
1

Distributed Function Calculation via Linear Iterative
Strategies in the Presence of Malicious Agents

Shreyas Sundaram and Christoforos N. Hadjicostis

Abstract—Given a network of interconnected nodes, each with
its own value (such as a measurement, position, vote, or other
data), we develop a distributed strategy that enables some or all of
the nodes to calculate any arbitrary function of the node values,
despite the actions of malicious nodes in the network. Our scheme
assumes a broadcast model of communication (where all nodes
transmit the same value to all of their neighbors) and utilizes a
linear iteration where, at each time-step, each node updates its
value to be a weighted average of its own previous value and those
of its neighbors. We consider a node to be malicious or faulty
if, instead of following the predefined linear strategy, it updates
its value arbitrarily at each time-step (perhaps conspiring with
other malicious nodes in the process). We show that the topology
of the network completely characterizes the resilience of linear
iterative strategies to this kind of malicious behavior. First, when
the network contains2f or fewer vertex-disjoint paths from some
node xj to another node xi, we provide an explicit strategy
for f malicious nodes to follow in order to prevent nodexi

from receiving any information about xj ’s value. Next, if node
xi has at least 2f + 1 vertex-disjoint paths from every other
(non-neighboring) node, we show thatxi is guaranteed to be
able to calculate any arbitrary function of all node values when
the number of malicious nodes isf or less. Furthermore, we
show that this function can be calculated after running the linear
iteration for a finite number of time-steps (upper bounded bythe
number of nodes in the network) with almost any set of weights
(i.e., for all weights except for a set of measure zero).

Index Terms—Distributed function calculation, distributed
consensus, fault-tolerant consensus, observability theory, struc-
tured systems, networked control, multi-agent systems, wireless
broadcast model

I. I NTRODUCTION

In distributed systems and networks, it is often necessary for
some or all of the nodes to calculate some function of certain
parameters. Examples include sensor networks where sink
nodes are tasked with calculating the average measurement

This material is based upon work supported in part by the National Science
Foundation (USA), under NSF Career Award 0092696 and NSF ITRAward
0426831. The research leading to these results has also received funding from
the European Community (EC) Seventh Framework Programme (FP7/2007-
2013) under grant agreements INFSO-ICT-223844 and PIRG02-GA-2007-
224877. Any opinions, findings, and conclusions or recommendations ex-
pressed in this publication are those of the authors and do not necessarily
reflect the views of the NSF or EC. Parts of this work were presented in
preliminary form at the 2008 American Control Conference.

S. Sundaram is with the Department of Electrical and Computer
Engineering, University of Waterloo, Waterloo, ON, Canada. E-mail:
ssundara@uwaterloo.ca. C. N. Hadjicostis is with the Department of
Electrical and Computer Engineering, University of Cyprus, and also with
the Coordinated Science Laboratory, and the Department of Electrical and
Computer Engineering, University of Illinois at Urbana-Champaign. E-mail:
chadjic@ucy.ac.cy.

Address for correspondence: Shreyas Sundaram, Universityof Waterloo,
200 University Avenue West, Waterloo, ON, N2L 3G1, Canada.

value of all the sensors [1], [2], and multi-agent systems where
all agents communicate with each other to coordinate their
speed and direction [3]. Various algorithms to accomplish
function calculation in networks have been proposed by the
computer science, communication, and control communities
over the past few decades [4], [5], [6], [7]. The special caseof
distributed consensus, where all nodes in the network calculate
the same function [4], has received extensive attention from
the control community due to its applicability to topics such
as cooperative control, multi-agent systems, and modeling
flocking behavior in biological and physical systems [8]. In
these cases, the approach to consensus is to use a linear
iteration, where each node in the network repeatedly updates
its value as a weighted linear combination of its own value
and those of its neighbors [9], [10], [11], [12]. These works
have revealed that if the network topology satisfies certain
conditions, the weights for the linear iteration can be chosen so
that all of the nodes asymptotically converge to the same value
(even if the network connections are time-varying). Recently,
it was shown in [13] that in networks with time-invariant
topologies, this linear iterative strategy can also be applied to
the more general function calculation problem, allowing any
node to calculate any arbitrary function of the node values in
a finite number of time-steps (upper bounded by the size of
the network).

Due to the increasingly prevalent use of sensor networks and
multi-agent systems in life– and mission–critical applications
(e.g., [14]), it is imperative to analyze any proposed network
algorithms to determine their resilience to nodes that behave
in erroneous or unexpected ways. This might be the case, for
example, if some nodes in the network are compromised by a
malicious attacker whose objective is to disrupt the operation
of the network [4]. Alternatively, the nodes might suffer from
hardware malfunctions, thereby causing them to calculate
their update value incorrectly [15]. The robustness of various
existing information dissemination schemes to these typesof
abnormal behaviors has been investigated in the literature(e.g.,
see [6]); however, a similar analysis of the susceptibilityof
linear iterative strategies to malicious or faulty behavior has
received scant attention, and this is the focus of our work.
Specifically, we allow for the possibility that some nodes
in the network update their values at each time-step in an
arbitrary (possibly coordinated) manner, instead of following
the predefined strategy of using a specific linear combination
of their neighbors’ (and own) values. The contribution of this
paper is to show that the graph connectivity is the determining
factor for the ability of linear iterative strategies to tolerate
malicious (or faulty) agents. First, we demonstrate that ifa



2

given nodexi has2f or fewer vertex-disjoint paths from some
other nodexj , then there exists a set off or fewer nodes
that can maliciously update their values so thatxi cannot
obtain sufficient information to calculate any function that
involves nodexj ’s value, regardless of the number of time-
steps for which the linear iteration is run. The fact that only
f malicious nodes will be required to disrupt a network with
2f connectivity is not surprising, given existing results in the
distributed systems literature (which we will review laterin
the paper). What isnot clear, however, is exactlyhow thesef
malicious nodes should behave in order to disrupt the linear
iterative strategy and not be identified in the process. Our
analysis solves this problem by providing an explicit choice
of malicious nodes, along with a strategy for them to follow.

