Distributed Function Calculation via Linear Iterations in the Presence of Malicious Agents

Part II:
Overcoming Malicious Behavior

Shreyas Sundaram and Christoforos N. Hadjicostis
Electrical and Computer Engineering University of Illinois at Urbana-Champaign

Problem Formulation

- Consider a network with nodes $\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{N}\right\}$ । e.g., sensors, robots, unmanned vehicles, computers, etc.
- Each node x_{i} has some initial value $x_{i}[0]$
- e.g., temperature measurement, position, vote, etc.
- Objective: Some nodes must calculate certain functions of initial values

Problem Formulation

$$
\begin{aligned}
\max x_{i}[0] & =? \\
x_{6}[0] & =?
\end{aligned}
$$

- Consider a network with nodes $\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{N}\right\}$ - e.g., sensors, robots, unmanned vehicles, computers, etc.
- Each node x_{i} has some initial value $\mathrm{x}_{\mathrm{i}}[0]$
b e.g., temperature measurement, position, vote, etc.
- Objective: Some nodes must calculate certain functions of initial values

Problem Formulation

- Consider a network with nodes $\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{N}\right\}$
b e.g., sensors, robots, unmanned vehicles, computers, etc.
- Each node x_{i} has some initial value $\mathrm{x}_{\mathrm{i}}[0]$
- e.g., temperature measurement, position, vote, etc.
- Objective: Some nodes must calculate certain functions of initial values
- Consensus: All nodes calculate the same function

Linear Iterative Schemes

- Investigate linear iterative schemes for distributed function calculation
- At each time-step k, every node updates its value as

$$
x_{i}[k+1]=w_{i i} x_{i}[k]+\sum_{j \in n b r(i)} w_{i j} x_{j}[k]
$$

- Theorem ([1]): If the network is strongly connected, then for almost any choice of weights, each node x_{i} can calculate any arbitrary function of the initial values after running the linear iteration for at most N -deg(i) timesteps.
- "Almost any": For all but a set of measure zero

Potential for Incorrect Behavior

- What if some nodes do not follow the linear iterative strategy?
- Faulty nodes: update their values incorrectly due to hardware faults, or stop working altogether
- Malicious nodes: willfully update their values incorrectly (perhaps in a coordinated manner) in an attempt to prevent other nodes from calculating functions

An Example of Malicious Behavior

- Node x_{2} is malicious and pretends $x_{4}[0]=7$ in its update
- Node x_{3} behaves correctly and uses $x_{4}[0]=1$ in its update
- Node x_{1} doesn't know who to believe म i.e., is node x_{4} 's value equal to 7 or 1?
- Node x_{1} needs another node to act as tie-breaker

Key Concept: Graph Connectivity

- The connectivity of a graph is the maximum number of vertex disjoint paths between any two nodes

Connectivity: 1

Connectivity: 2

Connectivity: 3

Main Result

- We show that if network connectivity is $2 \mathrm{f}+1$ or more, linear iteration is robust to f or fewer malicious (possibly coordinated) nodes
- Run linear iteration for at most N time-steps with almost any weights
- Every node can calculate any arbitrary function of all values
- In Part I, we proved the converse result:
- If network connectivity is $2 f$ or less, f malicious nodes can update their values so that one or more nodes cannot calculate an arbitrary function of the initial values (regardless of choice of weights)

Modeling Faulty/Malicious Behavior

- Correct update equation for node x_{i} :

$$
x_{i}[k+1]=w_{i i} x_{i}[k]+\sum_{j \in n b r(i)} w_{i j} x_{j}[k]
$$

- Faulty or malicious update by node x_{i} :

$$
x_{i}[k+1]=w_{i i} x_{i}[k]+\sum_{j \in n b r(i)} w_{i j} x_{j}[k]+u_{i}[k]
$$

- $u_{i}[k]$ is an additive error at time-step k
- Allows x_{i} to update its value in a completely arbitrary manner!

