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Abstract—Given a network of interconnected nodes, each with
its own value (such as a measurement, position, vote, or othe
data), we develop a distributed strategy that enables some all of
the nodes to calculate any arbitrary function of the node vales,
despite the actions of malicious nodes in the network. Our $&me

Christoforos N. Hadjicostis

value of all the sensors [1], [2], and multi-agent systemengh

all agents communicate with each other to coordinate their
speed and direction [3]. Various algorithms to accomplish
function calculation in networks have been proposed by the

assumes a broadcast model of communication (where all nodesCOmMputer science, communication, and control communities

transmit the same value to all of their neighbors) and utilizs a
linear iteration where, at each time-step, each node updateits
value to be a weighted average of its own previous value anddise
of its neighbors. We consider a node to be malicious or faulty
if, instead of following the predefined linear strategy, it pdates
its value arbitrarily at each time-step (perhaps conspirirg with
other malicious nodes in the process). We show that the topmdy
of the network completely characterizes the resilience ofinear
iterative strategies to this kind of malicious behavior. Fist, when
the network contains2f or fewer vertex-disjoint paths from some
node x; to another node x;, we provide an explicit strategy
for f malicious nodes to follow in order to prevent nodex;
from receiving any information about z;'s value. Next, if node
z; has at least2f 4+ 1 vertex-disjoint paths from every other
(non-neighboring) node, we show thatz; is guaranteed to be
able to calculate any arbitrary function of all node values vhen
the number of malicious nodes isf or less. Furthermore, we
show that this function can be calculated after running the inear
iteration for a finite number of time-steps (upper bounded bythe
number of nodes in the network) with almost any set of weights
(i.e., for all weights except for a set of measure zero).

Index Terms—Distributed function calculation, distributed
consensus, fault-tolerant consensus, observability theg struc-
tured systems, networked control, multi-agent systems, weless
broadcast model

I. INTRODUCTION

In distributed systems and networks, it is often necessmryf
some or all of the nodes to calculate some function of certarln
parameters. Examples include sensor networks where sin
nodes are tasked with calculating the average measurenien
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over the past few decades [4], [5], [6], [7]. The special cafse
distributed consensus/here all nodes in the network calculate
the same function [4], has received extensive attentiom fro
the control community due to its applicability to topics kuc
as cooperative control, multi-agent systems, and modeling
flocking behavior in biological and physical systems [8]. In
these cases, the approach to consensus is to use a linear
iteration, where each node in the network repeatedly update
its value as a weighted linear combination of its own value
and those of its neighbors [9], [10], [11], [12]. These works
have revealed that if the network topology satisfies certain
conditions, the weights for the linear iteration can be emoso
that all of the nodes asymptotically converge to the samaeval
(even if the network connections are time-varying). Regent

it was shown in [13] that in networks with time-invariant
topologies, this linear iterative strategy can also beiadpgb

the more general function calculation problem, allowing an
node to calculate any arbitrary function of the node valwes i
a finite number of time-steps (upper bounded by the size of
the network).

Due to the increasingly prevalent use of sensor networks and
multi-agent systems in life— and mission—critical appimas
(e.g., [14]), it is imperative to analyze any proposed nekwo
algorithms to determine their resilience to nodes that beha
n erroneous or unexpected ways. This might be the case, for
example, if some nodes in the network are compromised by a

licious attacker whose objective is to disrupt the opemat
e network [4]. Alternatively, the nodes might suffeorfn
ardware malfunctions, thereby causing them to calculate
their update value incorrectly [15]. The robustness ofouasi
existing information dissemination schemes to these tyjfes
abnormal behaviors has been investigated in the literééuge,
see [6]); however, a similar analysis of the susceptibitify
linear iterative strategies to malicious or faulty behavior has
received scant attention, and this is the focus of our work.
Specifically, we allow for the possibility that some nodes
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arbitrary (possibly coordinated) manner, instead of feifay
the predefined strategy of using a specific linear combinatio
of their neighbors’ (and own) values. The contribution d&th
paper is to show that the graph connectivity is the detemgini
factor for the ability of linear iterative strategies to eécdte
malicious (or faulty) agents. First, we demonstrate thaa if



given noder; has2f or fewer vertex-disjoint paths from some# of G is said to beinducedif (z;,z;) € £ & (z;,7;) € €
other nodez;, then there exists a set ¢f or fewer nodes wheneverz;,z; € X.
that can maliciously update their values so thatcannot A path P from vertex z;, to vertexz;, is a sequence
obtain sufficient information to calculate any function tthaof vertices z;,, z;,,...,z;, such that(z;,,z;,_ ) € & for
involves nodez;’s value, regardless of the number of timed < j < ¢ — 1. A path is called aycleif its start vertex and
steps for which the linear iteration is run. The fact thatyonlend vertex are the same, and no other vertex appears more than
f malicious nodes will be required to disrupt a network witlonce in the path. PathB, and P, are vertex-disjointif they
2 f connectivity is not surprising, given existing results ret have no vertices in common. Patis and P, areinternally
distributed systems literature (which we will review laier vertex-disjointif they are vertex-disjoint, with the possible
the paper). What isot clear, however, is exactlyowthesef exception of the end vertices. A set of paths P, .. ., P, are
malicious nodes should behave in order to disrupt the line@nternally) vertex-disjoint if the paths are pairwisetémally)
iterative strategy and not be identified in the process. Owugrtex-disjoint. Given two subset¥;, X> C X, anr-linking
analysis solves this problem by providing an explicit cleoicfrom X; to X5 is a set ofr vertex-disjoint paths, each with
of malicious nodes, along with a strategy for them to followstart vertex inX; and end vertex int,. Note that if ; and
Next, we show that if a given node has at leagt-1 vertex- X, are not disjoint, we will take their common vertices to be
disjoint paths from any other node (with which it does notdhawertex-disjoint paths betweeh; and X, of length zero.
a direct connection), it can work around up fanisbehaving A graph is said to bestrongly connectedf there is a path
nodes to correctly calculate any arbitrary function of toel@ from vertexz; to vertexz; for every z;,z; € X. We will
values. Furthermore, we show that this can be achieved aftefl a graphdisconnectedf there exists at least one pair of
running the linear iteration for a finite number of time-stepverticesz;,z; € X such that there is no path from; to
with almost any set of weights. To derive our results, we;. A vertex-cutin a graph is a subsef C X such that
build upon the function calculation algorithm in [13], andemoving the vertices i (and the associated edges) from the
exploit concepts from classical linear system theory (sash graph causes the remaining graph to be disconnected. More
structured system theory, strong observability, and iavar specifically, a(j,¢)-cut in a graph is a subs&;; C X such
zeros of linear systems) to overcome malicious or faultyesod that removing the vertices i§;; (and the associated edges)
As we will describe in further detail later, our results s=t@ from the graph causes the graph to have no paths from vertex
narrow the gap between linear iterative schemes and existin; to vertexz;. We will denote the smallest size of (g, 7)-
fault-tolerant consensus algorithms in the literatureciisas cut by x;;. If (z;,2;) € £ (i.e., vertexz; is a neighbor of
those described in [4]). In particular, we show that under tlvertexz;), we will takex; to be infinite (since removing other
broadcast model of communication (which implies that nodeertices will not remove the direct path betweepand z;).
cannot send different information to different neighboms.g., We will also adopt the convention thay; is infinite. Note that
in a wireless setting), simple linear-iterative schemes @8 if min; «;; is finite, then the in-degree of vertex must be
powerful as any other algorithm in terms of the number aft leastmin; ;; (since otherwise, removing all the neighbors
malicious nodes they can handle (i.e., they impose the saofevertex z; would disconnect the graph, thereby producing
constraints on the underlying network topology). a (j,i)-cut of size less thamnin, x;;). Note that there are
In our development, we usg y to denote theV x 1 column various efficient algorithms for computing the quantity for
vector with al in its i—th position and)'s elsewhere. The any verticesr; andz;, such as the Ford-Fulkerson algorithm
symbolIy denotes theéV x NV identity matrix andA’ indicates (which has run-time polynomial in the number of vertices)
the transpose of matriA. We will denote the cardinality of [16]. The connectivityof the graph is defined asin; ; x;;.
a setS by |S|, and for a pair of set§ and7, S\ 7 denotes The following classical result will play an important role i
the elements of that are not in7. The set of nonnegative our derivations (e.g., see [16]).
integers is denoted bi. Lemma 1 (Fan Lemma)Let z; be a vertex in graply, and
let ¢ be a nonnegative integer such that > ¢ for all j. Let
Il. BACKGROUND R C X be any subset of the vertices, witR| = c. Then
there exists a set af internally vertex-disjoint paths frori®
A. Graph Theory to z;, where the only common vertex of each of these paths
We will require the following terminology in order to facil- is z;. O
itate our discussion. Further details can be found in st@hda Since all internally vertex-disjoint paths have to pass
texts on graph theory, such as [16]. through different neighbors af;, the Fan Lemma implies that
A graph is an ordered paif = {X,£}, where X = there will be ac-linking from R to AV; U{z;}. Note that some
{x1,22,..., 2N} is @ set of vertices (or nodes), afids a set of the paths in this linking might have zero length (i.e.zjf
of ordered pairs of different vertices, called directed e=dg or some of its neighbors are R).
If, in,acj € X with 4 75 7 (xi,xj) [SroaR=S (.I'j7.%'i) S
the graph is said to be undirected. The vertices in the set =
N; = {z;|(z;,2:) € £} are said to be neighbors of vertex, B Distributed System Model
and the in-degree of vertex; is denoted bydeg, = |V;|. A The interaction constraints in distributed systems and net
subgraphof G is a grapt{ = {X, €}, with X C X andé C £ works can be modeled via a directed graph {X, £}, where
(where all edges & are between vertices i'). A subgraph X = {z;,72,...,2x} is the set of N nodes in the system