Next, we show that if a given node has at least2f+1 vertex-
disjoint paths from any other node (with which it does not have
a direct connection), it can work around up tof misbehaving
nodes to correctly calculate any arbitrary function of the node
values. Furthermore, we show that this can be achieved after
running the linear iteration for a finite number of time-steps
with almost any set of weights. To derive our results, we
build upon the function calculation algorithm in [13], and
exploit concepts from classical linear system theory (suchas
structured system theory, strong observability, and invariant
zeros of linear systems) to overcome malicious or faulty nodes.
As we will describe in further detail later, our results serve to
narrow the gap between linear iterative schemes and existing
fault-tolerant consensus algorithms in the literature (such as
those described in [4]). In particular, we show that under the
broadcast model of communication (which implies that nodes
cannot send different information to different neighbors –e.g.,
in a wireless setting), simple linear-iterative schemes are as
powerful as any other algorithm in terms of the number of
malicious nodes they can handle (i.e., they impose the same
constraints on the underlying network topology).

In our development, we useei,N to denote theN×1 column
vector with a1 in its i–th position and0’s elsewhere. The
symbolIN denotes theN×N identity matrix andA′ indicates
the transpose of matrixA. We will denote the cardinality of
a setS by |S|, and for a pair of setsS andT , S \ T denotes
the elements ofS that are not inT . The set of nonnegative
integers is denoted byN.

II. BACKGROUND

A. Graph Theory

We will require the following terminology in order to facil-
itate our discussion. Further details can be found in standard
texts on graph theory, such as [16].

A graph is an ordered pairG = {X , E}, where X =
{x1, x2, . . . , xN} is a set of vertices (or nodes), andE is a set
of ordered pairs of different vertices, called directed edges.
If, ∀xi, xj ∈ X with i 6= j, (xi, xj) ∈ E ⇔ (xj , xi) ∈ E ,
the graph is said to be undirected. The vertices in the set
Ni = {xj |(xj , xi) ∈ E} are said to be neighbors of vertexxi,
and the in-degree of vertexxi is denoted bydegi = |Ni|. A
subgraphof G is a graphH = {X̄ , Ē}, with X̄ ⊆ X andĒ ⊆ E
(where all edges in̄E are between vertices in̄X ). A subgraph

H of G is said to beinducedif (xi, xj) ∈ Ē ⇔ (xi, xj) ∈ E
wheneverxi, xj ∈ X̄ .

A path P from vertex xi0 to vertex xit is a sequence
of verticesxi0 , xi1 , . . . , xit such that(xij , xij+1

) ∈ E for
0 ≤ j ≤ t− 1. A path is called acycle if its start vertex and
end vertex are the same, and no other vertex appears more than
once in the path. PathsP1 andP2 are vertex-disjointif they
have no vertices in common. PathsP1 andP2 are internally
vertex-disjoint if they are vertex-disjoint, with the possible
exception of the end vertices. A set of pathsP1, P2, . . . , Pr are
(internally) vertex-disjoint if the paths are pairwise (internally)
vertex-disjoint. Given two subsetsX1,X2 ⊂ X , an r-linking
from X1 to X2 is a set ofr vertex-disjoint paths, each with
start vertex inX1 and end vertex inX2. Note that ifX1 and
X2 are not disjoint, we will take their common vertices to be
vertex-disjoint paths betweenX1 andX2 of length zero.

A graph is said to bestrongly connectedif there is a path
from vertexxj to vertexxi for every xi, xj ∈ X . We will
call a graphdisconnectedif there exists at least one pair of
verticesxi, xj ∈ X such that there is no path fromxj to
xi. A vertex-cut in a graph is a subsetS ⊂ X such that
removing the vertices inS (and the associated edges) from the
graph causes the remaining graph to be disconnected. More
specifically, a(j, i)-cut in a graph is a subsetSji ⊂ X such
that removing the vertices inSji (and the associated edges)
from the graph causes the graph to have no paths from vertex
xj to vertexxi. We will denote the smallest size of a(j, i)-
cut by κji. If (xj , xi) ∈ E (i.e., vertexxj is a neighbor of
vertexxi), we will takeκji to be infinite (since removing other
vertices will not remove the direct path betweenxj andxi).
We will also adopt the convention thatκii is infinite. Note that
if minj κji is finite, then the in-degree of vertexxi must be
at leastminj κji (since otherwise, removing all the neighbors
of vertex xi would disconnect the graph, thereby producing
a (j, i)-cut of size less thanminj κji). Note that there are
various efficient algorithms for computing the quantityκji for
any verticesxi andxj , such as the Ford-Fulkerson algorithm
(which has run-time polynomial in the number of vertices)
[16]. The connectivityof the graph is defined asmini,j κij .
The following classical result will play an important role in
our derivations (e.g., see [16]).

Lemma 1 (Fan Lemma):Let xi be a vertex in graphG, and
let c be a nonnegative integer such thatκji ≥ c for all j. Let
R ⊂ X be any subset of the vertices, with|R| = c. Then
there exists a set ofc internally vertex-disjoint paths fromR
to xi, where the only common vertex of each of these paths
is xi.

Since all internally vertex-disjoint paths have to pass
through different neighbors ofxi, the Fan Lemma implies that
there will be ac-linking from R to Ni∪{xi}. Note that some
of the paths in this linking might have zero length (i.e., ifxi

or some of its neighbors are inR).

B. Distributed System Model

The interaction constraints in distributed systems and net-
works can be modeled via a directed graphG = {X , E}, where
X = {x1, x2, . . . , xN} is the set ofN nodes in the system



3

and E ⊆ X × X represents the communication constraints
in the network (i.e., directed edge(xj , xi) ∈ E if node xi

can receive information directly from nodexj). Note that
undirected graphs can be readily handled by treating each
undirected edge as two directed edges.

We will deal with networks where information is dissem-
inated via thewireless broadcastmodel, whereby each node
(behaving or misbehaving) sends the same information to all
of its neighbors. This model, while obviously applicable to
wireless networks, also holds when information is obtained
by direct sensing(i.e., where each node measures or senses
the values of its neighbor, as opposed to receiving that
value through a transmission). We assume that every node
in the network has an identifier (so that nodes can associate
each piece of information that they sense or receive with
the corresponding neighbor). Each node is also assumed to
have sufficient memory1 (so that it can store the information
that it receives or senses from its neighbors), and sufficient
computational capability to perform mathematical operations
on this stored information (such as calculating the rank of
a matrix, multiplying matrices, etc.). We will assume either
that nodes always transmit a value (even if they are faulty),
or that messages are delivered in a fixed amount of time.
This assumption is necessary because it would otherwise be
impossible to perform fault-diagnosis – the receiving node
will never be able to determine whether an expected message
from another node is simply delayed, or if the transmitting
node has failed [4]. When running a specified algorithm, we
assume that nodes in the network wait until they have received
transmissions from all of their neighbors, and then execute
their transmission or update strategies before waiting forthe
next transmissions from their neighbors. We will capture this
behavior by referring to the behavior of a node attime-
step k, by which we mean thek–th transmission or update
step executed by that node. We assume that all messages are
either delivered in the order they were transmitted, or have
an associated time-stamp or sequence number to indicate the
order of transmission.

