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Abstract— We present a method for constructing linear
minimum-variance unbiased state estimators for discrete-time
linear stochastic systems with unknown inputs. Our design
provides a characterization of estimators with delay, which
eases the established necessary conditions for existence of
unbiased estimators with zero-delay. A consequence of using
delayed estimators is that the noise affecting the system becomes
correlated with the estimation error. We handle this correlation
by increasing the dimension of the estimator appropriately.

I. INTRODUCTION

In practice, it is often the case that a dynamic system can
be modeled as having unknown inputs. When the unknown
inputs are assumed to have some defined structure (such
as being bounded in norm), robust filtering techniques have
been developed to estimate the state of the system [1]. Re-
searchers have also proposed methods to optimally estimate
the system state when the unknown inputs are completely
unconstrained [2], [3], [4], [5]. These latter works revealed
that the system must satisfy certain strict conditions in order
to reject the unknown inputs. Furthermore, it was shown
in [5] that this decoupling might force the system noise to
become correlated with the estimation error (i.e., the noise
behaves as if it is colored). In [4], Saberi et al. showed
through a geometric approach that allowing delays in the
estimator can relax the necessary conditions for optimal
estimation. Delayed estimators were also studied in [6], but
the design procedure outlined in that paper did not fully
utilize the freedom in the estimator gain matrix, and ignored
the correlation between the noise and error [7].

In this paper, we study delayed estimators for linear
systems with (unconstrained) unknown inputs, and develop a
method to construct optimal linear estimators. More specifi-
cally, our goal is to estimate the entire system state through
linear recursive estimators that minimize the mean square
estimation error. In addition, we require that the estimator
be unbiased (i.e., the expected value of the estimation error
must be zero). Our approach is an extension of earlier work
on observers for deterministic linear systems with unknown
inputs [8], [9]. The fact that we incorporate delays in our
design procedure allows us to construct optimal estimators
for a much larger class of systems than that considered
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by [2], [3], [5]. Our approach is purely algebraic and is
more direct than the method in [4], which first transforms
the estimator into a dual system and then uses techniques
from H2-optimal control in order to obtain the estimator
parameters. Finally, our design procedure avoids the problem
of colored noise described in [5] by increasing the dimension
of the estimator appropriately, and makes full use of the
freedom in the gain matrix, which produces better results
than the method in [6].

II. PRELIMINARIES

Consider a discrete-time stochastic linear system S of the
form

xk+1 = Axk + Buk + wk

yk = Cxk + Duk + vk , (1)

with state vector x ∈ R
n, unknown input u ∈ R

m, output
y ∈ R

p, and system matrices (A,B,C,D) of appropriate
dimensions. The noise processes wk and vk are assumed
to be uncorrelated, white, and zero mean, with covariance
matrices Qk and Rk respectively. Note that we omit known
inputs in the above equations for clarity of development. We
also assume without loss of generality that the matrix [ B

D ] is
full column rank. This assumption can always be enforced by
an appropriate transformation and renaming of the unknown
input signals. Note that no assumptions are made on the
distribution of the unknown inputs (and that is the reason
for distinguishing between uk and the noise vk and wk).

The response of system (1) over α+1 time units is given
by 


yk

yk+1

...
yk+α




︸ ︷︷ ︸
Yk:k+α

=




C
CA

...
CAα




︸ ︷︷ ︸
Θα

xk +




vk

vk+1

...
vk+α




︸ ︷︷ ︸
Vk:k+α

+




D 0 · · · 0
CB D · · · 0

...
...

. . .
...

CAα−1B CAα−2B · · · D




︸ ︷︷ ︸
Mα




uk

uk+1

...
uk+α




︸ ︷︷ ︸
Uk:k+α

+




0 0 · · · 0
C 0 · · · 0
...

...
. . .

