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Abstract—We consider a graph-theoretic property known as
r-robustness which plays a key role in a class of consensus (or
opinion) dynamics where each node ignores its most extreme
neighbors when updating its state. Previous work has shown
that if the graph is r-robust for sufficiently large r, then such
dynamics will lead to consensus even when some nodes behave
in an adversarial manner. The property of r-robustness also
guarantees that the network will remain connected even if a
certain number of nodes are removed from the neighborhood
of every node in the network, and thus is stronger indicator
of structural robustness than the traditional metric of graph
connectivity. In this paper, we study this notion of robustness
in common random graph models for complex networks; we
show that the properties of robustness and connectivity share
the same threshold function in Erd̋os-Ŕenyi graphs, and have
the same values in one-dimensional geometric graphs and certain
preferential attachment networks. This provides new insights into
the structure of such networks, and shows that they will be
conducive to the types of dynamics described above. Although
the above random graphs are inherently robust, we also show
that it is coNP-complete to determine whether any given graph
is robust to a specified extent.

Index Terms—Resilient consensus, dynamics on networks,
random graphs, robustness, complex networks, matching-cut.

I. I NTRODUCTION

Complex networks abound in both the natural world (e.g.,
ecological, biological, and social systems), and in engineered
applications (e.g., the Internet, the power grid, and large-scale
sensor networks). Due to their prevalence, a topic of interest
has been the robustness of such networks to disruptions, both
in the structure and in the dynamics that are occurring on
the network. Studies ofstructural robustnesscharacterize the
ability of networks to remain connected despite the loss of
nodes and edges, either due to targeted removal [2]–[4], or as
the outcome of a dynamical process (e.g., cascading failures)
[5]. On the other hand, studies ofdynamical robustnessinves-
tigate how global dynamics are affected by structural changes
(such as edge removal) [6], or by perturbations in local
dynamics where some nodes actively deviate from expected
behavior (e.g., due to failures or attacks) [7]–[10]. As one
might expect, there is a close coupling between the topologyof
the underlying network and the ability of dynamics to tolerate
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deviations in local behavior; in particular, different classes
of dynamics and models for deviation will require different
conditions on the network topology in order to be robust.

A classical metric of structural robustness to node removal
is node-connectivity. Specifically, a network isr-connected
if the network remains connected when any arbitrary set of
r− 1 (or fewer) nodes is removed [11]. The concept of node-
connectivity also has implications for the robustness of certain
dynamics on networks. For instance, if the network is(2F+1)-
connected (for some nonnegative integerF ), then there are
certain information diffusion dynamics (or algorithms) that
allow information to spread reliably in the network, even when
there are up toF maliciousnodes (in total) that deviate from
the prescribed dynamics in arbitrary ways [7]–[9], [12].

In this paper, we study a graph property known asr-
robustness, which was introduced in [13], [14] in the context
of a certain class of resilient consensus dynamics on networks.
As we will describe more formally in the next section, one of
the consequences of a network beingr-robust is that it remains
connected even when up tor− 1 nodes are removed from the
neighborhood ofevery remaining node. Thusr-robustness is
generally a much stronger certificate of structural robustness
than r-connectivity, and in fact, one can construct graphs
that have very high connectivity but very low robustness.
Just asr-connectivity has implications for the robustness of
certain dynamics, so too doesr-robustness: if the network is
(2F + 1)-robust (for some nonnegative integerF ), then there
are certain dynamics that allow the nodes in the network to
reach consensus even when there are up toF malicious nodes
in the neighborhood of every correctly behaving node [14].

Given the strong nature of the robustness property de-
scribed above, the contributions of this paper are to provide
answers to the following two questions. First, how do the
metrics of connectivity and robustness compare in various
mathematical models for complex networks? Second, what
is the complexity of determining the extent of robustness of
any given network? To answer the first question, we study
three random graph models (Erdős-Rényi, 1-D geometric, and
Barabási-Albert preferential attachment graphs) for complex
networks. Our analysis reveals that the notions of robustness
and connectivitycoincide on these random graph models,
meaning that random graphs with a high connectivity also
tend to have high robustness. This is perhaps surprising, given
the existence of pathological graphs where these metrics are
far apart (as described in the next section), and yields new
insights into the structure of certain models for complex
networks (namely that such networks inherently possess strong
robustness properties that go beyond the traditional metric
of connectivity). These results also have implications forthe
study of certain consensus (or opinion) dynamics on complex
networks, showing that consensus can be reached even if nodes



ignore a certain number of their most extreme neighbors when
they update their values. While these results show that one
can efficiently determine the extent of robustness of certain
specific classes of networks by checking the connectivity of
those networks, in the second half of the paper, we answer the
second question posed above and show that this is not likely
to be true in general; specifically, we show that the problem
of determining the extent of robustness of general networksis
coNP-complete.

II. r-ROBUSTNESS OFNETWORKS

An undirected network (or graph) is given by a pairG =
{V , E}, whereV = {1, ..., n} is the set of nodes andE ⊆ V×V
is the set of edges in the network. An edge(i, j) ∈ E indicates
that nodesi andj can communicate with each other. The set
of neighborsof nodei is defined asVi = {j ∈ V : (i, j) ∈ E},
thedegreeof nodei is denoted bydi = |Vi|, and theminimum
degreeof the network ismini∈V di. For a given nonnegative
integerr, a setS ⊂ V is said to ber-local if |Vi ∩ S| ≤ r

for all i ∈ V \ S. The (node-)connectivityof a graph is the
smallest number of nodes that have to be removed in order
to disconnect the graph; such a disconnecting set of nodes is
called avertex cut. A graph isr-connected if its connectivity
is at leastr.

As mentioned in the Introduction, we will be focusing on a
graph property known asr-robustnessin this paper, given by
the following two definitions from [13], [14].

Definition 1 (r-Reachable Set):For a graphG = {V , E} and
a subset of nodesS ⊂ V , S is an r-reachable setif ∃i ∈ S
such that|Vi \ S| ≥ r, wherer ∈ Z≥0. In words, a setS is
r-reachable if it contains a node that has at leastr neighbors
outside that set.

Definition 2 (r-Robust Graph):A graphG is r-robust if for
every pair of nonempty, disjoint subsets ofV , at least one of
the subsets isr-reachable, wherer ∈ Z≥0.

The following result shows whyr-robustness is an indicator
of structural robustness.

Theorem 1:Let G = {V , E} be anr-robust graph, where
r ∈ Z≥1. Let S ⊂ V be an(r − 1)-local set, and letG′ =
{V \ S, E ′} be the graph obtained by removing the nodes in
S and their incident edges fromG. ThenG′ is connected.

Proof: We prove by contradiction. Suppose thatG′ is not
connected. Pick any two of the components inG′, and let the
nodes in those components be denoted by the setsS1 andS2,
respectively. SinceG is r-robust, at least one ofS1 or S2 is
r-reachable inG. Assume without loss of generality thatS1

is r-reachable inG and let v ∈ S1 be the node that hasr
neighbors outsideS1 in G. SinceS is an (r − 1)-local set, at
mostr − 1 of v’s neighbors were removed when formingG′.
Thusv has at least one neighbor outsideS1 in G′, contradicting
the fact thatS1 is a component. ThusG′ is connected.

Sincer-robustness guarantees connectedness of the network
even after the removal of any(r − 1)-local set (which could
contain significantly more thanr − 1 nodes), it is a much
stronger property thanr-connectivity in general. The following
result from [14] formalizes this notion.
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Fig. 1: Example of a graph that has minimum degreen
2 and

connectivityn
2 , but that is only 1-robust. SetsS1 andS2 induce

complete graphs onn2 nodes, and each node inS1 has exactly
one neighbor inS2 and vice versa.