and £ C X x X represents the communication constraints, each node updates its value as

in the network (i.e., directed edge:;,z;) € £ if node z;

can receive information directly from node;). Note that zilk + 1] = wyzi[k] + Z wijz;[k] )
undirected graphs can be readily handled by treating each ;€N

undirected edge as two directed edges. S where thew;; form a set of weight8.In other words, each

~ We will deal with networks where information is dissemngge updates its value to be a linear combination of its own
inated via thewireless broadcasmodel, whereby each nodeyajye and the values of its neighbors. For ease of analysis,
(behaving or misbehaving) sends the same information to gk vajues of all nodes at time-stépcan be aggregated into

of its neighbors. This model, while obviously applicable tghe value vectox[k] = [w1[k]  olk] - xN[k]]’, and the

wireless networks, also holds when information is obtaingghqate strategy for the entire system can be represented as
by direct sensing(i.e., where each node measures or senses

the values of its neighbor, as opposed to receiving that wi w2 ot WIN

value through a transmission). We assume that every node W21 W22 -t W2N

in the network has an identifier (so that nodes can associate x[k+1] = : : : x[k] @
each piece of information that they sense or receive with '
the corresponding neighbor). Each node is also assumed to
have sufficient memoty(so that it can store the information w

that it receives or senses from its neighbors), and sufticiggr 1 c N, wherew;; = 0 if z; ¢ N; U {x;}.

computational capability to perform mathematical oper&i  pefinition 1: Let ¢ : RY +— RY be a function of the

on this stored information (such as calculating the rank @fitial values of the nodes (note that-) will be a vector-

a matrix, multiplying matrices, etc.). We will assume eitheyajued function ifg > 2). We sayg(z1[0], z2[0], ..., zN[0])

that nodes always transmit a value (even if they are faultyg,calculable by node; if it can be calculated by node after

or that messages are delivered in a fixed amount of timgnning the linear iteration for a sufficiently large numioér
This assumption is necessary because it would otherwisetpﬁe_steps, perhaps by using all the values that it sees over
impossible to perform fault-diagnosis — the receiving nodggse time-steps. 0

will never be able to determine whether an expected messag@yhile there has been a great deal of work on choosing
from another node is simply delayed, or if the transmittinghe weight matrixW for the linear iteration (2) in order to
node has failed [4]. When running a specified algorithm, Wechieve objectives ranging from asymptotic consensus, (e.g
assume that nodes in the network wait until they have redeivg]) to calculating arbitrary functions in finite time [13here
transmissions from all of their neighbors, and then execuigs peen little investigation of what happens when some
their transmission or update strategies before waitingtier nodes do not follow the linear iterative strategy. In thipea
next transmissions from their neighbors. We will capturis thye will show that, under certain fundamental conditions on
behavior by referring to the behavior of a node tahe- the underlying network topology (and assuming the nodes
stepk, by which we mean thé—th transmission or updateynow the weight matrixW), linear iterative schemes are
step executed by that node. We assume that all messagesa@f§¢ powerful enough to allow the nodes in the network to
either delivered in the order they were transmitted, or haﬁ‘i’stributively calculate any arbitrary functi@ven whersome

an associated time-stamp or sequence number to indicate §hghe nodes in the network are malicious or faulty.
order of transmission.

wWN1 WN2 - WNN

D. Previous Results on Fault Tolerant Function Calculation

C. Function Calculation via Linear Iterations The problem of transmitting information over networks (and

Suppose that each node has some initial value, given specifically, reaching consensus) in the presence of farlty
by z;[0]. The goal is for certain nodes to gather enoughalicious nodes has been studied thoroughly over the past
information to calculate certain functions that dependsam(e several decades (e.g., see [4], [6] and the referencesirthere
of) these initial values. To achieve this, nodes can upddtds known in the literature that if there are ordy vertex-
and/or exchange their values over several time-steps badigoint paths between two nodes in a network, then there
on some strategy that adheres to the constraints imposedepists at least one set gf coordinated malicious nodes that
the network topology. A common strategy is to “flood” thecan prevent at least one of the nodes from receiving any
network with the needed information (where each node simgljformation about the otherggardlessof the algorithm). The
forwards any message that it gets from a neighbor to all of @§00fs of this general result are non-constructiad based
neighbors) [4] or to use routing algorithms to route the gafi on the following intuition: if there are onl2f independent
each node to the nodes that need it [17]. Motivated by gos$ipths between the two nodes, then a set of malicious nodes
and consensus algorithms that adopt nearest neighbor r@gs’ of the paths could collude to pretend that the transmitted
(e.g., [8]), the scheme that we study in this paper makes use

; ; ; . 3 ; 4 2The methodology for choosing the weights appropriately #wedimplica-
of linear iterations; specifically, at each time-step (eration) . "8 e 8 09 O e Iter i the pgger_p y P

SIndeed, the precise strategy used by the malicious nodesstoptl the
1As we will see later in the paper, the amount of memory requing each network will depend on the particular algorithm that is usedlisseminate
node will increase as a function of the number of nodésn the network.  information.



value was something other than the true value, and the recaixplicit use of the information available to the nodes via th
ing node would not know whether to believe tlfienalicious iteration.
nodes, or thef nodes transmitting the true value on the other The problem was revisited in [23] for the specific case
f independent paths [4], [6], [18]. where all nodes have to reach agreement (not necessarily on

The topic of overcoming malicious behavior in distribute@ny specific function of the initial values), and where the
settings has been extensively studied in the computer geienetwork contains only one malicious node that does not keehav
literature under the moniker of thgyzantine Generals Prob- in a completely arbitrary manner (specifically, the adeitiv
lem (e.g., [4], [19]). That problem deals with ensuring that akrrors introduced by the malicious node in that setting are
nodes in the network reach agreement on a certain value, epéehallowed to asymptotically decay faster than a certai@)ra
when there are up tg malicious (Byzantine) nodes that aréJnder these special conditions, [23] showed that if evelgeno
allowed to send different values to different neighbors.(i. in the system uses the information it receives from the finea
the entire network, including both behaving and misbehgviiteration to try and estimate the malicious updates infecte
nodes, are assumed to operate under a wired communicatita the network (via anunknown input observgrthen a
model). In this situation, it has been established that @ n graph connectivity of two is sufficient to detect and isolate
essary and sufficient conditions to tolergtdyzantine nodes the malicious node, and have the other nodes reach agreement
is that (1) the total number of nodéé in the network satisfies This result shows that linear iterative strategies acjuadive
N > 3f+1 and (2) the connectivity of the network is at leassome degree of robustness against malicious nodes if ose use
2f + 1. The second condition is necessary in order to reliablpe information available to each node appropriately. It is
exchange information between two nodes in the network. BYyso worth noting that although the result in [23] seems to
itself, the second condition is not sufficient under the direcontradict the intuition that only one malicious node skioul
communication model, since if node; receives noder;’s be required to disrupt 2-connected network, this discrepancy
value reliably, it still does not know what; told other nodes arises due to the fact that updates applied by the malicious
in the network. This is where the first condition comes imodes in [23] areestrictedto a certain class.
there must be a sufficient number of non-Byzantine nodes inIn this paper, we provide a comprehensive analysis of linear
the network in order for; to ascertain what; told ‘most’ iterative strategies in the presence of malicious nodest, e
of the nodes. When one considers a wireless communicati@ow exactly howf malicious nodes (with the ability to update
model (as is the case with the linear iterative strategy, ttheir values in a coordinated and arbitrary manner) should
first condition (i.e., N > 3f + 1) is no longer necessary,behave in a network o2f connectivity in order to disrupt
since the malicious nodes can no longer provide conflictiige linear iterative strategy. Next, we show that linearaitiee
information to their neighbors. However, the second camulit Strategies are able to achieve the minimum bound required to
(i.e., connectivity at leastf + 1) is still necessary, since thedisseminate information reliably; specifically, when nade
problem of reliably communicating information between twéas2f+1 or more paths from the other nodes in the netwgrk,
nodes remains, as described above (e.g., see also [18], [20palicious nodes will be unable to preventfrom calculating