...
CAα−1 CAα−2 · · · C




︸ ︷︷ ︸
Mw,α




wk

wk+1

...
wk+α−1




︸ ︷︷ ︸
Wk:k+α−1

. (2)



The matrices Θα and Mα in the above equation can
be expressed in a variety of ways. We will be using the
following identities in our derivations:

Θα =
[

C
Θα−1A

]
=

[
Θα−1

CAα

]
, (3)

Mα =
[

D 0
Θα−1B Mα−1

]
=

[
Mα−1 0
Cζα−1 D

]
, (4)

where ζα−1 ≡
[
Aα−1B Aα−2B · · · B

]
.

In the rest of the paper, we will be using E{·} to denote
the expected value of a stochastic parameter. The notation
Ir represents the r × r identity matrix, and (·)T indicates
matrix transpose. We are now in place to proceed with the
construction of an estimator for the states in S.

III. UNBIASED ESTIMATION

Consider an estimator of the form

zk+1 = Azk + Kk (Yk:k+α − Θαzk) , (5)

where the nonnegative integer α is the estimator delay, and
the matrix Kk is chosen to (i) make the estimator unbiased
and (ii) minimize the mean square error between zk+1 and
xk+1. Note that for α = 0, the above estimator is in the
form of the optimal estimator for systems with no unknown
inputs [10]. Using (2), we obtain the estimation error as

ek+1 ≡ zk+1 − xk+1

= (A − KkΘα) zk + KkYk:k+α − Axk − Buk − wk

= (A − KkΘα) ek + KkVk:k+α + KkMαUk:k+α

− Buk + KkMw,αWk:k+α−1 − wk . (6)

In order for the estimator to be unbiased (i.e., E{ek} = 0
for all k, regardless of the values of the unknown inputs),
we require that

KkMα =
[
B 0 · · · 0

]
. (7)

The solvability of the above condition is given by the
following theorem.

Theorem 1: There exists a matrix Kk satisfying (7) if and
only if

rank [Mα] − rank [Mα−1] = m . (8)

Proof: There exists a Kk satisfying (7) if and only if
the row space of the matrix R ≡

[
B 0 · · · 0

]
is in the

space spanned by the rows of Mα. This is equivalent to the
condition rank

[
Mα

R

]
= rank [Mα]. Using (4) we get

rank

[
Mα

R

]
= rank


 D 0

Θα−1B Mα−1

B 0


 .

By our assumption that the matrix [ B
D ] has full column rank,

we get rank
[

Mα

R

]
= m + rank [Mα−1], thereby completing

the proof.
The result in the above theorem was also obtained in [6]

for the specific case of D = 0. Note that (8) is the condition

for inversion of the inputs with known initial state, as given
in [11]. If we set α = 1, condition (8) becomes

rank

[
D 0

CB D

]
= m + rank [D] ,

which is the well known necessary condition for unknown-
input observers and unbiased estimators that estimate xk+1

based on yk and yk+1 [3], [5]. This is a fairly strict condition,
and demonstrates the utility of a delayed estimator. When
designing such an estimator, one can start with α = 0 and
increase α until a value is found that satisfies (8). An upper
bound on α is provided by the following theorem.

Theorem 2: Let q be the dimension of the nullspace of
D. Then the delay of the unbiased estimator (5) will not
exceed α = n − q + 1 time-steps. If (8) is not satisfied for
α = n − q + 1, then unbiased estimation of all the states is
not possible with an estimator of the form given in (5).

The proof of the above theorem is immediately obtained
by making use of the following result from [12], which
considered the problem of system invertibility.

Lemma 1: Let q be the dimension of the nullspace of
D. Then there exists an α satisfying (8) if and only if
rank [Mn−q+1] − rank [Mn−q] = m.