Lemma 1 ( [14]):For anyr ∈ Z≥0, if G is r-robust, then
G is at leastr-connected and has minimum degree at leastr.
Furthermore,G is 1-robust if and only if it is1-connected.

Thus the set ofr-robust graphs is a subset of the set ofr-
connected graphs, which itself is a subset of the set of graphs
with minimum degreer. Indeed, just as one can construct
graphs that have large minimum degree but low connectivity
[11], one can construct graphs that have large connectivitybut
low robustness. For example, consider the network shown in
Fig. 1. The setsS1 andS2 haven

2 nodes (supposen is even),
and each node in each set is connected to all other nodes in
its set. Each node has exactly one neighbor from the other set.
This network has connectivityn2 and minimum degreen2 , but
is only 1-robust since bothS1 and S2 are only 1-reachable
(i.e., no node in either of those sets has more than1 neighbor
outside its set).

A. Role ofr-Robustness in Consensus Dynamics

Consider a setting where each nodei in the network holds
some private informationxi[0] (an opinion, a measurement,
etc.), modeled as a real number. The network operates syn-
chronously, and at each time-step, each normally operating
node uses some prescribed rule to update its value (informa-
tion) based on the values of its neighbors; the value held by
nodei at time-stepk is denoted byxi[k]. In particular, consider
the following Weighted-Mean-Subsequence-Reduced (W-
MSR) dynamics1: for some nonnegative integerF , at each
time-step, each node disregards the largest and smallestF

values in its neighborhood (breaking ties arbitrarily) and
updates its state to be a weighted average of the remaining
values. Mathematically, this is represented as

xi[k + 1] = wii[k]xi[k] +
∑

j∈Ri[k]

wij [k]xj [k],

whereRi[k] is the set of nodes whose values were adopted
by normal nodei at time-stepk, andwii[k] and{wij [k]} are
the weights at time-stepk. The weights are assumed to satisfy
the following conditions:

• ∃α ∈ R>0 such thatwij [k] > α, ∀j ∈ Ri[k] ∪ {i}, i ∈
V , k ∈ Z≥0;

•
∑

j∈Ri[k]∪{i} wij [k] = 1, ∀i ∈ V , k ∈ Z≥0.

Suppose the network contains a set of malicious nodes
M ⊂ V which do not necessarily follow the above dynamics,

1We refer to [13]–[18] for a more complete description of these dynamics,
along with proofs of convergence.



but instead update their values at each time-step in an arbitrary
(potentially worst-case) manner. Denote the set of normal
nodes byN = V \ M. As in [14], we say that the above
dynamics facilitateresilient asymptotic consensusif there
exists a constantL in the convex hull of the initial values
of the normal nodes such thatlimk→∞ xi[k] = L for all
i ∈ N . In other words, resilient asymptotic consensus is
reached if the malicious nodes cannot prevent the normal
nodes from reaching consensus, and furthermore, cannot bias
the consensus value excessively (captured by the constraint
placed on the consensus value).

To understand the topological conditions required to facili-
tate consensus under W-MSR dynamics, consider the network
shown in Fig. 1. Suppose that nodes inS1 andS2 have initial
valuesa and b, respectively, witha 6= b. Under the W-MSR
dynamics withF ≥ 1, each node will disregard the value of
its neighbor from the opposite set at each time-step and thus
its own value will remain unchanged, even when there are no
misbehaving nodes. Thus, consensus will not be reached in this
network, indicating that even networks with high connectivity
are not sufficient to guarantee consensus under such dynamics.

Examining Fig. 1, we see that the reason for the failure of
consensus in this graph is that it contains two insular com-
munities, where no node in either community receives enough
information fromoutside its own community. However, if a
graph isr-robust (for sufficiently larger), new information
will penetrate at least one out of any two subsets of nodes and
pull it towards the other set, preventing stalemates of the above
form. This is formalized in the following result, showing the
role thatr-robustness plays in the ability of W-MSR dynamics
to tolerate arbitrary behavior by a subset of the nodes.

Theorem 2 ( [14]):Suppose the malicious nodes form an
F -local set. Then resilient asymptotic consensus is reached
under W-MSR dynamics if the network is(2F +1)-robust.

Remark 1:Outside of settings with misbehaving nodes, W-
MSR dynamics can also be viewed in the context of opinion
dynamics in social networks. For example, inDeGrootopinion
dynamics, each node repeatedly updates its opinion as a
weighted average ofall of its neighbors’ opinions [19], [20];
W-MSR dynamics generalize this by allowing each node to
ignore its neighbors that have the most extreme opinions.
In Hegselmann-Krause (HK)opinion dynamics, each node
removes all values that are sufficiently different from its own
opinion at each time-step before averaging the rest [21], [22];
the difference in W-MSR is that nodes remove values based
on absolutesize (as opposed torelativesize in HK dynamics).
In the opinion dynamics setting with no malicious nodes and
where all nodes follow the W-MSR dynamics at each time-
step, the proof in [14] directly applies to show that consensus
is guaranteed if and only if the network is(F +1)-robust.

Remark 2:The notion of reachable sets also plays a role
in the study ofbootstrap percolationdynamics on networks,
where each node maintains a binary state, and changes its state
to 1 if a certain number of its neighbors are in state1 [23].
Bootstrap percolation, reachable sets, andr-robustness are fur-
ther related to the so-calledCertified Propagation Algorithm
(CPA) for resilient information broadcast in networks, where
a single source node wishes to disseminate its value reliably

to all other nodes, even if a certain number of malicious
nodes spread misinformation about that value [13], [24]–
[26]. For example, in [25], at-local pair cut was defined
as a pair oft-local subsets of verticesC1 andC2 such that
C1 ∪ C2 forms a vertex cut. Such cuts (and their variant
defined in [26]) were highlighted as being impediments to
reliable information broadcast when the network contains a
t-local set of malicious nodes. Since at-local pair cut forms
a (2t)-local vertex cut, Theorem 1 indicates that a(2t + 1)-
robust network will not have at-local pair cut. We refer to
[1], [13] for further discussions on the relationships between
these different dynamics.

Given the strong nature of ther-robustness property and
its role in W-MSR (and other) dynamics, it is natural to ask
how this property compares to the property of connectivity
in commonly studied networks. In the next few sections, we
will answer this question by exploring the robustness of three
common random graph models for complex networks. We will
then analyze the computational complexity of determining the
extent to which any given graph is robust. Since all graphs are
trivially 0-robust, we will primarily focus on the cases where
r ≥ 1 in the rest of the paper.

III. ROBUSTNESS OFERDŐS-RÉNYI RANDOM GRAPHS

Erdős-Rényi random graphs [27], [28] are one of the most
common mathematical models for large networks. The version
we study here is denoted asGn,p: it consists ofn nodes and
each possible (undirected) edge between two nodes is present
independently with probabilityp (which may be a function of
n), and absent with probabilityq = 1−p. Let the probability of
an event be denoted byP(·). A graph propertycan be regarded
as a class of graphs that is closed under isomorphism.

Definition 3: AssumeP is a graph property andp = p(n)
is a function ofn. We say thatalmost all G ∈ Gn,p have
propertyP if P(Gn,p ∈ P) → 1 asn → ∞, and almost no
G ∈ Gn,p has propertyP if P(Gn,p ∈ P) → 0 asn → ∞.

