# Distributed Function Calculation via Linear Iterations in the Presence of Malicious Agents

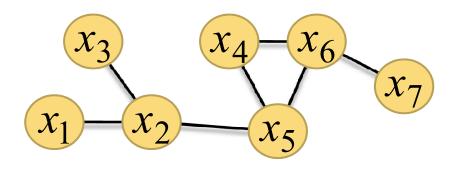
Part I: Attacking the Network

Shreyas Sundaram and Christoforos N. Hadjicostis Electrical and Computer Engineering

University of Illinois at Urbana-Champaign

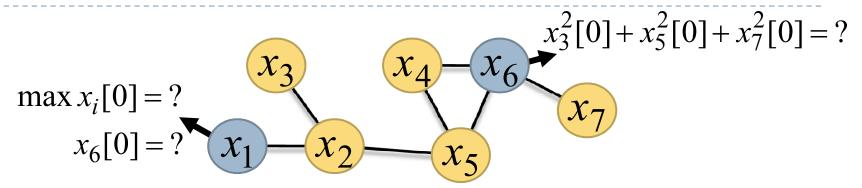


# **Problem Formulation**



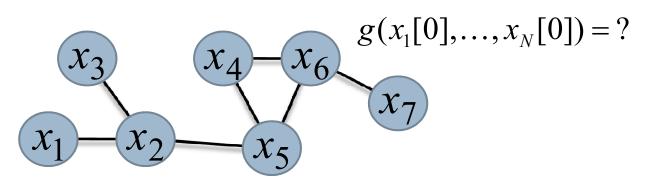
- Consider a network with nodes {x<sub>1</sub>, x<sub>2</sub>, ..., x<sub>N</sub>}
  - e.g., sensors, robots, unmanned vehicles, computers, etc.
- Each node x<sub>i</sub> has some initial value x<sub>i</sub>[0]
  - e.g., temperature measurement, position, vote, etc.
- Objective: Some nodes must calculate certain functions of initial values

### **Problem Formulation**



- Consider a network with nodes {x<sub>1</sub>, x<sub>2</sub>, ..., x<sub>N</sub>}
  - e.g., sensors, robots, unmanned vehicles, computers, etc.
- Each node x<sub>i</sub> has some initial value x<sub>i</sub>[0]
  - e.g., temperature measurement, position, vote, etc.
- Objective: Some nodes must calculate certain functions of initial values

## Problem Formulation



- Consider a network with nodes {x<sub>1</sub>, x<sub>2</sub>, ..., x<sub>N</sub>}
  - e.g., sensors, robots, unmanned vehicles, computers, etc.
- Each node x<sub>i</sub> has some initial value x<sub>i</sub>[0]
  - e.g., temperature measurement, position, vote, etc.
- Objective: Some nodes must calculate certain functions of initial values
  - Consensus: All nodes calculate the same function

### Previous Work

- Distributed function calculation schemes have been well studied over past few decades
  - Issues of communication complexity, computational complexity, time complexity, fault tolerance, …
- Many excellent books on this topic
  - Dissemination of Information in Communication Networks, Hromkovic et. al., 2005
  - Communication Complexity, Kushilevitz and Nisan, 1997
  - **Distributed Algorithms**, Lynch, 1997
  - Elements of Distributed Computing, Garg, 2002
  - Parallel and Distributed Computation, Bertsekas and Tsitsiklis, 1997

<u>ا</u>

# Linear Iterative Schemes

- Investigate linear iterative schemes for distributed function calculation
  - At each time-step k, every node updates its value as

$$x_{i}[k+1] = w_{ii}x_{i}[k] + \sum_{j \in nbr(i)} w_{ij}x_{j}[k]$$

 Linear iterative schemes extensively studied in control literature in order to obtain asymptotic consensus

For all i, 
$$\lim_{k\to\infty} x_i[k] = g(x_1[0], \dots, x_N[0])$$

- Results derived using eigenvalue/eigenvector analysis
- Survey papers:
  - Olfati-Saber, Fax & Murray, Proc. IEEE, 2007
  - Ren, Beard & Atkins, Proc. ACC, 2005

6

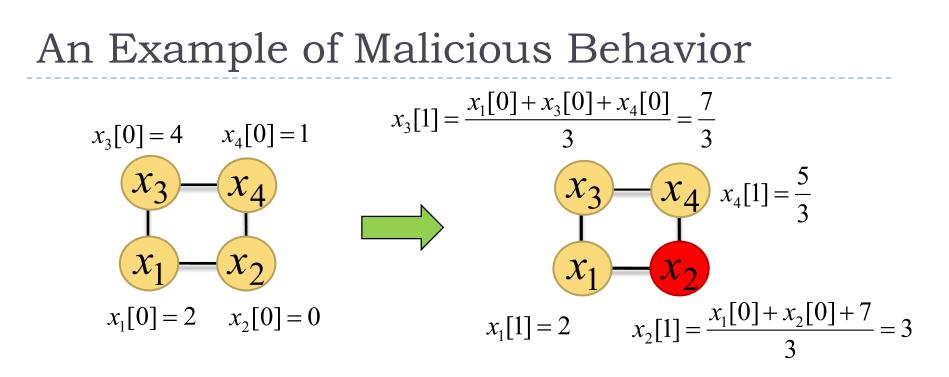
Finite-Time Distributed Function Calculation via Linear Iterations