It is apparent from (6) that for α > 0, the error will
generally be a function of multiple time-samples of the noise
processes wk and vk. In other words, the noise becomes
colored from the perspective of the error. Darouach et al.
studied this situation for α ∈ {0, 1} in [5], and proposed
certain strict conditions for the existence of unbiased optimal
estimators with dimension n. Consequently, the estimators
proposed in that paper can only be applied to a restricted
class of systems. In the study of Kalman filters for systems
with no unknown inputs, it has been shown that colored noise
can be handled by increasing the dimension of the estimator
[10]. In the next section, we will apply this technique to
construct an optimal estimator for the system in (1). The
resulting estimator can be applied to a much larger class of
systems than the estimators presented in [5], [2], [3].

IV. OPTIMAL ESTIMATOR

If Theorem 1 is satisfied for α = 0, the noise in (6) will
not be colored, and an optimal estimator of dimension n can
be constructed. The resulting estimator is called an optimal
predictor in [5], and can be found by using the method in
that paper. To construct an optimal estimator for α > 0, we
will rewrite system S to obtain a new system S̄ given by

x̄k+1 = Āx̄k + B̄uk + B̄nnk

yk = C̄x̄k + Duk , (9)

where

x̄k =


 xk

Wk:k+α−2

Vk:k+α−1


 , nk =

[
wk+α−1

vk+α

]
,

B̄ =
[

BT 0 · · · 0 0 0 0 · · · 0 0
]T

,

B̄n =
[

0 0 · · · 0 In 0 0 · · · 0 0
0 0 · · · 0 0 0 0 · · · 0 Ip

]T

,



Ā =




A In 0 · · · 0 0 0 0 · · · 0
0 0 In · · · 0 0 0 0 · · · 0
...

...
...

. . .
...

...
...

...
. . .

...
0 0 0 · · · In 0 0 0 · · · 0
0 0 0 · · · 0 0 0 0 · · · 0
0 0 0 · · · 0 0 Ip 0 · · · 0
0 0 0 · · · 0 0 0 Ip · · · 0
...

...
...

. . .
...

...
...

...
. . .

...
0 0 0 · · · 0 0 0 0 · · · Ip

0 0 0 · · · 0 0 0 0 · · · 0




C̄ =
[

C 0 · · · 0 0 Ip 0 · · · 0 0
]

.

Note that the state vector in this new system has dimension
n̄ = α(n + p) for α > 0. From (2), the output of this
augmented system over α + 1 time-steps is given by

Yk:k+α =


C 0 · · · 0 Ip 0 · · · 0
CA C · · · 0 0 Ip · · · 0

...
...

. . .
...

...
...

. . . 0
CAα−1 CAα−2 · · · C 0 0 · · · Ip

CAα CAα−1 · · · CA 0 0 · · · 0




︸ ︷︷ ︸
Θ̄α

x̄k

+ MαUk:k+α +
[

0 0
C Ip

]
︸ ︷︷ ︸

Mn,α

nk . (10)

We notice that a portion of this equation is independent
of the noise vector nk, and so we can obtain some linear
functions of the state vector x̄k directly from the output. We
will use the following definition and theorem to characterize
these linear functions.

Definition 1 (Rank-d Linear Functional): Let Γ be a d×n̄
matrix with rank d. Then the quantity Γx̄k will be termed a
rank-d linear functional of the state vector x̄k.

Theorem 3: For system (9) with response over α+1 time-
steps given by (10), let βα be the dimension of the left
nullspace of Mα−1. Then it is possible to obtain a rank-
βα linear functional of x̄k directly from the output of the
system.

Proof: Let P̄ be a matrix whose rows form a basis for
the left nullspace of Mα−1. Note that the dimension of P̄ is
equal to

βα = αp − rank[Mα−1] . (11)

Define the matrix P =
[
P̄ 0

]
, where the zero matrix has

p columns. Using (4), we see that PMα = 0, and left-
multiplying (10) by P , we obtain PYk:k+α = PΘ̄αx̄k. From
the definition of Θ̄α in (10), it is apparent that PΘ̄α is full
row rank (with rank βα), and so the theorem is proved.

