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Abstract—We present a method to stabilize a plant with a
network of resource constrained wireless nodes. As opposed to
traditional networked control schemes where the nodes simply
route information to and from a dedicated controller (perhaps
performing some encoding along the way), our approach treats
the network itself as the controller. Specifically, we formulate a
strategy for each node in the network to follow where at each
time-step, each node updates its internal state to be a linear
combination of the states of the nodes in its neighborhood.
We show that this causes the entire network to behave as a
linear dynamical system, with sparsity constraints imposed by
the network topology. We provide a numerical design procedure
to determine appropriate linear combinations to be applied by
each node so that the transmissions of the nodes closest to the
actuators will stabilize the plant. We also show how our design
procedure can be modified to maintain mean square stability
under packet drops in the network, and present a distributed
scheme that can handle node failures while preserving stability.
We call this architecture a Wireless Control Network, and show
that it introduces very low computational and communication
overhead to the nodes in the network, allows the use of simple
transmission scheduling algorithms, and enables compositional
design (where the existing wireless control infrastructure can be
easily extended to handle new plants that are brought online in
the vicinity of the network).

Index Terms—Networked control systems, cooperative control,
decentralized control, wireless sensor networks, linear systems.

I. INTRODUCTION

INDUSTRIAL control systems are often deployed in large,
spatially distributed plants that involve numerous sensors,

actuators and internal process variables. The traditional means
of interconnecting the various components of these systems
has been via physical wires; this is often difficult to do (with
hard-to-reach or dangerous areas), expensive (due to the labor
and materials involved) and fault-prone (due to degradation
of wires, miswiring due to human error, etc.). Over the last
decade, low-cost and reliable wireless networks have emerged
as a practical method to alleviate these issues in automation
systems [2], [3]. Besides the obvious physical benefit of reduc-
ing excessive wiring, these networks introduce a set of logical
benefits [4]. For example, wireless communication allows one
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to “hot-swap” between a faulty module and a backup module
via a simple activation command, and facilitates “plug-n-play”
automation architectures which reduce downtime. 1 Along the
same lines, through the use of certain algorithms that satisfy
the principle of compositionality (where the existing setup can
be easily extended for increased functionality and robustness),
wireless networks make it possible to incrementally upgrade
systems in a straightforward manner.

Wireless networks also pose some interesting new chal-
lenges. One problem arises due to the fundamental unreliabil-
ity of wireless communication; the probability that a wireless
transmission will be received by a node’s neighbors depends
on various factors, including the amount of power used to
transmit information, environmental factors that affect the
propagation characteristics of the channel, and collisions that
might occur due to multiple nodes transmitting at the same
time. Another problem is the need to maintain a reasonable
end-to-end delay in the network. The topic of designing
controllers that are tolerant to these types of issues has been
intensively studied by researchers over the past decade [7],
[8], [9], [10], [11], [12]. The vast majority of work in this
area considers the case of a single sensing point and a single
actuation point on the plant, and adopts the convention of
having a dedicated controller/estimator located somewhere in
the network. The stability of the closed loop system is then
studied, assuming that the sensor-estimator and/or controller-
actuator communication channels are unreliable (e.g., dropping
packets with a certain probability). While these and other
works have made great inroads into understanding the problem
of feedback control over networks, they have some potential
drawbacks when it comes to implementation. First, the state
vectors maintained by the controllers in these existing works
typically have sizes on the order of the size of the plant’s state
vector, and intermediate nodes are also expected to perform
operations on state vectors of similar size. However, devices
in wireless networks are often battery operated and have
severe resource constraints, allowing only a modest amount
of computation and storage (examples of this are discussed in
Section III). Also, by adding one (or a few) specialized nodes
capable of performing computationally expensive procedures,
the control infrastructure becomes susceptible to failure on the
part of those nodes. A second drawback of these traditional ap-
proaches is that they do not capture the real-world scenario of

1In traditional wired automation systems, modules are connected with
an industrial bus (e.g., PROFIBUS [5], CAN [6]) and a large number of
I/O connectors, where the wiring is usually inaccessible, which significantly
increases the time and cost needed for replacements.
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multiple sensing and actuation points that are geographically
dispersed throughout the plant, with signals that are injected
into and out of different nodes throughout the network.

Another key factor when implementing traditional net-
worked control algorithms is to minimize end-to-end delays
in the network and to maximize the network lifetime (by
designing energy efficient algorithms). This is done via the
use of wireless link protocols which broadly fall into two cate-
gories: synchronous or asynchronous. Asynchronous protocols
have the advantage of not requiring a communication schedule
between nodes, since a node simply transmits its packet as
soon as it is received. However, this simplicity results in large
communication jitter which makes end-to-end timing analysis
very difficult in multi-hop scenarios [13], and complicates the
task of characterizing the stability of the system.

Time synchronized network protocols are the norm in the
control automation industry and recent standards (such as
WirelessHART [2] and ISA 100.11a [14]) employ a time divi-
sion multiplexing link protocol. Full network synchronization
allows the use of Time-Triggered Architectures (TTAs) where
communication and computation are scheduled at particular
instances of time (i.e., time slots) [15]. From the perspective
of analyzing system stability, TTAs have the advantage that the
network-induced delay is known. Furthermore, a closed-loop
system based on TTA can be modeled as a switched control
system [16], which allows utilization of existing techniques
for switched-system analysis. However, in this case the sys-
tem performance depends on communication and computation
schedules that have to be carefully designed and interleaved
on a node-by-node basis. Even in the case with only one
plant being controlled over a multi-hop network, the task of
constructing these schedules in order to meet strict end-to-end
delay requirements is very complex [16], [17].

The goal of this paper is to introduce a new way of looking
at the problem of control over wireless networks. Instead of as-
signing the computation of the control law to a particular node
in the network, we show how to cause the entire network itself
to act as the controller. We call this fully-distributed paradigm
the Wireless Control Network (WCN). To develop this idea, we
consider a setup where several resource constrained wireless
nodes are deployed in the proximity of a plant, with some
nodes having access to the sensor measurements (i.e., outputs)
of the plant, and some nodes placed within the listening range
of the plant’s actuators. Each node in the network is capable
of maintaining only a limited internal state. Given this setup,
we present a simple linear iterative strategy for each node to
follow, where each node periodically updates its state to be a
linear combination of the states of the nodes in its immediate
neighborhood. In addition, the plant actuators apply linear
combinations of the states of the nodes in their neighborhood.
The key insight of our work is that this simple scheme causes
the entire network itself to behave as a structured dynamical
compensator. Based on this insight, we adapt numerical al-
gorithms from the literature on structured and static output
feedback control design to synthesize the stabilizing linear
combinations employed by each node and actuator. We also
show how this design procedure can be modified to account for
packet drops in the network. As discussed in Section III, this

approach to control over a wireless network has many benefits
over traditional schemes (where information is routed to and
from a dedicated controller). Specifically, the WCN requires
very little overhead, is very simple to schedule, is capable of
handling plants with dispersed sensing and actuation points,
can explicitly account for computational constraints at each
node, and satisfies the principle of compositionality (allowing
ease of incremental upgrades to the plant).

The rest of the paper is organized as follows. In Section II,
we introduce and describe the Wireless Control Network in
more detail, including the mathematical formulation that will
set up the design procedures. In Section III, we list the imple-
mentation advantages of the WCN in comparison to existing
networked control schemes. We then delve into the problem of
synthesizing the WCN in Section IV, where we adapt existing
algorithms from the literature on static output feedback to
determine an appropriate set of stabilizing linear combinations.
In Section V, we show how these algorithms can be modified
to account for probabilistic packet drops in the network. For
the sake of clarity, we assume in both of these preceding
sections that each node can only perform calculations on
a single (scalar) value; in Section VI, we generalize our
discussion to vector states at each node. We provide examples
of our scheme in Section VII. In Section VIII we show how
the WCN is able to gracefully degrade under node failures,
and we discuss the relationship between the WCN and the
traditional notions of delay introduced by the feedback loop.
Finally, we finish in Section IX by describing some possible
directions for future improvements on this scheme.