C. Function Calculation via Linear Iterations

Suppose that each nodexi has some initial value, given
by xi[0]. The goal is for certain nodes to gather enough
information to calculate certain functions that depend on (some
of) these initial values. To achieve this, nodes can update
and/or exchange their values over several time-steps based
on some strategy that adheres to the constraints imposed by
the network topology. A common strategy is to “flood” the
network with the needed information (where each node simply
forwards any message that it gets from a neighbor to all of its
neighbors) [4] or to use routing algorithms to route the value of
each node to the nodes that need it [17]. Motivated by gossip
and consensus algorithms that adopt nearest neighbor rules
(e.g., [8]), the scheme that we study in this paper makes use
of linear iterations; specifically, at each time-step (or iteration)

1As we will see later in the paper, the amount of memory required by each
node will increase as a function of the number of nodesN in the network.

k, each node updates its value as

xi[k + 1] = wiixi[k] +
∑

xj∈Ni

wijxj [k] , (1)

where thewij form a set of weights.2 In other words, each
node updates its value to be a linear combination of its own
value and the values of its neighbors. For ease of analysis,
the values of all nodes at time-stepk can be aggregated into
the value vectorx[k] =

[
x1[k] x2[k] · · · xN [k]

]′
, and the

update strategy for the entire system can be represented as

x[k + 1] =








w11 w12 · · · w1N

w21 w22 · · · w2N

...
...

. . .
...

wN1 wN2 · · · wNN








︸ ︷︷ ︸

W

x[k] (2)

for k ∈ N, wherewij = 0 if xj /∈ Ni ∪ {xi}.
Definition 1: Let g : RN 7→ Rq be a function of the

initial values of the nodes (note thatg(·) will be a vector-
valued function ifq ≥ 2). We sayg(x1[0], x2[0], . . . , xN [0])
is calculable by nodexi if it can be calculated by nodexi after
running the linear iteration for a sufficiently large numberof
time-steps, perhaps by using all the values that it sees over
those time-steps.

While there has been a great deal of work on choosing
the weight matrixW for the linear iteration (2) in order to
achieve objectives ranging from asymptotic consensus (e.g.,
[8]) to calculating arbitrary functions in finite time [13],there
has been little investigation of what happens when some
nodes do not follow the linear iterative strategy. In this paper,
we will show that, under certain fundamental conditions on
the underlying network topology (and assuming the nodes
know the weight matrixW), linear iterative schemes are
also powerful enough to allow the nodes in the network to
distributively calculate any arbitrary functioneven whensome
of the nodes in the network are malicious or faulty.

D. Previous Results on Fault Tolerant Function Calculation

The problem of transmitting information over networks (and
specifically, reaching consensus) in the presence of faultyor
malicious nodes has been studied thoroughly over the past
several decades (e.g., see [4], [6] and the references therein).
It is known in the literature that if there are only2f vertex-
disjoint paths between two nodes in a network, then there
exists at least one set off coordinated malicious nodes that
can prevent at least one of the nodes from receiving any
information about the other (regardlessof the algorithm). The
proofs of this general result are non-constructive,3 and based
on the following intuition: if there are only2f independent
paths between the two nodes, then a set of malicious nodes
on f of the paths could collude to pretend that the transmitted

2The methodology for choosing the weights appropriately andthe implica-
tions of this choice are discussed later in the paper.

3Indeed, the precise strategy used by the malicious nodes to disrupt the
network will depend on the particular algorithm that is usedto disseminate
information.



4

value was something other than the true value, and the receiv-
ing node would not know whether to believe thef malicious
nodes, or thef nodes transmitting the true value on the other
f independent paths [4], [6], [18].

The topic of overcoming malicious behavior in distributed
settings has been extensively studied in the computer science
literature under the moniker of theByzantine Generals Prob-
lem (e.g., [4], [19]). That problem deals with ensuring that all
nodes in the network reach agreement on a certain value, even
when there are up tof malicious (Byzantine) nodes that are
allowed to send different values to different neighbors (i.e.,
the entire network, including both behaving and misbehaving
nodes, are assumed to operate under a wired communication
model). In this situation, it has been established that the nec-
essary and sufficient conditions to toleratef Byzantine nodes
is that (1) the total number of nodesN in the network satisfies
N ≥ 3f +1 and (2) the connectivity of the network is at least
2f +1. The second condition is necessary in order to reliably
exchange information between two nodes in the network. By
itself, the second condition is not sufficient under the wired
communication model, since if nodexi receives nodexj ’s
value reliably, it still does not know whatxj told other nodes
in the network. This is where the first condition comes in:
there must be a sufficient number of non-Byzantine nodes in
the network in order forxi to ascertain whatxj told ‘most’
of the nodes. When one considers a wireless communication
model (as is the case with the linear iterative strategy), the
first condition (i.e.,N ≥ 3f + 1) is no longer necessary,
since the malicious nodes can no longer provide conflicting
information to their neighbors. However, the second condition
(i.e., connectivity at least2f + 1) is still necessary, since the
problem of reliably communicating information between two
nodes remains, as described above (e.g., see also [18], [20]).

As mentioned in the previous section, the vulnerability
of linear iterative function-calculation schemes to malicious
behavior has not received much attention in the literature.4 In
[11], it was shown that if a node in the network does not update
its value at each time-step (i.e., it maintains a constant value),
then a particular class of linear iterative strategies (where each
node updates its value to be a convex combination of its neigh-
borhood values) will cause all other nodes to asymptotically
converge to the value of that node. A similar analysis was
done in [22], where it was argued that since the asymptotic
consensus scheme can be disrupted by a single node that
maintains a constant value, it can also be disrupted by a single
node that updates its values arbitrarily (since maintaining a
constant value is a special case of arbitrary updates). Bothof
these works only considered a straightforward applicationof
the linear iteration for asymptotic consensus, without making

4It is worth mentioning that linear iterative strategies have also been studied
recently in the communications community for the purpose oftransmitting
streams of values through networks, under the moniker ofnetwork coding
(e.g., [5]). In these cases, the network is assumed to contain a source node
that is trying to send information at a certainrate to some destination nodes,
and network codes have been developed to maximize this rate in the presence
of malicious attackers [21]. The key difference in our work is that we are
interested in the problem where (potentially) all nodes have a single initial
value, and certain nodes want to calculate functions of these values, as opposed
to recovering a new source value at each time-step.

explicit use of the information available to the nodes via the
iteration.