To estimate the remaining states of x̄k, we choose a matrix
H such that the matrix

T ≡
[
PΘ̄α

H

]
(12)

is invertible. In particular, P and H can be chosen so that T
is orthogonal. Now consider the system Ŝ that is obtained

by performing the similarity transformation x̂k =
[
x̂1,k

x̂2,k

]
=

T x̄k, where x̂1,k represents the first βα states in x̂k. The
evolution of the state vector in this system is given by[

x̂1,k+1

x̂2,k+1

]
=

[
A11 A12

A21 A22

]
︸ ︷︷ ︸

T ĀT T

[
x̂1,k

x̂2,k

]
+

[
PΘ̄α

H

]
B̄uk

+
[
PΘ̄α

H

]
B̄nnk .

From Theorem 3, we see that x̂1,k is directly available from
the output of the system over α+1 time-steps, since x̂1,k =
PΘ̄αx̄k = PYk:k+α. Therefore, we have to construct an
estimator for x̂2,k, which evolves according to the equation

x̂2,k+1 = A21x̂1,k + A22x̂2,k + HB̄uk + HB̄nnk

= A22x̂2,k + A21PYk:k+α + HB̄uk + HB̄nnk .
(13)

Let U be a matrix such that

[
P̄
U

]
is square and invertible.

Define

G ≡
[
U 0
0 Ip

]
, J ≡

[
P
G

]
. (14)

Using (3), (4) and (10), we note that

JMα =
[

0
GMα

]
, JMn,α =

[
0

GMn,α

]
,

J Θ̄αT T =
[
Iβα

0
L1 L2

]
,

where [
L1 L2

]
= GΘ̄αT T . (15)

Left-multiplying (10) by J , we get[
P
G

]
Yk:k+α =

[
Iβα

0
L1 L2

]
x̂k +

[
0

GMα

]
Uk:k+α

+
[

0
GMn,α

]
nk.

We see that the first βα rows of the above equation do not
contain any information about x̂2,k. The remaining rows can
be written as

(G − L1P) Yk:k+α = L2x̂2,k + GMαUk:k+α + GMn,αnk .
(16)

To estimate x̂2,k, we use (13) and (16) to construct an
estimator of the form

zk+1 = A22zk + A21PYk:k+α

+ Kk ((G − L1P) Yk:k+α − L2zk) , (17)

where Kk is chosen to (i) make the estimator unbiased
and (ii) minimize the mean square error between zk+1 and



x̂2,k+1. Using (13) and (16), we find the error between the
two quantities to be

ek+1 ≡ zk+1 − x̂2,k+1

= (A22 − KkL2) ek +
(
KkGMn,α −HB̄n

)
nk

+
(
KkGMα −

[
HB̄ 0 · · · 0

])
Uk:k+α . (18)

Note that the noise in (18) is no longer colored from the
perspective of the error, allowing us to construct an optimal
estimator. For an unbiased estimator (i.e., E{ek} = 0), we
require that

KkGMα =
[
HB̄ 0 · · · 0

]
. (19)

The solvability of the above condition is given by the
following theorem.

Theorem 4: There exists a matrix Kk satisfying (19) if
and only if rank [Mα] − rank [Mα−1] = m.

Proof: Arguing as in the proof of Theorem 1, there
exists a Kk satisfying (19) if and only if the row space of
the matrix S ≡

[
HB̄ 0 · · · 0

]
is in the space spanned

by the rows of GMα. This is equivalent to the condition

rank

[
GMα

S

]
= rank [GMα] . (20)

Since PMα = 0, we use (4) and (14) to get

rank

[
GMα

S

]
= rank


PMα

GMα

S


 = rank

[
Mα

S

]

= rank


 D 0

Θ̄α−1B̄ Mα−1

HB̄ 0


 .

Left-multiplying the second row in the above expression by
P̄ and inserting the result into the matrix, we obtain

rank

[
GMα

S

]
= rank




D 0
Θ̄α−1B̄ Mα−1

P̄Θ̄α−1B̄ 0
HB̄ 0


 .