As mentioned in the previous section, the vulnerabilitgny function of the initial values (under the broadcast nhode
of linear iterative function-calculation schemes to mialis ©of communication§.
behavior has not received much attention in the literature.
[11], it was shown that if a node in the network does not update I1l. SYSTEM MODEL AND MAIN RESULTS
its value at each time-step (i.e., it maintains a constalieya A. Modeling Malicious Behavior
then aparticulgr class of linear iterative straFegi_es mtfuach. Suppose the objective in the system is for nadeto
node updates its vqlue to be a convex combination of its "_‘e'%lculategi(xl[OL 25[0],...,2x[0]), for some functiong; :
borhood values) will cause all other nodgs fo asymptgycalkfv — R% (note that different nodes can be required to
converge to the value of that node. A similar analysis wagyculate different functions). When there are no malisiou
done in [22], where it was argued that since the asymptofigdes in the network, we noted in the last section that this ca
consensus scheme can be disrupted by a single node H@kccomplished by having the nodes run the linear iteration
maintains a constant value, it can _also. be d.|srupted_by .ée_smg[k + 1] = Wx]k] with an appropriate weight matri¥v for
node that updates its values arbitrarily (since maint@iran 5 finjte number of time-steps (e.g., following the method in
constant value is a spgual case of arbnrary updates_,). Sbth[lg])_ Suppose, however, that instead of applying the wpdat
these works only considered a straightforward applicatibn equation (1), some nodes update their values incorredily; f
the linear iteration for asymptotic consensus, without imgk example, nodé updates its value at each time-step as

4t is worth mentioning that linear iterative strategies dalso been studied ailk + 1] = wum [k] + Z wijx;[k] + wik] 3
recently in the communications community for the purposdrafismitting z;EN
streams of values through networks, under the monikeneatévork coding . . .
(e.g., [5]). In these cases, the network is assumed to coataiource node Wherew;[k] is an additive error at time-stefp
that is trying to send information at a certa@te to some destination nodes,
and network codes have been developed to maximize thismabe ipresence  SPreliminary versions of these results were presented ih [28], where
of malicious attackers [21]. The key difference in our woskthat we are the problem of allowingeverynode in the network to recover all of the initial
interested in the problem where (potentially) all nodesehavsingle initial values was studied. This paper generalizes that work byeptiag necessary
value, and certain nodes want to calculate functions ofthiakies, as opposed and sufficient conditions under which any node (or any subtebdes) can
to recovering a new source value at each time-step. obtain all of the initial values.



Definition 2: Suppose all nodes run the linear iteration foinitial values further in our work because of its philosagaily
T time-steps in order to perform function calculation. Noddifferent nature, and because of the fact that our problem
x; is said to bemalicious(or faulty) if «;[k] is nonzero for at formulation remains valid in cases where malicious nodes do
least one time-step, 0 < k < T — 1. O not contribute initial values (i.e., they function as rasteand

Note that the fault model considered here is extremellge functions calculated in the network do not depend on the
general, and allows node to update its value in a completelyinitial values of these nodes). Instead, our goal is to atioéd
arbitrary manner (via appropriate choices of the emgk] more pernicious case where malicious nodes spread confusio
at each time-step). As such, this fault model is capable about the initial values ofion-maliciousnodes. For example,
encapsulating a wide variety of faults, under the conditiatonsider a distributed system consisting of agents that are
that each malicious node sends the same value to all of titging to vote1 (‘yes’) or 0 (‘no’) on a course of action.
neighbor$ For example, suppose a nodg in the network The agents wish to reach consensus on the majority vote in a
exhibits a stopping failure, whereby it stops transmittindistributed manner (i.e., by exchanging their values vieept
information (so that the neighbors of nodg simply receive agents in the network). In this scenario, bdthand 1 are
the value zero from node; at each time-step). This stoppingequally valid votes for every agent, and so it is not impdrtan
failure can be captured by our fault model by selecting thwehether malicious agents change their own initial value. (i.
error w;[k] at each time-step to set nodgs statex;[k + 1] their vote). Whais important, however, is to ensure that votes
to zero. Another example of a fault is when the link fronare not changed as they are passed through other agents in the
nodez; to nodex; drops out at time-step. One can capture network; in other words, the malicious nodes should not be
these errors in our fault model by simply selectingk] to able to affect the result of the majority vote other than by
cancel out the termw;;z; k] in the update equation for nodechoosing their own vote for the course of action.
z;. Note that if the above errors are not accidental, but inten-
tional, the corresponding node will be called malicious.rdo .
generally, one could have multiple faulty and/or malicioug" Modeling the Values Seen by Each Node
nodes (the latter could be coordinating their actions tougis ~ Let 7 = {z;,, zi,, ..., x;, } denote the set of nodes that are
the network). In the rest of the paper, we will be using thealicious during a run of the linear iteration. Combining (3
terms faulty and malicious interchangeably. We will assumith (2), the linear iteration can then be modeled as
that malicious nodes are omniscient, and know the network -
topology along with the weights that are being used by the % [k]
nodes in the network. They are also allowed to know all of[x 1 1] = Wx[k] + [ uia K]
the initial values in the network; as we will show, when the :
connectivity of the network is smaller than a certain vathes Br ug, [k]
information isnot required by the malicious nodes in order to
disrupt the network. In fact, the malicious nodes will onged ,
to agree initially on a certain vector, and then thereaferate yilk] = Cix[k], 1<i<N .
their values in a manner that is consistent with the weight (4)

matrix W put that does not require further communicatiopere C; is a(deg; +1) x N matrix with a singlel in each row
or coordination among them. However, we will also show thgfenoting the positions of the state-vectdk] that are available
when the connectivity is sufficiently high, the maliciousigs 15 nodez; (i.e., these positions correspond to nodes that are
will not be able to disrupt the networsven wherthey have neighbors of noder;, along with nodez; itself). Thus, the
access to all of the above information (including all of thgectory,[k] denotes the set of outputs (or node values) seen
initial values in the network). by nodez; during time-step: of the linear iteration. The set
Note that a set of malicious nodes can obviously try tg- js unknown to the (non-malicious) nodes in the network,
influence the result of a computation by changing their oWfhg thus the exact matriB = is also unknown. However, the
initial values. Of course, if all initial values are equally validpodes do know that it is a matrix with a singlein the rows
then it will be impossible fomny algorithm to detect this type corresponding to the malicious nodes, and zeros elsewhere
of malicious behavior, since any initial value that a malis (reca|| thate; y denotes a vector of length with a single
node chooses for itself is a legitimate value that could al$g@ynzero entry with valué in its [-th position). Note that the
have been chosen by a node that is functioning correctjpove model readily captures the ability of the malicioude
On the other hand, if there is a statistical distribution of, cooperatively update their values (i.e., they can chdose
the initial values, techniques that exploit these relatiops vectoru[k]) in order to disrupt the network.
among the initial values can potentially be used to identify The set of all values seen by nodeduring the firstZ + 1

outliers due to malicious nodes and eliminate their inﬂlﬂ’e”‘ﬁme—steps of the linear iteration (for any nonnegativedetr
on the system [26]. We will not discuss the issue of verifying) is given by

€ ,N €N einy]

ur[k]

6This is not an impediment or limitation to the behavior of thalicious vil0: L] = O, .x[0] + ./\/li}-Lu]:[O : L —1], (5)
nodes, in the sense that the correctly functioning nodeslare required to ’
operate under this condition. In other words, the malicioodes are allowed n - _ / / / . / !
to behave in an arbitrary manner within the confines of the nanication wherey;[0 : L] = [yi O] vill] yil2l yilL]]" and

modality for the entire system. ur[0: L —1] = [u[0] uf[l] u%2] -+ uf[L-— IHI.



The matriceg); ;, and MfL can be expressed recursively ain the network to distributively determine their obsenrViyi
matrices when there are no malicious nodes; the extension of

0,1 = { Ci } , M7, = [ 0 2 ., this result to networks with malicious nodes is an area for
' Oi,L1W ' Oir—1Br M, 5 future research.
(6) Note also that node; does not necessarily need to know

where 0; o = C; and /\/lfo is the empty matrix (with zero
columns). These matrices will characterize the ability of@
x; to calculate the required function of the initial valuese th
matrix O, ;, has the form of thebservability matrixfor the
pair (W, C;), and we will call/\/lfL the invertibility matrix’
for the triplet(W,Bx, C;). We will call upon the following
simple lemma (the proof of which is omitted in the interest q
space).