The problem was revisited in [23] for the specific case
where all nodes have to reach agreement (not necessarily on
any specific function of the initial values), and where the
network contains only one malicious node that does not behave
in a completely arbitrary manner (specifically, the additive
errors introduced by the malicious node in that setting are
not allowed to asymptotically decay faster than a certain rate).
Under these special conditions, [23] showed that if every node
in the system uses the information it receives from the linear
iteration to try and estimate the malicious updates injected
into the network (via anunknown input observer), then a
graph connectivity of two is sufficient to detect and isolate
the malicious node, and have the other nodes reach agreement.
This result shows that linear iterative strategies actually have
some degree of robustness against malicious nodes if one uses
the information available to each node appropriately. It is
also worth noting that although the result in [23] seems to
contradict the intuition that only one malicious node should
be required to disrupt a2-connected network, this discrepancy
arises due to the fact that updates applied by the malicious
nodes in [23] arerestrictedto a certain class.

In this paper, we provide a comprehensive analysis of linear
iterative strategies in the presence of malicious nodes. First, we
show exactly howf malicious nodes (with the ability to update
their values in a coordinated and arbitrary manner) should
behave in a network of2f connectivity in order to disrupt
the linear iterative strategy. Next, we show that linear iterative
strategies are able to achieve the minimum bound required to
disseminate information reliably; specifically, when nodexi

has2f+1 or more paths from the other nodes in the network,f
malicious nodes will be unable to preventxi from calculating
any function of the initial values (under the broadcast model
of communication).5

III. SYSTEM MODEL AND MAIN RESULTS

A. Modeling Malicious Behavior

Suppose the objective in the system is for nodexi to
calculategi(x1[0], x2[0], . . . , xN [0]), for some functiongi :
R

N → R
qi (note that different nodes can be required to

calculate different functions). When there are no malicious
nodes in the network, we noted in the last section that this can
be accomplished by having the nodes run the linear iteration
x[k + 1] = Wx[k] with an appropriate weight matrixW for
a finite number of time-steps (e.g., following the method in
[13]). Suppose, however, that instead of applying the update
equation (1), some nodes update their values incorrectly; for
example, nodel updates its value at each time-step as

xl[k + 1] = wllxl[k] +
∑

xj∈Nl

wljxj [k] + ul[k] , (3)

whereul[k] is an additive error at time-stepk.

5Preliminary versions of these results were presented in [24], [25], where
the problem of allowingeverynode in the network to recover all of the initial
values was studied. This paper generalizes that work by presenting necessary
and sufficient conditions under which any node (or any subsetof nodes) can
obtain all of the initial values.



5

Definition 2: Suppose all nodes run the linear iteration for
T time-steps in order to perform function calculation. Node
xl is said to bemalicious(or faulty) if ul[k] is nonzero for at
least one time-stepk, 0 ≤ k ≤ T − 1.

Note that the fault model considered here is extremely
general, and allows nodexl to update its value in a completely
arbitrary manner (via appropriate choices of the errorul[k]
at each time-step). As such, this fault model is capable of
encapsulating a wide variety of faults, under the condition
that each malicious node sends the same value to all of its
neighbors.6 For example, suppose a nodexl in the network
exhibits a stopping failure, whereby it stops transmitting
information (so that the neighbors of nodexl simply receive
the value zero from nodexl at each time-step). This stopping
failure can be captured by our fault model by selecting the
error ul[k] at each time-step to set nodexl’s statexl[k + 1]
to zero. Another example of a fault is when the link from
nodexj to nodexl drops out at time-stepk. One can capture
these errors in our fault model by simply selectingul[k] to
cancel out the termwljxj [k] in the update equation for node
xl. Note that if the above errors are not accidental, but inten-
tional, the corresponding node will be called malicious. More
generally, one could have multiple faulty and/or malicious
nodes (the latter could be coordinating their actions to disrupt
the network). In the rest of the paper, we will be using the
terms faulty and malicious interchangeably. We will assume
that malicious nodes are omniscient, and know the network
topology along with the weights that are being used by the
nodes in the network. They are also allowed to know all of
the initial values in the network; as we will show, when the
connectivity of the network is smaller than a certain value,this
information isnot required by the malicious nodes in order to
disrupt the network. In fact, the malicious nodes will only need
to agree initially on a certain vector, and then thereafter update
their values in a manner that is consistent with the weight
matrix W, but that does not require further communication
or coordination among them. However, we will also show that
when the connectivity is sufficiently high, the malicious nodes
will not be able to disrupt the networkeven whenthey have
access to all of the above information (including all of the
initial values in the network).

Note that a set of malicious nodes can obviously try to
influence the result of a computation by changing their own
initial values. Of course, if all initial values are equally valid,
then it will be impossible foranyalgorithm to detect this type
of malicious behavior, since any initial value that a malicious
node chooses for itself is a legitimate value that could also
have been chosen by a node that is functioning correctly.
On the other hand, if there is a statistical distribution on
the initial values, techniques that exploit these relationships
among the initial values can potentially be used to identify
outliers due to malicious nodes and eliminate their influence
on the system [26]. We will not discuss the issue of verifying

6This is not an impediment or limitation to the behavior of themalicious
nodes, in the sense that the correctly functioning nodes arealso required to
operate under this condition. In other words, the maliciousnodes are allowed
to behave in an arbitrary manner within the confines of the communication
modality for the entire system.

initial values further in our work because of its philosophically
different nature, and because of the fact that our problem
formulation remains valid in cases where malicious nodes do
not contribute initial values (i.e., they function as routers, and
the functions calculated in the network do not depend on the
initial values of these nodes). Instead, our goal is to avoidthe
more pernicious case where malicious nodes spread confusion
about the initial values ofnon-maliciousnodes. For example,
consider a distributed system consisting of agents that are
trying to vote 1 (‘yes’) or 0 (‘no’) on a course of action.
The agents wish to reach consensus on the majority vote in a
distributed manner (i.e., by exchanging their values via other
agents in the network). In this scenario, both0 and 1 are
equally valid votes for every agent, and so it is not important
whether malicious agents change their own initial value (i.e.,
their vote). Whatis important, however, is to ensure that votes
are not changed as they are passed through other agents in the
network; in other words, the malicious nodes should not be
able to affect the result of the majority vote other than by
choosing their own vote for the course of action.

