Finite-Time Distributed Consensus in Graphs with Time-Invariant Topologies

Shreyas Sundaram and Christoforos N. Hadjicostis

Coordinated Science Laboratory

and

Department of Electrical and Computer Engineering

University of Illinois at Urbana-Champaign

Overview

- Consider a network (directed or undirected) with nodes $\mathcal{X} = \{x_1, x_2, \dots, x_N\}$
- Each node can only receive information from its neighbors
- Each node *i* has some initial value $x_i[0]$
 - e.g., temperature measurement, position, vote, fault status, etc.
- **Consensus:** All nodes must calculate the same function of the initial values
 - e.g., average, max, min, mode, etc.
 - Studied for several decades (e.g., [Garg, Elements of Distributed Computing])

Linear Iterations for Consensus

- Here, we focus on linear iteration-based schemes
 - At each time-step, each node *i* updates its value to be a linear combination of itself and its neighbors:

$$x_i[k+1] = w_{ii}x_i[k] + \sum_{j \in \mathsf{nbrs}_i} w_{ij}x_j[k]$$

• Update equation for entire system:

- Constraint: $w_{ij} = 0$ if x_j is not a neighbor of x_i
- Asymptotic Consensus: Choose W so that $\lim_{k\to\infty} x[k] = \mathbf{1c}' x[0]$
 - 1 is column vector with all 1's, and \mathbf{c}' is some row vector

Convergence in Time-Invariant Graphs

- Linear iteration schemes well studied in control systems literature (e.g., survey papers [Ren, Beard, & Atkins, ACC'05], [Olfati-Saber, Fax, & Murray, *Proc. IEEE*, 2007])
- Necessary and sufficient conditions for $x[k] \rightarrow \mathbf{1c}' x[0]$ [Xiao & Boyd, 2004]:
 - W1 = 1, c'W = c'
 - All other eigenvalues of W must have magnitude strictly less than 1
- Rate of convergence given by second largest eigenvalue of W
 - Faster convergence → minimize second largest eigenvalue by choosing weights appropriately [Xiao & Boyd, 2004]
- Almost all existing methods only consider **asymptotic** convergence

Contribution: We show how to obtain **finite-time** consensus via linear iterations

Finite-Time Consensus via Linear Iterations

- Let W be any weight matrix providing asymptotic consensus (for now)
 - For simplicity, assume *W* is symmetric
- Denote distinct eigenvalues of W by $\lambda_1, \lambda_2, \ldots, \lambda_D$
- Minimal polynomial of *W*:

$$q(t) = (t - \lambda_1)(t - \lambda_2) \cdots (t - \lambda_D)$$
$$\equiv t^D + \alpha_{D-1}t^{D-1} + \cdots + \alpha_1t + \alpha_0$$

• Minimal polynomial satisfies q(W) = 0:

$$W^{D} + \alpha_{D-1}W^{D-1} + \dots + \alpha_{1}W + \alpha_{0}I = 0$$

• Using
$$x[k+r] = W^r x[k]$$
:
 $x[k+D] + \alpha_{D-1} x[k+D-1] + \dots + \alpha_1 x[k+1] + \alpha_0 x[k] = 0$
 $\Rightarrow x_i[k+D] + \alpha_{D-1} x_i[k+D-1] + \dots + \alpha_1 x_i[k+1] + \alpha_0 x_i[k] = 0$

Closed Form Expression for Consensus Value (1)

• Linear difference equation:

$$x_i[k+D] + \alpha_{D-1}x_i[k+D-1] + \dots + \alpha_1x_i[k+1] + \alpha_0x_i[k] = 0$$

• Take *z*-transform of above expression:

$$X_{i}(z) = \frac{\sum_{j=0}^{D-1} x_{i}[j] z^{D-j} + \alpha_{D-1} \sum_{j=0}^{D-2} x_{i}[j] z^{D-1-j} + \dots + \alpha_{1} z x_{i}[0]}{\underbrace{(z^{D} + \alpha_{D-1} z^{D-1} + \dots + \alpha_{1} z + \alpha_{0})}_{q(z)}}$$