A. Notation

We use ei to denote the ith unit column vector (of appropri-
ate dimension) and the symbol 1 denotes the column vector (of
appropriate size) consisting of all 1’s. The symbol IN denotes
the N × N identity matrix. The notation diag (·) indicates
a square matrix with the quantities inside the brackets on the
diagonal, and zeros elsewhere. The notation tr (·) indicates the
trace of a square matrix. We will denote the cardinality of a
set S by |S|. The set of nonnegative integers is denoted by N.
The notation A � 0(� 0) indicates that matrix A is positive
(semi)definite. The set of all n × n positive definite matrices
is denoted by Sn

++. A graph is an ordered pair G = {V , E},
where V = {v1, v2, ..., vN} is a set of vertices (or nodes), and
E is a set of ordered pairs of different vertices, called directed
edges. The vertices in the set Nvi = {vj |(vj , vi) ∈ E} are
said to be neighbors of vertex vi.

II. THE WIRELESS CONTROL NETWORK

Consider the system presented in Fig. 1, where the plant is
to be controlled using a multi-hop, fully synchronized wireless
network. In this paper we focus on plants of the form 2

x[k + 1] = Ax[k] +Bu[k]

y[k] = Cx[k],
(1)

2The plant model can be generalized to include update and measurement
noise; if the noise is taken to be independent and identically distributed with
a bounded variance, all of our analysis and results will still ensure that the
system is mean square stable. For the purposes of clarity, we will therefore
omit the noise terms in our discussion.
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Fig. 1. A multi-hop wireless control network used as a distributed controller.

with A ∈ Rn×n,B ∈ Rn×m and C ∈ Rp×n. The out-
put vector y[k] =

[
y1[k] y2[k] ... yp[k]

]T
contains measure-

ments of the plant state vector x[k] provided by the sensors
s1, s2, ..., sp. The input vector u[k] =

[
u1[k] u2[k]... um[k]

]T
corresponds to the signals applied to the plant by actuators
a1, a2..., am.

The WCN consists of a set of nodes that communicate with
each other and with the sensors and actuators installed on
the plant. Each node in the network is equipped with a radio
transceiver along with (limited) memory and computational
capabilities.3 Similarly, each sensor and actuator on the plant
contains a radio transceiver, allowing them to communicate
with neighboring nodes. The wireless network is described
by a graph G = {V , E}, where V = {v1, ..., vN} is the set
of N nodes and E ⊆ V × V represents the radio connectivity
(communication topology) in the network (i.e., edge (v j , vi) ∈
E if node vi can receive information directly from node v j).
We also define VS ⊂ V as the set of nodes that can receive
information directly from at least one sensor, and VA ⊂ V as
the set of nodes whose transmissions can be heard by at least
one actuator.

To facilitate our development, we will find it convenient
to consider a new graph Ḡ that includes the plant’s sen-
sors and actuators. This graph is obtained by taking the
graph G and adding p + m new vertices S ∪ A, where
S = {s1, s2, . . . , sp} corresponds to the plant’s sensors, while
A = {a1, a2, . . . , am} corresponds to the plant’s actuators.
Define the edge sets

EO =

{
(sl, vi)

sl ∈ S, vi ∈ VS ,
vi can receive values from sensor sl

}

EI =

{
(vi, al)

al ∈ A, vi ∈ VA,
act. ai can receive values from vi

}
We then obtain Ḡ = {V ∪ S ∪A, E ∪ EI ∪ EO}.

Unlike traditional networked control schemes where a par-
ticular node vi ∈ V is designated as the controller and all
other nodes are used to route information between v i and the
plant, we propose a fully distributed control scheme where the
entire network itself acts as a controller (becoming a Wireless

3We will model these resource constraints by limiting the size of the state
vector that can be maintained by each node. To present our idea, we will
initially focus on the case where each node’s state is represented as a scalar.
The more general case, where each node can maintain a vector state with
possibly different dimensions, is considered in Section VI.

Control Network). To achieve this, we have each node in the
network utilize a linear iterative strategy where, at each time-
step, it updates its value to be a linear combination of its
previous value and the values of its neighbors. 4 In addition,
the update procedure of each node from the set VS includes
a linear combination of the sensor measurements (i.e., plant
outputs) from all sensors in its neighborhood. If we let z i[k]
denote node vi’s (scalar) state at time step k, we obtain the
update procedure:5

zi[k+1] = wiizi[k] +
∑

vj∈Nvi

wijzj [k] +
∑

sj∈Nvi

hijyj [k]. (2)

Each plant input ui[k], i ∈ {1, . . . ,m} is taken to be a linear
combination of values from the nodes in the neighborhood of
the actuator ai:6

ui[k] =
∑

j∈Nai

gijzj[k]. (3)

Remark 1: Note that the time-step k of the network in the
above updates is the same as the time-step of the plant. This
is in contrast to the typical paradigm of control over networks,
where the sampling rate of the plant must be slow enough that
information can be routed within the wireless network without
much of an impact on the closed-loop system. This paradigm
automatically enforces that the nodes in the network operate
at a faster rate than the plant. However, the above WCN
algorithm only requires each node to operate on information
from one-hop neighbors. Thus, we can either slow the network
nodes down to the sampling rate of the plant (potentially
obtaining benefits in reliability, efficiency, etc.), or speed up
the sampling rate of the plant to match the rate of the network
(potentially yielding better control performance).

The scalars wij , hij and gij specify the linear combinations
that are computed by each node and actuator in the network.
If we aggregate the values of all nodes at time step k into the
value vector z[k] =

[
z1[k] z2[k] ... zN [k]

]T
, the behavior of

the entire network can be represented as:

z[k + 1] = Wz[k] +Hy[k] ,

u[k] = Gz[k]

for all k ∈ N (W ∈ RN×N ,H ∈ RN×p,G ∈ Rm×N ). In
the above equation, for all i ∈ {1, . . . , N}, wij = 0 if vj /∈
Nvi ∪ {vi}, hij = 0 if sj /∈ Nvi , and gij = 0 if vj /∈ Nai .
Thus, the matrices W,H and G are structured, meaning that
they have sparsity constraints determined by the topology of
the WCN. Throughout the rest of the paper, we will define Ψ

4The proposed scheme is similar in flavor to the algorithms used in
linear network coding (in information theory), where nodes in a network
do not merely forward received messages - a node combines the received
messages before they are retransmitted. The objective in our case is to choose
these linear combinations to stabilize the plant, rather than simply transmit
information through the network.

5The neighborhood Nv of a vertex v is with respect to the graph Ḡ.
6Here we assume that each actuator, in addition to having a radio

transceiver, has computational capabilities to be able to calculate the weighted
sum of its neighboring nodes’ states. However, in cases where an actuator
is equipped only with a transceiver, the state of only one node in the
actuator’s neighborhood is used by that actuator. Thus, in this case for each
i ∈ {1, · · · , p}, gij = 1 for exactly one j ∈ {1, · · ·N}, and all other
weights are equal to zero.
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to be the set of all tuples (W,H,G) ∈ RN×N × RN×p ×
Rm×N satisfying the aforementioned sparsity constraints. The
above representation leads to our first key observation: the
linear strategy employed by the nodes causes the network to
act as a structured dynamical compensator. If we denote the
overall system state by x̂[k] =

[
x[k]T z[k]T

]T
, the closed-

loop system becomes:

x̂[k + 1] =

[
A BG
HC W

] [
x[k]
z[k]

]
� Âx̂[k] (4)

Remark 2: The WCN is a fully distributed controller, im-
plemented upon a substrate provided by a wireless network.
One of the key differences between the WCN and classical
decentralized control approaches is that the latter typically
assume that each controller has direct access to some of the
plant inputs and outputs [18]. In contrast, if we view each
node in the WCN as a separate controller, many of these
controllers will not be directly connected to the plant, but only
to other nodes (or controllers). Furthermore, we enforce size
constraints on the state of each controller, and study how to
leverage the interconnections between the the nodes in order
to stabilize the system.