Lemma 2:Let F; and F> denote two subsets of’, and
define 7 = F; U F,. Then, the column space df/lfL is
the same as the column space %]} Mfﬂ for any
nonnegative integek.. 0 IV. ATTACKING THE LINEAR ITERATIVE STRATEGY

The lower bound of2f + 1 in Theorem 1 is established
by existing results on fault-tolerant function calculaticas
described in Section 1I-D. However, since those results are

Our goal in this paper will be to study the robustness @¢fon-constructive, we will start by providing an explicitatt
linear-iterative strategies to malicious or faulty beloady a egy for the malicious nodes to follow to disrupt the linear
subset of nodes in the network. Specifically, over the redin jterative strategy. To do this, consider node in the net-

of the paper, we demonstrate the following key result. work G, and let nodez; be any other node that is not a
Theorem 1:Given a fixed network withV nodes described neighbor of noder;. Let F, = {1, 21, 7, } and
) ) ) 1

by a graphg = {X, £}, let f denote the maximum numberr, — (s,  a,,...,s ., } denote disjoint sets of vertices
of malicious nodes that are to be tolerated in the networ#t, agych thatF, U F, forms a (j,i)-cut of G. Let % denote
let ;; denote the size of the smallegt i)-cut between any the set of all nodes that have a path to nogein the
two verticesz; and;. Then, regardless of the actions of thyraph induced byX' \ (F; U %») (including nodez;), and
malicious nodes, node; can uniquely determine all of thejet 77 — ¥ \ (X U F, U F>).

initial values in the network via a linear iterative Stl’eyeg Theorem 2:For any nonnegative integeb' the column
and only ifmin; r;; > 2f+1. Furthermore, if this condition is space of the matrix?; ;B is contained in the column

satisfied,z; will pe ab!e to recover the |n!t|al values after th',espace of the matrix{/\/lfi Mfi (where B; is defined
nodes run the linear iterative strategy with almost any @hoi. ’ ’

. . in equation (4)). O
of weights for at mostv time-steps. - Proof: Let xy k], x7,[k], x7,[k], and xg[k] denote
Due to the fact that the linear iterative strategy only reegi the vectors of values of nodes in s&& F.. F». and A
that the connectivity b&f + 1 in order to reliably dissem- respectively. Letn denote the number of 1r’10d2e’s in sit
inate information, and since this bound is fundamental f e xf[k]y'e R™). Note thata;[k] is contained inxs[k]

information dissemination under any algorithm (as disedss® ;.7 . " ’ IV

: ' ; ; x;[k] is contained inx;[k], and that the set$(, 71, F», and

in Section 1I-D), the above theorem shows that linear iteeat 17 form a partition of the set of nodes. Assume without

strategies are as powerful as any other strategy for infooma ss of er?eralit that the vecto(k] in ('4) s of the form

dissemination in the presence of malicious agents (under {R g/ y/ , , " | b

wireless broadcast model of communication). X[k].: [X’?‘[k] Xfl.[k] X, k] .X"Ft[k]] (it can aways be
Remark 1:In order for a noder. to overcome malicious put into this form via an appropriate permutation of the node

behavior, we will assume that it knows its observability rixat :‘?grlseg Tr:]ggé s;:cseert;:c[) ntﬁgev:gigitthisa;&'?g:)rg:gg"ﬁgg?

O;,1, for some sufficiently largel. (upper bounded by the y . 9

size of the network, as we will show later in the paper). It is

precisely how many nodes were malicious during the linear
iteration; it only needs to know that the number of malicious
nodes is upper bounded by If node z; does not know the
value of f a priori, but does know the network topology (e.g.,
via the weight matrixW), it can determine the maximum
umber of malicious nodes that it can tolerate by calcudatin
e size of the minimum vertex-cut between itself and any
other noder;, and then making the assumption that the actual
number of malicious nodes does not exceed this maximum
value. O

C. Main Result of the Paper

iteration must necessarily have the form

sufficient (but not necessary) for node to know the weight Wi Wi Wiz 0
matrix W in order for it to obtain the observability matrix. _ | War Wi Wy Wy,
: X W= . @)
This assumption of some (or full) knowledge of the network Wi Wi Wi Wy
topology via the observability matrix (or the weight majrix Wi Wi Wy Wy

is similar to the assumptions made by much of the literatutghe C; matrix in (4) for nodez; must be of the form
on fault-tolerant distributed systems [6], [4], [19], ané will C, = [(31._’1 Cio Cis 0], again because node; has
adopt it here to demonstrate the resilience of linear it&at no neighbors in se#{. Furthermore, from the definition of
strategies. As described in [13], it is possible for the odéhe matrix B in (4), note that this partitioning of nodes

implies that we can writ8-, = |0 I 0 0|/,Bgr, =
"This terminology is due to the fact that matrices of the foAme arise P / 71 [ l}-l‘/ f } ]:2d
in the study ofdynamic system inversipmhere the objective is to recover al[o 0 Ille O] K B?—l = [O Q 0 I”] ( or some order-
set of unknown inputs from the output of a linear system [27]. ing of the nodes inFy, > and ).



Using the recursive definition ab; ;, in (6), and the fact Supposexy;[0] = a, and that nodes inF; update their
0 values at each time-step with the error valuesur, [k] =

o= i
that C; T 0, we obtain W, W4, (b — a). Substituting this into the expression for
0] 0 0 v:[0 : L] (with x;[0] = a), the values seen by nodeg under
0 C. 0 0 0 this fault scenario are given by
Oi’L 0 - |:Oi7L1W:| 0 - |:Oi,L1:| w 0 W
I, I, L, x3(0] 24
o 0 0 0:1] =0, 20 4 7 WarWa
= |:O L1:| B]:1W24 + |:O . 1] B]—‘2W34 Y1[ : ] — U4 L X, [0] + i, L
1, 1, L— 0 W WL—I
0 ) 24 44 10
¥ [OL] B W . W, (10)
Continuing the above procedure recursively for matricethef L M WsiWas a
form [0,? . ] By, 1 < a < L, we obtain (after using some »L : '
algebra and the recursive definition of the matriﬂet{i and Wi, Wit
72 from equation (6))
W W Now suppose that nodes jf, are malicious (instead of nodes
0 W ‘27;1[ W % in F1). Again, from (5) and Theorem 2, the values seen by
0. 19 = M7 24 ¥V a4 LM 34 ¥V 44 nodex; over L + 1 time-steps will be given by equation (9),
Lo iL : ol : except withM; L u, [0 : L—1] replaced byM;3 uz,[0: L—

I, W, Wit Wi, Wh-! 1]. If x[0] = b, and nodes iF, update their values at each
time-stepk with the error valuesiz, (k] = W3, W%, (a —b),
one can verify that the set of values seen by nogdeinder
this fault scenario will be identical to the expression i®)1
and thus the values received by nagewhenx[0] = a and
the nodes inF; are malicious will be indistinguishable from
e values seen by node whenx[0] = b and the nodes in

This concludes the proof of the theorem. [ ]
Note that the above theorem appliesatay decomposition
of a vertex-cut into set§; and F; (including the case where
F1 is the entire vertex-cut and, = (), if desired). The t
benefit of framing the theorem in this general manner is th o : . S
expression (8) will now allow us to show how a certain set 6f> are malicious. Since this holds for all nonnegative integer

L ) . Oi this fault scenario makes it impossible for node (and
nodesF; (or F3) can maliciously update their values in order ; . S
to disrupt the network. in fact_, any node |n.seH)_ to obtain t_hg initial values of any
Lemma 3:Let the initial values of nodes in the sét be node in set}{, or to |d§_nt|fy3 the malicious ngdes. "
denoted by the vectar. For any other vectob, suppose that xémark 2:The additive errors for nodes in sét to use
the nodes inF; are malicious and apply the error sequenc8 orde; to disrupt the ImeaIr iterative strategy are, [k] =
ur, [k] = Wou Wk, (b—a), k € N. Then, the values; [k, k € W2 Wi, (b — a) for k € N; note that these nodes do not

N seen by node; are exactly the same asaif[0] = b and actually need to know the initial values of the nodes in set
nodes in sef; are malicious withiz, [k] = W3, W¥, (a—b), ‘H (taken to bea in the above expression) in order to apply
EeN : 0 this strategy. If they simply choosey random vectog, and

. : N P
Proof: As in the proof of Theorem 2, lety [k], x, [k], update their values at each time-stepugs[k] = W24 W3, 4,

x7,[k], andx[k] denote the vector of values of nodes in seflien they are effectively applying the same update as above
#, F., F», and i, respectively, and assume (without loss of'ith b = a + a, without knowing the value oh. The same

generality) that the vecta[k] in (4) is of the formx[k] = reasoning holds if nod_es in sgt are malicious. u
(4 k] x5, K] b, [k] X [kﬂ/- Let n be the number of Based on the result in Lemma 3, we are now “ready_t,(’) prove
nodes in se#, and leta, b € R” be arbitrary vectors. the following key theorem (re-establishing the “only if” pa

Suppose the nodes in s& are malicious. From (5), the of Theorem 1).
values seen by node; over L + 1 time-steps are given by Theorem 3:Given a network described by a gragh =
yil0: L] = 0; 1x[0] +/\/lf}:ufl [0: L —1]. From Theorem 2 {X,&}, let k; denote the size of the smallegy, i)-cut
(specifically, equation (8)), this expression can be writhss  between vertices:; and z;. If x;; < 2f for some positive
integerf, then there exists a s@t of f malicious nodes along

*H [%] with a set of additive errors,[k],z; € F,k € N, such that
vi[0: L] =0, 1 ’;E M + Mfiufl 0:L—-1] nodex; cannot calculate any function that involves nogdés
Fé initial value (regardless of the number of time-steps foralth
the iteration is performed). O
W24 W34

W24W44 W34W44

] 81t may be possible for nodes in sét \ # to identify the malicious

M x40].
+ 0L H[ nodes (e.g., under the conditions described later in theerpaput they

+ M7

1 1 cannot reliably provide this information to the nodes in $&t since any
W24W44 W34W44 such information must once again pass through the nodessn/seor Fo,
(9) both of which are suspicious from the perspective of nodesetri{.