- Roots of q(z) are eigenvalues of W
- W has a simple eigenvalue at 1, and all other eigenvalues inside unit circle
 - Poles of $(z-1)X_i(z)$ are stable
- Final value theorem:

$$\lim_{k \to \infty} x_i[k] = \lim_{z \to 1} (z - 1) X_i(z)$$

Closed Form Expression for Consensus Value (2)

• Consensus value for node $i, 1 \le i \le N$:

$$\lim_{k \to \infty} x_i[k] = \frac{\begin{bmatrix} x_i[D-1] & x_i[D-2] & \cdots & x_i[0] \end{bmatrix} \begin{bmatrix} 1 \\ 1 + \alpha_{D-1} \\ 1 + \alpha_{D-2} + \alpha_{D-1} \\ \vdots \\ 1 + \sum_{j=1}^{D-1} \alpha_j \end{bmatrix}}{\begin{bmatrix} 1 \\ 1 + \alpha_{D-1} \\ 1 + \alpha_{D-2} + \alpha_{D-1} \\ \vdots \\ 1 + \sum_{j=1}^{D-1} \alpha_j \end{bmatrix}}$$

Key Result:

Each node can calculate the consensus value after D time-steps as a linear combination of its own values over those time-steps

Example: The Network and Weights

- Consider example from [Xiao & Boyd, 2004]
- Weights on edges and nodes chosen to maximize asymptotic rate of convergence
- W has simple eigenvalue 1, with $W\mathbf{1} = \mathbf{1}, \ \frac{1}{8}\mathbf{1}'W = \frac{1}{8}\mathbf{1}'$

Example: Finding the Coefficient Vector

- Eigenvalues of W are $\{1, 0.6, 0.4, 0, 0, 0, -0.4, -0.6\}$
- Minimal polynomial of *W* is

$$q(t) = (t - 1)(t - 0.6)(t - 0.4)t(t + 0.4)(t + 0.6)$$

= $t^6 - t^5 - 0.52t^4 + 0.52t^3 + 0.0576t^2 - 0.0576t$
= $t^6 + \alpha_5 t^5 + \alpha_4 t^4 + \alpha_3 t^3 + \alpha_2 t^2 + \alpha_1 t + \alpha_0$

- Minimal polynomial has degree 6, so nodes can reach consensus in 6 time-steps
 Define wester
- Define vector

$$S = \begin{bmatrix} 1 \\ 1 + \alpha_5 \\ 1 + \alpha_4 + \alpha_5 \\ 1 + \alpha_3 + \alpha_4 + \alpha_5 \\ 1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 \\ 1 + \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ -0.52 \\ 0 \\ 0.0576 \\ 0 \end{bmatrix}$$

Example: Running the Linear Iteration

• Suppose initial values of the nodes are

 $x[0] = \begin{bmatrix} 1.3889 & 2.0277 & 1.9872 & 6.0379 & 2.7219 & 1.9881 & 0.1527 & 7.4679 \end{bmatrix}'$

• Run iteration x[k+1] = Wx[k] for 6 time-steps:

 $\begin{bmatrix} x[5] & x[4] & x[3] & x[2] & x[1] & x[0] \end{bmatrix} =$

3.1148	2.7022	3.2728	2.2782	3.2039	1.3889
2.9303	3.0128	2.8791	2.8445	2.8521	2.0277
2.9240	3.0825	2.8395	3.2797	2.6049	1.9872
2.9050	3.0507	2.7866	3.1915	2.4579	6.0379
2.9050	3.0507	2.7866	3.1915	2.4579	2.7219
2.9050	3.0507	2.7866	3.1915	2.4579	1.9881
3.1705	2.6705	3.6210	2.0804	5.3800	0.1527
2.9177	3.1521	2.8000	3.7149	2.3576	7.4679

Example: Calculating the Consensus Value

• Each node *i* calculates consensus value as

$$\frac{\begin{bmatrix} x_i[5] & x_i[4] & x_i[3] & x_i[2] & x_i[1] & x_i[0] \end{bmatrix} S}{\begin{bmatrix} 1 & 1 & 1 & 1 & 1 \end{bmatrix} S} = 2.9715$$

Question: Do optimal asymptotic weights produce minimal-time consensus?

- Above weights produce W with eigenvalues $\{1, \frac{3}{4}, \frac{3}{4},$
- These weights provide finite-time consensus in 4 time-steps, but are worse for asymptotic consensus!