In the next section, we describe the implementation advan-
tages of the above control mechanism, and then we present
algorithms used to find an element of Ψ that causes the closed
loop system to be stable.

III. ADVANTAGES OF THE WIRELESS CONTROL NETWORK

With the mathematical description of the WCN from the
previous section in hand, we will now discuss some advantages
of this architecture in the context of multi-hop embedded
wireless networks for control.

1. Low overhead: The proposed scheme is computationally
very inexpensive since each node only needs to compute a
linear combination of its value and values of its neighbors.
Thus, the WCN can be easily implemented even on resource
constrained, low-power wireless nodes (such as those shown in
Fig. 2),7 using very simple, periodic tasks executed on a real-
time operating system (such as nano-RK [20] or TinyOS [21]).
Furthermore, unlike in traditional networked control schemes,
our approach can explicitly account for these computational
and resource constraints during the design procedure (i.e., by
limiting the size of the state vector that is maintained by each
node).

In addition, as the only requirement of the scheme is that
a node transmits its state once per time-step (also known as
a frame in the wireless networking literature), the proposed
scheme can be easily “piggy-backed” into wireless networks
that already assign a transmission slot for each node to
maintain network related information (e.g., wireless systems
for factory automation based on the ISA100.11a standard [14]
or wirelessHART [2]). For example, if the node’s state z i[k] is

7These nodes usually contain an 8-bit or 16-bit microcontroller operating on
8 MHz (or lately 16 MHz) clock, with up to 16 KB of RAM and a low-power
radio (typically IEEE 802.15.4 compatible radio, with 250 Kbps physical layer
data rate). Their power consumption is also very low; for example, the FireFly
node uses 60mW when both CPU and radio are active, or 3uW when the CPU
and radio are in sleep mode [19].

Fig. 2. (a) On the left of the coin, a low-power FireFly node; on the right,
a FireFly node with an add-on AM receiver for hardware-based out-of-band
synchronization; (b) An example of FireFly nodes in a process-in-the-loop
simulation using the Honeywell Unisim process (plant) modeling tool.

a 16-bit scalar, each node only needs to transmit 2 additional
bytes per frame in order to control the system, which can
be easily accommodated in each transmitted message. This
also allows the possibility of using the proposed scheme as
a backup (fault-tolerant) mechanism in traditional networked
control systems. Specifically, if the primary control mechanism
(i.e., dedicated controller) in the existing networked control
infrastructure fails, the wireless network itself can take over
the role of stabilizing the plant (i.e., operate as a WCN) until
the functionality of the primary controller is restored.

The requirement that all nodes in the WCN be at least
loosely synchronized can be easily accomplished using in-
band synchronization as a part of a TDMA-based Medium
Access Control (MAC) protocol (i.e., nodes implicitly syn-
chronize with another nodes using the current transmission
slot, as in RT-Link [22] and wirelessHART [23]) or with hard-
ware synchronization (e.g., using an additional AM receiver,
as shown in Fig. 2(a) [22]).8

2. Simple scheduling: The presented scheme does not
require complex communication scheduling, since each node
needs to transmit exactly once in a frame and the WCN does
not impose end-to-end delay constraints (i.e., nodes close to
the actuators do not need to wait for information to propagate
all the way from the sensors). The only requirement of the
communication schedule is to be conflict-free (i.e., two nodes
within the same transmission range should not broadcast at
the same time). Since the WCN does not use any routing to
and from a dedicated controller, the communication schedule
does not have to change when link qualities change. On the
other hand, standard routing techniques require a recalculation
of the routes and communication schedules if the packet drop

8Although the nodes in the network have to be synchronized, the WCN
scheme can also be implemented in wireless networks that utilize asyn-
chronous MAC protocols (e.g., B-MAC [24]). In this case, the effects of
(increased) message collisions have to be taken into account while calculating
the probability of message failure, since they will have negative effects on the
system’s stability (as shown in Section V).
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probability on one of the links increases dramatically. Thus,
if di is the maximal degree of the interference graph, 9 a static
conflict-free schedule can be derived using graph coloring,
with di slots in a frame. Since the duration of a frame is equal
to the plant’s sampling period, the minimal sampling period of
the plant is equal to diTslot, where Tslot is the duration of a
communication slot. In contrast, traditional networked control
systems often impose a requirement that the sampling period
be greater than the end-to-end delay, causing the minimal
sampling period to directly depend on the network diameter.

3. Multiple sensing/actuation points: The WCN can
readily handle plants with multiple geographically distributed
sensors and actuators, a case that is not easily handled by
the “sensor → channel → controller/estimator → channel →
actuator” setup that is commonly adopted in networked control
design. Even in the few works that consider networked control
over arbitrary topologies ([11], [12]), an assumption is made
that there is a single actuation and a single sensing point on the
plant. Under this assumption, those papers recommend placing
the controller at the actuation point, so that the controller will
know all of the inputs that are applied to the plant, and can thus
correctly estimate the state from the information that it receives
from the sensing point (via the other nodes). However, real-
world plants contain multiple actuation and sensing locations,
in which case it is no longer clear that the conclusions in those
papers hold. Our approach, on the other hand, does not rely on
the existence of dedicated controllers, and inherently captures
the case of nodes exchanging values with the plant at various
points in the network.

4. Compositionality: The WCN allows compositionality,
meaning that an existing design can be easily extended to
accommodate new subsystems that are added to the plant.
In subsequent sections we describe how to synthesize the
WCN to stabilize a given plant. However, suppose that some
new subsystems (or plants) are added in the proximity of the
wireless network, and the existing wireless infrastructure is
to be used to control these new systems (in addition to the
original plant). In traditional networked control schemes (with
a dedicated controller node, and all other nodes functioning
as routers), reusing the network is complicated due to several
factors. First, each node would potentially have to transmit
multiple times during a given frame, based on when the
information reaches it from the various sensors on the different
plants. This requires the calculation of a new collision-free
schedule for the entire network.10 Second, with each change
of communication schedules, it is necessary to analyze the
schedule of computations on each node to determine whether
a controller assigned with the execution of one (or more)
control procedure(s) can schedule and execute them in time
(between packet reception and subsequent transmission) to
provide outputs that are to be transmitted to actuators [16].

Compositionality is inherent in the WCN due to the fact
that each node is only required to transmit once per frame
(and end-to-end delay requirements do not enter into the

9The interference graph is defined as ḠInt = {V ∪S ∪A, EInt}, where a
link between two nodes (or a node and a sensor/actuator) indicates that they
can interfere with each other (i.e., cannot transmit simultaneously).

10Here we consider networks that utilize TDMA MAC protocols.

picture). If P is the total number of plants, one can calculate a
separate stabilizing set of linear combinations for each of the
new plants, with corresponding separate states maintained by
each node. To control all plants simultaneously, each node
groups all of its P (possibly vector) states into a single
transmission packet.11 Upon reception of the P different states
from each of its neighbors, each node updates its P different
internal states using the appropriate linear combinations. This
enables a completely decoupled computation of the matrices
{Wi,Hi,Gi}Pi=1 that guarantee stability for each of the P
plants, although physically realized by the same WCN. As
controlling an additional plant does not change the commu-
nication schedule for the WCN, one can avoid the complex
rescheduling of communications and computations that is
inherent in traditional networked control systems [16], [17].

