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Abstract—We consider a graph-theoretic property known as

deviations in local behavior; in particular, different st@s

r-robustness which plays a key role in a class of consensus (orof dynamics and models for deviation will require different

opinion) dynamics where each node ignores its most extreme

neighbors when updating its state. Previous work has shown
that if the graph is r-robust for sufficiently large r, then such

conditions on the network topology in order to be robust.
A classical metric of structural robustness to node removal

dynamics will lead to consensus even when some nodes behavis node-connectivity Specifically, a network is-connected

in an adversarial manner. The property of r-robustness also
guarantees that the network will remain connected even if a
certain number of nodes are removed from the neighborhood
of every node in the network, and thus is stronger indicator
of structural robustness than the traditional metric of graph
connectivity. In this paper, we study this notion of robustress
in common random graph models for complex networks; we
show that the properties of robustness and connectivity sha
the same threshold function in Erdds-Renyi graphs, and have
the same values in one-dimensional geometric graphs and ¢ain
preferential attachment networks. This provides new insifts into
the structure of such networks, and shows that they will be
conducive to the types of dynamics described above. Althohg
the above random graphs are inherently robust, we also show
that it is coNP-complete to determine whether any given grap
is robust to a specified extent.

Index Terms—Resilient consensus, dynamics on networks,
random graphs, robustness, complex networks, matching-¢u

I. INTRODUCTION

Complex networks abound in both the natural world (e.
ecological, biological, and social systems), and in ergjiee
applications (e.g., the Internet, the power grid, and lacpe

if the network remains connected when any arbitrary set of
r — 1 (or fewer) nodes is removed [11]. The concept of node-
connectivity also has implications for the robustness ofaie
dynamics on networks. For instance, if the networlQiE+1)-
connected (for some nonnegative intedey, then there are
certain information diffusion dynamics (or algorithms)ath
allow information to spread reliably in the network, evenenh
there are up td® maliciousnodes (in total) that deviate from
the prescribed dynamics in arbitrary ways [7]-[9], [12].

In this paper, we study a graph property known ras
robustnesswhich was introduced in [13], [14] in the context
of a certain class of resilient consensus dynamics on n&svor
As we will describe more formally in the next section, one of
the consequences of a network beirgpbust is that it remains
connected even when up to- 1 nodes are removed from the
neighborhood ofveryremaining node. Thus-robustness is
generally a much stronger certificate of structural robestn
than r-connectivity, and in fact, one can construct graphs

gIhat have very high connectivity but very low robustness.

Just asr-connectivity has implications for the robustness of
certain dynamics, so too doesrobustness: if the network is
-robust (for some nonnegative integgj, then there

sensor networks). Due to their prevalence, a topic of ilsterézF+ 1) X X i
has been the robustness of such networks to disruptioris, b€ Certain dynamics that allow the nodes in the network to
in the structure and in the dynamics that are occurring 6RACh consensus even when there are up toalicious nodes
the network. Studies détructural robustnessharacterize the ' the neighborhood of every correctly behaving node [14].
ability of networks to remain connected despite the loss of GIven the strong nature of the robustness property de-
nodes and edges, either due to targeted removal [2]-[4 orSgribed above, the cor_1tr|but|ons of thIS paper are to pevid
the outcome of a dynamical process (e.g., cascading fa)lur8NSWers to the following two questions. First, how do the
[5]. On the other hand, studies dfnamical robustnessves- Metrics of connectivity and robustness compare in various
tigate how global dynamics are affected by structural ceang"@thematical models for complex networks? Second, what
(such as edge removal) [6], or by perturbations in lock the_complexny of determining the extent of _robustness of
dynamics where some nodes actively deviate from expec@®@ 9iven network? To answer the first question, we study
behavior (e.g., due to failures or attacks) [7]-[10]. As oni"'€€ random graph models (Erdos-Rényi, 1-D geometnd, a
might expect, there is a close coupling between the topmgyBaraba&-Albert prefe_rennal attachment grqphs) for plem

the underlying network and the ability of dynamics to totera networks. Our analysis reveals that the notions of robgstne
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and connectivitycoincide on these random graph models,
meaning that random graphs with a high connectivity also
tend to have high robustness. This is perhaps surprisingngi
the existence of pathological graphs where these metries ar
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insights into the structure of certain models for complex
networks (namely that such networks inherently possessagtr
robustness properties that go beyond the traditional metri
of connectivity). These results also have implicationstfor
study of certain consensus (or opinion) dynamics on complex
networks, showing that consensus can be reached even i node



ignore a certain number of their most extreme neighbors when
they update their values. While these results show that one
can efficiently determine the extent of robustness of aertai
specific classes of networks by checking the connectivity of
those networks, in the second half of the paper, we answer the o
second question posed above and show that this is not lik&lg- 1: Example of a graph that has minimum degfeand

to be true in general; specifically, we show that the probleRPNnectivitys, butthatis only 1-robust. Sef andS; induce

of determining the extent of robustness of general netwisrksCOMPlete graphs of nodes, and each node & has exactly

coNP-complete. one neighbor inS; and vice versa.

Il. 7-ROBUSTNESS OFNETWORKS Lemma 1 ( [14]):For anyr € Zso, if G is r-robust, then

An undirected network (or graph) is given by a pgir— G is at leastr-connected and has minimum degree at least
(V,€}, whereV = {1,...,n} is the set of nodes ar@C VxV Furthermore( is 1-robust if and only if it is1-connected.

is the set of edges in the network. An edgej) € € indicates Thus the set of-robust graphs is a subset of the set-of

that nodes andj can communicate with each other. The Séionnected graphs, which itself is a subset of the set of graph
of neighborsof nodes is defined ag); = {j € V: (i, 5) € £} with minimum degreer. Indeed, just as one can construct

the degreeof nodei is denoted byl; = [V;], and theminimum graphs that have large minimum degree but low conng(_:tivity
degreeof the network ismin;cy, d;. For a given nonnegative [11], one can construct graphs that have large connectiity
integerr, a setS C V' is said to ber-local if [V; N8| < r low robustness. For example, consider the network shown in
for all i € ¥V \ S. The (node-)connectivityf a graph is the Fig. 1. The sets5; andS, have; nodes (suppose is even),

smallest number of nodes that have to be removed in ord’é]'d each node in each set is connected to all other nodes in
to disconnect the graph; such a disconnecting set of nodeétiset' Each node has exactly one neighbor from the other set

S .. L5
called avertex cut A graph isr-connected if its connectivity | IS network has connectivity and minimum degreg;, but
is at leastr.

is only 1-robust since bothS; and S; are only 1-reachable
As mentioned in the Introduction, we will be focusing on

Esi.e., no node in either of those sets has more thaeighbor
graph property known as-robustnessn this paper, given by outside its set).
the following two definitions from [13], [14].