Linear Iteration with Faulty/Malicious Nodes

- Let $\mathrm{S}=\left\{\mathrm{x}_{\mathrm{j} 1}, \mathrm{x}_{\mathrm{i} 2}, \ldots, \mathrm{x}_{\mathrm{ij}}\right\}$ be set of nodes that are malicious
- Update equation for entire system:

$$
\underbrace{\left[\begin{array}{c}
x_{1}[k+1] \\
\vdots \\
x_{N}[k+1]
\end{array}\right]}_{\mathbf{x}[k+1]}=\underbrace{\left[\begin{array}{ccc}
w_{11} & \cdots & w_{1 N} \\
\vdots & \ddots & \vdots \\
w_{N 1} & \cdots & w_{N N}
\end{array}\right]}_{\mathbf{x}} \underbrace{\left[\begin{array}{c}
x_{1}[k] \\
\vdots \\
x_{N}[k]
\end{array}\right]}_{\mathbf{u}_{s}[k]}+\underbrace{\left[\begin{array}{llll}
\mathbf{e}_{j_{1}} & \mathbf{e}_{j_{2}} & \cdots & \mathbf{e}_{j_{j}} \\
{\left[\begin{array}{c}
u_{j}[k] \\
u_{j} \\
u_{j_{2}}[k] \\
\vdots \\
u_{j}[k]
\end{array}\right]}
\end{array}\right]}_{\mathbf{B}_{s}}
$$

- Weight $\mathrm{w}_{\mathrm{ij}}=0$ if node x_{j} is not a neighbor of node x_{i}
> \mathbf{e}_{j} is vector with 1 in j-th position and 0's elsewhere

Modeling the Values Seen by Each Node

- At each time-step, each node has access to values of its neighbors (and its own value)
- Let $\mathbf{y}_{i}[k]=C_{i} \mathbf{x}[k]$ denote values seen by node x_{i} at time-step k
- Rows of \mathbf{C}_{i} index portions of $\mathbf{x}[k]$ available to x_{i}

For node x_{3} :

$$
\mathbf{y}_{3}[k]=\left[\begin{array}{l}
x_{1}[k] \\
x_{3}[k] \\
x_{4}[k]
\end{array}\right]=\underbrace{\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]}_{\mathbf{C}_{3}} \mathbf{x}[k]
$$

Modeling the Values Seen by Each Node

- Set of all values seen by node x_{i} over L+1 time-steps:

$$
\underbrace{\left[\begin{array}{c}
\mathbf{y}_{i}[0] \\
\mathbf{y}_{i}[1] \\
\mathbf{y}_{i}[2] \\
\vdots \\
\mathbf{y}_{i}[L]
\end{array}\right]}_{\mathbf{y}_{i}[0: L]}=\underbrace{\left[\begin{array}{c}
\mathbf{C}_{i} \\
\mathbf{C}_{i} \mathbf{W} \\
\mathbf{C}_{i} \mathbf{W}^{2} \\
\vdots \\
\mathbf{C}_{i} \mathbf{W}^{L}
\end{array}\right]}_{0_{i, L}} \mathbf{\mathbf { x } _ { [i , L } ^ { S } [0] +}+\underbrace{\left[\begin{array}{cccc}
0 & 0 & \cdots & 0 \\
\mathbf{C}_{i} \mathbf{B}_{S} & 0 & \cdots & 0 \\
\mathbf{C}_{i} \mathbf{W} \mathbf{B}_{S} & \mathbf{C}_{i} \mathbf{B}_{S} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{C}_{i} \mathbf{W}^{L-1} \mathbf{B}_{S} & \mathbf{C}_{i} \mathbf{W}^{L-2} \mathbf{B}_{S} & \cdots & \mathbf{C}_{i} \mathbf{B}_{S}
\end{array}\right]} \underbrace{}_{\mathbf{u}_{s}[0: L-1]}
$$

- Matrices $\mathrm{O}_{\mathrm{i}, \mathrm{L}}$ and $\mathrm{M}_{\mathrm{i}, \mathrm{L}}$ characterize ability of node x_{i} to calculate functions of $\mathbf{x}[0]$ in the presence of faulty or malicious nodes
- $\mathrm{O}_{\mathrm{i}, \mathrm{N}-1}$ is the observability matrix for the pair (W, C_{i})
- $\mathrm{M}_{\mathrm{i}, \mathrm{L}}$ is the fault matrix for the set S

Decoding Procedure

- Each node x_{i} has access to
Weight matrix W
A finite nonnegative integer L_{i} (described later)
- $\mathrm{L}_{\text {Max }}=$ Max $_{\mathrm{i}} \mathrm{L}_{\mathrm{i}}$

Decoding Procedure

- Each node x_{i} has access to
Weight matrix W
- A finite nonnegative integer L_{i} (described later)
$L_{\text {Max }}=$ Max $_{i} L_{i}$

All nodes run linear iteration for $\mathrm{L}_{\text {Max }}+1$ time-steps. Let S be the set of malicious nodes.

