays required for state estimation
- Provided a parametrization of the observer gain to perform state and input decoupling
 - Remaining freedom used to ensure stability