Definition 1 (-Reachable Setfor a graptg = {V,£} and A. Role ofr-Robustness in Consensus Dynamics

a subset of nodes C V, S is anr-reachable seff Ji € S Consider a setting where each nad@ the network holds
such that]V; \ S| > r, wherer € Z>¢. In words, a setS is  some private information:;[0] (an opinion, a measurement,
r—regchable if it contains a node that has at leastighbors etc.), modeled as a real number. The network operates syn-
outside that set. L chronously, and at each time-step, each normally operating

Definition 2 (-Robust Graph)A graphg is r-robustif for node uses some prescribed rule to update its value (informa-
every pair of nonempty, disjoint subsets ¥f at least one of tjon) based on the values of its neighbors; the value held by
the subsets is-reachable, where € Z>. O nodei at time-stepk is denoted bye; [k]. In particular, consider

The following result shows why-robustness is an indicatorthe following Weighted-Mean-Subsequence-Reduced (W-
of structural robustness. MSR) dynamics: for some nonnegative integéf, at each

Theorem 1l:iLet G = {V, £} be anr-robust graph, where time-step, each node disregards the largest and smdllest
r € Z>1. LetS C V be an(r — 1)-local set, and lety’ = values in its neighborhood (breaking ties arbitrarily) and
{V\ S, &’} be the graph obtained by removing the nodes impdates its state to be a weighted average of the remaining
S and their incident edges frogh. Theng’ is connected.[] values. Mathematically, this is represented as

Proof: We prove by contradiction. Suppose tli#tis not
connected. Pick any two of the componentsjin and let the ik +1] = wiilklzi[k] + Z wig[k)a; (K],
nodes in those components be denoted by theSetdSs, JER[K]
respectively. Sincg is r-robust, at least one af; or S; is  whereR,[k] is the set of nodes whose values were adopted
r-reachable inG. Assume without loss of generality th& by normal node at time-stepk, andw;; [k] and {w;;[k]} are
is r-reachable inG and letv € &; be the node that has the weights at time-step. The weights are assumed to satisfy
neighbors outsidé&; in G. SinceS is an(r — 1)-local set, at the following conditions:
mostr — 1 of v's neighbors were removed when formigg « Ja € Rog such thatw;[k] > o, Vi € Ri[k] U {i},i €
Thuswv has at least one neighbor outsiglein G’, contradicting V. k € Zso; ’ ’
thesfact thatS; is a component. Thu§’ is connected. = . ZjeRi[k]u{i} wiilk] =1, ¥i € V, k € Zso.
incer-robustness guarantees connectedness of the networgu . -
ppose the network contains a set of malicious nodes

even _afte_r th_e_ removal of arly —1)-local set (.Wh'Ch could M C V which do not necessarily follow the above dynamics,
contain significantly more than — 1 nodes), it is a much

stronger property thaﬂponnegtivity i_n general. The foIIowing 1We refer to [13]-[18] for a more complete description of thelynamics,
result from [14] formalizes this notion. along with proofs of convergence.



but instead update their values at each time-step in anrampit to all other nodes, even if a certain number of malicious
(potentially worst-case) manner. Denote the set of normabdes spread misinformation about that value [13], [24]-
nodes byN = V \ M. As in [14], we say that the above[26]. For example, in [25], &-local pair cut was defined
dynamics facilitateresilient asymptotic consensut there as a pair oft-local subsets of vertice§'; and Cy such that
exists a constanL in the convex hull of the initial values C; U C; forms a vertex cut. Such cuts (and their variant
of the normal nodes such th&itm; ., z;[k] = L for all defined in [26]) were highlighted as being impediments to
¢t € N. In other words, resilient asymptotic consensus igliable information broadcast when the network contains a
reached if the malicious nodes cannot prevent the normtabcal set of malicious nodes. Sincetdocal pair cut forms
nodes from reaching consensus, and furthermore, canret l#ig2¢)-local vertex cut, Theorem 1 indicates thatx + 1)-
the consensus value excessively (captured by the cortstragbust network will not have a-local pair cut. We refer to
placed on the consensus value). [1], [13] for further discussions on the relationships betw
To understand the topological conditions required to ifacilthese different dynamics. O
tate consensus under W-MSR dynamics, consider the networlGiven the strong nature of therobustness property and
shown in Fig. 1. Suppose that nodesdnandS; have initial its role in W-MSR (and other) dynamics, it is natural to ask
valuesa andb, respectively, witha # b. Under the W-MSR how this property compares to the property of connectivity
dynamics withF’ > 1, each node will disregard the value ofin commonly studied networks. In the next few sections, we
its neighbor from the opposite set at each time-step and thwil answer this question by exploring the robustness oée¢hr
its own value will remain unchanged, even when there are nommon random graph models for complex networks. We will
misbehaving nodes. Thus, consensus will not be reachedin tthen analyze the computational complexity of determinirey t
network, indicating that even networks with high conndttiv extent to which any given graph is robust. Since all grapbs ar
are not sufficient to guarantee consensus under such dymantidvially 0-robust, we will primarily focus on the cases where
Examining Fig. 1, we see that the reason for the failure of> 1 in the rest of the paper.
consensus in this graph is that it contains two insular com- . ;
munities, where no node in either community receives enougH!!- ROBUSTNESS OFERDOS-RENYI RANDOM GRAPHS
information fromoutsideits own community. However, if a  Erd6s-Rényi random graphs [27], [28] are one of the most
graph isr-robust (for sufficiently large’), new information common mathematical models for large networks. The version
will penetrate at least one out of any two subsets of nodes amél study here is denoted & ,: it consists ofn. nodes and
pull it towards the other set, preventing stalemates of tuwa each possible (undirected) edge between two nodes is presen
form. This is formalized in the following result, showingeth independently with probability (which may be a function of
role thatr-robustness plays in the ability of W-MSR dynamics), and absent with probability = 1—p. Let the probability of
to tolerate arbitrary behavior by a subset of the nodes.  an event be denoted I®(-). A graph propertycan be regarded
Theorem 2 ( [14]):Suppose the malicious nodes form a@s a class of graphs that is closed under isomorphism.
F-local set. Then resilient asymptotic consensus is reachedefinition 3: AssumeP is a graph property angd = p(n)
under W-MSR dynamics if the network {2F +1)-robust. J is a function ofn. We say thatalmost all G € G, , have
Remark 1:Outside of settings with misbehaving nodes, Weroperty P if P(G,,, € P) — 1 asn — oo, andalmost no
MSR dynamics can also be viewed in the context of opinidi € Gn,, has propertyP if P(G, , € P) — 0 asn — oco. [
dynamics in social networks. For example[DaGrootopinion ~ An important feature ofG, , is that it exhibits phase
dynamics, each node repeatedly updates its opinion adransitions at certain thresholds for the probabijitydefined
weighted average ddll of its neighbors’ opinions [19], [20]; as follows.
W-MSR dynamics generalize this by allowing each node to Definition 4: Consider a functiont(n) = % where
ignore its neighbors that have the most extreme opiniogn) — 0o asn — oo, and a function: = o(g(n)) satisfying
In Hegselmann-Krause (HKdpinion dynamics, each noder — oo asn — oo. We sayt(n) is athreshold functiorfor

removes all values that are sufficiently different from iteno a graph propertyP if p(n) = W implies that almost all
opinion at each time-step before averaging the rest [22], [2G € G, , have propertyP and p(n) = W implies that
the difference in W-MSR is that nodes remove values basalinost noG € G, ,, has propertyP. O

on absolutesize (as opposed telativesize in HK dynamics).  Loosely speaking, if the probability of adding an edge is
In the opinion dynamics setting with no malicious nodes aritarger” than t(n) in the sense indicated by Definition 4,
where all nodes follow the W-MSR dynamics at each time¢hen almost allG € G, , will have propertyP, and if the
step, the proof in [14] directly applies to show that consesnsprobability is “smaller” thant(n), almost noG € G, , will

is guaranteed if and only if the network ($" + 1)-robust. [1 have this property.