IV. STABILIZING THE CLOSED-LOOP SYSTEM

In this section we discuss the problem of determining the
linear combinations that should be used by each node and
actuator to stabilize the closed-loop system via the WCN.
From (4), the closed-loop system is stable if the matrix
Â = Â(W,H,G) is Schur. The traditional approach to
achieving this would be to attempt to find a positive definite
matrix X satisfying the Lyapunov inequality X− ÂTXÂ � 0,
or equivalently,

[
X ÂTX
XÂ X

]
� 0.

The above condition is not linear in the design parameters
X,W,H,G; this is of no consequence in standard controller
design (when there are no structural constraints on the design
matrices), because this condition can be converted to a LMI
via an appropriate transformation of the system matrices
(e.g., as done in [25]). However, the fact that the matrices
are structured in our framework prevents us from directly
applying these standard procedures.12 While this direct attempt
to cast the controller design problem as a LMI does not work
in our context, we note that problems of the above form
appear in the design of static output feedback controllers with
sparsity constraints on the gain matrix [27]. Although this is
a computationally difficult problem in general (e.g., various
versions of this problem are NP-hard [28], [29], [30]), various
numerical approximation algorithms have been proposed in
the literature (e.g., [31], [32], [33]). We now describe one
such procedure that can be used to design the WCN, and later
we will show how this procedure can be modified to deal with
unreliable communication links in the network. We start with
the following characterization of stability of structured systems
from [34].

Theorem 1: ([34]) A matrix Â is Schur if and only if there
exist symmetric, positive-definite matrices X and Y such that[
X ÂT

Â Y

]
� 0, X = Y−1.

11Usually this is not a severe limitation even for low-bandwidth, 802.15.4
networks (where each transmission can carry up to 1024 bits). In these
networks, if each plant is controlled using the scheme where a node maintains
a scalar 16 bit state value, then up to 64 plants can be controlled in parallel.

12For matrices that have particular structures (such as being block diagonal),
a common approach is to consider X to be block diagonal, which would
maintain the structure of the design matrices after the linearization [26].
However, for the (arbitrary) network topologies that we study in this paper,
our experiments show that this approach is overly conservative and fails to
find feasible solutions even when they exist.
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The above theorem provides a matrix inequality that is
linear in the design variables W,G and H, but suffers from
the fact that the constraint X = Y−1 is nonconvex. One
appealing approach to deal with this was suggested in [32],
[31], where the constraint X = Y−1 is approximated with an
optimization problem via the following lemma.

Lemma 1: Positive-definite matrices X,Y satisfy the con-
straint X = Y−1 if and only if they are optimal points for the
problem

(P1) : min tr(XY), s.t. X � Y−1, X,Y ∈ S
n
++

and the optimal cost of the problem is n.
Using the Schur complement, the constraint X � Y−1 in

the above lemma can be transformed to the form [ X I
I Y ] � 0.

Theorem 1 and Lemma 1 yield the following corollary.
Corollary 1: There exist a Schur matrix Â = Â(W,H,G)

where the matrices W,H and G satisfy the desired sparsity
constraints ((W,H,G) ∈ Ψ) if and only if the following
optimization problem

min tr(XY), (5)[
X ÂT

Â Y

]
� 0,

[
X I
I Y

]
� 0, Â =

[
A BG
HC W

]
(6)

(W,H,G) ∈ Ψ, X,Y ∈ S
n+N
++ (7)

is feasible with optimal cost n+N .
Note that with the exception of the objective function (5),

all of the constraints in the above corollary are linear in the
unknown parameters, and can readily be solved using LMI
tools. As described in [31], [35], a problem of the form (P 1)
from Lemma 1 (or (5)-(7) from Corollary 1) is known as a
cone complementarity problem (CCP). For such problems, El
Ghaoui et al. [31] showed that the nonconvex function tr(XY)
can be replaced with a linear approximation

φlin(X,Y) = constant+ tr(Y0X+X0Y),

for any given matrices X0 and Y0. With this insight, [31], [32]
showed that an iterative algorithm can be used to minimize
tr(XY), while ensuring satisfaction of LMI constraints. For
our application, the iterative approach proposed in those papers
can be formulated as Algorithm 1.

In [31] the authors showed that the sequence tk =
tr(YkXk+1 +XkYk+1) will always converge. In addition, if
the sequence converges to 2(n+N) the condition Y = X−1

can be satisfied under the given LMI constraints. A similar
proof can be constructed in this case, which leads us to the
following theorem.

Theorem 2: Algorithm 1 determines a tuple (W,H,G) ∈
Ψ that causes the matrix Â(W,H,G) to be Schur if the se-
quence tk = tr(YkXk+1+XkYk+1) converges to 2(n+N).

Note that while each iteration of the above algorithm is a
convex optimization problem (which can be efficiently solved
using standard LMI toolboxes), currently there is no way to
characterize the number of iterations required for the algorithm
to converge. This problem has attracted substantial attention in
the context of static output feedback design. For example, [33]

Algorithm 1 Stabilizing closed-loop system with the WCN
1. Find feasible points X0,Y0,W0, H0, G0 that satisfy
the constraints (6)-(7). If a feasible point does not exist, then
it is not possible to stabilize the system with this network
topology.
2. At iteration k (k ≥ 0), from Xk,Yk obtain the matrices
Xk+1,Yk+1,Wk+1,Hk+1,Gk+1 by solving the follow-
ing LMI problem

min tr(YkXk+1 +XkYk+1)[
Xk+1 ÂT

k+1

Âk+1 Yk+1

]
� 0,

[
Xk+1 I

I Yk+1

]
� 0,

Âk+1 =

[
A BGk+1

Hk+1C Wk+1

]
,

(Wk+1,Hk+1,Gk+1) ∈ Ψ, Xk+1,Yk+1 ∈ S
n+N
++ .

3. If the matrix

Âk+1 =

[
A BGk+1

Hk+1C Wk+1

]
is Schur, stop the algorithm. Otherwise, set k = k + 1 and
go to the step 2.

compared the convergence rates of various algorithms, and
similar experiments can be run for the synthesis of the WCN.
Furthermore, in [32] the authors propose a simple modification
of the utilized algorithm in order to provide faster convergence.
However, the convergence rate of the algorithm depends on
the initial points X0 and Y0, but we do not currently have
a way to pick the ‘best’ such initial points. Indeed, due to
the computational complexity of the static output feedback
problem, it is difficult to obtain fast convergence of such
algorithms in general.

V. STABILIZATION DESPITE UNRELIABLE

COMMUNICATION LINKS

In the previous section we considered the case where mes-
sages exchanged between nodes are always delivered. Since
unreliability of the communication links is one of the main
drawbacks of wireless networks, in this section we focus on
more “realistic” system models, where potential message drops
are taken into account. In this case the system’s evolution can
be described as:

x̂[k + 1] =

[
A BGθ(k)

Hθ(k)C Wθ(k)

]
x̂[k] � Âθ(k)x̂[k], (8)

where x̂[k] ∈ R
n+N is the overall system’s state and

the subscript θ(k) describes time-variations in the matrices
(W,H,G) caused by (probabilistic) drops of communication
packets. The focus of this section is to adapt the design
procedure described in the previous section to generate a set of
weights that guarantee stability of the system in a probabilistic
sense, defined below.

Definition 1: ([25], [36]) The system is mean-square stable
if for any initial state (x̂[0], θ(0)), limk→∞ E

[‖x̂[k]‖2] = 0,
where the expectation is with respect to the probability distri-
bution of the packet drop sequence θ(k).
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Fig. 3. Remote control over fading channel; (a) A link between nodes vi
and vj ; (b) Link transformation into a robust control form.