An important feature ofGn,p is that it exhibits phase
transitions at certain thresholds for the probabilityp, defined
as follows.

Definition 4: Consider a functiont(n) = g(n)
n

where
g(n) → ∞ asn → ∞, and a functionx = o(g(n)) satisfying
x → ∞ asn → ∞. We sayt(n) is a threshold functionfor
a graph propertyP if p(n) = g(n)+x

n
implies that almost all

G ∈ Gn,p have propertyP and p(n) = g(n)−x

n
implies that

almost noG ∈ Gn,p has propertyP .
Loosely speaking, if the probability of adding an edge is

“larger” than t(n) in the sense indicated by Definition 4,
then almost allG ∈ Gn,p will have propertyP , and if the
probability is “smaller” thant(n), almost noG ∈ Gn,p will
have this property.

Definition 5:ForG ∈ Gn,p and constantr ∈ Z≥1, define the
properties ofbeingr-connected, r-robustandhaving minimum
degreer by Kr, Rr andDr, respectively.

Lemma 2 ( [27]): For any constantr ∈ Z≥1, t(n) =
lnn+(r−1) ln lnn

n
is a threshold function for propertyKr. It

is also a threshold function for propertyDr.
The above result by Erdős and Rényi indicates thatKr

and Dr share the same threshold function inGn,p, even



though beingr-connected is a stronger property than having
minimum degreer. The following is one of our main results: it
establishes that the above threshold function forr-connectivity
(and minimum degreer) is also a threshold function for the
stronger property ofr-robustness in Erdős-Rényi graphs.

Theorem 3: For any constantr ∈ Z≥1, t(n) =
lnn+(r−1) ln lnn

n
is a threshold function for propertyRr.

Proof: From Lemma 1 and Lemma 2, the result is true for
r = 1 since1-connectedness and1-robustness are equivalent.
Thus, we focus on the case wherer ≥ 2.

For the first part of the proof, we show that for any constant
r ∈ Z≥1, if p(n) = lnn+(r−1) ln lnn+x

n
, wherex = x(n) is

some function satisfyingx = o(ln lnn) andx → ∞ asn →
∞, then almost allG ∈ Gn,p arer-robust. By the definition of
robustness, it is sufficient to show that for almost allG ∈ Gn,p,
every subset ofV with size up to⌊n

2 ⌋ is r-reachable. Here we
prove a stronger result: ifp(n) = lnn+(r−1) ln lnn+x

n
, then

almost allG ∈ Gn,p have the property that every subset ofV
with size up to⌊(1 − α)n⌋ is r-reachable, whereα = α(n)
is a positive function satisfyingsupn α(n) < 1 and ln lnn =
o(α lnn). Clearly,α = 1

2 is included as a special case.
Let P0 be the probability that some set of cardinality up

to nc , ⌊(1 − α)n⌋ is not r-reachable. We need to prove
that P0 = o(1) when p(n) = lnn+(r−1) ln lnn+x

n
. Denote the

probability that some setS ⊂ V with cardinality k (i.e.,
|S| = k) is not r-reachable asPk. By the union bound,
we know thatP0 ≤

∑nc

k=1 Pk. For fixed S of cardinality
k, the probability that a nodev ∈ S has less thanr
neighbors outside is

∑r−1
i=0

(

n−k
i

)

qn−k−ipi, and the probability
that S is not r-reachable is(

∑r−1
i=0

(

n−k
i

)

qn−k−ipi)k, where
q = 1 − p. Since there are

(

n
k

)

such setsS, we know that
Pk ≤

(

n
k

)

(
∑r−1

i=0

(

n−k
i

)

qn−k−ipi)k. In the rest of the proof,
we focus on the cases wherek ≤ nc. Using the fact that
(

n
k

)

≤ ( en
k
)k and

(

n
k

)

≤ nk, we obtain

Pk ≤

(

n

k

)

(

r−1
∑

i=0

(

n− k

i

)

qn−k−ipi

)k

≤

(

en

k

r−1
∑

i=0

(np)i(1− p)n−k−i

)k

≤

(

en

k
(1 − p)n−kr

(

np

1− p

)r−1
)k

≤

(

c1n(np)
r−1

k
(1− p)n−k

)k

.

In the last step above,c1 is some constant upper bound for
er

(1−p)r−1 satisfying 0 < c1 < 2er for sufficiently largen.
The notion of “for sufficiently largen” will be implicitly used
throughout the proof. Noting that1 − p ≤ e−p and p(n) =
lnn+(r−1) ln lnn+x

n
,

Pk ≤

(

c1n(np)
r−1

k
e−(n−k)p

)k

=

(

c1n(np)
r−1

k
e− lnn−(r−1) ln lnn−x+kp

)k

=

(

c1

(

lnn+ (r − 1) ln lnn+ x

lnn

)r−1
ekp−x

k

)k

≤

(

c2e
kp−x

k

)k

.

Note that lnn+(r−1) ln lnn+x

lnn
< 2 for sufficiently largen and

thus0 < c2 < c12
r−1.

Let f(k) = ekp

k
be a function ofk, where k ∈ R>0.

Since df
dk

< 0 if k < 1
p

and df
dk

> 0 if k > 1
p
,

f(k) ≤ max{f(1), f(nc)} for k ∈ {1, 2, . . . , nc}. We know
that f(nc) = exp{ncp}

nc
≤ exp{(1−α)np}

(1−α)n = 1
1−α

exp{(1 −

α)np− lnn} = 1
1−α

exp{−α lnn+ (1 − α)(r − 1) ln lnn+
(1 − α)x}. Sinceα(n) is positive, strictly bounded below1
and ln lnn = o(α lnn), we know thatf(nc) = o(1). Further
note thatf(1) = ep > 1. Thus, for sufficiently largen,
f(k) ≤ f(1) < e andPk ≤

(

c2e
1−x
)k

. We now have

P0 ≤
nc
∑

k=1

Pk ≤
∞
∑

k=1

(

c2e
1−x
)k

=
c2e

1−x

1− c2e1−x
= o(1),

sincex → ∞ asn → ∞, completing the first part of the proof.
The second part of the proof (showing lack ofr-robustness
below the threshold) is obtained by combining Lemma 1 and
Lemma 2.

Remark 3: The above theorem shows that Erdős-Rényi
graphs gain more structure at the thresholdt(n) =
lnn+(r−1) ln lnn

n
than simply beingr-connected. Whereasr-

connectedness implies that given any two disjoint (nonempty)
sets, the nodes in at least one of the sets collectively haver

neighbors outside that set, the above result shows that there
is (at least) one node in one of the sets thatby itself has r
neighbors outside. Thus, with high probability, “worst-case”
graphs such as the one in Fig. 1 will not arise.

Remark 4:A special case of Erdős-Rényi graphs is when
p(n) = 1

2 ; in this case, each graph onn nodes occurs with

probability2−(
n
2), corresponding to a uniform distribution over

the set of all graphs onn nodes. Thus, the quantityP(Gn, 12
∈

P) represents thefraction of graphs onn nodes that have
propertyP . Using this fact, our result above indicates that for
any fixedr ∈ Z≥1, the fraction of graphs onn nodes that are
r-robust goes to1 asn goes to∞.

Remark 5:It is of interest to note that an alternate method
to show the above result would be to first relate the notion of
reachable sets to the conditions required for bootstrap percola-
tion dynamics on networks, and then to apply results obtained
recently in [23] for such dynamics using branching process
techniques. However, the proof provided above is more direct
and provides greater insight into the relationship between
the underlying graph-theoretic properties of connectivity and
robustness.