Remark 2:The notion of reachable sets also plays a role Definition 5:ForG € G, ,, and constant € Zx1, define the
in the study ofbootstrap percolatiordynamics on networks, properties obeingr-connectedr-robustandhaving minimum
where each node maintains a binary state, and changesés sdagreer by K., R, and D,., respectively. O
to 1 if a certain number of its neighbors are in stat¢23]. Lemma 2 ( [27]): For any constant € Zsi, t(n) =
Bootstrap percolation, reachable sets, ammdbustness are fur- w is a threshold function for propert,. It
ther related to the so-calle@ertified Propagation Algorithm is also a threshold function for properfy,..

(CPA) for resilient information broadcast in networks, whe The above result by Erdés and Rényi indicates that
a single source node wishes to disseminate its value rgliabhd D, share the same threshold function @, ,, even



though beingr-connected is a stronger property than having
minimum degree. The following is one of our main results: it

establishes that the above threshold function-foonnectivity

(and minimum degree) is also a threshold function for the

stronger property of-robustness in Erdés-Rényi graphs.
Theorem 3: For any constantr € Zsi, t(n)

Innt(r—Hnlnn js 5 threshold function for propertg,. [

n
Proof: From Lemma 1 and Lemma 2, the result is true for
r = 1 since1-connectedness anidrobustness are equivalent

Thus, we focus on the case where> 2.

For the first part of the Proof we show that for any constal

_ Ilnn+ 1) Inlnn+tz

r € Z>1, if p(n , wherez = z(n) is
some function satlsfyln@ = o(ln Inn) anda: — 00 asn —
oo, then almost al7 € G,, , arer-robust. By the definition of
robustness, it is sufficient to show that for almost@l G, ,,,

every subset op with size up to| | is r-reachable. Here we

prove a stronger result: ip(n) = 2rtlr—lininnte ihen

almost allG € G, , have the property that every subsetlof
with size up to|(1 — a)n] is r-reachable, wheres = a(n)
is a positive function satisfyingup,, «(n) < 1 andlnlnn =
o(alnn). Clearly,a = 1 is included as a special case.

r—1 k
lnn+ (r—1)nlnn+x ekp—a
1
Inn k
kp—x k
coe
< (= :
k

Note that1“”+(r’llll)7j“1“"+” < 2 for sufficiently largen and
thus0 < c3 < 2 L

et f(k) = & be a function ofk, where k e Rso.
Since & < 0if k < Landf > 0if & > I,
r&(k) < max{f(1), f(n.)} for k € {1,2,...,n.}. We know

exp{(1—a)np} _

that f(nc) = eXPnllcp S (1—a)n - lia exp{(l -
a)np —Inn} = - exp{—alnn+ (1 —a)(r — 1) Inlnn +
(1 — a)z}. Sincea(n) is positive, strictly bounded below

andlnlnn = o(alnn), we know thatf(n.) = o(1). Further
note that f(1) e? > 1. Thus, for sufficiently largen,

fk) < f(1) <eandP; < (chl‘w)k. We now have
Ne o0 i
vk coe
PO < Z]P)k < Z (6261 ) = 1—1? = 0(1)7
k=1 k=1

sincex — oo asn — oo, completing the first part of the proof.

Let Py be the probability that some set of cardinality uhe second part of the proof (showing lack :efobustness

to n.
that Py = o(1) whenp(n) = otlr=binlinte ‘pengte the
probability that some seS C V with cardmalltyk (i.e.,
|S| = k) is not r-reachable as?;. By the union bound,
we know thatPy < > <, Pj. For fixed S of cardinality
k, the probability that a nodes € S has less thanr
neighbors outside 5/, (";k)q” k=ipi and the probability
that S is not r-reachable i} (",’“)q"*k*ipi)k, where
g = 1 — p. Since there are{k) such setsS, we know that
P < (D)X, ("7F)g"F="p?)*. In the rest of the proof,
we focus on the cases whetke < n.. Using the fact that
(1) < (€)% and (}) < n*, we obtain

JEC))

In the last step above; is some constant upper bound for

1—
he notion of “for sufficiently large:” will be implicitly used

throughout the proof. Noting that — p < e~ and p(n) =
Inn+(r—1)Inlnn+x

. k
P, < <c1n(7;€p) le_(n_k)p)

<Cln(np)rl e Inn—(r—1)Inln nm+kp>
k

# satisfying0 < ¢; < 2er for sufficiently largen.

k

£ |(1 — a)n] is not r-reachable. We need to provebelow the threshold) is obtained by combining Lemma 1 and

Lemma 2. [ |

Remark 3:The above theorem shows that Erdés-Rényi
graphs gain more structure at the threshalth)
M than simply beingr-connected. Whereas
connectedness implies that given any two disjoint (nongmpt
sets, the nodes in at least one of the sets collectively have
neighbors outside that set, the above result shows thas ther
is (at least) one node in one of the sets thgtitself hasr
neighbors outside. Thus, with high probability, “worste&a
graphs such as the one in Fig. 1 will not arise. O

Remark 4:A special case of Erdés-Rényi graphs is when
p(n) ;; in this case, each graph onnodes occurs with
probability2™ (3) , corresponding to a uniform distribution over
the set of all graphs on nodes. Thus, the quanti(g,,

P) represents thdraction of graphs onn nodes that ?have
propertyP. Using this fact, our result above indicates that for
any fixedr € Z>, the fraction of graphs on nodes that are
r-robust goes td asn goes tooo. O

Remark 5:1t is of interest to note that an alternate method
to show the above result would be to first relate the notion of
reachable sets to the conditions required for bootstrapofeer
tion dynamics on networks, and then to apply results obtaine
recently in [23] for such dynamics using branching process
techniques. However, the proof provided above is more tirec
and provides greater insight into the relationship between
the underlying graph-theoretic properties of connegtiaihd
robustness. O