- Linear iterative strategy allows distributed calculation of arbitrary functions in finite-time
- Theorem ([1]): If the network is strongly connected, then for almost any choice of weights, each node x<sub>i</sub> can calculate any arbitrary function of the initial values after running the linear iteration for at most N-deg(i) time-steps.
  - "Almost any": For all but a set of measure zero
  - Result obtained by viewing linear iteration from perspective of **observability theory**

7 [1] Sundaram & Hadjicostis, Distributed Function Calculation and Consensus Using Linear Iterative Strategies, IEEE Journal on Selected Areas in Communications, May 2008

## Potential for Incorrect Behavior

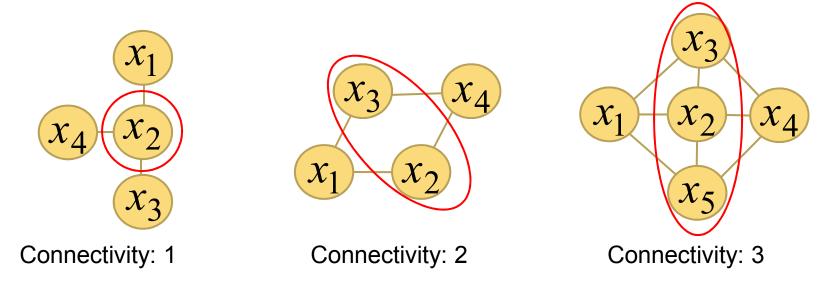
- What if some nodes do not follow the linear iterative strategy?
  - Faulty nodes: update their values incorrectly due to hardware faults, or stop working altogether
  - Malicious nodes: willfully update their values incorrectly (perhaps in a coordinated manner) in an attempt to prevent other nodes from calculating functions



- Node  $x_2$  is malicious and pretends  $x_4[0] = 7$  in its update
- Node x<sub>3</sub> behaves correctly and uses x<sub>4</sub>[0] = 1 in its update
- Node x<sub>1</sub> doesn't know who to believe
  - i.e., is node  $x_4$ 's value equal to 7 or 1?
- Node x<sub>1</sub> needs another node to act as tie-breaker

# Key Concept: Graph Connectivity

The connectivity of a graph is the maximum number of vertex disjoint paths between any two nodes



- Menger's Theorem: If a graph has connectivity κ, there is a set of κ nodes that disconnects the graph
  - This set of nodes is called a vertex cut

10

# Main Result

- We show:
  - If network connectivity is 2f or less, f malicious nodes can update their values so that one or more nodes cannot calculate an arbitrary function of the initial values

- In Part II, we prove the converse result:
  - If network connectivity is 2f+1 or more, linear iteration is robust to f or fewer malicious nodes
  - Any node can calculate any function via linear iteration

\_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_

Modeling Faulty/Malicious Behavior

Correct update equation for node x<sub>i</sub>:

$$x_i[k+1] = w_{ii}x_i[k] + \sum_{j \in nbr(i)} w_{ij}x_j[k]$$

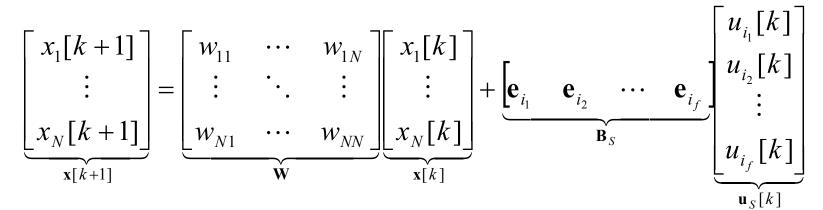
- Faulty or malicious update by node  $x_i$ :  $x_i[k+1] = w_{ii}x_i[k] + \sum_{j \in nbr(i)} w_{ij}x_j[k] + u_i[k]$ 
  - u<sub>i</sub>[k] is an additive error at time-step k
  - Allows x<sub>i</sub> to update its value in a completely arbitrary manner!