Values seen by node x_{i} over first $\mathrm{L}_{\mathrm{i}}+1$ time-steps:
$\mathbf{y}_{i}\left[0: L_{i}\right]=O_{i, L_{i}} \mathbf{x}[0]+M_{i, L_{i}}^{S} \mathbf{u}_{S}\left[0: L_{i}-1\right]$

Node x_{i} finds candidate set S_{c} of f nodes such that

$$
\mathbf{y}_{i}\left[0: L_{i}\right]=O_{i, L_{i}} \mathbf{z}+M_{i, L_{i}}^{S_{C}} \mathbf{v}
$$

(for some vectors \mathbf{z} and \mathbf{v})

Decoding Procedure

- Each node x_{i} has access to

Weight matrix W A finite nonnegative integer L_{i} (described later)
$L_{\text {Max }}=$ Max $_{i} L_{i}$

All nodes run linear iteration for $\mathrm{L}_{\text {Max }}+1$ time-steps. Let S be the set of malicious nodes.

Values seen by node x_{i} over first $\mathrm{L}_{\mathrm{i}}+1$ time-steps:
$\mathbf{y}_{i}\left[0: L_{i}\right]=O_{i, L_{i}} \mathbf{x}[0]+M_{i, L_{i}}^{S} \mathbf{u}_{S}\left[0: L_{i}-1\right]$

Node x_{i} finds candidate set S_{c} of f nodes such that

$$
\mathbf{y}_{i}\left[0: L_{i}\right]=O_{i, L_{i}} \mathbf{z}+M_{i, L_{i}}^{S_{C}} \mathbf{v}
$$

(for some vectors \mathbf{z} and \mathbf{v})

Sketch of Proof

- Values seen by node x_{i} over $\mathrm{L}_{\mathrm{i}}+1$ time-steps:

$$
\mathbf{y}_{i}\left[0: L_{i}\right]=O_{i, L_{i}} \mathbf{x}[0]+M_{i, L_{i}}^{S} \mathbf{u}_{S}\left[0: L_{i}-1\right]
$$

- Node x_{i} finds a candidate set S_{C} of f nodes such that

$$
\begin{array}{r}
O_{i, L_{i}} \mathbf{z}+M_{i, L_{i}}^{S_{C}}= \\
=\mathbf{y}_{i}\left[0: L_{i}\right] \quad \text { (for some vectors } \mathbf{z} \text { and } \mathbf{v} \text {) } \\
=O_{i, L_{i}} \mathbf{x}[0]+M_{i, L_{i}}^{S} \mathbf{u}_{S}\left[0: L_{i}-1\right] \\
\Leftrightarrow O_{i, L_{i}}(\mathbf{z}-\mathbf{x}[0])+M_{i, L_{i}}^{S_{C}} \mathbf{v}-M_{i, L_{i}}^{S} \mathbf{u}_{S}\left[0: L_{i}-1\right]=0
\end{array}
$$

- Choose \mathbf{W} and L_{i} so that, for any sets S_{C} and S of f nodes each,
$\operatorname{rank}\left(\left[\begin{array}{lll}O_{i, L_{i}} & M_{i, L_{i}}^{S} & M_{i, L_{i}}^{S_{C}}\end{array}\right]\right)=N+\operatorname{rank}\left(\left[\begin{array}{ll}M_{i, L_{i}}^{S} & M_{i, L_{i}}^{S_{C}}\end{array}\right)\right.$
- $\operatorname{Then} \mathbf{z}=\mathbf{x [0]}$

Using Linear System Theory to Design the Weight Matrix

Property of state-space realization of linear systems

Study of linear systems based purely on the zero/nonzero structure
of the system matrices

Using Linear System Theory to Design the Weight Matrix

Robustness of the Linear Iterative Scheme

- Using previously mentioned tools, we prove:
- Theorem: If the network has connectivity $2 f+1$ or higher, then for almost any choice of weight matrix \mathbf{W}, and any node x_{i}, the columns of $\mathrm{O}_{\mathrm{i}, \mathrm{N}-1}$ will be linearly independent of the columns of $\mathrm{M}^{\mathrm{S}} \mathrm{i}_{\mathrm{N}-1}$ and $\mathrm{M}^{\mathrm{S}} \mathrm{C}_{\mathrm{i}, \mathrm{N}-1}$ for any sets S and S_{C} of f nodes each.
- Any node x_{i} can obtain the entire initial value vector $\mathbf{x}[0]$ after running the linear iteration for at most N time-steps (i.e., $L_{i}<N$), despite the actions of f malicious nodes

Example

$$
W=\left[\begin{array}{lllll}
1 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 1
\end{array}\right]
$$

- Objective: Each node has to calculate $\mathbf{x}^{\top}[0] \mathbf{x}[0]$ even when there is up to $f=1$ malicious node
- Connectivity of the network is 3 , so this is possible
- Consider node x_{1} :

$$
\mathbf{y}_{1}[k]=\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] \mathbf{x}[k]=\mathbf{C}_{1} \mathbf{x}[k]
$$

Example (cont.)