IV. ROBUSTNESS OFl-D GEOMETRIC GRAPHS

Another widely used model for large networks is the-
ometric random graphwhich captures edges between nodes
that are in close (spatial) proximity to each other. We cdersi
the geometric grap@;f%l = {V, &}, which is an undirected
graph generated by first placingnodes (according to some



mechanism) in a regiof), = [0,/]¢, whered € Zs;. subsetsS;,S; C V, at least one of them i$5 |-reachable.
We denote the position of node € V by z(i) € Qq. Thus the graph is at least |-robust, proving the first part of
Nodesi,j € V are connected by an edge if and only ithe theorem.
lx(?) — z(j)|] < p for some thresholg, where|| - || indicates ~ For the second part of the theorem, assume il{at) —
an appropriate norm (often taken to be the standard Euclideg1) > 3p. Then there exists an intervdh,a + 3p] C
norm). When the node positions are generated randomly (e(@:(1), z(n)). Consider any two nonempty and disjoint subsets
uniformly and independently) in the region, one obtains & ,S» C V, and denotet =V \ (S; U Ss). By the argument
geometric random graph. In the widely-studied mc@%j, the above, if eitherS; or S, does not have any nodes in some
parametet is fixed and graph properties are typically explorediosed interval of lengthp within (z(1),z(n)), that set will
whenn — oo andp — 0, leading to dense random networkse r-reachable. Thus, suppose that b&thand S, have nodes
[29]. In the more general modﬂd ,.1» however, the length in all closed intervals of lengtp within (x(1),2(n)). Pick
is also allowed to increase and the densftycan converge any nodei from S; in the intervalla + p,a + 2p], and let
to some constant, making it suitable for capturing both deng € S, be the node ifa + p, a + 2p] that is closest ta. We
and sparse random networks [30]. assume without loss of generality thatj) < x(¢) and that if
In Section Ill, we showed that the properties of connegtivitz(j) < x(z), then there are only nodes froAi between and
and robustness have the same threshold function in Erd§dthe latter can always be enforced by redefinirtg be the
Rényi graphs. In this section, we will prove similar resultnode inS; that is closest tg in [a + p,a + 2p]).
for one-dimensional geometric random graphs (ides 1). Suppose thatS; is not r-reachable. Then there are fewer
We start by providing a result showing that connectivitthanr nodes fromS, U X in the interval[z(i) — p, z(i) + p].
and robustness cannot be very different in one-dimensiomialz(j) = z(7), thenj has at leasr neighbors in[z(:) —
geometric graphs, and are in fact equal when the nodes are(i) + p] and since fewer than of them are fromS,, the
sufficiently spread out (regardless of how the node positioset S, will be r-reachable. Thus assume thetj) < z(i).
are generated and the relationships betwgenand(). In the Let the number of nodes from¥ strictly between; andi be
following, we assume that the nodes are ordered such thakjf (see intervald in Fig. 2). The intervalgz(5), z(j + p)]
1,7 €V andi < j thenz(i) < z(j). (AUB in Fig. 2) and[z (i) —p, (7)) (intervalC in Fig. 2) each
Theorem 4:n O, = [0,1], if G, is r-connected, then it contain at least nodes, and have the intervalin common;
is at least| 7 |-robust. Furthermore it (n) —x(1) > 3p, then thus the intervalB U C has at leasgr — ny nodes. Let the
the graph iSr connected if and only if it is--robust. O number of nodes fron$, in BUC bens,. Thus, the number
Proof: First, note that ifz(n) — 2(1) < p then the graph of nodes inB U C outside S, is at least2r — ns, — nx.
is complete and therefore: — 1)-connected and |-robust, Since: does not have neighbors outsidé;, it must be that
and thus the claim holds. In the rest of the proof, we assumg, + nx < r, and thus there are at leasnhodes outside,
thatz(n) —x(1) > p. In this case, if the graph isconnected, in BUC. The setS, is thenr-reachable (since nodehas at

the following two properties hold. leastr neighbors outside,). Thus the graph is-robust. m
1) Every interval of the fornta, a+p] C (z(1),z(n)) must
have at least nodes, because otherwise, removing the c
nodes in that interval would disconnect the nodes in the R _
interval [z(1), a] from those in the intervala + p, z(n)]. =
The same is true for every interval of the fofma+p) C —t—+ —&—® —— —t
K z(1) @ z(i)-p atp (i) a+2p  w(i)tp a+3p x(n)
(z(1),x(n)), and thus for every closed interval of length w(i)p () =)o

p contained in(x(1), z(n)).

2) Consider any nonempty s& C V. If there exists an Fig. 2: An illustration of the intervals considered in theof
interval [a,a + p] C (z(1),2(n)) with no nodes fromS, of Theorem 4. Interval containsny nodes, all from the set
then there must be a node frafnin the intervallz(1),a) X IntervalC contains at least nodes. IntervalUB contains
or in the interval(a + p,z(n)]. By symmetry, assume at leastr nodes, and thu® U C has at leastr — ny nodes.
that S has nodes ifz(1),a) and leti be the node inS
that is closest ta: from thrs interval. Then the interval Once again, note that Theorem 4 does not dependown
(x(1),2(i) + p] contains no nodes frors, but contains the positions of the nodes are generated. Unfortunately, th
at leastr nodes, and thus§ is r-reachable. strong property does not extend to geometric graphs in highe

Now consider any two disjoint and nonempty subsetimensions. For example, the graph shown in Figure 1 can
S§1,82 € V, and any intervala,a + p] C (x(1),z(n)). If be viewed as a geometric graph in two dimensions, where
81 (resp.Sz) has no nodes ifa, a + p|, thenS; (resp.S;) the nodes in each set are all clustered horizontally within
is r-reachable. Thus, suppose bath and S, have nodes in a distancep, and the two sets are vertically separated by a
la,a+ p]. If 1 is not| 5 |-reachable, there are fewer thah|  distance just below so that each node is within a distanee
nodes fromS; in [a,a + p]. Choose any nodé from S; in  of exactly one node in the opposite set. Clearly that graph is
the interval. There are at least- 1 remaining nodes in the only 1-robust, despite having a connectivity f However, as
interval, and at most 3| — 1 of them are inSy. Thusi has illustrated by our analysis for Erd6s-Rényi networkspmiay
at leastr — 1 — [5| +1 > | ] neighbors in the interval that still be possible for robustness and connectivity to caladn
are not inS,. Therefore, for any two disjoint and nonemptyandom geometric graphs in higher dimensions; an analysis



of this for d > 2 is a ripe avenue for future research. Here;-connected for all- € Z>;. Similarly, for the second part,

we will present an asymptotic approach to analyzing onB{w) — 0 as! — o if k andr satisfy the given conditions,

dimensional random graphs (complementary to the analysislicating that the graph will be-robust andr-connected

in Theorem 4) to develop scaling laws fefrobustness and (again, using Theorem 4). For the third part, Theorem 5 from

r-connectivity. We first define properties falmost allgraphs [30] indicates that almost n&' € gg_p_l is connected under

in ggm as follows, similar to th&g,, , model. the given conditions, and thus almost no graph-®nnected
Definition 6: AssumeP is a graph property. We say thator r-robust for anyr > 1. [ ]

almost allG € G¢ ,, have propertyP if P(G! , € P) —

1 asl — oo, andalmost noG € G , has propertyP if V. ROBUSTNESS OFBARABASI-ALBERT PREFERENTIAL