IV. ROBUSTNESS OF1-D GEOMETRIC GRAPHS

Another widely used model for large networks is thege-
ometric random graph, which captures edges between nodes
that are in close (spatial) proximity to each other. We consider
the geometric graphGd

n,ρ,l = {V , E}, which is an undirected
graph generated by first placingn nodes (according to some



mechanism) in a regionΩd = [0, l]d, where d ∈ Z≥1.
We denote the position of nodei ∈ V by x(i) ∈ Ωd.
Nodes i, j ∈ V are connected by an edge if and only if
‖x(i)− x(j)‖ ≤ ρ for some thresholdρ, where‖ · ‖ indicates
an appropriate norm (often taken to be the standard Euclidean
norm). When the node positions are generated randomly (e.g.,
uniformly and independently) in the region, one obtains a
geometric random graph. In the widely-studied modelGd

n,ρ, the
parameterl is fixed and graph properties are typically explored
whenn → ∞ andρ → 0, leading to dense random networks
[29]. In the more general modelGd

n,ρ,l, however, the lengthl
is also allowed to increase and the densityn

ld
can converge

to some constant, making it suitable for capturing both dense
and sparse random networks [30].

In Section III, we showed that the properties of connectivity
and robustness have the same threshold function in Erdős-
Rényi graphs. In this section, we will prove similar results
for one-dimensional geometric random graphs (i.e.,d = 1).
We start by providing a result showing that connectivity
and robustness cannot be very different in one-dimensional
geometric graphs, and are in fact equal when the nodes are
sufficiently spread out (regardless of how the node positions
are generated and the relationships betweenρ, n andl). In the
following, we assume that the nodes are ordered such that if
i, j ∈ V and i < j thenx(i) ≤ x(j).

Theorem 4:In Ω1 = [0, l], if G1
n,ρ,l is r-connected, then it

is at least⌊ r
2⌋-robust. Furthermore, ifx(n)− x(1) > 3ρ, then

the graph isr-connected if and only if it isr-robust.
Proof: First, note that ifx(n)− x(1) ≤ ρ then the graph

is complete and therefore(n− 1)-connected and⌈n
2 ⌉-robust,

and thus the claim holds. In the rest of the proof, we assume
thatx(n)−x(1) > ρ. In this case, if the graph isr-connected,
the following two properties hold.

1) Every interval of the form(a, a+ρ] ⊂ (x(1), x(n)) must
have at leastr nodes, because otherwise, removing the
nodes in that interval would disconnect the nodes in the
interval [x(1), a] from those in the interval(a+ ρ, x(n)].
The same is true for every interval of the form[a, a+ρ) ⊂
(x(1), x(n)), and thus for every closed interval of length
ρ contained in(x(1), x(n)).

2) Consider any nonempty setS ⊂ V . If there exists an
interval [a, a+ ρ] ⊂ (x(1), x(n)) with no nodes fromS,
then there must be a node fromS in the interval[x(1), a)
or in the interval(a + ρ, x(n)]. By symmetry, assume
that S has nodes in[x(1), a) and leti be the node inS
that is closest toa from this interval. Then the interval
(x(i), x(i) + ρ] contains no nodes fromS, but contains
at leastr nodes, and thusS is r-reachable.

Now consider any two disjoint and nonempty subsets
S1,S2 ⊂ V , and any interval[a, a + ρ] ⊂ (x(1), x(n)). If
S1 (resp.S2) has no nodes in[a, a + ρ], thenS1 (resp.S2)
is r-reachable. Thus, suppose bothS1 andS2 have nodes in
[a, a+ρ]. If S1 is not⌊ r

2⌋-reachable, there are fewer than⌊ r
2⌋

nodes fromS2 in [a, a + ρ]. Choose any nodei from S2 in
the interval. There are at leastr − 1 remaining nodes in the
interval, and at most⌊ r

2⌋ − 1 of them are inS2. Thus i has
at leastr − 1 − ⌊ r

2⌋ + 1 ≥ ⌊ r
2⌋ neighbors in the interval that

are not inS2. Therefore, for any two disjoint and nonempty

subsetsS1,S2 ⊂ V , at least one of them is⌊ r
2⌋-reachable.

Thus the graph is at least⌊ r
2⌋-robust, proving the first part of

the theorem.
For the second part of the theorem, assume thatx(n) −

x(1) > 3ρ. Then there exists an interval[a, a + 3ρ] ⊂
(x(1), x(n)). Consider any two nonempty and disjoint subsets
S1,S2 ⊂ V , and denoteX = V \ (S1 ∪ S2). By the argument
above, if eitherS1 or S2 does not have any nodes in some
closed interval of lengthρ within (x(1), x(n)), that set will
ber-reachable. Thus, suppose that bothS1 andS2 have nodes
in all closed intervals of lengthρ within (x(1), x(n)). Pick
any nodei from S1 in the interval [a + ρ, a + 2ρ], and let
j ∈ S2 be the node in[a+ ρ, a+ 2ρ] that is closest toi. We
assume without loss of generality thatx(j) ≤ x(i) and that if
x(j) < x(i), then there are only nodes fromX betweeni and
j (the latter can always be enforced by redefiningi to be the
node inS1 that is closest toj in [a+ ρ, a+ 2ρ]).

Suppose thatS1 is not r-reachable. Then there are fewer
thanr nodes fromS2 ∪X in the interval[x(i)− ρ, x(i) + ρ].
If x(j) = x(i), then j has at least2r neighbors in[x(i) −
ρ, x(i) + ρ] and since fewer thanr of them are fromS2, the
set S2 will be r-reachable. Thus assume thatx(j) < x(i).
Let the number of nodes fromX strictly betweenj and i be
nX (see intervalA in Fig. 2). The intervals(x(j), x(j + ρ)]
(A∪B in Fig. 2) and[x(i)−ρ, x(i)) (intervalC in Fig. 2) each
contain at leastr nodes, and have the intervalA in common;
thus the intervalB ∪ C has at least2r − nX nodes. Let the
number of nodes fromS2 in B∪C benS2 . Thus, the number
of nodes inB ∪ C outsideS2 is at least2r − nS2 − nX .
Sincei does not haver neighbors outsideS1, it must be that
nS2 + nX < r, and thus there are at leastr nodes outsideS2

in B ∪C. The setS2 is thenr-reachable (since nodej has at
leastr neighbors outsideS2). Thus the graph isr-robust.

x(1) a

x(j)-ρ

x(i)-ρ a+ρ

x(j)

x(i) a+2ρ

x(j)+ρ

x(i)+ρ a+3ρ x(n)

A
( )

B

C
)

Fig. 2: An illustration of the intervals considered in the proof
of Theorem 4. IntervalA containsnX nodes, all from the set
X . IntervalC contains at leastr nodes. IntervalA∪B contains
at leastr nodes, and thusB ∪ C has at least2r − nX nodes.