Proof: In Lemma 3, we saw that if the union of theF = {z;,,2,,...,x;,}. From (5), the values seen by node
disjoint sets of vertices x; over L + 1 time-steps are given by

yil0: L] = O; .x[0] + M ur[0: L—1] . (12)
Let 71, Fo,... 7}‘(1;) denote all possible sets gfnodes, and

forms a(j, ¢)-cut, then node:; cannot distinguish a particular s
. N
set of errors by nodes i from another set of errors by nodegg; be Mfi, M, £f) denote the corresponding invert-

in F». Furthermore, these errors make it impossible for no%”ty matrices. With these matrices in hafduppose node;

x; to obtain any information about thf, ‘initial value of r){od]e finds the firstj € {1,2, ..., (N)} such that the vector;[0 : L]
ChooseF; and F; such that|Fi| = [Z£] and |F| = [2£]. f
Sincer;; < 2f, we have[ %] < fand[“] < f, and so
F1 and F, are both legitimate sets of malicious nodes (if on h 7 . .
is interested in tolerating a maximum g¢f malicious nodes thatOi1x + M;jur[0: L —1] = y;[0 : L]. Equating this
in the system). Choosing the s&t of malicious nodes to be t0 (12) and rearranging, we have
either the sef; or F;, (with the corresponding additive errors)Oi’L(x[O]_)—()JerLuF[O : L—l]—/\/lfiufj 0:L—1]=0.
completes the proof of the theorem. ] ’ ’

Remark 3:Clearly, the above theorem can easily be modi-etting 7 = F U F;, we note from Lemma 2 that the above
fied to show that errors by a s@; of f + ¢t malicious nodes €xpression can be written as
wou_lq be indistinguishable from errors by a sBf of f —t 0:.1(x[0] — %) + MfLuJ[O .L-1=0,
malicious nodes, for ang < ¢ < f. The reason for focusing ’
on the case = 0 is that we are interested in dealing with £0or some appropriately defined vectary[0 : L — 1]. From
maximum numbeof malicious nodes in the network. In otherequation (11) in the statement of the theorem, the observ-
words, if we know that a malicious attacker can only targ@pility matrix is assumed to be of full column rank, and all
at mostf nodes (e.g., due to the costs incurred by attackif§ columns are linearly independent of the columns of the
a node), then we can disregard all cases where more fthaifivertibility matrix My, (since the set7 has2f or fewer
nodes are potentially malicious. Thus, even though we cBfdes). This means that = x[0] in the above expression,
show that a sef; of f — ¢t malicious nodes can masquerad@.nd thus nOd&'i has recovered the entire initial value vector
as a setF, of f + ¢ malicious nodes, the latter case can b¥[0], despite the efforts of the nodes.n This concludes the

fl :{Illaxbv"'v'rl‘]:ﬂ}v fQZ{xhlthga"'axh‘}-ﬂ}

is in the column space of the matricé€s ; and ij: This
geans that node; can find vectorsct andur, [0 : L —1] such

discounted because of the fact thfat- ¢ nodes are not likely Proof of the theorem. . u
to be malicious, and so we can potentially identify the Bet Rem;::[lrk 4:The above procedure requires nodeto check

On the other hand, when= 0, F, and F, are equally valid Up to (j) possibilities in order to determine the potential set
(and likely) sets off malicious nodes, and thus we cannof¢ naiicious nodes. SincéN ! < (N) < (X f [28], the

i f f f
discount one over the other. - complexity of decoding increases at most exponentially wit

f (if N is fixed) and polynomially withV (if f is fixed). It is
V. CALCULATING FUNCTIONS IN THE PRESENCE OF worth noting that this procedure is equivalent to the brated
MALICIOUS BEHAVIOR method of determining up tg' errors in anN-dimensional
) i _ ) _ ) real-number codeword with distang¢ + 1. In coding theory,
In this section, we will establish the “if" portion of The-here exist efficient ways of performing this check for both
orem 1 and show that ik;; > 2f + 1 for all j, it will be  stryctured and random real number codes (e.g., see [29] and
impossible for any set of or fewer malicious nodes to preventhe references therein), and one can potentially exploiseh

node x; from calculating any function of the initial valuesegyits to streamline the procedure in the proof of Theorem 4

in the system. We start our development with the foIIowinghiS is left for future research). n
theorem, which provides a procedure for nadeo calculate  Remark 5:Note that if transmissions between nodes are
functions in the presence of malicious nodes. corrupted by noise, then the vectgy[0 : L] might not fall

Theorem 4:Suppose that there exists an integemnd a  strictly within the column space of the matrio®s ;, andM? 2
weight matrixW' such that, for all possible setf C X of o any ;. In particular, the line between noise and malicious
2f nodes, the matrice®; ;. and M/, for nodex; satisfy  grrors becomes blurred as the magnitude of the noise iresgas

which makes it harder to detect and isolate malicious beinavi

rank([0i, MY ]) =N+ rank(MgL) : (11) This issue has been investigated in the context of real-eamb
) _ ) ) _ error correcting codes in [29], and we will leave connedion
Then, if the nodes run the linear iteration fér+ 1 time- 5 sych work for future research. 0
steps with the_ weight m_aFr_iW, nodez; can calculate any | the sequel, we will show that wheny; > 2f + 1 for all
arbitrary function of the initial values, [0, z2[0], ..., 2~ (0], ; one can find a weight matri% and an integet. so that
even when up tgf nodes are malicious. O

Proof: Let W be a weight matrix that satisfies the 9Jhlote from equation (6) that the columns of the invertibilitpatrix
conditions in the above theorem, and let the nodes run thé, . are simply a subset of the columns 6f; 0, O;1,...,0;—1. In
i iteration forl,—1 ti t S that th lici other words, noder; can obtain the invertibility matrices simply from the
Inear itera .'On or "’_ 'mefs ep_s. uppose that the mam'ouﬁwowledge of the matri>®; r,, and therefore does not necessarily need to
nodes during the linear iteration are a subset of the s&ire the invertibility matrices for every possible setfohodes.



all columns of the observability matri®; ;, will be linearly
independent of each other, and of the columngil, , where

J is any set of up t@f nodes (i.e., equation (11) will be
satisfied). From Theorem 4, node will therefore be able to
obtain all initial values from the outputs that it sees dgrihe
course of the linear iteration, and can calculate any antyitr
function of those values. To find such a weight matrix, we will
first require some concepts from classical control theory.