B. Modeling the Values Seen by Each Node

Let F = {xi1 , xi2 , . . . , xif } denote the set of nodes that are
malicious during a run of the linear iteration. Combining (3)
with (2), the linear iteration can then be modeled as

x[k + 1] = Wx[k] +
[
ei1,N ei2,N · · · eif ,N

]

︸ ︷︷ ︸

BF








ui1 [k]
ui2 [k]

...
uif [k]








︸ ︷︷ ︸

uF [k]

yi[k] = Cix[k], 1 ≤ i ≤ N .
(4)

Here,Ci is a(degi +1)×N matrix with a single1 in each row
denoting the positions of the state-vectorx[k] that are available
to nodexi (i.e., these positions correspond to nodes that are
neighbors of nodexi, along with nodexi itself). Thus, the
vectoryi[k] denotes the set of outputs (or node values) seen
by nodexi during time-stepk of the linear iteration. The set
F is unknown to the (non-malicious) nodes in the network,
and thus the exact matrixBF is also unknown. However, the
nodes do know that it is a matrix with a single1 in the rows
corresponding to the malicious nodes, and zeros elsewhere
(recall thatel,N denotes a vector of lengthN with a single
nonzero entry with value1 in its l–th position). Note that the
above model readily captures the ability of the malicious nodes
to cooperatively update their values (i.e., they can choosethe
vectoruF [k]) in order to disrupt the network.

The set of all values seen by nodexi during the firstL+1
time-steps of the linear iteration (for any nonnegative integer
L) is given by

yi[0 : L] = Oi,Lx[0] +MF
i,LuF [0 : L− 1], (5)

whereyi[0 : L] =
[
y′
i[0] y′

i[1] y′
i[2] · · · y′

i[L]
]′

and
uF [0 : L − 1] =

[
u′
F [0] u′

F [1] u′
F [2] · · · u′

F [L− 1]
]′

.



6

The matricesOi,L andMF
i,L can be expressed recursively as

Oi,L =

[
Ci

Oi,L−1W

]

, MF
i,L =

[
0 0

Oi,L−1BF MF
i,L−1

]

,

(6)
whereOi,0 = Ci andMF

i,0 is the empty matrix (with zero
columns). These matrices will characterize the ability of node
xi to calculate the required function of the initial values; the
matrix Oi,L has the form of theobservability matrixfor the
pair (W,Ci), and we will callMF

i,L the invertibility matrix7

for the triplet (W,BF ,Ci). We will call upon the following
simple lemma (the proof of which is omitted in the interest of
space).

Lemma 2:Let F1 and F2 denote two subsets ofX , and
defineF = F1 ∪ F2. Then, the column space ofMF

i,L is

the same as the column space of
[

MF1

i,L MF2

i,L

]

for any
nonnegative integerL.

C. Main Result of the Paper

Our goal in this paper will be to study the robustness of
linear-iterative strategies to malicious or faulty behavior by a
subset of nodes in the network. Specifically, over the remainder
of the paper, we demonstrate the following key result.

Theorem 1:Given a fixed network withN nodes described
by a graphG = {X , E}, let f denote the maximum number
of malicious nodes that are to be tolerated in the network, and
let κji denote the size of the smallest(j, i)-cut between any
two verticesxj andxi. Then, regardless of the actions of the
malicious nodes, nodexi can uniquely determine all of the
initial values in the network via a linear iterative strategy if
and only ifminj κji ≥ 2f+1. Furthermore, if this condition is
satisfied,xi will be able to recover the initial values after the
nodes run the linear iterative strategy with almost any choice
of weights for at mostN time-steps.

Due to the fact that the linear iterative strategy only requires
that the connectivity be2f + 1 in order to reliably dissem-
inate information, and since this bound is fundamental for
information dissemination under any algorithm (as discussed
in Section II-D), the above theorem shows that linear iterative
strategies are as powerful as any other strategy for information
dissemination in the presence of malicious agents (under the
wireless broadcast model of communication).

Remark 1: In order for a nodexi to overcome malicious
behavior, we will assume that it knows its observability matrix
Oi,L for some sufficiently largeL (upper bounded by the
size of the network, as we will show later in the paper). It is
sufficient (but not necessary) for nodexi to know the weight
matrix W in order for it to obtain the observability matrix.
This assumption of some (or full) knowledge of the network
topology via the observability matrix (or the weight matrix)
is similar to the assumptions made by much of the literature
on fault-tolerant distributed systems [6], [4], [19], and we will
adopt it here to demonstrate the resilience of linear iterative
strategies. As described in [13], it is possible for the nodes

7This terminology is due to the fact that matrices of the formMF

i,L arise
in the study ofdynamic system inversion, where the objective is to recover a
set of unknown inputs from the output of a linear system [27].

in the network to distributively determine their observability
matrices when there are no malicious nodes; the extension of
this result to networks with malicious nodes is an area for
future research.

Note also that nodexi does not necessarily need to know
precisely how many nodes were malicious during the linear
iteration; it only needs to know that the number of malicious
nodes is upper bounded byf . If nodexi does not know the
value off a priori, but does know the network topology (e.g.,
via the weight matrixW), it can determine the maximum
number of malicious nodes that it can tolerate by calculating
the size of the minimum vertex-cut between itself and any
other nodexj , and then making the assumption that the actual
number of malicious nodes does not exceed this maximum
value.

IV. ATTACKING THE L INEAR ITERATIVE STRATEGY

The lower bound of2f + 1 in Theorem 1 is established
by existing results on fault-tolerant function calculation, as
described in Section II-D. However, since those results are
non-constructive, we will start by providing an explicit strat-
egy for the malicious nodes to follow to disrupt the linear
iterative strategy. To do this, consider nodexi in the net-
work G, and let nodexj be any other node that is not a
neighbor of nodexi. Let F1 = {xl1 , xl2 , . . . , xl|F1|

} and
F2 = {xh1

, xh2
, . . . , xh|F2|

} denote disjoint sets of vertices
such thatF1 ∪ F2 forms a (j, i)-cut of G. Let H denote
the set of all nodes that have a path to nodexi in the
graph induced byX \ (F1 ∪ F2) (including nodexi), and
let H̄ = X \ (H ∪ F1 ∪ F2).