A vast amount of research has focused on the topic of
designing controllers to stabilize plants over communication
channels that are subject to Bernoulli packet drops, typically
assuming the existence of a single unreliable channel between
the plant sensor and the controller, and the controller and the
plant actuators [10], [9]. However, there are relatively few re-
sults that explicitly consider packet drops in networked control
systems with general topologies. The paper [11] considered the
problem of the optimal location for a controller in a network
and showed that placing the controller at the plant’s actuator
would maximize the amount of information available to the
controller (since at any other location, it would not know
whether a control signal that it sent to the actuator was dropped
along the way). The papers [12], [37] considered the issue
of allowing intermediate nodes to encode information that
they are routing to the controller, so that the controller would
receive enough information to stabilize the plant. All of these
papers assume a single sensor and actuation point on the plant,
and consider the existence of a designated controller within
the network. It is worth noting that the papers [12] and [37]
allow the intermediate nodes in the network to perform linear
operations on the data that they send, but this is done purely
to provide the dedicated controller with enough information
about the state of the plant (as opposed to our approach, where
the linear combinations are chosen so that the transmissions
of the network as a whole are stabilizing).

The topic of modeling networks with unreliable channels
was also considered in [36], where it was shown that such
networks can be cast in a robust control framework, allowing
an elegant approach to analysis and design. We will adapt
this approach to the problem of designing a wireless control
network with unreliable links. In the framework of [36], a
communication link is modeled over time as a memoryless,
discrete, independent and identically distributed (IID) random
process ξ,13 which maps each transmitted value tx[k] into a
received value rx[k] = ξ[k]tx[k].14 For arbitrary nodes vi and
vj consider a communication link (vi, vj) ∈ E with weight
wji (as shown in Fig. 3(a)).

Let Nl denote the number of links in the graph Ḡ defined in
Section II, which contains the original network, together with
the plant’s sensors and actuators, along with the corresponding
edges (i.e., Nl = |E ∪EI ∪EO|). For convenience, we define a
bijective mapping Ω : E∪EI∪EO → {1, . . . , Nl} to enumerate
all links in the network. In the rest of the paper, we will
sometimes denote a link (a, b) ∈ E ∪ EI ∪ EO by its label

13Here IID implies that the random variables {ξ[k]}k≥0 are IID.
14Note that a Bernoulli packet drop channel can be modeled by setting

ξ[k] = 0 with probability p and 1 with probability 1− p.

t = Ω(a, b) for convenience, and its weight as wt, ht or gt.
In addition, all variables related to the link will be denoted
with index t (e.g., ξt[k], instead ξji[k]). The contribution of
the node vi to the linear combination calculated by node v j at
time k can be represented as wtξt[k]zi[k], where ξt has mean
μt = E [ξt[k]] and a finite variance σ2

t = E
[
(ξt[k]− μt)

2
]
.

Following the approach in [36], we consider the link trans-
formation shown in Fig. 3(b). By writing ξ t[k] = μt +Δt[k],
where Δt[k] is a zero-mean random variable with variance σ 2

t ,
the original unreliable link is modeled as a combination of a
deterministic link (without message drops) with gain μ t and
a random link described with gain Δt[k]. Let rt[k] denote the
signal transmitted over the tth link, scaled by the weight on
that link:

rt[k] =

⎧⎨
⎩

htyi[k] if t = Ω(si, vj),
wtzi[k] if t = Ω(vi, vj),
gtzi[k] if t = Ω(vi, aj).

Stacking all of the rt[k]’s in a vector r[k] of length Nl, we
can write

r[k] = Jor

[
y[k]
z[k]

]
= Jor

[
C 0
0 IN

]
x̂[k] � Ĵorx̂[k], (9)

where each row of the matrix Jor ∈ R
Nl×(N+p) contains a

single nonzero element, equal to a gain wt, ht or gt. More
precisely, the matrix Jor is defined as:

[Jor]t,i =

⎧⎪⎪⎨
⎪⎪⎩

ht, if i ≤ p and ∃vj ,Ω(si, vj) = t,
wt, if p < i ≤ N + p and ∃vj ,Ω(vi−p, vj) = t,
gt, if p < i ≤ N + p and ∃aj ,Ω(vi−p, aj) = t,
0, otherwise.

(10)
Based on the link transformation shown in Fig. 3(b), and

using (2), the update equation for each node v j is

zj[k + 1] = wjjzj [k] +
∑

t=Ω(vi,vj)

μtwtzi[k] +
∑

t=Ω(si,vj)

μthtyi[k]

+
∑

t=Ω(vi,vj)

Δt[k]rt[k] +
∑

t=Ω(si,vj)

Δt[k]rt[k].

Also, from (3), the input value applied by each actuator at
time step k is

uj[k] =
∑

t=Ω(vi,aj)

μtgtzi[k] +
∑

t=Ω(vi,aj)

Δt[k]rt[k].

Let Δ[k] = diag({Δt[k]}Nl
t=1), so that the above expressions

can be written in vector form as

z[k + 1] = Wμz[k] +Hμy[k] + Jdst
v Δ[k]r[k],

u[k] = Gμz[k] + Jdst
u Δ[k]r[k],

where each nonzero entry of matrices Wμ,Hμ and Gμ

(except the diagonal entries of Wμ) is of the form μtwt, μtht

and μtgt, respectively. Each entry in the matrices Jdst
v and Jdst

u

is either 0 or 1. Specifically, each row of those matrices simply
selects which elements of the vector Δ[k]r[k] are added to
the linear combinations calculated by the actuators and the
wireless nodes. More precisely, matrices Jdst

v ∈ RN×Nl ,
Jdst
u ∈ Rm×Nl and Jdst ∈ R(m+N)×Nl are given by[

Jdst
u

]
i,t

=

{
1, if i ≤ m, ∃vj ∈ V ,Ω(vj , ai) = t
0, else
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[
Jdst

]
i,t

=

{
1, if 1 ≤ i ≤ N, and ∃v ∈ V ∪ S,Ω(v, vi) = t,
0, else.

(11)
Defining Jdst =

[
Jdst
u

Jdst
v

]
the overall system (with potential

message drops) can be represented as:

x̂[k+1] =

[
A BGμ

HμC Wμ

]
︸ ︷︷ ︸

Âµ

x̂[k]+

[
B 0
0 IN

]
Jdst

︸ ︷︷ ︸
Ĵdst

Δ[k]r[k],

(12)
with r[k] given by (9).

As previously mentioned, an assumption is made that
Δt[1],Δt[2], . . .Δt[k], . . . are independent zero-mean random
variables with variance σ2

t . In addition, we assume that all ran-
dom variables, Δ1, . . . ,ΔNl

are independent (i.e., link failures
are independent across time and space). With this assumption,
using the approach in [36], we obtain the following result. 15

Theorem 3: The system from (12) is MSS if and only
if there exists a positive-definite matrix X and scalars
α1, . . . , αNl

satisfying the LMIs

X � ÂμXÂT
μ + Ĵdstdiag{α}(Ĵdst)T

αi ≥ σ2
i (Ĵ

or)iX(Ĵor)Ti , ∀i ∈ {1, . . . , Nl}
(13)

where (Ĵor)i denotes the ith row of the matrix Ĵor.
Using the Schur complement and the cone complementarity

condition as in Section IV, Algorithm 2 (shown below) can
be constructed to solve the inequalities presented in the above
theorem (note that the matrix Ĵdst and σi’s are constants). As
in the previous section, we obtain the following theorem.

Theorem 4: Algorithm 2 will determine the tuple
(W,G,H) ∈ Ψ that guarantees MSS of the system under
the given distribution of the link failures in the network if
the sequence tk = tr(YkXk+1 + XkYk+1) converges to
2(n+N).

Remark 3: It is worth noting that any matrices
Âμ,X,Jdst,Jor and vector α that satisfy the constraints
from (13) for the link quality vector σ̄ = [σ̄1, . . . , σ̄Nl

]
T ,

also satisfy the constraints for any vector σ such that σ � σ̄
(where “�” implies elementwise inequality). Thus, finding a
vector σ = σ1, σ ∈ R for which there exists matrices W,
G and H that guarantee MSS allows the use of the same
matrices W,G,H even when the link qualities are better
than that specified by the vector σ. The largest value of σ for
which the system is MSS can be found by allowing σ ∈ R to
be a variable. This causes the last matrix inequality in step
2 of Algorithm 2 to be a bilinear constraint, but this can be
handled by using bisection on the parameter σ ∈ R (e.g., as
done in [25]).