P(Ge ,, €P)—0asl— . 0 ATTACHMENT NETWORKS

Note that we study these propertiesdfj ,, asl — oo, and  gefore discussing the third model for complex networks,

taken andp to be functions of, i.e.,n = n(l) andp = p(I). e start by reviewing the following construction method for
We now present conditions under which the one-dimensional p st graphs from [13], [14].

geometric random graph becomegonnected and-robust; Theorem 6 ( [13], [14]):Let G = {V,E} be anr-robust
the proof of this result builds upon and generalizes thehresaraph_ Then grapt’ = {{V, tnew}, (€, Enewl } Wherevnew is
for one-dimensional graphs in [30] (which considered segli ; o node added © and&new is the edge set related tqew,
laws for connectedness versus disconnectedne@jygfl). is r-robust ifd.. > r. 0
Note Elh(?)t if p(1) > 1, the graph will be(n(l) — 1)-connected 1, apove theorem indicates that to buildrarobust graph
and [=-]-robust, and thus we focus on the case whe[g, ,, nodes (wherer > ), we can start with an-robust

p(l) < lin the theorem below. graph of order less than (such as a complete graph), and
Theorem S:Assume thatpn = kllnl for some constant coniinually add new nodes with incoming edges from at least
k> 0. r nodes in the existing graph. The theorem does not specify
o If p<landp € Ql), then almost allG € G, ,, are which existing nodes should be chosen as neighbors. When
r-connected and-robust for allr € Z. the nodes are selected with a probability proportional ® th
o If p=o(l) andpl™1~" — oo for somer € Zx1, then number of edges that they already have, the above consinucti
almost allG € G, ,, arer-connected and-robust. is known as theBarabasi-Albert (BA) preferential-attachment
o If pc O(l) andk < (1—¢) for some constarit < ¢ < 1, model and leads to the formation of so-callestale-free

then almost na7 € G, , is r-connected or-robust. networks [31].
O Theorem 7:In the BA model, when the initial network is

Proof: Fix any » € Z>;. In order to prove the first two r-robust, then the generated (finite) network-isonnected if
parts, we will show that any interval of lengghcontains at and only if the network is-robust. O
leastr nodes; the results will then follow from the arguments  Proof: If each new node connects to less thaaxisting
in the proof of Theorem 4. L&, = [0,!] be subdivided into nodes, then the last node added to the network will have degre
non-overlapping segments of length= £5. Then(; has less tham, and so the network will be neitherconnected nor
c = L@J whole segments and potentially a fraction of &-robust; on the other hand, if all of the new nodes connect

segment. Any interval of length in ©; will contain at least t0 r existing nodes, then by Theorem 6, the network will be
r whole segments and thus we just need to show every whetéobust and thus-connected. ]
segment contains at least one node. Note that the above result relies on the specific constnuctio
Let w be a random variable representing the number focedure of the BA model (where each new node connects
empty whole segments. Sinee is a nonnegative integerto the same number of existing nodes); the extension to

random variable, by Markov’s inequality we knoR(w > Mmore general preferential-attachment mechanisms is aevenu
0) < E(w), whereE(w) = ¢(1 — %)n is the expected value of for future research. To the extent that the BA model is a

w. Sincel — z < exp(—z), we have plausible mechanism for the formation of complex networks,
BT nh our anglysis indicates that thesg netwqus vvliII. also fenddi
E(w) =c (1 - 7) < cexp (_T) dynamics such as W-MSR, provided thais sufficiently large
when the network is forming.

S(rJ;l)leXp(_ np )

(r+1)l VI. THE COMPLEXITY OF DETERMINING THE EXTENT OF
1)1 k 1
_ Dl (_ 1nl> _ D ROBUSTNESS OFGENERAL GRAPHS
p 1 The previous sections showed that for certain classes of

Note that in going from the second line to the third, wegraphs (e.g.,1-d geometric and BA preferential attachment

replacedn by Ent, graphs generated from a sufficiently robust core), the ro-
Linder the conditions in the first part of the theorenbustness of the graph can be determined by calculating its

pl™1~1 — oo regardless of the choice of € Z>,. Thus connectivity (for which there exist efficient algorithms2[3.

E(w) — 0 and Theorem 4 indicates that almost all graphsurthermore, as discussed in Remark 4, for any fixethe

will be | % |-robust for allr € Z>; (or equivalently,--robust fraction of graphs om nodes that are-robust goes td as

for all r € Z>1). By Lemma 1, almost all graphs will ben — co. Despite these facts, we will show in this section that



there is unlikely to be an efficient algorithm that determsine True-block

the extent to which any arbitrary graph is robust. Speclfical @ @ """ @ @
we will show that determining whether a given graphris
robust for anyr > 2 is coNP-complete. We start by recalling
the following concepts (e.g., see [32]), and defining the (3@ @ .....
robustness problem formally. @ ®False-block® @

Definition 7 (NP and coNP): A decision problemis a Fig. 3: The True-block and False-block in the constructibn o

pr(l)\lblem wh(_)se f;l]nswe(; is. ‘Yes’ orb‘INo’. Thﬁ SBIl‘Y(re'sp. G(¢). Each block is a complete subgraph witin + ¢ nodes;
FO ,P) contains those decision problems whose Yes (resfhe edges within each block have been omitted for clarity.
No’) answers can be verified using a polynomial number

of computations. Two problem®; and P, are complements
when the output of; to an input instance is ‘Yes' if and only

if the output of P, to that instance is ‘No’ and vice versa. Thao pe nonempty and partition the graph, whereas the latter
complement of a problem iNP is in coNP, and vice versa. does not require the two sets to form a partition. The relaxed
Ll p-degree cut problem is the complement of theobustness
Definition 8 (NP-complete andcoNP-complete):A deci- problem: a graph has a relaxgelegree cut if and only if it
sion problemP; is NP-hard if for any problemP, in NP, s not (p 4 1)-robust. Both thep-degree cut problem and the
there exists a polynomial-time algorithm that transformg a relaxedp-degree cut problem are in complexity clad$P, as
instance ofP; into an instance oP; that has the same answethey possess certificates for ‘Yes'’ instances that can bekele
(i.e., an algorithm forP; can be used to solve problef). in polynomial time (i.e., the two sets that comprise the .cut)
If P, is NP-hard and also ifNP, thenP, is NP-complete. oy main result in this section is that thedegree cut