\_\_\_\_\_

#### Linear Iteration with Faulty/Malicious Nodes

• Let S = { $x_{i_1}, x_{i_2}, ..., x_{i_f}$ } be set of faulty/malicious nodes

Update equation for entire system:

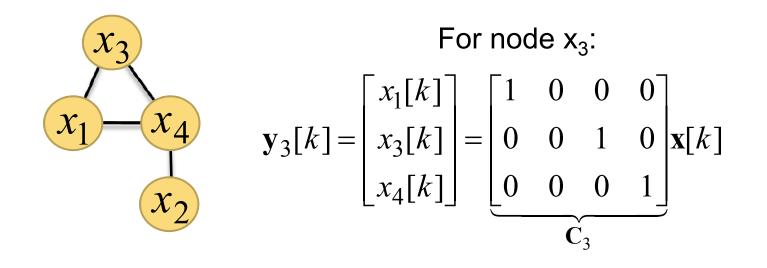


Weight w<sub>ij</sub> = 0 if node x<sub>j</sub> is not a neighbor of node x<sub>i</sub>

- e<sub>i</sub> is the N x 1 vector with 1 in j-th position and 0's elsewhere
- Note: the nodes in S can conspire to update their values in a coordinated manner!

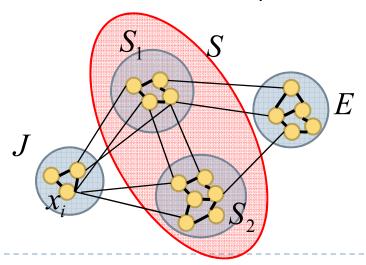
# Modeling the Values Seen by Each Node

- At each time-step, each node has access to values of its neighbors (and its own value)
- Let y<sub>i</sub>[k] =C<sub>i</sub>x[k] denote values seen by node x<sub>i</sub> at time-step k
  - Rows of C<sub>i</sub> index portions of x[k] available to x<sub>i</sub>

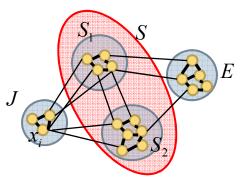


# Partitioning the Distributed System

- Let  $S_1$  and  $S_2$  be disjoint sets of nodes, such that  $S = S_1 \bigcup S_2$  is a vertex cut
  - E: set of nodes that do not have a path to node x<sub>i</sub> when the nodes in S are removed
  - J: set of nodes that have a path to node x<sub>i</sub> when the nodes in S are removed (note: x<sub>i</sub> ∈ J)
- Note: All information about nodes in E must go through either S<sub>1</sub> or S<sub>2</sub> in order to reach x<sub>i</sub>



# Partitioning the Linear Iterative Model



- Assume (without loss of generality) that nodes are ordered as  $\mathbf{x}[k] = \begin{bmatrix} \mathbf{x}_J^T[k] & \mathbf{x}_{S_1}^T[k] & \mathbf{x}_{S_2}^T[k] & \mathbf{x}_E^T[k] \end{bmatrix}^T$
- Since no node in J has an edge from a node in E, weight matrix for linear iteration has the form

$$\mathbf{W} = \begin{bmatrix} W_{11} & W_{12} & W_{13} & 0 \\ W_{21} & W_{22} & W_{23} & W_{24} \\ W_{31} & W_{32} & W_{33} & W_{34} \\ W_{41} & W_{42} & W_{43} & W_{44} \end{bmatrix}$$

16

# Disrupting the System

#### Let a and b be two different vectors

#### Scenario 1: **x**<sub>E</sub>[0] = **a** and nodes in S<sub>1</sub> maliciously update their values with additive error

$$\mathbf{u}_{S_1}[k] = W_{24}W_{44}^k(\mathbf{b} - \mathbf{a})$$

#### Scenario 2:

 $\mathbf{x}_{E}[0] = \mathbf{b}$  and nodes in S<sub>2</sub> maliciously update their values with additive error

$$\mathbf{u}_{S_2}[k] = W_{34}W_{44}^k(\mathbf{a} - \mathbf{b})$$

- We show values seen by node x<sub>i</sub> at each time-step under either scenario are exactly the same
- Node x<sub>i</sub> cannot distinguish malicious behavior by nodes in S<sub>1</sub> from malicious behavior by nodes in S<sub>2</sub>

## Sketch of Proof

Set of all values seen by node x<sub>i</sub> over L+1 time-steps:

$$\begin{bmatrix} \mathbf{y}_{i}[0] \\ \mathbf{y}_{i}[1] \\ \mathbf{y}_{i}[2] \\ \vdots \\ \mathbf{y}_{i}[L] \end{bmatrix} = \begin{bmatrix} \mathbf{C}_{i} \\ \mathbf{C}_{i} \mathbf{W} \\ \mathbf{C}_{i} \mathbf{W}^{2} \\ \vdots \\ \mathbf{C}_{i} \mathbf{W}^{2} \\ \vdots \\ \mathbf{C}_{i} \mathbf{W}^{2} \\ \mathbf{W}^{i} \begin{bmatrix} 0 \\ \mathbf{C}_{i} \mathbf{B}_{S} \\ \mathbf{C}_{i} \mathbf{C}_{i} \mathbf{B}_{S} \\ \mathbf{C}_{i} \mathbf{C}_{i} \mathbf{B}_{S} \\ \mathbf{C}_{i} \mathbf{C}_{i} \mathbf{C}_{i} \mathbf{B}_{S} \\ \mathbf{C}_{i} \mathbf{C}$$