Theorem 2:For any nonnegative integerL, the column
space of the matrixOi,LBH̄ is contained in the column

space of the matrix
[

MF1

i,L MF2

i,L

]

(whereBH̄ is defined
in equation (4)).

Proof: Let xH[k], xF1
[k], xF2

[k], and xH̄[k] denote
the vectors of values of nodes in setsH, F1, F2, and H̄,
respectively. Letn denote the number of nodes in set̄H
(i.e., xH̄[k] ∈ Rn). Note thatxi[k] is contained inxH[k],
xj [k] is contained inxH̄[k], and that the setsH,F1,F2, and
H̄ form a partition of the set of nodesX . Assume without
loss of generality that the vectorx[k] in (4) is of the form
x[k] =

[
x′
H[k] x′

F1
[k] x′

F2
[k] x′

H̄
[k]

]′
(it can always be

put into this form via an appropriate permutation of the node
indices). Then, since no node in setH has an incoming edge
from any node in setH̄, the weight matrix for the linear
iteration must necessarily have the form

W =







W11 W12 W13 0

W21 W22 W23 W24

W31 W32 W33 W34

W41 W42 W43 W44







. (7)

The Ci matrix in (4) for nodexi must be of the form
Ci =

[
Ci,1 Ci,2 Ci,3 0

]
, again because nodexi has

no neighbors in setH̄. Furthermore, from the definition of
the matrix BF in (4), note that this partitioning of nodes
implies that we can writeBF1

=
[
0 I|F1| 0 0

]′
, BF2

=
[
0 0 I|F2| 0

]′
, BH̄ =

[
0 0 0 In

]′
(for some order-

ing of the nodes inF1,F2 andH̄).



7

Using the recursive definition ofOi,L in (6), and the fact

thatCi

[
0
0
0
In

]

= 0, we obtain

Oi,L







0

0

0

In






=

[
Ci

Oi,L−1W

]







0

0

0

In






=

[
0

Oi,L−1

]

W







0

0

0

In







=

[
0

Oi,L−1

]

BF1
W24 +

[
0

Oi,L−1

]

BF2
W34

+

[
0

Oi,L−1

]

BH̄W44 .

Continuing the above procedure recursively for matrices ofthe
form

[
0

Oi,L−α

]
BH̄, 1 ≤ α ≤ L, we obtain (after using some

algebra and the recursive definition of the matricesMF1

i,L and
MF2

i,L from equation (6))

Oi,L







0

0

0

In






= MF1

i,L








W24

W24W44

...
W24W

L−1
44







+MF2

i,L








W34

W34W44

...
W34W

L−1
44







.

(8)

This concludes the proof of the theorem.
Note that the above theorem applies toany decomposition

of a vertex-cut into setsF1 andF2 (including the case where
F1 is the entire vertex-cut andF2 = ∅, if desired). The
benefit of framing the theorem in this general manner is that
expression (8) will now allow us to show how a certain set of
nodesF1 (or F2) can maliciously update their values in order
to disrupt the network.

Lemma 3:Let the initial values of nodes in the set̄H be
denoted by the vectora. For any other vectorb, suppose that
the nodes inF1 are malicious and apply the error sequence
uF1

[k] = W24W
k
44(b−a), k ∈ N. Then, the valuesyi[k], k ∈

N seen by nodexi are exactly the same as ifxH̄[0] = b and
nodes in setF2 are malicious withuF2

[k] = W34W
k
44(a−b),

k ∈ N.
Proof: As in the proof of Theorem 2, letxH[k],xF1

[k],
xF2

[k], andxH̄[k] denote the vector of values of nodes in sets
H, F1, F2, andH̄, respectively, and assume (without loss of
generality) that the vectorx[k] in (4) is of the formx[k] =
[
x′
H[k] x′

F1
[k] x′

F2
[k] x′

H̄
[k]

]′
. Let n be the number of

nodes in setH̄, and leta,b ∈ Rn be arbitrary vectors.
Suppose the nodes in setF1 are malicious. From (5), the

values seen by nodexi over L + 1 time-steps are given by
yi[0 : L] = Oi,Lx[0] +MF1

i,LuF1
[0 : L− 1]. From Theorem 2

(specifically, equation (8)), this expression can be written as

yi[0 : L] = Oi,L







xH[0]
xF1

[0]
xF2

[0]
0






+MF1

i,LuF1
[0 : L− 1]

+







MF1

i,L








W24

W24W44

...
W24W

L−1
44







+MF2

i,L








W34

W34W44

...
W34W

L−1
44















xH̄[0].

(9)

SupposexH̄[0] = a, and that nodes inF1 update their
values at each time-stepk with the error valuesuF1

[k] =
W24W

k
44(b − a). Substituting this into the expression for

yi[0 : L] (with xH̄[0] = a), the values seen by nodexi under
this fault scenario are given by

yi[0 : L] = Oi,L







xH[0]
xF1

[0]
xF2

[0]
0






+MF1

i,L








W24

W24W44

...
W24W

L−1
44







b

+MF2

i,L








W34

W34W44

...
W34W

L−1
44







a.

(10)

Now suppose that nodes inF2 are malicious (instead of nodes
in F1). Again, from (5) and Theorem 2, the values seen by
nodexi overL+ 1 time-steps will be given by equation (9),
except withMF1

i,LuF1
[0 : L−1] replaced byMF2

i,LuF2
[0 : L−

1]. If xH̄[0] = b, and nodes inF2 update their values at each
time-stepk with the error valuesuF2

[k] = W34W
k
44(a−b),

one can verify that the set of values seen by nodexi under
this fault scenario will be identical to the expression in (10),
and thus the values received by nodexi whenxH̄[0] = a and
the nodes inF1 are malicious will be indistinguishable from
the values seen by nodexi whenxH̄[0] = b and the nodes in
F2 are malicious. Since this holds for all nonnegative integers
L, this fault scenario makes it impossible for nodexi (and
in fact, any node in setH) to obtain the initial values of any
node in setH̄, or to identify8 the malicious nodes.