The defin_ition of acoNFlcc_)mpIete problem_ is analogous. If agnd the relaxeg-degree cut problems amdP-complete for
problem isNP-hard, then its complement @NP-hard. O gy , ¢ Z>, from which the coNP-completeness of the
Definition 9 (Ther-Robustness Problemiven a graply, ,.ropustness problem follows. The 1-degree cut problem
ther-robustness problens a decision problem that determinesg equivalent to a knowrNP-complete problem called the
whetherg is r-robust for a given- € Zx;. ~)" “matching-cut problem” in which the goal is to find whether
If a graph is not-robust, then there exist two nonempty an¢here exists a cut in the graph such that no two edges in
disjoint subsets of nodes, B such that each node in these setg,e cyt-set share an end-point [33]. This shows that the 1-
has at most — 1 neighbors outside its set. Note that nodegegree cut problem iNP-complete, but does not immediately
in setX = V\(AU B) can have any number of neighbor§mply the NP-completeness of the-degree cut problem (or
outsideX’. There is no apparent way to certify that a graph ig|axedp-degree cut problem) for arbitrary > 1. We will
r-robust without checking all pairs of disjoint and nonemptynow these more general results by providing a reductian fro
subsets of nodes and showing that at least one set out of eﬁﬁhNP-complete problem NAE3SAT [34]; this was also the
pair is r-reachable. This is intractable as the number of SU{b.complete problem used for reduction in [33], although the
subsets is exponential in the size of the input graph. On thgtails are different We start by defining NAE3SAT formally;
other hand, to certify that a graph it r-robust, one only note that diteral is a Boolean variable or its complement.

needs to provide.asing_le pairofdisjoint and nonempty SB'F’SG Definition 11 (NAE3SAT):Consider a set of Boolean
of nodes, of which neither set isreachable. Therefore, iNariables X — {21,29,...,2;) and a set of clauses

the r-robustness problem, the ‘No’ instances (input grap %1 Ch, ..., Cn}, where each clause is a disjunction of three
that are not-robust) have certificates that can be checked | erélls ;‘rorr; the ’set of variables. A formula i@onjunctive

polynomial time, and so the-robustness problem is itoNP. 0. Form(CNF) is given byg = Cy ACy A--- AC,,. For

Tﬁ sho;/]v that th?*-robustpeses plgoblem NP;ompIe:]e_,r\]Ne a given formula in CNFNAE3SATdetermines whether there
show the complement of therobustness problem, Which Weg, s 4 tryth assignment of the variables so that eacheclaus

call the relaxedp-degree cut problegris NP-complete. contains at least one ‘True’ and one ‘False’ literal [34].0

Definition 10:For a grapfy = {v, £}, a partition of) into We provide a reduction from NAE3SAT to thedegree cut

two nonempty subsetd and5 =V \ A is said to be aut, X .
— : _ problem by constructing a grapfi(¢) for any given CNF
and denoted by’ = (A, B). The cut-setof a cutC = (A, 5) formula ¢ such thatG(¢) has ap-degree cut if and only

's defined as the subset of the edgegjolith one endpoint if ¢ can be satisfied within the NAE3SAT constraints. The

in A and the other ir5. A cutC = (A, B) is ap-degree cuff . : .
each node ind (resp.B) has at mosp neighbors outsidel construction ofG(¢) from a given formulap is as follows.
(resp.B), wherep € Z>(. A relaxedp-degree cuis a pair of
nonempty and disjoint subsets of noddsB C V such that 2t is also of interest to compare the (relaxgdjlegree cut problem to the
each node i resp.B) has at mosb neighbors outsid t-local pair cutproblem (and its variants) studied in [25], [26] in the coite
B hnA ( pZ ) Th | g d 9 b|e4 of the CPA algorithm for reliable broadcast (see Remark 2afatefinition
(resp. )’ Wherep € Z>o- ere ax_e p-degree cut problem of such a cut). While similar in flavor to a (relaxeghdegree cut, the fact
and thep-degree cut problerdetermine whether the graph hashat thet-local pair cut involves a vertex cut that can be split inta tiv
a relaxedp-degree cut or zp-degree cut respectively. ] local sets allows for a simple reduction from th&>-completeset splitting
N h he diff b ' d d problem, thereby provindN\P-completeness of thé-local pair cut problem
ote that the di ?rence. etween @adegree cut and a [26]. However, it is not apparent whether an equally simgéuction from
relaxedp-degree cut is that in the former, the two sets neest splitting applies to the (relaxeg)degree-cut problem.

Intermediate Nodes



True-block True-block

Fig. 6: GraphG(¢) for p = 2 constructed from the graph
demonstrated in Fig. 5. The highlighted nodes and edges
@ (b) correspond to the graph for= 1.

False-block False-block

Fig. 4: Figure (a) shows the variable-gadget for variable

and (b) shows the clause-gadget for clause =; vV z;. The the graph. Second, for each nodén the variable and clause-
intermediate nodes in the clause gadget will be referred/to gadgets ofj(¢) that is not in the True or False-blocks, we add
their numerical labels. The nodes labeled T induce a complet_ 1 nodes in each of the True and False-blocks and connect
subgraph, as do the nodes labeled F; these edges have hegnthem. This step adds a total ?fp — 1)(9m + 2t) nodes
omitted for clarity. to the graph. Note that the nodes added to the True and False-
blocks ofG(¢) are connected to all other nodes in those blocks

T T T and hence the True and False-blocksdgfs) are complete
subgraphs (each containingm + t)p + (9m + 2t)(p — 1)
) (@ s nodes). Fig. 6 demonstratg$¢) for the casep = 2, obtained
from the graph shown in Fig. 5 fgr = 1.
F F G If graph G(¢) has ap-degree cut, then there exists a cut
C = (A, B) that partitions the nodes @f(¢) into two sets

A and B = V\ A such that no node of the graph has more
Fig. 5: The grapl§(¢) corresponding t@ = 2, Va2 Vas for  thanp neighbors outside its set. In the following lemmas, we
p = 1. Each literal-node in the clause gadget is connecteddfow that this cuC satisfies some useful properties (all of
its corresponding variable-node in the variable-gadgEt® these lemmas assume that grafflp) has ap-degree cut and
nodes labeled T induce a complete subgraph, as do the nogéﬁain to the cut = (A, B) just described). Proofs of all
labeled F, these edgeS have been omitted for Clarity. results in this section are given in the Appendix_

Lemma 3:Let 7 (resp.F) be the set of all nodes in the
True-block (resp. False-block) of gragh(¢). ThenT C A
We first start with twoblocks where each block is aand 7 C B (or vice versa).

complete graph oAm + ¢ nodes (recall that is the number gy the above lemma, cuf separates the True and False-
of clauses ing andt is the number of Boolean variables)yocks of G(¢). We assign ‘True’ values to the nodes in the
The upper and lower blocks are labeled ffreie-blockand yariaple and clause-gadgets that are in the same set as the

False-block respectively, as illustrated in Fig. 3. Next, we willrrye-plock inC and ‘False’ values to the nodes that are in the
add subgraphs (consisting of additional nodes and edgeskifnhe set as the False-block.

represent the variables and clausespdb these blocks in a
carefully chosen way.