Question: Can we use more general weight matrices to obtain finite-time consensus?

Theorem:

• Suppose W has a simple eigenvalue μ , with

$$W\mathbf{d} = \mu\mathbf{d}, \ \mathbf{c}'W = \mu\mathbf{c}'$$

where ${\bf d}$ has all entries nonzero

- Let D denote degree of minimal polynomial of W
- Then there exists a set of coefficients $\gamma_0, \gamma_1, \ldots, \gamma_{D-1}$ for each node *i* such that

$$\mathbf{c}' x[0] = \gamma_{D-1} x_i [D-1] + \gamma_{D-2} x_i [D-2] + \dots + \gamma_0 x_i [0]$$

• These coefficients are obtained from coefficients of minimal polynomial

Note: Magnitude of eigenvalues does not matter!

Choosing the Weight Matrix

- Conditions are satisfied by any *W* providing asymptotic convergence
 - Various methods of choosing such weights in literature
- However, other interesting choices also exist, such as

$$w_{ij} = \begin{cases} 1, & \text{if } x_j \text{ is a neighbor of } x_i \\ 0, & \text{if } x_j \text{ is not a neighbor of } x_i \\ N - \sum_{i \neq j} w_{ij}, & \text{if } i = j. \end{cases}$$

- This choice produces $\mu = N$, $\mathbf{d} = \mathbf{1}$, $\mathbf{c}' = \frac{1}{N}\mathbf{1}'$
- W consists of only integers, possibly allowing easier computations

Finding the Minimal Polynomial: Decentralized Method

- Nodes require minimal polynomial q(t) to calculate coefficients for finite-time consensus
- Can the nodes calculate the minimal polynomial in a decentralized manner?

• Suppose
$$q(t) = t^{D} + \alpha_{D-1}t^{D-1} + \dots + \alpha_{0}$$

• We saw earlier that

$$0 = x_i[D] + \alpha_{D-1} x_i[D-1] + \dots + \alpha_0 x_i[0]$$

= $\begin{bmatrix} x_i[D] & x_i[D-1] & x_i[D-2] & \dots & x_i[1] & x_i[0] \end{bmatrix} \begin{bmatrix} 1 \\ \alpha_{D-1} \\ \vdots \\ \alpha_0 \end{bmatrix}$

Idea: Nodes run several linear iterations and find coefficients of minimal polynomial from null space of their values

Finding the Minimal Polynomial: Decentralized Method

- Nodes perform N runs of linear iteration with different sets of initial conditions
- Let $x_{i,j}[k]$ denote node *i*'s value at time-step k of the *j*'th run
- Node i finds smallest D for which

$$\begin{bmatrix} x_{i,1}[D] & x_{i,1}[D-1] & \cdots & x_{i,1}[0] \\ x_{i,2}[D] & x_{i,2}[D-1] & \cdots & x_{i,2}[0] \\ \vdots & \vdots & \ddots & \vdots \\ x_{i,N}[D] & x_{i,N}[D-1] & \cdots & x_{i,N}[0] \end{bmatrix} \begin{bmatrix} 1 \\ \alpha_{D-1} \\ \vdots \\ \alpha_{0} \end{bmatrix} = 0$$

has nontrivial solution

- If the N initial conditions are linearly independent, coefficients of q(t) are given by above equation
- Node *i* can now obtain coefficients for finite time consensus

Summary

- Can obtain distributed consensus after running linear iterations for a finite number of time-steps
- Minimal polynomial of weight matrix provides coefficients for consensus value
- Nodes can learn minimal polynomial in a decentralized manner
- Eigenvalues of weight matrix can have arbitrary magnitudes

Building on these results and using concepts from observability theory, we have obtained the following extensions:

- Arbitrary consensus functions: Nodes can reach consensus on any arbitrary function of initial values in finite time
- Function calculation: Different nodes can calculate different functions of initial values
- Noisy consensus: Nodes can calculate bounded variance estimates of consensus value in the presence of communication and update noise
- **Fault tolerance:** Despite nodes that update their values erroneously or maliciously, other nodes can still reach consensus on the desired function

Open problems:

 minimal-time consensus, time-varying graphs, quantized consensus via linear iterations, trust assessment, ...