Once again, note that Theorem 4 does not depend onhow
the positions of the nodes are generated. Unfortunately, this
strong property does not extend to geometric graphs in higher-
dimensions. For example, the graph shown in Figure 1 can
be viewed as a geometric graph in two dimensions, where
the nodes in each set are all clustered horizontally within
a distanceρ, and the two sets are vertically separated by a
distance just belowρ so that each node is within a distanceρ

of exactly one node in the opposite set. Clearly that graph is
only 1-robust, despite having a connectivity ofn

2 . However, as
illustrated by our analysis for Erdős-Rényi networks, itmay
still be possible for robustness and connectivity to coincide in
random geometric graphs in higher dimensions; an analysis



of this for d ≥ 2 is a ripe avenue for future research. Here,
we will present an asymptotic approach to analyzing one-
dimensional random graphs (complementary to the analysis
in Theorem 4) to develop scaling laws forr-robustness and
r-connectivity. We first define properties foralmost allgraphs
in Gd

n,ρ,l as follows, similar to theGn,p model.
Definition 6: AssumeP is a graph property. We say that

almost all G ∈ Gd
n,ρ,l have propertyP if P(Gd

n,ρ,l ∈ P) →
1 as l → ∞, and almost noG ∈ Gd

n,ρ,l has propertyP if
P(Gd

n,ρ,l ∈ P) → 0 as l → ∞.
Note that we study these properties inGd

n,ρ,l asl → ∞, and
taken andρ to be functions ofl, i.e.,n = n(l) andρ = ρ(l).
We now present conditions under which the one-dimensional
geometric random graph becomesr-connected andr-robust;
the proof of this result builds upon and generalizes the result
for one-dimensional graphs in [30] (which considered scaling
laws for connectedness versus disconnectedness ofGd

n,ρ,l).
Note that ifρ(l) ≥ l, the graph will be(n(l) − 1)-connected
and ⌈n(l)

2 ⌉-robust, and thus we focus on the case where
ρ(l) < l in the theorem below.

Theorem 5:Assume thatρn = kl ln l for some constant
k > 0.

• If ρ < l and ρ ∈ Ω(l), then almost allG ∈ G1
n,ρ,l are

r-connected andr-robust for allr ∈ Z≥1.
• If ρ = o(l) andρl

k
r+1−1 → ∞ for somer ∈ Z≥1, then

almost allG ∈ G1
n,ρ,l arer-connected andr-robust.

• If ρ ∈ Θ(lǫ) andk ≤ (1−ǫ) for some constant0 < ǫ < 1,
then almost noG ∈ G1

n,ρ,l is r-connected orr-robust.

Proof: Fix any r ∈ Z≥1. In order to prove the first two
parts, we will show that any interval of lengthρ contains at
leastr nodes; the results will then follow from the arguments
in the proof of Theorem 4. LetΩ1 = [0, l] be subdivided into
non-overlapping segments of lengthh = ρ

r+1 . ThenΩ1 has

c = ⌊ (r+1)l
ρ

⌋ whole segments and potentially a fraction of a
segment. Any interval of lengthρ in Ω1 will contain at least
r whole segments and thus we just need to show every whole
segment contains at least one node.

Let ω be a random variable representing the number of
empty whole segments. Sinceω is a nonnegative integer
random variable, by Markov’s inequality we knowP(ω >

0) ≤ E(ω), whereE(ω) = c(1− h
l
)n is the expected value of

ω. Since1− x ≤ exp(−x), we have

E(ω) = c

(

1−
h

l

)n

≤ c exp

(

−
nh

l

)

≤
(r + 1)l

ρ
exp

(

−
nρ

(r + 1)l

)

=
(r + 1)l

ρ
exp

(

−
k

r + 1
ln l

)

=
(r + 1)

ρ
l1−

k
r+1 .

Note that in going from the second line to the third, we
replacedn by kl ln l

ρ
.

Under the conditions in the first part of the theorem,
ρl

k
r+1−1 → ∞ regardless of the choice ofr ∈ Z≥1. Thus

E(ω) → 0 and Theorem 4 indicates that almost all graphs
will be ⌊ r

2⌋-robust for allr ∈ Z≥1 (or equivalently,r-robust
for all r ∈ Z≥1). By Lemma 1, almost all graphs will be

r-connected for allr ∈ Z≥1. Similarly, for the second part,
E(ω) → 0 as l → ∞ if k and r satisfy the given conditions,
indicating that the graph will ber-robust andr-connected
(again, using Theorem 4). For the third part, Theorem 5 from
[30] indicates that almost noG ∈ Gd

n,ρ,l is connected under
the given conditions, and thus almost no graph isr-connected
or r-robust for anyr ≥ 1.

V. ROBUSTNESS OFBARABÁSI-ALBERT PREFERENTIAL

ATTACHMENT NETWORKS

Before discussing the third model for complex networks,
we start by reviewing the following construction method for
r-robust graphs from [13], [14].

Theorem 6 ( [13], [14]): Let G = {V , E} be anr-robust
graph. Then graphG′ = {{V , vnew}, {E , Enew}}, wherevnew is
a new node added toG andEnew is the edge set related tovnew,
is r-robust if dvnew ≥ r.

The above theorem indicates that to build anr-robust graph
with n nodes (wheren ≥ r), we can start with anr-robust
graph of order less thann (such as a complete graph), and
continually add new nodes with incoming edges from at least
r nodes in the existing graph. The theorem does not specify
which existing nodes should be chosen as neighbors. When
the nodes are selected with a probability proportional to the
number of edges that they already have, the above construction
is known as theBarabási-Albert (BA) preferential-attachment
model and leads to the formation of so-calledscale-free
networks [31].

Theorem 7:In the BA model, when the initial network is
r-robust, then the generated (finite) network isr-connected if
and only if the network isr-robust.

Proof: If each new node connects to less thanr existing
nodes, then the last node added to the network will have degree
less thanr, and so the network will be neitherr-connected nor
r-robust; on the other hand, if all of the new nodes connect
to r existing nodes, then by Theorem 6, the network will be
r-robust and thusr-connected.

Note that the above result relies on the specific construction
procedure of the BA model (where each new node connects
to the same number of existing nodes); the extension to
more general preferential-attachment mechanisms is a venue
for future research. To the extent that the BA model is a
plausible mechanism for the formation of complex networks,
our analysis indicates that these networks will also facilitate
dynamics such as W-MSR, provided thatr is sufficiently large
when the network is forming.

VI. T HE COMPLEXITY OF DETERMINING THE EXTENT OF

ROBUSTNESS OFGENERAL GRAPHS

The previous sections showed that for certain classes of
graphs (e.g.,1-d geometric and BA preferential attachment
graphs generated from a sufficiently robust core), the ro-
bustness of the graph can be determined by calculating its
connectivity (for which there exist efficient algorithms [32]).
Furthermore, as discussed in Remark 4, for any fixedr, the
fraction of graphs onn nodes that arer-robust goes to1 as
n → ∞. Despite these facts, we will show in this section that



there is unlikely to be an efficient algorithm that determines
the extent to which any arbitrary graph is robust. Specifically,
we will show that determining whether a given graph isr-
robust for anyr ≥ 2 is coNP-complete. We start by recalling
the following concepts (e.g., see [32]), and defining ther-
robustness problem formally.

Definition 7 (NP and coNP): A decision problemis a
problem whose answer is ‘Yes’ or ‘No’. The setNP (resp.
coNP) contains those decision problems whose ‘Yes’ (resp.
‘No’) answers can be verified using a polynomial number
of computations. Two problemsP1 andP2 are complements
when the output ofP1 to an input instance is ‘Yes’ if and only
if the output ofP2 to that instance is ‘No’ and vice versa. The
complement of a problem inNP is in coNP, and vice versa.

Definition 8 (NP-complete andcoNP-complete):A deci-
sion problemP1 is NP-hard if for any problemP2 in NP,
there exists a polynomial-time algorithm that transforms any
instance ofP2 into an instance ofP1 that has the same answer
(i.e., an algorithm forP1 can be used to solve problemP2).
If P1 is NP-hard and also inNP, thenP1 is NP-complete.
The definition of acoNP-complete problem is analogous. If a
problem isNP-hard, then its complement iscoNP-hard.