Remark 2:The additive errors for nodes in setF1 to use
in order to disrupt the linear iterative strategy areuF1

[k] =
W24W

k
44(b − a) for k ∈ N; note that these nodes do not

actually need to know the initial values of the nodes in set
H̄ (taken to bea in the above expression) in order to apply
this strategy. If they simply chooseany random vector̄a, and
update their values at each time-step asuF1

[k] = W24W
k
44ā,

then they are effectively applying the same update as above
with b = a + ā, without knowing the value ofa. The same
reasoning holds if nodes in setF2 are malicious.

Based on the result in Lemma 3, we are now ready to prove
the following key theorem (re-establishing the “only if” part
of Theorem 1).

Theorem 3:Given a network described by a graphG =
{X , E}, let κji denote the size of the smallest(j, i)-cut
between verticesxj and xi. If κji ≤ 2f for some positive
integerf , then there exists a setF of f malicious nodes along
with a set of additive errorsul[k], xl ∈ F , k ∈ N, such that
nodexi cannot calculate any function that involves nodexj ’s
initial value (regardless of the number of time-steps for which
the iteration is performed).

8It may be possible for nodes in setX \ H to identify the malicious
nodes (e.g., under the conditions described later in the paper), but they
cannot reliably provide this information to the nodes in setH, since any
such information must once again pass through the nodes in sets F1 or F2,
both of which are suspicious from the perspective of nodes insetH.



8

Proof: In Lemma 3, we saw that if the union of the
disjoint sets of vertices

F1 = {xl1 , xl2 , . . . , xl|F1|
}, F2 = {xh1

, xh2
, . . . , xh|F2|

}

forms a(j, i)-cut, then nodexi cannot distinguish a particular
set of errors by nodes inF1 from another set of errors by nodes
in F2. Furthermore, these errors make it impossible for node
xi to obtain any information about the initial value of nodexj .
ChooseF1 andF2 such that|F1| = ⌊κji

2 ⌋ and |F2| = ⌈κji

2 ⌉.
Sinceκji ≤ 2f , we have⌊κji

2 ⌋ ≤ f and ⌈κji

2 ⌉ ≤ f , and so
F1 andF2 are both legitimate sets of malicious nodes (if one
is interested in tolerating a maximum off malicious nodes
in the system). Choosing the setF of malicious nodes to be
either the setF1 orF2 (with the corresponding additive errors)
completes the proof of the theorem.

Remark 3:Clearly, the above theorem can easily be modi-
fied to show that errors by a setF1 of f + t malicious nodes
would be indistinguishable from errors by a setF2 of f − t
malicious nodes, for any0 ≤ t ≤ f . The reason for focusing
on the caset = 0 is that we are interested in dealing with a
maximum numberof malicious nodes in the network. In other
words, if we know that a malicious attacker can only target
at mostf nodes (e.g., due to the costs incurred by attacking
a node), then we can disregard all cases where more thanf
nodes are potentially malicious. Thus, even though we can
show that a setF1 of f − t malicious nodes can masquerade
as a setF2 of f + t malicious nodes, the latter case can be
discounted because of the fact thatf + t nodes are not likely
to be malicious, and so we can potentially identify the setF1.
On the other hand, whent = 0, F1 andF2 are equally valid
(and likely) sets off malicious nodes, and thus we cannot
discount one over the other.

V. CALCULATING FUNCTIONS IN THE PRESENCE OF

MALICIOUS BEHAVIOR

In this section, we will establish the “if” portion of The-
orem 1 and show that ifκji ≥ 2f + 1 for all j, it will be
impossible for any set off or fewer malicious nodes to prevent
node xi from calculating any function of the initial values
in the system. We start our development with the following
theorem, which provides a procedure for nodexi to calculate
functions in the presence of malicious nodes.

Theorem 4:Suppose that there exists an integerL and a
weight matrixW such that, for all possible setsJ ⊂ X of
2f nodes, the matricesOi,L andMJ

i,L for nodexi satisfy

rank
([
Oi,L MJ

i,L

])
= N + rank

(

MJ
i,L

)

. (11)

Then, if the nodes run the linear iteration forL + 1 time-
steps with the weight matrixW, nodexi can calculate any
arbitrary function of the initial valuesx1[0], x2[0], . . . , xN [0],
even when up tof nodes are malicious.

Proof: Let W be a weight matrix that satisfies the
conditions in the above theorem, and let the nodes run the
linear iteration forL+1 time-steps. Suppose that the malicious
nodes during the linear iteration are a subset of the set

F = {xj1 , xj2 , . . . , xjf }. From (5), the values seen by node
xi overL+ 1 time-steps are given by

yi[0 : L] = Oi,Lx[0] +MF
i,LuF [0 : L− 1] . (12)

Let F1,F2, . . . ,F(Nf )
denote all possible sets off nodes, and

let MF1

i,L,M
F2

i,L, . . . ,M
F
(Nf )

i,L denote the corresponding invert-
ibility matrices. With these matrices in hand,9 suppose nodexi

finds the firstj ∈ {1, 2, . . . ,
(
N

f

)
} such that the vectoryi[0 : L]

is in the column space of the matricesOi,L andM
Fj

i,L. This
means that nodexi can find vectors̄x anduFj

[0 : L−1] such
that Oi,Lx̄ +M

Fj

i,LuFj
[0 : L − 1] = yi[0 : L]. Equating this

to (12) and rearranging, we have

Oi,L(x[0]−x̄)+MF
i,LuF [0 : L−1]−M

Fj

i,LuFj
[0 : L−1] = 0.

Letting J = F ∪ Fj, we note from Lemma 2 that the above
expression can be written as

Oi,L(x[0]− x̄) +MJ
i,LuJ [0 : L− 1] = 0 ,

for some appropriately defined vectoruJ [0 : L − 1]. From
equation (11) in the statement of the theorem, the observ-
ability matrix is assumed to be of full column rank, and all
its columns are linearly independent of the columns of the
invertibility matrix MJ

i,L (since the setJ has 2f or fewer
nodes). This means that̄x = x[0] in the above expression,
and thus nodexi has recovered the entire initial value vector
x[0], despite the efforts of the nodes inF . This concludes the
proof of the theorem.