- Find smallest delay L_{1} for node x_{1} to be able to calculate its function
- For $L_{1}=1$, and any sets S and S_{C} of $f=1$ node each:

$$
O_{1,1}=\left[\begin{array}{c}
\mathbf{C}_{1} \\
\mathbf{C}_{1} \mathbf{W}
\end{array}\right]=\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 & 1
\end{array}\right] \quad M_{1,1}^{s}=\left[\begin{array}{c}
0 \\
\mathbf{C}_{1} \mathbf{B}_{s}
\end{array}\right] \quad M_{1,1}^{S_{c}}=\left[\begin{array}{c}
0 \\
\mathbf{C}_{1} \mathbf{B}_{s_{c}}
\end{array}\right]
$$

- For any sets S and S_{C}, columns of $\mathrm{O}_{1,1}$ are linearly independent of the columns of $\mathrm{M}_{1,1}$ and $\mathrm{M}^{\mathrm{SC}}{ }_{1,1}$
- Node x_{1} can calculate its function after $\mathrm{L}_{1}+1=2$ time-steps!

Example (cont.)

- For this example, we find nodes $x_{1}, x_{3}, x_{4}, x_{5}$ can calculate their functions in 2 time-steps, and node x_{2} can calculate its function in 1 time-step
- Linear iterative strategy is time-optimal for this network!

Example (cont.)

Performing Function Calculation

- Nodes run linear iteration:
, Node x_{2} is malicious, updates as $x_{2}[1]=\sum_{j=1}^{5} x_{j}[0]+3 \longleftarrow \underset{\text { error }}{\text { Additive }}$
- All other nodes behave correctly:

$$
\mathbf{x}[1]=\left[\begin{array}{lllll}
4 & 10 & 9 & 2 & 5
\end{array}\right]^{T}
$$

- Node x_{1} sees $\mathbf{y}_{1}[0]=\left[\begin{array}{lll}5 & -1 & 2\end{array}\right.$ - $^{\top}$ and $\mathbf{y}_{1}[1]=\left[\begin{array}{lll}4 & 10 & 9\end{array}\right]^{\top}$

Example (cont.)

- Node x_{1} tries to find a set S_{C} of $f=1$ node so that

$$
\left[\begin{array}{l}
\mathbf{y}_{1}[0] \\
\mathbf{y}_{1}[1]
\end{array}\right]=O_{1,1} \mathbf{z}+M_{1,1}^{S_{C}} \mathbf{v}
$$

- For $\mathrm{S}_{\mathrm{C}}=\left\{\mathrm{x}_{2}\right\}$, node x_{1} finds: $\left[\begin{array}{c}\mathrm{y}_{1}[0] \\ \mathrm{y}_{2}[0]\end{array}\right]=O_{1,4}\left[\begin{array}{c}5 \\ -1 \\ 2 \\ 3 \\ -2\end{array}\right]+M_{1,1,}^{s_{s}(-3)}$
- Node x_{1} thus obtains $\mathbf{x}[0]=\left[\begin{array}{llll}5 & -1 & 2 & 3\end{array} \mathrm{-}^{\top}\right]^{\top}$, and calculates $\mathbf{x}[0]^{\top} \mathbf{x}[0]=43$
- All other nodes calculate their functions by following a similar strategy

Summary

- Connectivity of the network characterizes the robustness of linear iterative schemes to malicious behavior
- If the connectivity is $\mathbf{2 f + 1}$ or more, each node has a checking/correction scheme that allows it to eliminate the effects of up to f malicious nodes, and calculate any arbitrary function of all node values
- Linear iteration can be run with almost any choice of weights, for at most \mathbf{N} time-steps

Future Work and Open Problems

1. Extend our framework to handle private or secure function calculation

Can the weight matrix be chosen so that some nodes in the network cannot calculate certain functions?
2. Extension to finite fields

What if nodes can only perform finite field arithmetic, and transmit elements from a finite set?
Connections to network coding
3. Dealing with general time-varying networks

Small changes can be handled by treating them as faults, but how to deal with large/frequent changes?
4. Complexity (communication/computation/time/...) of linear strategy vs. other distributed function calculation schemes