Definition 9 (Ther-Robustness Problem):Given a graphG,
ther-robustness problemis a decision problem that determines
whetherG is r-robust for a givenr ∈ Z≥1.

If a graph is notr-robust, then there exist two nonempty and
disjoint subsets of nodesA,B such that each node in these sets
has at mostr − 1 neighbors outside its set. Note that nodes
in set X = V\(A ∪ B) can have any number of neighbors
outsideX . There is no apparent way to certify that a graph is
r-robust without checking all pairs of disjoint and nonempty
subsets of nodes and showing that at least one set out of each
pair is r-reachable. This is intractable as the number of such
subsets is exponential in the size of the input graph. On the
other hand, to certify that a graph isnot r-robust, one only
needs to provide a single pair of disjoint and nonempty subsets
of nodes, of which neither set isr-reachable. Therefore, in
the r-robustness problem, the ‘No’ instances (input graphs
that are notr-robust) have certificates that can be checked in
polynomial time, and so ther-robustness problem is incoNP.
To show that ther-robustness problem iscoNP-complete, we
show the complement of ther-robustness problem, which we
call the relaxed-ρ-degree cut problem, is NP-complete.

Definition 10:For a graphG = {V , E}, a partition ofV into
two nonempty subsetsA andB = V \ A is said to be acut,
and denoted byC = (A,B). The cut-setof a cutC = (A,B)
is defined as the subset of the edges ofG with one endpoint
in A and the other inB. A cut C = (A,B) is aρ-degree cutif
each node inA (resp.B) has at mostρ neighbors outsideA
(resp.B), whereρ ∈ Z≥0. A relaxed-ρ-degree cutis a pair of
nonempty and disjoint subsets of nodesA,B ⊂ V such that
each node inA (resp.B) has at mostρ neighbors outsideA
(resp.B), whereρ ∈ Z≥0. The relaxed-ρ-degree cut problem
and theρ-degree cut problemdetermine whether the graph has
a relaxed-ρ-degree cut or aρ-degree cut, respectively.

Note that the difference between aρ-degree cut and a
relaxed-ρ-degree cut is that in the former, the two sets need

F F F F

T T T T

.....

False-block

.....

True-block

Intermediate Nodes

Fig. 3: The True-block and False-block in the construction of
G(φ). Each block is a complete subgraph with4m+ t nodes;
the edges within each block have been omitted for clarity.

to be nonempty and partition the graph, whereas the latter
does not require the two sets to form a partition. The relaxed-
ρ-degree cut problem is the complement of ther-robustness
problem: a graph has a relaxed-ρ-degree cut if and only if it
is not (ρ+ 1)-robust. Both theρ-degree cut problem and the
relaxed-ρ-degree cut problem are in complexity classNP, as
they possess certificates for ‘Yes’ instances that can be checked
in polynomial time (i.e., the two sets that comprise the cut).

Our main result in this section is that theρ-degree cut
and the relaxed-ρ-degree cut problems areNP-complete for
any ρ ∈ Z≥1, from which the coNP-completeness of the
r-robustness problem follows. The 1-degree cut problem
is equivalent to a knownNP-complete problem called the
“matching-cut problem” in which the goal is to find whether
there exists a cut in the graph such that no two edges in
the cut-set share an end-point [33]. This shows that the 1-
degree cut problem isNP-complete, but does not immediately
imply the NP-completeness of theρ-degree cut problem (or
relaxed-ρ-degree cut problem) for arbitraryρ ≥ 1. We will
show these more general results by providing a reduction from
the NP-complete problem NAE3SAT [34]; this was also the
NP-complete problem used for reduction in [33], although the
details are different.2 We start by defining NAE3SAT formally;
note that aliteral is a Boolean variable or its complement.

Definition 11 (NAE3SAT):Consider a set of Boolean
variables X = {x1, x2, . . . , xt} and a set of clauses
{C1, C2, . . . , Cm}, where each clause is a disjunction of three
literals from the set of variables. A formula inConjunctive
Normal Form(CNF) is given byφ = C1 ∧C2 ∧· · ·∧Cm. For
a given formula in CNF,NAE3SATdetermines whether there
exists a truth assignment of the variables so that each clause
contains at least one ‘True’ and one ‘False’ literal [34].

We provide a reduction from NAE3SAT to theρ-degree cut
problem by constructing a graphG(φ) for any given CNF
formula φ such thatG(φ) has aρ-degree cut if and only
if φ can be satisfied within the NAE3SAT constraints. The
construction ofG(φ) from a given formulaφ is as follows.

2It is also of interest to compare the (relaxed)-ρ-degree cut problem to the
t-local pair cut problem (and its variants) studied in [25], [26] in the context
of the CPA algorithm for reliable broadcast (see Remark 2 fora definition
of such a cut). While similar in flavor to a (relaxed)-ρ-degree cut, the fact
that thet-local pair cut involves a vertex cut that can be split into two t-
local sets allows for a simple reduction from theNP-completeset splitting
problem, thereby provingNP-completeness of thet-local pair cut problem
[26]. However, it is not apparent whether an equally simple reduction from
set splitting applies to the (relaxed)-ρ-degree-cut problem.
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Fig. 4: Figure (a) shows the variable-gadget for variablexi,
and (b) shows the clause-gadget for clausexi ∨ xj ∨ xk. The
intermediate nodes in the clause gadget will be referred to by
their numerical labels. The nodes labeled T induce a complete
subgraph, as do the nodes labeled F; these edges have been
omitted for clarity.

F

T

x1 x̄1

F

T

x2 x̄2

F

T

x3 x̄3

F

T

x̄1

F

T

F

T

x3

F

T

x2

Fig. 5: The graphG(φ) corresponding toφ = x̄1 ∨x2 ∨x3 for
ρ = 1. Each literal-node in the clause gadget is connected to
its corresponding variable-node in the variable-gadgets.The
nodes labeled T induce a complete subgraph, as do the nodes
labeled F; these edges have been omitted for clarity.

We first start with two blocks, where each block is a
complete graph on4m+ t nodes (recall thatm is the number
of clauses inφ and t is the number of Boolean variables).
The upper and lower blocks are labeled theTrue-blockand
False-block, respectively, as illustrated in Fig. 3. Next, we will
add subgraphs (consisting of additional nodes and edges) to
represent the variables and clauses ofφ to these blocks in a
carefully chosen way.

The subgraphs to be added to the blocks are of two types:
(i) variable-gadgets, and (ii) clause-gadgets. A variable-gadget
is incorporated for each variablexi ∈ X . This gadget contains
two nodes representingxi and x̄i (the binary complement of
xi), each connected to the True and False-blocks as illustrated
in Fig. 4-(a). Moreover, for each clause inφ, a clause-gadget
is constructed by connecting three nodes (each representing a
literal of the clause) in addition to some extra nodes to the True
and False-blocks as depicted in Fig. 4-(b). Finally, there are
edges, called theintermediate edges, connecting each literal-
node in each clause-gadget to its corresponding variable-node
in the variable-gadgets. An example ofG(φ) for φ = x̄1 ∨
x2 ∨ x3 is demonstrated in Fig. 5.