Since P =
[
P̄ 0

]
, we have P̄Θ̄α−1 = PΘ̄α. This, along

with the definition of T in (12) and our assumption that the
matrix [ B

D ] has full column rank, gives us

rank

[
GMα

S

]
= rank


 D 0

Θ̄α−1B̄ Mα−1

B̄ 0




= m + rank [Mα−1] .

Finally, we note that rank[GMα] = rank[JMα] = rank[Mα]
in (20), and this concludes the proof.

The condition in the above theorem is the same as the one
in Theorem 1. This means that the upper bound on the delay
provided by Theorem 2 also applies to the reduced order
estimator in (17).

To solve (19), we note that if the condition in Theorem 4 is
satisfied, then the rank of GMα will also be m+rank[Mα−1].
Let N be a matrix whose rows form a basis for the left

nullspace of the last αm columns of GMα. In particular, we
can assume without loss of generality that N satisfies

NGMα =
[

0 0
Im 0

]
. (21)

Note that GMα has (α + 1)p − βα rows, and the last αm
columns of the matrix have the same rank as Mα−1. Using
the expression for βα given in (11), the number of rows in
N is given by

dim (N ) = (α + 1)p − βα − rank[Mα−1] = p .

From (19), we see that Kk must be of the form

Kk = K̂kN (22)

for some K̂k =
[
K̂1,k K̂2,k

]
, where K̂1,k has p − m

columns and K̂2,k has m columns. Equation (19) then
becomes [

K̂1,k K̂2,k

] [
0 0

Im 0

]
=

[
HB̄ 0

]
, (23)

from which it is obvious that K̂2,k = HB̄ and K̂1,k is a free
matrix.

Returning to equation (18), define[
Φ1

Φ2

]
≡ NL2,

[
Ψ1

Ψ2

]
≡ NGMn,α , (24)

where Φ2 and Ψ2 have m rows each. Substituting (22) into
(18), the expression for the estimation error can be written
as

ek+1 =
((

A22 −HB̄Φ2

)
− K̂1,kΦ1

)
ek

+
(
H

(
B̄Ψ2 − B̄n

)
+ K̂1,kΨ1

)
nk . (25)

Denoting

A ≡ A22 −HB̄Φ2, B ≡ H
(
B̄Ψ2 − B̄n

)
,

Πk ≡ E{nknT
k } =

[
Qk+α−1 0

0 Rk+α

]
, (26)

we use (25) to obtain the error covariance matrix

Σk+1 ≡ E{ek+1e
T
k+1}

= AΣkAT + BΠkBT − K̂1,k

(
AΣkΦT

1 − BΠkΨT
1

)T

−
(
AΣkΦT

1 − BΠkΨT
1

)
K̂T

1,k

+ K̂1,k

(
Φ1ΣkΦT

1 + Ψ1ΠkΨT
1

)
K̂T

1,k . (27)

The matrix K̂1,k must be chosen to minimize the mean
square error (or equivalently, the trace of the error covariance
matrix). Recall from the definition of K̂k in (22) that K̂1,k

will have p − m columns. This means that there will be no
freedom to minimize the mean square error if the number of
outputs is equal to the number of unknown inputs. If p > m,
we take the gradient of (27) with respect to K̂1,k and set it
equal to zero to obtain the optimal gain as

K̂1,k =
(
AΣkΦT

1 − BΠkΨT
1

) (
Φ1ΣkΦT

1 + Ψ1ΠkΨT
1

)−1
.

(28)



Substituting this expression into (27), we get the optimal
covariance update equation to be

Σk+1 = AΣkAT + BΠkBT

−
(
AΣkΦT

1 − BΠkΨT
1

) (
Φ1ΣkΦT

1 + Ψ1ΠkΨT
1

)−1 ×(
AΣkΦT

1 − BΠkΨT
1

)T
. (29)

Note that equations (28) and (29) require the calculation of a
matrix inverse. If this inverse fails to exist, it can be replaced
with a pseudo-inverse [10].