The subgraphs to be added to the blocks are of two typeélr) . . i . :
(i) variable-gadgets, and (ii) clause-gadgets. A variajadget and 't‘_c' negation _node in opposite sets, i.e., they have
is incorporated for each variabtge € X. This gadget contains opposite truth assignments. )
two nodes representing; and z; (the binary complement of 2) For egch clause—gadgt-_:‘t, (mﬂeave§ atlleast one literal-
z:), each connected to the True and False-blocks as illugtrate  N°d€ in setd and one literal-node i, i.e., at least one
in Fig. 4-(a). Moreover, for each clause dn a clause-gadget literal-node is assigned ‘True’ and one is assigned ‘False.
is constructed by connecting three nodes (each repregemtin Lemma 5:All literal-nodes have the same truth values as
literal of the clause) in addition to some extra nodes to theT their corresponding variable-nodes.
and False-blocks as depicted in Fig. 4-(b). Finally, theee a The above lemmas connect thedegree cut inG(¢) to
edges, called thentermediate edgesonnecting each literal- NAE3SAT, yielding the following result.
node in each clause-gadget to its corresponding variatde-n Lemma 6:For anyp € Z>1, the p-degree cut problem is
in the variable-gadgets. An example @{¢) for ¢ = Z; v NP-complete.
x2 V x3 is demonstrated in Fig. 5. We now show theNP-completeness of the more general

The construction ofG(¢) is now complete for the caserelaxedp-degree cut problem as follows. We first construct a
wherep = 1. To handlep > 1, we add additional nodesgraph?(¢) by taking2p+1 copies ofG(¢) and adding edges
and edges to the graph as follows. First, for each node to form one complete subgraph on all nodes in #het 1
the True-block (resp. False-block) {¢), we addp—1 nodes True-blocks and another complete subgraph on all nodes in
in the False-block (resp. True-block) and connect them.to the 2p + 1 False-blocks. We refer to each of these copies of
Thus, this step adds a total @{p — 1)(4m + t) nodes to G(¢) used in buildingH(¢) as abox Fig. 7 illustratesH (¢)

Lemma 4CutC = (A, B) has the following two properties:
For each variable-gadget, afitleaves the variable-node
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Fig. 7: The grapht{(¢) constructed by replicating the graph &0 G‘G
G(¢) (depicted in Figure 5pp + 1 times, withp = 1. The (a) (b) (©)

nodes in the top (resp. bottom) row form the True-block (resp

False-block) and induce a complete graph. These edges Ritg 8: In the above figures, only the edges and nodes
omitted for clarity. corresponding to the case pf= 1 are shown, but the analysis
holds for anyp > 1. Figure (a) shows the two possible cuts
through a variable-gadget that result in all nodes having at

using the grapl(¢) shown in Fig. 5 forg = 1 V @3 V a3 most p neighbors on the opposite side of the cut. Figures (b)

with p = 1. Using #(¢), we prove the following result. and (c) show the six allowed cuts through the clause-gadget
Theorem 8:For any p € Z>, the relaxeds-degree cut hat result in twop-reachable but notp + 1)-reachable sets.
problem isNP-complete. L) Each cut specifies a truth assignment for the literals in the

Knowing that the relaxe@-degree cut problem islP-hard  ¢jause (e.g., cut | assigns ‘True’ 1 andz;, and ‘False’ to

for any p € Z>1, we conclude that its complement problem,. y No cut assigns the same truth values to all literals.
i.e., ther-robustness problem for anye Zx,, is coNP-hard.

Combining this with the fact that therobustness problem is
in coNP gives the following result.

Corollary 1: For anyr € Zx>2, the r-robustness problem is
coNP-complete.

node immediately has at leax neighbors in4, contradicting

the definition of cutC (see Figure 4-(a) fop = 1). Similarly,

it can be argued as follows that no node of any clause-gadget

can be in sef3. Referring to Figure 4-(b), the nodes labeled

1, 2,3, 7,8, and 9 cannot be Bisince they would then have
We studied a graph property known asobustness which at |east2p neighbors inA. Since nodes 2, 3, 7, and 8 are in

provides a metric to measure structural robustness of me$v0 4, nodes 4 and 6 cannot be B either. Then node 5 must

to node removals, and plays a key role in a class of resiliegiso be in.A. Hence, the only possibility is that all nodes in

consensus dynamics. While it dmNP—compIete to determine Variab|e_gadgets and C|ause_gadgets arelinThis makesB

the extent of robustness in general graphs, and one Gfipty and violates the definition of cdt Thus, it must be the

construct worst-case networks with very large connegtaiitd  case that all nodes in the True-block arednand all nodes
low robustness, we showed that the notions of robustness @hghe False-block are i (or vice versa). u

connectivity coincide in three common models for complex
networks. In Erdés-Rényi random graphs, we showed ithat
connectivity (and minimum degree) androbustness share
the same threshold function. In one-dimensional geometﬁ’c
graphs, we proved that if the nodes are sufficiently spread
apart,r-connectedness is equivalenttoobustness (regardles

S . . .
: at all nodes in the True-block are i and all nodes in the
of how the node locations are generated). In the BA mod:g ! u i !

. Ise-block are ir3. Now, if both nodes of a variable-gadget
for preferential attachment networks, we showed that whep, . 1o same set (sa$), then a node from the False-block
the initial network is robust, connectivity and robustness ;<. hasp + 1 neighl;ors inA (as seen in Figure 4-(a)
equivalent. Recent work [35] has shown that the propertigosr » = 1). This contradicts the definition of ca The only
of connectivity and robustness also share threshold fonsti possible cuts through variable-gadgets for this case aersh
in so-calledrandom intersection graphdn total, the above in Figure 8-(a), showing the first property of the lemma.
findings provide new insights into the structural properié N ' Il three literal-nod facl _aad .
commonly studied models for large-scale networks; investi ext, suppose a t_ree iteral-no es of a clause-ga gel (i
gations of ther-robustness property in other random grapHOdes 1,5 and 9 in Figure 4-(b)) are in sétthe case that all

models and extending these results to directed graphs _edl|tetral-|nodes of atclalljjse-?adt%et ardinan be hantdledf
promising venues for future research. via identical arguments. Due to the same argument as for

variable-gadgets, the nodes that share a neighbor in the Tru

and False-blocks with these nodes, i.e., the nodes labelad 2

8 in Figure 4-(b), should lie irB. Then nodes labeled 3, 4, 6

A. Proof of Lemma 3 and 7 in Figure 4-(b) should also be fh Now since node 5

Proof: Since each block is a complete graph with morm Figure 4-(b) lies inA, it has at leasp+ 1 neighbors outside

than2p + 1 nodes, cuC = (A, B) cannot separate the nodests containing set, contradicting the fact thatis a p-degree

in the same block; otherwise, there exists a node in the bloclt. ThusC cannot leave all literal-nodes in a clause-gadget in

that has at least + 1 neighbors outside its own set. the same set. The only possible cuts through clause-gadgets
Now suppose all nodes in both the True and False-blocks are illustrated in Figures 8-(b) and 8-(c) (only the noded an

in A (the case where they are all his handled identically). edges for the case= 1 are shown in that figure). Hence the