Remark 4: Note that the number of constraints in Algo-
rithm 2 grows linearly with the number of links in the
network, rather than exponentially (i.e., we do not have to
consider all possible combinations of failed links at any given
time-step). This is due to the fact that stability under link
failures is viewed as a problem of robustness in a linear system
in this framework, which is one of its main benefits (note that

15The proof of this theorem is a special case of the proof of Theorem 5
provided in the Appendix.

Algorithm 2 Stabilizing the closed-loop system with unreli-
able communication links

1. Find feasible points X0,Y0,W0, H0, G0 that satisfy
the constraints (13), where:[

X0 I
I Y0

]
� 0, (W0,H0,G0) ∈ Ψ, X0,Y0 ∈ S

n+N
++

If there is no feasible point, it is not possible to obtain
MSS with this network topology and distribution on the
communication links.

2. At iteration k, (k ≥ 0) from Xk,Yk obtain the matri-
ces Xk+1,Yk+1, Wμ,k+1,Hμ,k+1,Gμ,k+1 and a vector
αk+1 ∈ RNl by solving the following LMI problem:

min tr(YkXk+1 +XkYk+1)[
Xk+1 − (Ĵdst)Tdiag{αk+1}(Ĵdst)T Âμ,k+1

ÂT
μ,k+1 Yk+1

]
� 0,[

Xk+1 I
I Yk+1

]
� 0,

Âμ,k+1 =

[
A BGμ,k+1

Hμ,k+1C Wμ,k+1

]
,[

αi,k+1 σi(Ĵ
or
k+1)i

σi(Ĵ
or
k+1)

T
i Yk+1

]
� 0, 1 ≤ i ≤ Nl,

(Wμ,k+1,Hμ,k+1,Gμ,k+1) ∈ Ψ, Xk+1,Yk+1 ∈ S
n+N
++

3. Stop the algorithm if the following conditions are true

Xk+1 � Âμ,k+1Xk+1Â
T
μ,k+1 + Ĵdstdiag{αk+1}(Ĵdst)T

αi,k+1 ≥ σ2
i (J

or
k+1)iXk+1(J

or
k+1)

T
i , 1 ≤ i ≤ Nl.

Otherwise, set k = k + 1 and go to step 2.

we can model the WCN as a linear system precisely due to
the specific linear iterative strategy that we are having each
node follow).

VI. INCORPORATING MORE POWERFUL NODES

Our development so far has treated the case where each node
in the WCN maintains a single scalar state, which allows very
simple nodes to be used for controlling the plant. However, our
approach can also be used to design heterogeneous networks
where nodes may have different memory and computing
capabilities (including the case where some nodes are, in fact,
dedicated controllers). Mathematically, this can be modeled by
describing node vi’s state with a vector zi ∈ Rni , with update
procedure (similar to (2)):

zi[k + 1] = wiizi[k] +
∑

vj∈Nvi

wijzj [k] +
∑

sj∈Nvi

hijyj [k]

where wij ∈ Rni×nj and hij ∈ Rni . In addition, a plant’s
input ui at time-step k has the form:

ui[k] =
∑

j∈Nai

gijzj [k]

with gij ∈ R
1×nj . If each value from a node’s state is

transmitted in separate packets, a node vi could be modeled
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as ni different nodes (vji , j ∈ {1, ..., ni}), where each node
would maintain a scalar value as its state. This would allow
the use of the Algorithm 2 to determines matrices W,H,G
that have the desired sparsity pattern and guarantee MSS of the
system. However, this scheme would also require more than
one transmission per node per frame, which would increase the
minimal required sampling period of the plant and complicate
the task of scheduling transmissions. Instead, if each node
transmits its whole state vector in a single message,16 a node
cannot be modeled as a set of separate independent nodes, as
in this case the assumption that all channels are independent
is not valid (if the packet is not received, all values from
the packet are lost). In this case, each link t = Ω(vi, vj) or
t = Ω(vi, aj) will carry ct = ni scalar values at each time-
step. As in Section V, let rt[k] denote the signal transmitted
over the t-th link, scaled by the weight (matrix) on that
link (i.e., rt[k] is htyi[k], wtzi[k] or gtzi[k], depending on
whether the link is from a sensor to a node, between two
nodes, or from a node to an actuator, respectively). Let c ′

t

denote the size of rt[k], and let Cs =
∑Nl

t=1 c
′
t, where Nl

denotes the number of links in the network. As in Section
V, the overall system is given by equations (9) and (12),
where x̂[k] ∈ R

Ns , Gμ ∈ R
m×Ns ,Hμ ∈ R

Ns×p,Wμ ∈
RNs×Ns and Jdst ∈ R(m+Ns)×Cs ,Jor ∈ RCs×(p+Ns), with
Ns =

∑N
i=1 ni representing the total number of states over all

nodes. The matrices Jor and Jdst are defined as in (10) and
(11), with a small difference that instead of scalars, matrices of
appropriate dimensions are used.17 In addition, r[k] ∈ RCs and
Δ[k] = blkdiag({Δt[k]}Nl

t=1), where blkdiag is a block-
diagonal operator and Δt[k] = Δt[k]Ic′t×c′t . This brings us to
the following theorem (the proof is provided in the Appendix).

Theorem 5: The system described with (12) and (9) (with
vector states at each node) is MSS if and only if there
exist positive-definite matrices X and αi ∈ Rc′i×ci

′
, i ∈

{1, . . . , Nl} that satisfy the following LMIs

X � ÂμXÂT
μ + Ĵdstblkdiag{α1, . . . , αNl

}(Ĵdst)T

αi � σ2
i (Ĵ

or)i ·X · (Ĵor)Ti , ∀i ∈ {1, . . . , Nl}
(14)

where (Ĵor)i denotes the ith block-row of the matrix Ĵor

(containing c′i rows from
∑i−1

t=1 c
′
t + 1 to

∑i
t=1 c

′
t).

Using the theorem above, an algorithm similar to Algo-
rithm 2 can be used to determine the (vector-valued) update
for each node to apply in order to guarantee MSS.

VII. EXAMPLES

To illustrate the application of our design procedure from
the previous sections, consider the single state plant shown
in Fig. 4(a) and suppose that each link in the network is
modeled as an independent Bernoulli process with probability
of losing a packet equal to p (the variance of each process
is σ2 = p(1 − p)). To solve the optimization problem from
Algorithm 2 we used CVX, a package for specifying and

16This is a reasonable assumption, since a transmission packet contains up
to 128 bytes even in (bandwidth limited) 802.15.4 networks.

17As a substitute for scalars wt, gt or ht, matrices wt,gt and ht should
be used. Also, instead of the scalar ‘1’ in (11), the identity matrix Ini should
be used, where ni is the state vector size for the link’s receiving node.