We can now obtain an estimate of the original system
states as follows. Using (22) and (23), we get the estimator
gain in (17) to be

Kk =
[
K̂1,k HB̄

]
N , (30)

where K̂1,k is specified in (28). The estimator is initialized
with initial state z0 = HE{x̄0}, which will ensure that e0

will have an expected value of zero. The estimate of the
original state vector in (1) is given by

xk =
[
In 0

]
T T x̂k ≈

[
In 0

]
T T

[
PYk:k+α

zk

]
, (31)

and the estimation error for the state vector x̂k is given by

êk+1 ≡
[
PYk+1:k+α+1

zk+1

]
−

[
x̂1,k+1

x̂2,k+1

]
=

[
0

ek+1

]
,

where ek+1 is defined in (18). The error for the augmented
system in (9) (with state vector x̄k) can then be obtained as

ēk+1 = T T êk+1 = HT ek+1 , (32)

and the error covariance matrix of the original state vector
is given by

Σx,k+1 =
[
In 0

]
E{ēk+1ē

T
k+1}

[
In

0

]

=
[
In 0

]
HT Σk+1H

[
In

0

]
, (33)

where Σk+1 is given by (29). The trace of the above
covariance matrix will be the mean square estimation error
for the state vector in the original system. The initial error
covariance matrix for the update equation (29) can also be
obtained from (32) as Σ0 = HΣ̄0HT , where Σ̄0 ≡ E{ē0ē

T
0 }

is the initial error covariance matrix for the augmented
system in (9).

Remark 1: Note that the estimator uses the output of the
system up to time-step k + α in order to estimate xk. In the
Kalman filter literature, such estimators are known as fixed-
lag smoothers [10], where a lag of α is used to obtain a better
estimate of the state xk−α (i.e., to reduce the mean square
estimation error). In contrast, for the systems considered in
this paper (which have unknown inputs), delays are generally
necessary in order to ensure that the estimate is unbiased.

V. DESIGN PROCEDURE

We now summarize the steps that can be used in designing
a delayed estimator for the system given in (1).

1) Find the smallest α such that rank[Mα] −
rank [Mα−1] = m. If the condition is not satisfied
for α = n − q + 1 (where q is the dimension of
the nullspace of D), it is not possible to obtain an
unbiased estimate of the entire system state.

2) Construct the augmented system given in (9).
3) Choose P =

[
P̄ 0

]
and H so that T =

[PΘ̄α

H
]

is
orthogonal, and P̄ is a basis for the left nullspace of
Mα−1. Also choose U and form the matrix G given in
(14).

4) Find the rank-p matrix N satisfying (21).
5) Form the matrices L1, L2,

[
Φ1
Φ2

]
, and

[
Ψ1
Ψ2

]
from (15)

and (24).
6) At each time-step k, calculate K̂1,k using equation

(28), and update the error covariance matrix using
equation (29).

7) Use (30) to obtain the estimator gain Kk.
8) The final estimator is given by equation (17). The

estimate of the original state vector is given by (31),
with error covariance matrix given by (33).

VI. EXAMPLES

A. Example 1

Consider the system given by the matrices

A =
[
0.1 1
0 0.2

]
, B =

[
1 1
0 1

]
, Qk = 0.01I2 ,

C =
[

0 1
1 1

]
, D =

[
0 0
0 1

]
, Rk = 0.04I2 .

It is found that condition (8) holds for α = 2, so our
estimator must have a minimum delay of two time-steps.
The state and noise vectors in the augmented system will be

x̄k =
[
xT

k wT
k vT

k vT
k+1

]T
, nk =

[
wk+1

vk+2

]
.