A. Strong Observability
Consider a linear system of the form

X[k + 1] = Ax[k] + Bu[k] (13) Fig. 1. A sample partition of the vertex set. The black node;isthe gray
y[k] _ Cx[k] + Du[k] 7 g?hdeersnggeé\g (the neighbors of node;), and the white nodes are all the
with state vectox € RY, inputu € R™, and outputy € R?,
with p > m. When the values of the inputs at each time- ¢ matrices Ox_; and My, satisfy
step are completely unknown and arbitrary, systems of the rank([ON,l MNfl}) = N +rank(My_1).
above form are termetinear systems with unknown inputs
[30], [27]. For such systems, the following notions sifong
observability matrix pencilsand invariant zeroshave been
established in the literature (e.g., see [30], [31], [33B]).
Definition 3 (Strong Observability)A linear system with
unknown inputs (of the form (13)) is said to kmrongly
observablef y[k] = 0 for all & implies x[0]
of the values of the unknown inputgk]).
Definition 4 (Matrix Pencil): For the linear system (13), the
matrix P(z) = [4 2™ B] is called thematrix pencilof the
set(A,B,C,D).
Definition 5 (Normal-Rank)The normal-rank of
the matrix pencil P(z) is defined as rankP(z))
= max,,ec rankP(zp)). O
Definition 6 (Invariant Zero): The complex number, € C
is called aninvariant zeroof the system (13) if rankP (z0)) < _ )
rank, (P(z)). 0 Let z; be any given node in the network, lef =
The following theorem provides a characterization of th{?“l’f?i%""’xizf} denote any set oRf nodt_e; (possibly
strong observability of a system. containingz;), and let7 = X\ j Further partmor_l the sets_
Theorem 5 ([30], [31], [32], [34]): The following state- i:7I anld.j as follows (an illustration of these sets is shown in

ments are equivalent:

o The system (13) is strongly observable.
« The set(A, B, C,D) has no invariant zeros.
« Denoting the output of the system (13) ovértime-steps

0
The above theorem indicates that if we can choose the
weight matrix W so that the sefW,B_,C,;,0) has no
invariant zeros for all possible setg of 2f nodes, then the
rank condition in equation (11) of Theorem 4 will be satisfied
with L = N—1; therefore, node; will be able to calculate any
= 0 (regardless desired function of the initial values, even in the preseasfag
to f malicious or faulty nodes. We now focus on choosWg
so that this is the case. In fact, our development will retiesi
one can choos®V so that multiple nodes in the system can
simultaneously calculate any desired functions of theahit
values (e.g., they can reach consensus, or calculate efiffer
functions of the initial values, all with the san\¥’).

B. Invariant Zeros

o Inv = J N (N;U{x;}). This set contains all nodes in
setJ that are neighbors of node (or nodez; itself).

o« Jiv =J\ Jn. This set contains all nodes in s@tthat
are not neighbors of node; (nor nodez; itself).

by e Jv = J N (N;U{z;}). This set contains all nodes in
v[0] C setJ that are neighbors of nodg (or nodex; itself).
y[1] CA e Jy =J\ Jyn. This set contains all nodes in s@tthat
v[2] _ | CA? x][0] are not neighbors of node (nor nodex; itself).
: : Note that these sets partition the entire set of nodes. For an
y[N'— 1] CA'N* choice of weights for the linear iteration, and for any stbse
AC X andB C X, let W4 denote the square weight matrix
y[0:N—1] On-—1 corresponding to interconnections within the sét and let
D 0 -0 u[0] W 4 5 denote the weight matrix corresponding to connections
CB D - 0 uf1] from nodes in sef4 to nodes in seB.
+| CAB CB -0 u[2] Lemma 4:For any set7 of 2f nodes, the invariant zeros
: : o : " of the set(W, By, C;,0) are exactly the invariant zeros of
CAZ\'Z72B CAZ\'Z73B N D u[]V-_ N the Set(W\7j\77WJN7jN’WjNajN7WJN7jN)' ]

The proof of the above lemma can be found in Appendix A.
M1 u[0:N—1] This lemma, along with Theorem 5, reveals that in order to
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ensure that the rank condition (11) in Theorem 4 is satisfiedTheorem 7 ([33]): Let P(z) be the matrix pencil of the
for node z;, we can focus on the problem of choosing thsetructured se{A, B, C,D). Then the normal-rank oP(z)

weights so that the set is generically equal taV plus the maximum size of a linking
fromU to ). O
(Wjﬁv W e Tv W e, dn WJNJN) To apply these results to the problem of

will have no invariant zeros for any sef of 2f nodes. To d‘ex'[]erm|wg tﬁe Vrsfuimbier ‘;)J |n\iar|ant ezerrlgie o:h;theallset
accomplish this, we will use techniques from control theor t~7N’ .JN{H?N’ tJNJN’ {N]{N)’t Wt d matric
pertaining tdinear structured systen{85], [36], [37]. Specif- atrices in this set are essentially structured matriceeds

ically, a linear system of the form (13) is said to be struetlir all of the nonzero entries in the above matrices represent
if egc':h entry o)f/ the matricedd B. C and D is either a weights which can be chosen arbitrarily and independently)

fixed zero or an independent free parameter. It is knov‘lgﬂ particular, the nodes in sefy act as the state vertices

that linear systems have certain structural propertiesh(sts or the structured system, the nodes in the ggtact as the

observability, controllability, etc.), and these propesthold 'npltj_t vertllé:es, I?rt]r? tthteh nodbes in the ;‘;’E\t{ acttas ihe gutpu:
generically. In other words, if the structural property dwl vertices. Recall that the above resulls on structured syste

for some patrticular choice of free parameters, it will hadd f assumed that the ”_“mber of outputs_|s larger than (or equal
org the number of inputs. The following lemma shows that

almost any choice of parameters (i.e., the set of paramet%? . _ L
for which the property does not hold has Lebesgue meaSLtJ e property does in fact hold for the sefs and Jjy if the

zero) [36], [37]. It turns out that the number of invariantas |n—I(_jegree %f I?Odd&i |s>s;ﬁ|0|e{1tl¥hh|gr}. 7 of 2
of a linear system is also a structured property (i.e., aline emma - cgi = 2f + 1, then for any sety of 2f

) ; : nodes,|Jn| > | Tyl O
system with a given zero/nonzero structure will have theesam The proof of the above lemma can be found in Appendix B.

number of invariant zeros for almost any choice of the frel\elote that if ;i > 2f + 1 for every j, and there is at least
ji = )

parameters) [33]. ope node that is not a neighbor of nodg thendeg, must

inv-lz-;loriaanrlazlg(?s)s g?ﬁ;uerglr sr(s)fe errr]téesorleﬁzt Zssstgga?g;n;)rzrr necessarily be no smaller tharf 4+ 1 (since otherwise, there
Y ' would not be2f + 1 vertex-disjoint paths from any node;

H with the structured sefA, B, C, D) as follows. The vertex to nodex;). We can now use the above results on structured

_set of# is given beL_JZ/luy, where¥ = {z;, T2, - N} systems to prove the following lemma for the linear itenatio
is the set of state vertice®d, = {u1,ua, ..., u,} is the set of ° ) : . . . .
: . . in (4); the lemma will be used in conjunction with Lemma 4
input vertices, andy = {y1,%2,...,yp} is the set of output . .
. I and Theorem 5 to show that node can uniquely determine
vertices. The edge set &f is given by&,, U UE,y Uy, A . . . .
the initial valuesx[0] after running the linear iteration for at
where . ; -
. most N time-steps, even with up té malicious nodes.
© Eox = {(xjaffiﬂ Aij # Q} is the set of edges Corré- | emma 6:Consider node;; in the networkg, and suppose
sponding to interconnections between the state verticgg,t ki > 2f + 1 for all j. Then for almost any real-
o Eux = {(uj,2:)| Bij # 0} is the set of edges corre-yajyed choice of weights (witho;; = 0 if z; ¢ N; U {z;}),
sponding to connections between the input vertices aggh setW; W, - W, - W, - ) wil have no
. ; ’ I YV ININ VIR IN VY TN IN
the state vertices, . invariant zeros for any sef of 2f nodes. O
o &y = {(zj,u:)] Ci; # 0} is the set of edges corre-  The proof of the above lemma appears in Appendix C. With
sponding to connections between the state vertices afd above lemma in hand, it is a simple matter to prove the
o &uy = {(uj,:)] Di; # 0} is the set of edges corre-  Theorem 8:Given a fixed network withV' nodes described
sponding to connections between the input vertices aﬁg a graphG = {X, €}, let f denote the maximum number
the output vertices. of malicious nodes that are to be tolerated in the networdt, an
The following theorems from [33] and [37] characterize thket «;; denote the size of the smallegt 7)-cut between any
generic number of invariant zeros of a structured system aiveb verticesz; andz;. Define
the normal-rank of a structured matrix pencil in terms of the _
associated grapt{. The terminology)-topped pathis used T={wi | Kj = 2f+1forallz; € X} .
to denote a path with end vertex Then, with almost any choice of real-valued weight ma¥¥x
Theorem 6 ([33], [37]): Let P(z) be the matrix pencil of (with w;; = 0if z; ¢ N;U{x;}), every node irV" can uniquely
the structured sefA,B, C,D), and let the normal-rank of determine all of the initial values in the network after rimmn
P(z) be N + m, even after the deletion of an arbitrarythe linear iteration for at mosv time-steps, regardless of the
row from P(z). Let H be the graph associated with the satpdates applied by up t6 malicious nodes. O
(A,B,C,D), and consider all possible subgraphs?¢fthat Proof: If node x; is in set7T, then from Lemmas 4 and
consist of a disjoint union of a size: linking from ¢/ to 6, we see that for almost any choice of weight matV,
Y, a set of cycles int, and a set ofy-topped paths. From and for any set7 of cardinality2f, the set(W,B s, C;,0)
these subgraphs, denote Hythe one that contains the largeswill have no invariant zeros. Furthermore, since the set of
number of vertices fromY. Then the generic number ofweights for which this property does not hold has measure
invariant zeros of system (4) is equal % minus the number zero, it will hold generically for all nodes in séf. From
of vertices of X' contained in#. [ Theorem 5, we see that rajO; v 1 M{y_,]) = N +
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rank(/\/lg]\,_1 for all z; € T and all sets7 of 2f nodes.