Fig. 4. Two examples of WCNs; (a) A plant with a scalar state controlled by
a WCN where each node maintains a scalar state; (b) A single-input-single
output plant with R3 state controlled by a WCN where each node maintains
a scalar state.

ni = 1 (scalar state) ni = 2 (R2 state)
N = 2 pmax = 0.69% pmax = 0.72%
N = 3 pmax = 0.74% pmax = 0.77%
N = 4 pmax = 0.77% pmax = 0.79%

TABLE I
MAXIMAL MESSAGE DROP PROBABILITY FOR MSS IN FIG. 4(A)

solving convex programs [38]. For α = 2 and p = 0.5%,
if each node maintains a scalar state, Algorithm 2 converges
after 51 iterations18 to a stable configuration

W =

[
0.228 0.965
−2.872 −1.660

]
,H =

[
1
0

]
,G =

[
0 1.837

]
(15)

Using the bisection method described in the Remark 3,
we extracted the maximal probabilities of message drops,
pmax, for which there exists a tuple (W,H,G) ∈ Ψ that
guarantees MSS. We considered two cases, one where all
nodes in the network maintain a scalar state and the other
where they maintain a vector state in R2. In addition, networks
with N = 3 and N = 4 nodes were considered, where the
graph G = {V , E} is complete (V = {v1, . . . , vN}). The
obtained results are presented in Table I. As can be seen,
adding additional nodes does not significantly increase pmax

for this example; a possible hypothesis for this is that the single
link between node vN and the actuator is the bottleneck for
stability. Similarly, adding more powerful nodes with larger
WCN states does not increase the robustness of the system to
packet drops in this particular example.19

To show compositionality, consider the system presented
in Fig. 4(b), with a single-input-single-output plant of the
form (1), where

A =

⎡
⎣ 1 1 0

0 1 1
0 0 2

⎤
⎦ , B =

⎡
⎣ 0
0.5
1

⎤
⎦ , C =

[
1 0.5 1

]
,

is controlled by a WCN consisted of nine nodes with a mesh
topology. The nodes v1, v2 and v3 are in the neighborhood of
the plant’s sensor, while nodes v7, v8 and v9 can communicate
with the plant’s actuator. As in the previous example, all links
in the network are modeled as independent Bernoulli processes
with probability of losing a packet equal to p. We consider the
case where p = 0.1% for all links except the links between

18The number of iterations needed before the algorithm converges to a
stable configuration depends on initial points X0,Y0.

19However, more powerful nodes can be shown to improve resilience to
packet drops in other scenarios [39].
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W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.799 0.030 0 0.047 0.018 0 0 0 0
−3.677 −2.097 −2.768 0.078 0.107 0.188 0 0 0

0 0.021 0.787 0 0.029 −0.002 0 0 0
−10.770 4.247 0 −0.560 0.067 0 0.035 −1.148 0
−0.992 0.713 −1.008 0.163 0.757 −0.025 −0.030 0.291 −0.141

0 −8.576 12.909 0 −0.314 1.370 0 3.769 0.038
0 0 0 −3.587 1.366 0 0.691 4.861 0
0 0 0 1.661 −0.060 −0.459 −0.015 −0.144 −0.090
0 0 0 0 0.286 −0.204 0 0.805 0.744

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.017
0.927
0.020
0
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (16)

G =
[
0 0 0 0 0 0 0.056 −1.620 0.233

]
. (17)

Fig. 5. An example of plant with 30 states controlled by a WCN consisted
of mesh network with 16 nodes.

the sensor and nodes v1, v2 and v3 and the links between
nodes v7, v8 and v9 and the actuator. In this case, Algorithm 2
converged to the stable configuration shown in (16), (17).

Now consider a scenario in which the plant from Fig. 4(a) is
added to the system in a way that its sensor can communicate
only to node v4, while its actuator can receive packets only
from node v7. If these two links are modeled as Bernoulli
links with p ≤ 0.5% nodes v4 and v7 can be used to control
the plant with configuration derived in the previous example
(from Remark 3, the derived configuration guarantees MSS
for networks where packet loss probabilities for all links are
less or equal 0.5%). In this case, both plants can be controlled
with the WCN from Fig. 4(b), where all nodes in the WCN
maintain two scalar states and calculate the first update using
the coefficients from (16), (17) while the second update is
calculated using a matrix W where only w44, w74, w47, w77

are nonzero and are derived from (15). As described in
Section III, we were not required to model both plants as
a single plant in order to extract a stable configuration (under
the assumption that each node can maintain a vector state in
R2), but were rather able to compose previously computed
stable configurations. It is worth noting that, although the
previous two examples were calculated for networks with
different topologies, in cases when a network is a subgraph
of another network, the former stable configuration can be
simply ‘extended’ by adding zeros to unused links in the
latter network. Furthermore, note that no new computation of
communication or computation schedules is required for the
WCN; the new plant is controlled simply by increasing the
information in the (single) transmission by each node.

To test our algorithm on an even more complex example, we
generated a random plant with n = 50 states, p = 10 inputs
and m = 10 inputs, with approximately three eigenvalues

in the interval (1, 1.1]. The plant is connected to the WCN
with topology shown in Fig. 5, where each sensor s j can
measure the jth output (yj), while each input ui is controlled
by the actuator ai. Algorithm 1 converged in less than 27
minutes to a stable configuration. However, as the considered
network has 132 unidirectional links (since a bidirectional link
is considered as two unidirectional links), the optimization
problem considered in Algorithm 2 has 132 additional con-
straints compared to the optimization problem in Algorithm 1.
This increase in the number of constraints proved to be too
much for CVX to handle, causing it to exceed the memory
available on our computers; this was not unexpected, however,
as CVX is not designed to deal with large scale problems [38].
Part of our future work in this area will be to write a dedicated
solver to fully test our scheme on large-scale systems.

VIII. DISCUSSION

A. Relationship Between the WCN and Multi-Hop Delays

At first glance, the WCN might seem to introduce some
delay into the feedback loop (since the sensor nodes and
actuator nodes might be separated by multiple intermediate
nodes, each taking one time-step to propagate information),
which might limit the class of plants that can be stabilized with
this method. However, the relationship between the WCN and
the traditional notions of delay introduced by the feedback
loop is not as obvious as it might appear at first glance.
Specifically, note that we allow each node in the network to
maintain a value that is a function of its previous value and the
values of all its neighbors, rather than simply routing values
to a controller. This simple modification causes the network
to act as a linear dynamical system with sparsity constraints
in the system matrices; in other words, this control scheme
should be viewed as a dynamic compensator, rather than a
static feedback gain at the end of a chain of delay elements.
The following example shows that this fact allows our scheme
to stabilize plants that cannot be stabilized with delayed static
feedback.

Consider once again the single-state plant shown on the left
side of Fig. 4(a) (with α > 1), which is to be controlled by
a network with two nodes v1 and v2. Node v1 receives the
plant output y[k] = x[k] at each time-step k, and the input to
the plant is taken to be a scaled version of the transmission
of the node v2 (i.e., u[k] = gz2[k], for some scalar g). If the
nodes apply the linear strategy that we study in this paper, the
closed loop system evolves according to⎡

⎣x[k + 1]
z1[k + 1]
z2[k + 1]

⎤
⎦ =

⎡
⎣α 0 g
h w11 w12

0 w21 w22

⎤
⎦
⎡
⎣ x[k]
z1[k]
z2[k]

⎤
⎦ , (18)
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for some scalars w11, w12, w21, w22, g and h. Recall from the
example in Section VII that these scalars can be chosen so
that the closed loop system is stable. In fact, if one chooses
the values g = h = 1, w11 = 0, w12 = 1

α , w21 = −α3 and
w22 = −α, the closed-loop system will have all poles at zero
for any α �= 0.

Now, consider a control scheme where node v1 simply
forwards the state measurement to v2 at each time-step, and v2
sends this value to the actuator where the input u[k] = gz2[k]
is applied. This can be modeled by setting w11 = w12 =
w22 = 0, w21 = 1, and h = 1 in (18). The characteristic
polynomial of this system is z2(z−α)− g, and one can show
(e.g., using the root locus) that it is possible to find a g such
that this polynomial has all roots inside the unit circle if and
only if |α| < 3

2 . In other words, the delay introduced by this
routing scheme limits the class of plants that can be stabilized.
As a further example, consider the case where we allow
w22 to be nonzero (thereby allowing v2 to be a “controller”
with dynamics, while v1 is still a router). In this case, the
characteristic polynomial is z3 − (α + w22)z

2 + αw22z − g.
Letting p1, p2, p3 denote the roots of this polynomial, we see
that α+w22 = p1+ p2+ p3 and αw22 = p1p2+ p1p3+ p2p3.
Now, if all roots are inside the unit circle, it follows that

−3 < p1 + p2 + p3 < 3, −3 < p1p2 + p1p3 + p2p3 < 3,

from which we see that −3 − α < w22 < 3 − α and − 3
α <

w22 < 3
α for stability. For certain values of α, it will not be

possible to find a parameter w22 that satisfies both of these
inequalities (e.g., for any α ≥ 3+

√
21

2 ). Thus, stability is not
achievable even in the case where v2 has (scalar) dynamics
but v1 is a router. One obtains stability for arbitrary values of
α and with scalar computations at each node only by allowing
both v1 and v2 to update their values with a linear strategy
(as demonstrated above).