The construction ofG(φ) is now complete for the case
where ρ = 1. To handleρ > 1, we add additional nodes
and edges to the graph as follows. First, for each nodev in
the True-block (resp. False-block) ofG(φ), we addρ−1 nodes
in the False-block (resp. True-block) and connect them tov.
Thus, this step adds a total of2(ρ − 1)(4m + t) nodes to

Fig. 6: GraphG(φ) for ρ = 2 constructed from the graph
demonstrated in Fig. 5. The highlighted nodes and edges
correspond to the graph forρ = 1.

the graph. Second, for each nodeu in the variable and clause-
gadgets ofG(φ) that is not in the True or False-blocks, we add
ρ− 1 nodes in each of the True and False-blocks and connect
u to them. This step adds a total of2(ρ− 1)(9m+ 2t) nodes
to the graph. Note that the nodes added to the True and False-
blocks ofG(φ) are connected to all other nodes in those blocks
and hence the True and False-blocks ofG(φ) are complete
subgraphs (each containing(4m + t)ρ + (9m + 2t)(ρ − 1)
nodes). Fig. 6 demonstratesG(φ) for the caseρ = 2, obtained
from the graph shown in Fig. 5 forρ = 1.

If graph G(φ) has aρ-degree cut, then there exists a cut
C = (A,B) that partitions the nodes ofG(φ) into two sets
A andB = V\A such that no node of the graph has more
thanρ neighbors outside its set. In the following lemmas, we
show that this cutC satisfies some useful properties (all of
these lemmas assume that graphG(φ) has aρ-degree cut and
pertain to the cutC = (A,B) just described). Proofs of all
results in this section are given in the Appendix.

Lemma 3:Let T (resp.F ) be the set of all nodes in the
True-block (resp. False-block) of graphG(φ). ThenT ⊆ A
andF ⊆ B (or vice versa).

By the above lemma, cutC separates the True and False-
blocks ofG(φ). We assign ‘True’ values to the nodes in the
variable and clause-gadgets that are in the same set as the
True-block inC and ‘False’ values to the nodes that are in the
same set as the False-block.

Lemma 4:Cut C = (A,B) has the following two properties:

1) For each variable-gadget, cutC leaves the variable-node
and its negation node in opposite sets, i.e., they have
opposite truth assignments.

2) For each clause-gadget, cutC leaves at least one literal-
node in setA and one literal-node inB, i.e., at least one
literal-node is assigned ‘True’ and one is assigned ‘False.’

Lemma 5:All literal-nodes have the same truth values as
their corresponding variable-nodes.

The above lemmas connect theρ-degree cut inG(φ) to
NAE3SAT, yielding the following result.

Lemma 6:For anyρ ∈ Z≥1, the ρ-degree cut problem is
NP-complete.

We now show theNP-completeness of the more general
relaxed-ρ-degree cut problem as follows. We first construct a
graphH(φ) by taking2ρ+1 copies ofG(φ) and adding edges
to form one complete subgraph on all nodes in the2ρ + 1
True-blocks and another complete subgraph on all nodes in
the 2ρ + 1 False-blocks. We refer to each of these copies of
G(φ) used in buildingH(φ) as abox. Fig. 7 illustratesH(φ)



Fig. 7: The graphH(φ) constructed by replicating the graph
G(φ) (depicted in Figure 5)2ρ + 1 times, with ρ = 1. The
nodes in the top (resp. bottom) row form the True-block (resp.
False-block) and induce a complete graph. These edges are
omitted for clarity.

using the graphG(φ) shown in Fig. 5 forφ = x̄1 ∨ x2 ∨ x3

with ρ = 1. UsingH(φ), we prove the following result.
Theorem 8:For any ρ ∈ Z≥1, the relaxed-ρ-degree cut

problem isNP-complete.
Knowing that the relaxed-ρ-degree cut problem isNP-hard

for any ρ ∈ Z≥1, we conclude that its complement problem,
i.e., ther-robustness problem for anyr ∈ Z≥2, is coNP-hard.
Combining this with the fact that ther-robustness problem is
in coNP gives the following result.

Corollary 1: For anyr ∈ Z≥2, the r-robustness problem is
coNP-complete.

VII. SUMMARY

We studied a graph property known asr-robustness which
provides a metric to measure structural robustness of networks
to node removals, and plays a key role in a class of resilient
consensus dynamics. While it iscoNP-complete to determine
the extent of robustness in general graphs, and one can
construct worst-case networks with very large connectivity and
low robustness, we showed that the notions of robustness and
connectivity coincide in three common models for complex
networks. In Erdős-Rényi random graphs, we showed thatr-
connectivity (and minimum degree) andr-robustness share
the same threshold function. In one-dimensional geometric
graphs, we proved that if the nodes are sufficiently spread
apart,r-connectedness is equivalent tor-robustness (regardless
of how the node locations are generated). In the BA model
for preferential attachment networks, we showed that when
the initial network is robust, connectivity and robustnessare
equivalent. Recent work [35] has shown that the properties
of connectivity and robustness also share threshold functions
in so-calledrandom intersection graphs. In total, the above
findings provide new insights into the structural properties of
commonly studied models for large-scale networks; investi-
gations of ther-robustness property in other random graph
models and extending these results to directed graphs are
promising venues for future research.

APPENDIX

A. Proof of Lemma 3

Proof: Since each block is a complete graph with more
than2ρ+ 1 nodes, cutC = (A,B) cannot separate the nodes
in the same block; otherwise, there exists a node in the block
that has at leastρ+ 1 neighbors outside its own set.

Now suppose all nodes in both the True and False-blocks are
in A (the case where they are all inB is handled identically).
If there exists a node from a variable-gadget in setB, then that
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Fig. 8: In the above figures, only the edges and nodes
corresponding to the case ofρ = 1 are shown, but the analysis
holds for anyρ ≥ 1. Figure (a) shows the two possible cuts
through a variable-gadget that result in all nodes having at
mostρ neighbors on the opposite side of the cut. Figures (b)
and (c) show the six allowed cuts through the clause-gadget
that result in twoρ-reachable but not(ρ + 1)-reachable sets.
Each cut specifies a truth assignment for the literals in the
clause (e.g., cut I assigns ‘True’ toxi andxj , and ‘False’ to
xk). No cut assigns the same truth values to all literals.

node immediately has at least2ρ neighbors inA, contradicting
the definition of cutC (see Figure 4-(a) forρ = 1). Similarly,
it can be argued as follows that no node of any clause-gadget
can be in setB. Referring to Figure 4-(b), the nodes labeled
1, 2, 3, 7, 8, and 9 cannot be inB since they would then have
at least2ρ neighbors inA. Since nodes 2, 3, 7, and 8 are in
A, nodes 4 and 6 cannot be inB either. Then node 5 must
also be inA. Hence, the only possibility is that all nodes in
variable-gadgets and clause-gadgets are inA. This makesB
empty and violates the definition of cutC. Thus, it must be the
case that all nodes in the True-block are inA and all nodes
in the False-block are inB (or vice versa).

B. Proof of Lemma 4

Proof: By Lemma 3, assume without loss of generality
that all nodes in the True-block are inA and all nodes in the
False-block are inB. Now, if both nodes of a variable-gadget
are in the same set (sayA), then a node from the False-block
in set B hasρ + 1 neighbors inA (as seen in Figure 4-(a)
for ρ = 1). This contradicts the definition of cutC. The only
possible cuts through variable-gadgets for this case are shown
in Figure 8-(a), showing the first property of the lemma.