Thus, Theorem 4 indicates that every nod¢irtan calculate @
any arbitrary function of the initial values after runninget
linear iteration for at mosiV time-steps. [ | @

Theorem 8 proves the “if” part of Theorem 1, and in @ @

conjunction with Theorem 3, we see that Theorem 1 is proved

in full.

Remark 6:The above theorem provides apper boundof @
N on the number of time-steps required by nagdo obtain o
the initial values despite the presence of malicious ag@tis Eghg'ne{:‘,\’%drixlev”eiegsoﬁ;Cri!‘élg"’i‘;entlgﬁcfgg of squares of all initial values
actual number of time-steps required depends on the networlt< ' '
topology, and there is not a general relationship desdaibin
how the actual number of time-steps grows with the numbgie-steps, despite the actions of upftmalicious nodes (i.e.,
of agentsV. As a trivial example, consider the fully-connecteghere is a weight matriW that satisfies equation (11) with
graph onN nodes; in this case, any node can obtain all of 1, — 1.;). Let F be the set of nodes that are malicious during
the initial values accurately after just one time-stepardtess the course of the linear iteration (with cardinalifyor lower).
of N. Itis easy to construct more complicated graphs whetgen, for any nonnegative integr after L; +1+ L time-steps
the number of time-steps is independenfafA tighter upper of the linear iteration, node; can uniquely identify the nodes
bound on the number of time-steps required for any nodeiipset 7 that were malicious during the firgt time-steps of

accumulate all of the initial values when there acamalicious the iteration. 0
nodes is presented in [38]. O Proof: Note that the theorem holds trivially fat = 0,
and so we focus on the case 6f > 1 in the rest of the
V1. IDENTIEYING THE MALICIOUS NODES proof. From Theorem 4, we know that node can uniquely

. , determine the correct value of[0] based on the values

Note that although the procedure described in the proof 9fry . 11 Now, view x[1] as the vector of initial values in
Theorem 4 allows a given node; to determine the entire yno nerwork; once again, Theorem 4 indicates that nede
set of initial values, it does not necessarily require nege can recoverx[1] from the valuesy;[1 : L; + 1]. From (4)
to determine theactual set of malicious nodes. Instead, nOd%odex- can now obtainx[1] — W;[O] fZBfu;:[k] Thus’

. . . . . . K3 - . 1
x; is only required .to find a:and|date§et F; of mahmous every nonzero component in the vector on the left hand side
nodes, and then write the values that it has received over he above equation indicates an additive error injected b
pastL + 1 time-steps as a linear combination of the columnge ¢ responding node, and so every node that is malicious
in thg corresponding mve_rtlblllty _matrlx and_the obseiliab during time-step0 can be identified by the above method.
matrix. In many cases, this candidate set will be the acefal §,o same process can be repeated to find all nodes that were

of mahmoqs nodes, but thgre can also be cases where the MRicious during the first. time-steps from the transmitted
sets are different. As a trivial example, consider the cdse OvalueSy-[O Li+ L] -
3 . K3 .

network where two nodes; andzx; are separated by distance
D, and suppose that node requiresl + 1 time-steps in
order to calculate the initial values of all nodes via theséin
iteration. Now suppose that node is malicious, but only Consid_er the network shown in Fig. 2. Thg objﬁective in this
commits its first additive error during one of the ldgt— 1 Network is for noder; to calculate the functioy”;_; =3[0],
time-steps. This additive error will not propagate to nage €ven if there is up tgf = 1 malicious node in the network.
before time-step., and thus node:; will not be aware that

nodex; has acted maliciously. In other words, as far as noge Network Design

@; IS concerned, the case where nages malicious during the gy amining the network, we see that there are three intgrnall
last D — 1 time-steps of the linear iteration is 'nd'S“ngU'Shabl%rtex-disjoint paths from node; to nodez:, and also from
] )

from the case where nodg behaves completely correctly forpgqe . to nodea;. Since all other nodes are neighbors of
all time-steps._l\_lote tha_t t_h_is fact does not hamper ngdeom nodez;, we have thats;; > 3 for all j, and so Theorem 8
correctly obtaining the initial values of all the nodes. HWer, icates that node; can calculate the desired function after
there may be applications when it is desirable for nodes fgnning the linear iteration (with almost any choice of wetig)
distributively identify the exact set of malicious nodesg(e ¢y at mostN = 6 time-steps, despite the presence of up to

in order to remove them from the network). The following mjjicious node. For this example, we will take each of the
theorem indicates that if node, examines the values that iteqge_ and self-weights to be i.i.d. random variables chosen
receives from the linear iteration over a number of tim@stes.y 1 the sel {—5,—4,-3,-2,-1,1,2,3,4,5} with equal
larger than that required purely for function calculatiitrgan o T

determine the exact set of nodes that were malicious during®n general, the result in Theorem 8 will hold with probayilit if one
the initial stages of the iteration. chooses the weights for the linear iteration from a contirsudistribution

Th 9'S d lcul h . over the real numbers (such as a Gaussian distribution)thi®pedagogical
eorem 9:Suppose node; can calculate the entire Setexample, however, it will suffice to consider a distribution a small set of

of initial values after running the linear iteration fdr, + 1 integers; this makes the presentation of the numericakesainore concise.

VIl. EXAMPLE
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probabilities. These weights produce the matrix details are very similar to those in the above example, aad ar
- - omitted here.

-3 1 -13 0 0 Itis worth noting that the network in Fig. 2 also has > 3
12 -11 1 0 for all j, and so node:; can also follow the same procedure
W = 00 10 0 2 to calculate any arbitrary function of all values in the syst
04 02 2 5 in the presence of up to one faulty node (with the same weight
02 00 -1 5 matrix, and in parallel to node,; ). On the other hand, consider
[ 00 13 —4 -4 nodexg in the network. The seF = {4, 25} forms a(2,6)-

Since noder; has access to its own value, as well as tho§&lt (i-e., removing nodes, and x5 removes all paths from
of its neighbors (nodes., 3 andz,) at each time-step, the Nodez2 to nodexg), and sokzs = 2. Thus, noders is not
matrix C; is given byC; = [14 0}_ With the above weight guaranteed to be_ able to calcula_te any function of neds
matrix, one can verify that equation (11) is satisfied with 1 value when there is a faulty node in the system. In fact, one ca
andL = L, = 2 for all sets.7 of 2f = 2 nodes, wher®; ;, verify that in _the examplg above, where nadeis malicious
and M7, are defined in equation (5) (the exact numericANd updates its values with the errarg0] = —8 andua[1] =
values are omitted in the interest of space). We make thesabovl 2, the values seen by node during the first three time-
matrices available to node , and at this point, node; has all Steps of the linear iteration are the same as the values seen
the information it needs to be able to calculate the functidty nodezs whenz,[0] = 4,25[0] = —3 and nodexs is
>°%_, 22[0] (or indeed, any arbitrary function of the initialMalicious, withus[0] = 4 and us[1] = 6. In other words
values) afterL; + 1 = 3 time-steps of the linear iteration,"0dezs cannot distinguish the case when nadgis faulty
even in the presence of one malicious node. from the case where node; is faulty (with different initial
values in the network). As discussed in Section IV, nade
can continue to update its values erroneously so that mgde

B. Performing Function Calculation can never resolve this ambiguity, regardless of the number o
Suppose that the initial values of the nodes afe] = time-steps for which the linear iteration is run, and thus it
[3 -1 4 -4 7 11 ]’_ In order for noder; to calcu- C¢annot correctly calculate a function of the values of node

late the functionz(j:1 xf [0], the nodes run the linear iterationand noders.

with the weight matrix provided above. Suppose that node

. . ) ; . VIIl. SUMMARY
x4 is malicious, and at time-stepk and 2, it updates its ) o . ,
value asz4[l] = 4x2[0] + 224[0] + 225[0] + 5a6[0] — 8 We considered the problem of using linear iterative strate-

and z4[2] = 4aa[1] + 22a[1] + 225[1] + 5as[l] — 12, ie., gi(_es for distributed function calcula_tion in thg present_ma—

it commits an additive error ofcious agents that can update their values in an arbitrady a
apossibly coordinated manner, under the broadcast model of
communication. We showed that the ability of linear itarati
strategies to tolerate such malicious behavior is comiplete

to the weighted average specified by the weight ma¥ixThe determined by the topology of the network. If there exists

values of all nodes over the first three time-steps of theatine® pair of node_sm an(_j x; such tha_t’iﬁ = 2/, the_n_ we
iteration are given byx[0] —= [3 1 4 —4 7 11]/ showed that it is possible for a particular set fofmalicious

x[] = [-26 0 26 49 46 —80]/, and x[2] nodes to update their values in a coordinated fashion so that
109 43 —134 -9292 —446 309" The val b nodez; cannot correctly determine the value of nade and