B. Adapting to Node Failures

The stability of the system can be affected by crash failures
(nodes that stop working and drop out of the network). One
obvious approach to deal with up to f crash failures is to
precalculate a set of

∑f
j=0

(
N
j

)
different tuples (W,H,G)

(corresponding to all possible choices of f or fewer failed
nodes), and have each node maintain a table of these different
configurations. The neighbors of failed nodes can broadcast the
news of the failures throughout the network, which will prompt
all nodes to switch to the appropriate choice of (W,H,G).
This approach may not be satisfactory in practice, as it requires
precomputation and storage of a large number of matrices.

Fortunately, the WCN allows a more elegant (and dis-
tributed) method to handle node failures. Specifically, when a
node fails, all neighbors of that node increase their transmis-
sion power to be able to communicate with all other neighbors
of the failed nodes.20 Furthermore, the computations of the
failed node are passed on to one of its neighbors (this can

20This can be done without causing collisions in the transmissions if
redundancy is incorporated into the interference graph during the design of
the transmission schedules, e.g., so that 2-hop neighbors of each node are
also included in the interference graph, and so forth.

be performed in a distributed manner during run-time via
a simple leader-election protocol [40]). This neighbor then
becomes a virtual node, emulating the behavior of the failed
node by maintaining its state, and transmitting and receiving
in the time-slots assigned to the failed node (in addition to
maintaining and transmitting its own state, as usual). With this
scheme, all other nodes in the network (with the exception
of the neighbors of the failed node) continue to operate as
normal. Note that this method causes some nodes to expend
more power after failures (due to the fact that neighbors of
the failed node have to transmit over longer distances and one
neighbor performs extra computations). However, it presents
a simple distributed approach to ensure graceful degradation
of the network under failures.

IX. CONCLUSION AND FUTURE WORK

We have introduced the concept of a Wireless Control
Network, where the network itself acts as a controller for the
plant. Each node in a WCN executes a simple procedure by
updating its state to be a linear combination of the states of
its neighbors. We presented a procedure that can be used to
design the linear combinations in order to stabilize the closed
loop system. In addition, we showed that the aforementioned
procedure can be made robust to link failures in the network.

While the proposed scheme has several benefits in compari-
son to traditional control schemes (as described in Section III),
there are also some drawbacks which will be addressed
through future research. We discuss some of these below.
• Our approach can readily handle plants with multiple actu-
ation and sensing points, and can explicitly account for com-
putational constraints in the nodes in the network. However,
in plants with single sensing and actuation points, it is worth
noting that our scheme will generally under-perform traditional
networked control approaches when it comes to maximizing
the probability of packet drops under which MSS can be
maintained. This is because a sufficiently powerful controller
effectively emulates a fully connected network (since there
are no sparsity constraints imposed a priori on the controller
matrices), without any packet drops between the nodes. Fur-
thermore, by allowing intermediate nodes in the network to
encode information based on the actual sequence of packet
drops that occur (e.g., as done in [37], [12]), the nodes are
able to send information more ‘intelligently’ to the controller
(as opposed to our very simple scheme where all nodes update
their values in the same way at each time-step, incorporating
their neighbors’ values only if they are received). While our
design procedure is capable of handling powerful nodes in the
network (as described in Section VI), extensions that allow
nodes to perform more complicated operations (e.g., such as
Kalman filtering) will be an avenue for future work.
• We have assumed independent link failures in the network
(both in time and in space). Other works on networked control
(such as [12]) have studied methods of dealing with arbitrary
models of link failures, and it will be of interest to extend our
design algorithms to such cases.
• Our scheme to handle node failures (described in Sec-
tion VIII-B) can only be applied up to a certain point, as the
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transmission ranges of nodes cannot be increased indefinitely.
In addition, multiple failures in any given neighborhood might
impose a large amount of overhead on the part of the remaining
nodes. A more robust and adaptive scheme to handle different
fault models in nodes is desirable.
• This paper assumes that the topology of the WCN is
specified a priori, and presents a numerical algorithm to design
the link weights for each node. The dual approach of finding
appropriate topologies that will be capable of stabilizing a
given system is an avenue for future work. Along similar
lines, it would be of interest to find methods to map existing
controller designs onto the substrate provided by the WCN.

APPENDIX

PROOF OF THEOREM 5

Proof: (A slight generalization of the approach from [36]
is used in the proof.) Consider a linear system of the form:

x̂[k + 1] = Âμx̂[k] + ĴdstΔ[k]r[k], (19)

r[k] = Ĵorx̂[k], (20)

Definition 1 for MSS is equivalent to saying that the state
covariance matrix M[k] � E{x̂[k]x̂[k]T } is bounded for all
k, and goes to zero as k → ∞. From (20), we obtain:

M[k + 1] =E{x̂[k + 1]x̂[k + 1]T}
= ÂμE{x̂[k]x̂[k]T }ÂT

μ + Ĵdst
E{Δ[k]r[k]r[k]TΔ[k]}ĴdstT+

Ĵdst
E{Δ[k]r[k]x̂[k]T }ÂT

μ + ÂμE{x̂[k]r[k]TΔ[k]T }ĴdstT

=ÂμM[k]ÂT
μ + Ĵdst

E{Δ[k]r[k]r[k]TΔ[k]}ĴdstT

The second and third terms in the second equation are zero
since all Δ’s in have zero means and are independent from
r[k] and x̂[k].

Now, consider the term T = E{Δ[k]r[k]r[k]TΔ[k]}, and
note that rt[k] = (Ĵor)tx̂[k], where (Ĵor)t denotes the tth

block-row of the matrix Ĵor (corresponding to the link t =
Ω(vi, vj)). Since Δ[k] = blkdiag({Δt[k]}Nl

t=1) and Δt[k] =
Δt[k]Ic′t×c′t , the (t1, t2)

th block submatrix of T is given by
Tt1t2 [k] � E{Δt1 [k]rt1 [k]rt2 [k]

TΔt2 [k]}. When t1 �= t2,

Tt1t2 [k] = E{Δt1 [k]Ict1 rt1 [k]rt2 [k]
T Ict2Δt2 [k]} = 0c′t1×c′t2

as Δt1 and Δt2 are independent, zero mean, random variables.
When t1 = t2 = t, using the same approach as in the previous
case gives us:

Ttt[k] = σ2
tE{rt1 [k]rt2 [k]T } = σ2

tE{(Ĵor)tx̂[k]x̂[k]
T (Ĵor)Tt }

= σ2
t (Ĵ

or)tM[k](Ĵor)Tt � αt

where αt ∈ Rc′t×c′t . Therefore, we have:

M[k + 1] = ÂμM[k]ÂT
μ + Ĵdstblkdiag{αt, ..., αNl

}ĴdstT

αt = σ2
t (Ĵ

or)tM[k](Ĵor)Tt .

This is essentially of the same form as the equations in
Theorem 6.4 from [36] (except for the fact that the α t variables
are matrices in our case). Therefore, M can be expressed
using a linear recursion and thus mean square stability is
equivalent to the existence of positive-definite matrices X and
αi ∈ R

c′i×c′i , i ∈ {1, ..., Nl} that satisfy conditions (14) of
Theorem 5 [36], [41].
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