If there exists a node from a variable-gadget in/sgthen that second property in the lemma also holds. [ ]

VIl. SUMMARY

Proof of Lemma 4

Proof: By Lemma 3, assume without loss of generality

APPENDIX



C. Proof of Lemma 5 1) SetX can contain up t@ nodes or all nodes of the clique.

Proof: First, note that a literal-node has the same truth2) If @ node of the clique is ipA (resp.5), then no node of
value as its corresponding variable-node if and only if they that clique is inB (resp..A).
lie on the same side of cut = (A,B). Since a variable- Let 7 and ¥ denote the set of all nodes in the True and
node and its negation node in a variable-gadget lie in differ False-blocks of grapt(¢). Several different scenarios can
sets (by Lemma 4), each of these nodes are incident wigtke place for set§” and 7 with respect to setsd, 5 and
p edges in the cut-set. Therefore, no other edge connectéd First, consider the case that bofh and 7 are subsets
to these nodes can be excised by €utin particular, the of A (the case that botfi” and 7 are subsets o can be
intermediate edges connecting literal-nodes in clausiggfa analyzed similarly). Since each box #f(¢) is isomorphic to
to their corresponding variable-nodes should be left yrand  G(¢), by the same argument as in the proof of Lemma 3 this
thus each literal node in a clause-gadget must be in the sa¥fignario is not possible as it would leave Beempty. Now,

set as its corresponding variable node. m by property (2) stated above and without loss of generality
due to symmetry, assume tha&tC AU X and F C BU X.

If 7C X orF CAX, the same argument as above yields that
A or B would be empty, respectively. Therefore, by property
(1) above,|T N X| < p and |F N X| < p. Recall that there
are 2p + 1 boxes in?(¢). Consequently, there exist at least
p+1 boxes inH(¢) whose True-blocks are subsets.4fand
at leastp + 1 boxes whose False-blocks are subset$ oBy
e pigeonhole principle, there exists a box#ii¢), denoted
G’'(¢), such that its True-block is a subset df and its

D. Proof of Lemma 6

Proof: We prove the claim by showing that gragtio)
has ap-degree cut if and only ify has a solution within the
NAE3SAT constraints.

Suppose thaf (¢) has go-degree cut = (A4, V\A). By the
first part of Lemma 4, cu€ has to leave each variable-nod
and its negation node on opposite sides of the cut, ther

specifying their truth assignments. Also, by the second p N : ;
of Lemma 4, the clause-gadgets are cut(®yccording to C:LSEebliﬁcgég(a subset &. We show that no node @'(¢)

(r)]ne_ of trﬁ S'Xt casefrnlu?tratjed In ‘llzzlglure: Ii'gt’ wlrl|chdre§urlés n Suppose that there exists a node in a variable-gadget in
aving at feast one 'frue and one ‘~aise literal-node in ag’(¢) that lies in X. Now if the other node in that variable

clause-gadget. Furthermore, by Lemma 5, all the literaeso dget lies inA or X, then the node in the False block

- . . a
corresponding to the same variable-node are left in the Saal)%nected to both of these variable nodes hasl neighbors
set as that variable-node and the negated literal-nodem ar

the other set. Consequently,g) has ap-degree cut, then Sutside its set (i.e., the two variable nodes andts 1
’ ' - ’ ighbors in the True block). On the other hand, if the oth
¢ is satisfiable within the NAE3SAT constraints. neighbors in the True block). On the other hand, if the other

. . node in the variable gadget lies in dgtthen the node in the
On the other hand, i has a solution under the NAE3SAT .
constraints, then a cuf — (A W\ A) can be found ing(e) True block connected to both of these variable nodeghab

. . . . Peighbors outside its set. Both cases contradict the fadt th
such that (i) each variable-gadget is cut so that the vmabWe are considering a relaxgdéegree cut, and thus no node
node and its negation node are connected to the blocks ‘hb(ﬂ?the variable-gadgets can be in st '

with their truth values, and (ii) each clause-gadget is cut

. it was assumed that each node.hand B has at most
henceG(¢) has ap-degree cut. Together with the fact that th?1eighbors outside its set, it follows that all other neigtsho

p-degree cut problem is NP, this shows that the-degree of a variable-node should lie in the same set as that node.

cut problem isNP-complete. Therefore, inG’(¢), the endpoints of all intermediate edges,
i.e., the edges connecting literal-nodes in the clauseetad
E. Proof of Theorem 8 to the corresponding variable-nodes, lie in the same sais, T
Proof: We show that the relaxeg-degree cut problem in combination with the fact that none of the variable-noides
is NP-hard by showing that{(¢) has a relaxeg-degree cut G'(¢) are inX shows that no literal-node in any clause-gadget
if and only if G(¢) has ap-degree cut for any instanee of of G’(¢) is in X. It only remains to show that the non-literal-
NAE3SAT. It can be easily seen thatdf{¢) has ap-degree nodes in the clause-gadgets@f¢), i.e., nodes labeled 2, 3,
cut then?(¢) also has g-degree cut (e.g., simply replicate4, 6, 7 and 8 in Figure 4-(b), are not iti either. By the same
the cut inG(¢) for each box inH(¢)) and thus has a relaxed-argument as for variable-nodes, nodes labeled 2 and 8 cannot
p-degree cut. It only remains to show#(¢) has a relaxed- lie in X. Also, note that since the True and False-blocks of
p-degree cut theig(¢) has ap-degree cut. Assume that setsj’(¢) are subsets ofl and B, respectively, and node 2 (resp.
A, B and X partition the nodes of{(¢) such that (i).A and node 8) is either ind or B, thenp of the edges connecting
B are nonempty, and (ii) each node it and B has at most node 2 (resp. node 8) to the True and False-blocks are excised
p neighbors outside its own set (i.e4, B and X’ specify a Therefore, all its other neighbors, i.e., nodes 3 and 4 (resp
relaxedp-degree cut). nodes 6 and 7), should lie in the same set as node 2 (resp.
First, for any clique in#(¢) with at least2p + 1 nodes, node 8). As a result, nodes 3, 4, 6 and 7 cannot be&’in
the fact that4 and B are not(p + 1)-reachable implies the Consequently, no node &f (¢) lies in X.
following two properties: We have thus shown that #(¢) has a relaxeg-degree



cut thenG’(¢) has ap-degree cut. Sinc€(¢) andG’(¢) are

isomorphic, graplgi(¢) also has @-degree cut. Consequently,

H(¢p) has a relaxeg-degree cut if and only i (¢) has ap-
degree cut for any NAE3SAT instange Hence, the relaxed-
p-degree cut problem isIP-complete. [ ]
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