[ N N e ]'- The values seen Ythus cannot calculate any function that involves that value
nodez; at time-stepk are given byy;[k] = Cix[k|, and

q h | leul h rigardless of the number of time-steps for which the linear
hodex; can now use these values to calculate the vector ol +iion is run. We then showed that it is possible for a give

initial values, despite the efforts of the malicious node Ahode x; to calculate any arbitrary function in the presence

discussed in Theorem 4, nodg finds the first setr; jfT?r of up to f malfunctioning or malicious nodes as long as the

which y, [0 : 2] is in the column space aD, » and M15:  size of the smallesty, i)-cut with any other node; is at least

in this example, noder; finds that this holds foy = 4. 1t 51 For all nodes that satisfy the connectivity requirements,

now finds ]\__/eCtOI’S—c and ur,[0 : 1] such thaty;[0 : 2] = e showed that they can calculate their desired functiotes af

O12X+Mj5ur,[0: 1] asx = [ 3 -1 4 -4 7 11 ] running the linear iteration with almost any real-valuedick

andur,[0:1] = [ -8 —12 ]’. Nodez; now has access 10 of weights for at mostV time-steps. Furthermore, under these

x[0] = x, and can calculate the functitﬁ?z1 23[0] to obtain - connectivity requirements, any node that is malicious aftya

the value212. ' during the first part of the linear iteration can be uniquely
Note that in this example, the candidate $&tfound by identified by the other nodes in the network if they run the

nodex; does, in fact, contain the actual malicious nade linear iteration for more time-steps than that requiredngpdy

This will not be true in general; if we want node to be perform function calculation.

guaranteed to locate any node that is malicious during tee fir

L time-steps of the iteration, we should have naderepeat ACKNOWLEDGMENT

the above procedure fak; + L +1 = 3 + L time-steps of ~ The authors thank the anonymous reviewers for their con-

the linear iteration, as described in Theorem 9. The nurakristructive comments and insights.

during the first time-step,
u4[0] = —8, and during the second time-step, it commits
additive error ofuy[1] = —12. All other nodes follow the
predefined (correct) strategy of updating their values mating
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APPENDIXA the output vertices are given by the s&t . In particular,H
PROOF OFLEMMA 4 can be obtained by first taking the graph of the netw@nd
Proof: The matrix pencil for the sefW, B, C;,0) is rer;oving 6t‘” intctzjming ed?e)s to SOdGSJ@T/ (SiTlce tthe .nodej
: byP(s) — |W=InBs| g imol bering M Ji are treated as inputs), and removing all outgoing edges
given by P(2) { G 0 } y @ simple renumbering from nodes in7xs (since those nodes are treated as outputs).

1 i i . .
of the nodes;’ we can assume without loss of generality thatrthermore, remove all nodes that are in theSetand their
W,By, andC; are of the form incident edges (since these nodes do not appear anywhere in
r the matrix pencil), and add a set of self loops to every state
W Wi Wi Wy oo Wi vertex to correspond to the nonzero entries on the diagdnal o
W- ~ Ws . W+ W R the weight matrixw ;,_.

TN Ine INTxr Vi INTINe . N
Wi s Wi o Wi Wy We will now examine what happens when we remove a
e ’ ’ single row fromP(z). Suppose we remove one of the rows

Wjﬁ Wjj\/-,j/\’/ WJNJN WJN-,jN

8 g 0 I- 0 0 of P(z) corresponding to a vertex € Jy (i.e., one of the
B, = C; = |Tn | top | 7| rows of P(z)), and denote the resulting matrix by
| 0 |” 7" o 0 0TI ’ 5 N . . L
1T |Tw | P(z). The generic rank oP(z) can be found by examining

L 0 Ty the associated graph, which we will denote?yNote thatH
sinceB_; contains a singlé in each row corresponding to ais obtained from? simply by removing all incoming edges
node in7, andC; measures nodes that are neighbors of notie vertexv in H, since we removed the row corresponding

x;, or nodez; itself. Based on this, one can see that to v from P(z); however, all outgoing edges fromare still
= left in the graph (since the column corresponding to vertex
rankP = |IxN . . LS
KP () = x|+ 1In |+ 1wl + 1T v is left in matrix P(z)). Thus, we see that vertexcan be
+ rank( [WJN — 2L g WJNJND ’ treated as an input vertex #, leaving|Jy| — 1 state vertices
T IN W 7 dn (corresponding to the sef, \ {v}). Now, note that the set

and so the invariant zeros of the séW,B,C,;,0) JU{v}hascardinalitgf+1,andthusLemma 1 indicates that

are exactly the invariant zeros of the sethereisalinking of sizef+1from 7U{v} to {z;}UN;inG.
In this linking, consider the paths starting at verticeshia set

Jir U {v}; none of these paths passes through the vertices in

Jn (since these vertices are the start vertices of other paths i

PROOF OFL EMMA 5 the linking). Graphg thus (_:ontains_ a_linking fronr U {v}

. . _ to Jun, where each path in the linking only passes through
_ Proof: First, note from the definition affy and 7y that  yertices in the set7y, and therefore this linking also exists

[In | +[Jn| = deg; +1 (since the sets/ and.7 partition the i, the graph{. According to Theorem 7P(z) has generic

vertex set of the graph, and therefore contain all neighbg{§ymal-rank equal to the number of state vertice#igequal

of nodex;, along with nodez; itself). Furthermor€Jy| + 15 | 7..| — 1) plus the maximal size of a linking from the

|Tx| = 2f (since those two sets partition the $€). Thus, jyputs to the outputs (equal t/y U {v}]), for a total of

| TN | = degi +1—|jA(| = deg; +1-2f+|Jy|. Sincedeg; > Tl = 14Ty U{v}| = |T¢| + |Ty|. The pencilP(z) thus

2f + 1, this expression becomegiv| > [Tx| +2 > Tyl has generically full normai-rank.

(Wjﬁ’wjﬁyjﬁ7WjﬁajN’WjﬁyjN)' n

APPENDIXB

thereby proving the lemma. u Now, suppose that we remove a rowRfz) corresponding
to a vertexv € Jy (i.e., one of the bottomJy| rows of

APPENDIXC P(z)), and again denote the resulting matrix Byz). The

PROOF OFLEMMA 6 associated grap# is obtained by simply removing vertex

Proof: The matrix pencil for the setfrom®H. Sincex;; > 2f+1 for everyj in graphg, Lemma 1
indicates that there will be a linking of si2¢ +1 from the set
J U{v} to the set{x; } UN; in G. In particular, there will be a
P(z) = Wae —lige Wagae . linking of size| 7| from the set7y; to the set7y \ {v}, and
W v W 7.dn none of the paths in this linking would go through any of the
We will show that this pencil has full normal-rank even afteYertices in the sef- U {v} (since these vertices are the start
the deletion of an arbitrary row, and then use Theorem 6 Y§'tices of other paths in the linking). The linking from the
prove the lemma. setJy to the setJy \ {v} will therefore also exist in graph
We start by constructing the gragh associated with the #, and once again, Theorem 7 indicates that the matrix pencil
set(W; W, 7 Wz 7 W, ). For this set of will have generically full normal-rank equal {7y| + | T/
matrices, note that the state vertices in the graphre given ~ We have thus shown tha(z) will have generically full

by the set7y, the input vertices are given by the s8¢, and normal-rank even after the deletion of an arbitrary row.nfrro
Theorem 6, the number of invariant zerosRfz) is equal to

11Note that this does not affect the invariant zeros of theesgssince this | 7| minus the maximal number of vertices iy contained

renumbering of the nodes simply corresponds to pre— ane-podtiplying the i the disjoint union of a SiZMAﬂ Iinking from ~7J\7 to jj\/,
original matrix pencil by appropriate permutation matsic8ince permutation =

matrices are nonsingular, the rank of the new pencil matilkhe the same a. Cyde fam"y in ~7J\7’ _anq ajN-topped pc’:_lth fam"y- If we
as the rank of the original matrix pencil for all values of simply take any|Jy|-linking from Jg to Jxr, and include

(Wj/(/’ WJN7.7N7 WjN;jN’ WJN7.7N) 1S
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all the self-loops on state vertices #f that are not included [24] S. Sundaram and C. N. Hadjicostis, “Distributed fuattalculation via
in the linking (corresponding to the nonzero weights on the
diagonal of the weight matri¥V 7 ), we will have a linking
and a set of disjoint cycles that covers &fly| vertices in [25]
Jy- Thus, the matrix penciP(z) will generically have no

invariant zeros, thereby proving the lemma.
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