 <u>Theorem</u>: Columns of O<sub>i,L</sub> corresponding to nodes in E can be written as a linear combination of the columns in M<sup>S1</sup><sub>i,L</sub> and M<sup>S2</sup><sub>i,L</sub>:

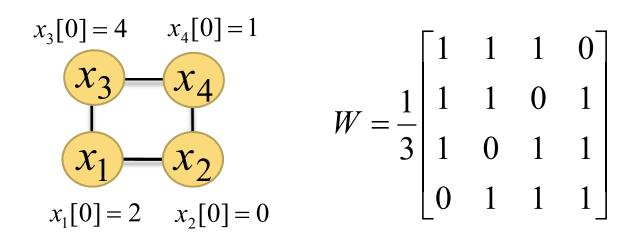
$$O_{i,L}\begin{bmatrix} 0\\0\\0\\I_{|E|}\end{bmatrix} = M_{i,L}^{S_1}\begin{bmatrix} W_{24}\\W_{24}W_{44}\\\vdots\\W_{24}W_{44}\end{bmatrix} + M_{i,L}^{S_2}\begin{bmatrix} W_{34}\\W_{34}W_{44}\\\vdots\\W_{34}W_{44}\end{bmatrix}$$

•  $x_i$  can be confused if nodes in  $S_1$  or  $S_2$  choose their updates properly

Disruption with f Nodes in Networks with Connectivity 2f or Less

- Only requirement for node x<sub>i</sub> to be confused was that S<sub>1</sub> and S<sub>2</sub> together form a vertex cut
- If graph has connectivity 2f or less, can find sets S<sub>1</sub> and S<sub>2</sub> so that each set has at most f nodes
- Thus, if graph has connectivity 2f or less, f malicious nodes can update their values so that some nodes cannot calculate a function of other values in the system

# Example



- Connectivity of above network is 2
  - Linear iteration can be disrupted by one malicious node
- Consider vertex cut {x<sub>2</sub>, x<sub>3</sub>}
  - Malicious behavior by x<sub>2</sub> can be confused with malicious behavior by x<sub>3</sub>

Example (cont.)

Partition the weight matrix:

$$W = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} W_{11} & W_{12} & W_{13} & 0 \\ W_{21} & W_{22} & W_{23} & W_{24} \\ W_{31} & W_{32} & W_{33} & W_{34} \\ W_{41} & W_{42} & W_{43} & W_{44} \end{bmatrix}$$

- Node x<sub>2</sub> wants to pretend that x<sub>4</sub>[0] = 7 (actual value is x<sub>4</sub>[0] = 1)
- At each time-step, node x<sub>2</sub> commits an additive error of u<sub>2</sub>[k] = W<sub>24</sub>(W<sub>44</sub>)<sup>k</sup>(7-1) = 2(3)<sup>-k</sup>:

$$x_{2}[k+1] = \frac{1}{3}x_{1}[k] + \frac{1}{3}x_{2}[k] + \frac{1}{3}x_{4}[k] + 2(3)^{-k}$$

Example (cont.)

Values seen by node x<sub>1</sub> during linear iteration:

$$\mathbf{y}_{1}[0] = \begin{bmatrix} 2\\0\\4 \end{bmatrix}, \quad \mathbf{y}_{1}[1] = \begin{bmatrix} 2\\3\\2.333 \end{bmatrix}, \quad \mathbf{y}_{1}[2] = \begin{bmatrix} 2.444\\2.889\\2 \end{bmatrix}, \quad \bullet \bullet$$

These are same values seen by node x<sub>1</sub> if x<sub>4</sub>[0] = 7, and node x<sub>3</sub> maliciously updates values as

$$x_{3}[k+1] = \frac{1}{3}x_{1}[k] + \frac{1}{3}x_{3}[k] + \frac{1}{3}x_{4}[k] - 2(3)^{-k}$$

Node x<sub>1</sub> cannot determine if x<sub>4</sub>[0] = 1 or x<sub>4</sub>[0] = 7
Independent of the number of iterations!

\_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_

#### Summary

- The connectivity of the network characterizes the robustness of linear iterative schemes to malicious behavior by subsets of nodes
  - If the connectivity is 2f or less, f malicious nodes can coordinate to update their values so that some other nodes cannot calculate certain functions
- In Part II: Show that linear iteration is robust to f malicious nodes if network connectivity is 2f+1 or more (for almost any choice of weights)