Next, suppose all three literal-nodes of a clause-gadget (i.e.,
nodes 1, 5 and 9 in Figure 4-(b)) are in setA; the case that all
three literal-nodes of a clause-gadget are inB can be handled
via identical arguments. Due to the same argument as for
variable-gadgets, the nodes that share a neighbor in the True
and False-blocks with these nodes, i.e., the nodes labeled 2and
8 in Figure 4-(b), should lie inB. Then nodes labeled 3, 4, 6
and 7 in Figure 4-(b) should also be inB. Now since node 5
in Figure 4-(b) lies inA, it has at leastρ+1 neighbors outside
its containing set, contradicting the fact thatC is a ρ-degree
cut. ThusC cannot leave all literal-nodes in a clause-gadget in
the same set. The only possible cuts through clause-gadgets
are illustrated in Figures 8-(b) and 8-(c) (only the nodes and
edges for the caseρ = 1 are shown in that figure). Hence the
second property in the lemma also holds.



C. Proof of Lemma 5

Proof: First, note that a literal-node has the same truth
value as its corresponding variable-node if and only if they
lie on the same side of cutC = (A,B). Since a variable-
node and its negation node in a variable-gadget lie in different
sets (by Lemma 4), each of these nodes are incident with
ρ edges in the cut-set. Therefore, no other edge connected
to these nodes can be excised by cutC. In particular, the
intermediate edges connecting literal-nodes in clause-gadgets
to their corresponding variable-nodes should be left uncut, and
thus each literal node in a clause-gadget must be in the same
set as its corresponding variable node.

D. Proof of Lemma 6

Proof: We prove the claim by showing that graphG(φ)
has aρ-degree cut if and only ifφ has a solution within the
NAE3SAT constraints.

Suppose thatG(φ) has aρ-degree cutC = (A,V\A). By the
first part of Lemma 4, cutC has to leave each variable-node
and its negation node on opposite sides of the cut, thereby
specifying their truth assignments. Also, by the second part
of Lemma 4, the clause-gadgets are cut byC according to
one of the six cases illustrated in Figure 8, which results in
having at least one ‘True’ and one ‘False’ literal-node in each
clause-gadget. Furthermore, by Lemma 5, all the literal-nodes
corresponding to the same variable-node are left in the same
set as that variable-node and the negated literal-nodes arein
the other set. Consequently, ifG(φ) has aρ-degree cut, then
φ is satisfiable within the NAE3SAT constraints.

On the other hand, ifφ has a solution under the NAE3SAT
constraints, then a cutC = (A,V\A) can be found inG(φ)
such that (i) each variable-gadget is cut so that the variable-
node and its negation node are connected to the blocks labeled
with their truth values, and (ii) each clause-gadget is cut
according to its truth assignment as illustrated in Fig. 8. It
can be easily observed that using this cut, no node of graph
G(φ) is incident with more thanρ edges of the cut-set and
henceG(φ) has aρ-degree cut. Together with the fact that the
ρ-degree cut problem is inNP, this shows that theρ-degree
cut problem isNP-complete.

E. Proof of Theorem 8

Proof: We show that the relaxed-ρ-degree cut problem
is NP-hard by showing thatH(φ) has a relaxed-ρ-degree cut
if and only if G(φ) has aρ-degree cut for any instanceφ of
NAE3SAT. It can be easily seen that ifG(φ) has aρ-degree
cut thenH(φ) also has aρ-degree cut (e.g., simply replicate
the cut inG(φ) for each box inH(φ)) and thus has a relaxed-
ρ-degree cut. It only remains to show ifH(φ) has a relaxed-
ρ-degree cut thenG(φ) has aρ-degree cut. Assume that sets
A,B andX partition the nodes ofH(φ) such that (i)A and
B are nonempty, and (ii) each node inA andB has at most
ρ neighbors outside its own set (i.e.,A, B andX specify a
relaxed-ρ-degree cut).

First, for any clique inH(φ) with at least2ρ + 1 nodes,
the fact thatA andB are not(ρ + 1)-reachable implies the
following two properties:

1) SetX can contain up toρ nodes or all nodes of the clique.
2) If a node of the clique is inA (resp.B), then no node of

that clique is inB (resp.A).
Let T andF denote the set of all nodes in the True and

False-blocks of graphH(φ). Several different scenarios can
take place for setsT and F with respect to setsA,B and
X . First, consider the case that bothT and F are subsets
of A (the case that bothT and F are subsets ofB can be
analyzed similarly). Since each box ofH(φ) is isomorphic to
G(φ), by the same argument as in the proof of Lemma 3 this
scenario is not possible as it would leave setB empty. Now,
by property (2) stated above and without loss of generality
due to symmetry, assume thatT ⊆ A ∪ X andF ⊆ B ∪ X .
If T ⊆ X or F ⊆ X , the same argument as above yields that
A or B would be empty, respectively. Therefore, by property
(1) above,|T ∩ X | ≤ ρ and |F ∩ X | ≤ ρ. Recall that there
are 2ρ + 1 boxes inH(φ). Consequently, there exist at least
ρ+1 boxes inH(φ) whose True-blocks are subsets ofA, and
at leastρ+ 1 boxes whose False-blocks are subsets ofB. By
the pigeonhole principle, there exists a box inH(φ), denoted
by G′(φ), such that its True-block is a subset ofA and its
False-block is a subset ofB. We show that no node ofG′(φ)
can be in setX .

Suppose that there exists a node in a variable-gadget in
G′(φ) that lies inX . Now if the other node in that variable
gadget lies inA or X , then the node in the False block
connected to both of these variable nodes hasρ+1 neighbors
outside its set (i.e., the two variable nodes and itsρ − 1
neighbors in the True block). On the other hand, if the other
node in the variable gadget lies in setB, then the node in the
True block connected to both of these variable nodes hasρ+1
neighbors outside its set. Both cases contradict the fact that
we are considering a relaxed-ρ-degree cut, and thus no node
in the variable-gadgets can be in setX .

Now, observe that since the True-block is a subset ofA
and the False-block is a subset ofB, then each variable-
node has at leastρ neighbors outside its containing set. Since
it was assumed that each node inA and B has at mostρ
neighbors outside its set, it follows that all other neighbors
of a variable-node should lie in the same set as that node.
Therefore, inG′(φ), the endpoints of all intermediate edges,
i.e., the edges connecting literal-nodes in the clause-gadgets
to the corresponding variable-nodes, lie in the same sets. This,
in combination with the fact that none of the variable-nodesin
G′(φ) are inX shows that no literal-node in any clause-gadget
of G′(φ) is in X . It only remains to show that the non-literal-
nodes in the clause-gadgets ofG′(φ), i.e., nodes labeled 2, 3,
4, 6, 7 and 8 in Figure 4-(b), are not inX either. By the same
argument as for variable-nodes, nodes labeled 2 and 8 cannot
lie in X . Also, note that since the True and False-blocks of
G′(φ) are subsets ofA andB, respectively, and node 2 (resp.
node 8) is either inA or B, thenρ of the edges connecting
node 2 (resp. node 8) to the True and False-blocks are excised.
Therefore, all its other neighbors, i.e., nodes 3 and 4 (resp.
nodes 6 and 7), should lie in the same set as node 2 (resp.
node 8). As a result, nodes 3, 4, 6 and 7 cannot be inX .
Consequently, no node ofG′(φ) lies in X .

We have thus shown that ifH(φ) has a relaxed-ρ-degree



cut thenG′(φ) has aρ-degree cut. SinceG(φ) andG′(φ) are
isomorphic, graphG(φ) also has aρ-degree cut. Consequently,
H(φ) has a relaxed-ρ-degree cut if and only ifG(φ) has aρ-
degree cut for any NAE3SAT instanceφ. Hence, the relaxed-
ρ-degree cut problem isNP-complete.
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