Using Theorem 1, we find βα = 2 and choose

P̄ =
[

0.64 −0.34 0.34 0
−0.36 −0.34 0.34 0

]
, U =

[
0 1 1 0
0 0 0 1

]
,

and

H =




0 0 1 0 0 0 0 0
0.4 0.13 0 0.85 −0.13 0.15 −0.15 0
0.4 −0.64 0 −0.03 0.64 0.03 −0.03 0

−0.4 −0.13 0 0.15 0.13 0.85 0.15 0
0.4 0.13 0 −0.15 −0.13 0.15 0.85 0

0 0 0 0 0 0 0 1


 .

The matrix N in (21) is then given by N =
[−0.9 1 −1 0

0.5 0 0 0

]
.

We use (15) to obtain the matrices L1 and L2, and from
equation (24), we get[

Φ1

Φ2

]
=

[
1 −0.43 −0.39 −0.57 −1.23 1
0 0.73 −0.19 0.27 0.73 0

]
,



[
Ψ1

Ψ2

]
= N




0 0 0 0
0 0 0 0
0 1 1 0
1 1 0 1


 =

[
0 −1 −1 0
0 0 0 0

]
.

Since Φ2 and Ψ2 have m = 2 rows, Φ1 and Ψ1 are empty
matrices. Therefore, in this example, we have no freedom to
minimize the trace of the covariance matrix (i.e., all of the
freedom in the estimator gain is used to obtain an unbiased
estimate). Using (30) (and the fact that K̂1,k is the empty
matrix), we get the gain to be

Kk =




0 0 0 0
−0.1108 0.4436 −0.4436 0
−0.4888 0.4221 −0.4221 0

0.1108 −0.4436 0.4436 0
−0.1108 0.4436 −0.4436 0

0 0 0 0




.

The final estimator is given by (17) and an estimate of
the original system states can be obtained via equation
(31). To test this estimator, the system is initialized with
a random state with zero mean and covariance matrix I2.
A set of sinusoidal signals is used as the unknown inputs
to the system. The estimator is initialized with an initial
state of zero, and the resulting estimates are shown in
Fig. 1. Note that the estimated state should technically be
delayed by two time-steps (since our estimator has a delay
of α = 2), but we have shifted the estimate forward for
purposes of comparison. After allowing equation (29) to run
for several time-steps, we find the error covariance matrix
for the original system state (equation (33)) converges to

Σx =
[

0.1156 −0.0320
−0.0320 0.0400

]
,

which has a trace of 0.1556.

B. Example 2

Consider the following example from [6].

A = diag(0.1, 0.2, 0.3, 0.9), B =
[
I2

I2

]
, Qk = 0.01I4 ,

C =
[

1 0 0 0
−1 1 1 −1

]
, D =

[
0 0
0 0

]
, Rk = 0.01I2 .

Once again, we find that (8) is satisfied for α = 2. Following
the procedure outlined in this paper, we find that the error
covariance matrix converges to a matrix with a trace of
0.2824. In contrast, the trace of the error covariance matrix
for the estimator constructed in [6] converges to 0.3778,
which is approximately 34% worse than the performance
achieved by our estimator. This discrepancy arises from the
fact that the procedure in [6] ignores the correlation between
the error and the noise.

VII. SUMMARY

We have provided a characterization of linear minimum-
variance unbiased estimators for linear systems with un-
known inputs, and have provided a design procedure to
obtain the estimator parameters. We have shown that it

0 5 10 15 20 25 30 35 40 45 50
−4

−2

0

2

4

6

x 1

time−step

0 5 10 15 20 25 30 35 40 45 50
−2

−1

0

1

2

x 2

time−step

Actual state
Estimated state

Fig. 1. Simulation of system and estimator.

will generally be necessary to use delayed measurements in
order to obtain an unbiased estimate, and that these delays
cause the system noise to become colored. We increased the
dimension of our estimator in order to handle this colored
noise. The resulting estimator can be applied to a more
general class of systems than those currently studied in the
literature.
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