Remark 4:The above procedure requires nodexi to check
up to

(
N

f

)
possibilities in order to determine the potential set

of malicious nodes. Since
(

N
f

)f

≤
(
N

f

)
≤

(
eN
f

)f

[28], the
complexity of decoding increases at most exponentially with
f (if N is fixed) and polynomially withN (if f is fixed). It is
worth noting that this procedure is equivalent to the brute force
method of determining up tof errors in anN -dimensional
real-number codeword with distance2f +1. In coding theory,
there exist efficient ways of performing this check for both
structured and random real number codes (e.g., see [29] and
the references therein), and one can potentially exploit those
results to streamline the procedure in the proof of Theorem 4
(this is left for future research).

Remark 5:Note that if transmissions between nodes are
corrupted by noise, then the vectoryi[0 : L] might not fall
strictly within the column space of the matricesOi,L andMFj

i,L

for any j. In particular, the line between noise and malicious
errors becomes blurred as the magnitude of the noise increases,
which makes it harder to detect and isolate malicious behavior.
This issue has been investigated in the context of real-number
error correcting codes in [29], and we will leave connections
to such work for future research.

In the sequel, we will show that whenκji ≥ 2f +1 for all
j, one can find a weight matrixW and an integerL so that

9Note from equation (6) that the columns of the invertibilitymatrix
M

Fj

i,L
are simply a subset of the columns ofOi,0,Oi,1, . . . ,Oi,L−1. In

other words, nodexi can obtain the invertibility matrices simply from the
knowledge of the matrixOi,L, and therefore does not necessarily need to
store the invertibility matrices for every possible set off nodes.



9

all columns of the observability matrixOi,L will be linearly
independent of each other, and of the columns inMJ

i,L, where
J is any set of up to2f nodes (i.e., equation (11) will be
satisfied). From Theorem 4, nodexi will therefore be able to
obtain all initial values from the outputs that it sees during the
course of the linear iteration, and can calculate any arbitrary
function of those values. To find such a weight matrix, we will
first require some concepts from classical control theory.

A. Strong Observability

Consider a linear system of the form

x[k + 1] = Ax[k] +Bu[k]

y[k] = Cx[k] +Du[k] ,
(13)

with state vectorx ∈ RN , inputu ∈ Rm, and outputy ∈ Rp,
with p ≥ m. When the values of the inputs at each time-
step are completely unknown and arbitrary, systems of the
above form are termedlinear systems with unknown inputs
[30], [27]. For such systems, the following notions ofstrong
observability, matrix pencilsand invariant zeroshave been
established in the literature (e.g., see [30], [31], [32], [33]).

Definition 3 (Strong Observability):A linear system with
unknown inputs (of the form (13)) is said to bestrongly
observableif y[k] = 0 for all k implies x[0] = 0 (regardless
of the values of the unknown inputsu[k]).

Definition 4 (Matrix Pencil): For the linear system (13), the
matrix P(z) =

[
A−zIN B

C D

]
is called thematrix pencilof the

set (A,B,C,D).
Definition 5 (Normal-Rank):The normal-rank of

the matrix pencil P(z) is defined as rankn(P(z))
≡ maxz0∈C rank(P(z0)).

Definition 6 (Invariant Zero):The complex numberz0 ∈ C

is called aninvariant zeroof the system (13) if rank(P(z0)) <
rankn(P(z)).

The following theorem provides a characterization of the
strong observability of a system.

Theorem 5 ([30], [31], [32], [34]): The following state-
ments are equivalent:

• The system (13) is strongly observable.
• The set(A,B,C,D) has no invariant zeros.
• Denoting the output of the system (13) overN time-steps

by









y[0]
y[1]
y[2]

...
y[N − 1]










︸ ︷︷ ︸

y[0:N−1]

=










C

CA

CA2

...
CAN−1










︸ ︷︷ ︸

ON−1

x[0]

+










D 0 · · · 0

CB D · · · 0

CAB CB · · · 0
...

...
. . .

...
CAN−2B CAN−3B · · · D










︸ ︷︷ ︸

MN−1










u[0]
u[1]
u[2]

...
u[N − 1]










︸ ︷︷ ︸

u[0:N−1]

,

xi

J̄N

J̄N̄

JN

JN̄

J

J̄

Fig. 1. A sample partition of the vertex set. The black node isxi, the gray
nodes areNi (the neighbors of nodexi), and the white nodes are all the
other nodes.

the matrices ON−1 and MN−1 satisfy
rank

([
ON−1 MN−1

])
= N + rank(MN−1).

The above theorem indicates that if we can choose the
weight matrix W so that the set(W,BJ ,Ci,0) has no
invariant zeros for all possible setsJ of 2f nodes, then the
rank condition in equation (11) of Theorem 4 will be satisfied
with L = N−1; therefore, nodexi will be able to calculate any
desired function of the initial values, even in the presenceof up
to f malicious or faulty nodes. We now focus on choosingW

so that this is the case. In fact, our development will revealthat
one can chooseW so that multiple nodes in the system can
simultaneously calculate any desired functions of the initial
values (e.g., they can reach consensus, or calculate different
functions of the initial values, all with the sameW).

B. Invariant Zeros

Let xi be any given node in the network, letJ =
{xi1 , xi2 , . . . , xi2f } denote any set of2f nodes (possibly
containingxi), and letJ̄ = X \ J . Further partition the sets
J and J̄ as follows (an illustration of these sets is shown in
Fig. 1):

• JN = J ∩ (Ni ∪ {xi}). This set contains all nodes in
setJ that are neighbors of nodexi (or nodexi itself).

• JN̄ = J \ JN . This set contains all nodes in setJ that
are not neighbors of nodexi (nor nodexi itself).

• J̄N = J̄ ∩ (Ni ∪ {xi}). This set contains all nodes in
set J̄ that are neighbors of nodexi (or nodexi itself).

• J̄N̄ = J̄ \ J̄N . This set contains all nodes in set̄J that
are not neighbors of nodexi (nor nodexi itself).

Note that these sets partition the entire set of nodes. For any
choice of weights for the linear iteration, and for any subsets
A ⊆ X andB ⊆ X , let WA denote the square weight matrix
corresponding to interconnections within the setA, and let
WA,B denote the weight matrix corresponding to connections
from nodes in setA to nodes in setB.

Lemma 4:For any setJ of 2f nodes, the invariant zeros
of the set(W,BJ ,Ci,0) are exactly the invariant zeros of
the set(WJ̄N̄

,WJN̄ ,J̄N̄
,WJ̄N̄ ,J̄N

,WJN̄ ,J̄N
).

The proof of the above lemma can be found in Appendix A.
This lemma, along with Theorem 5, reveals that in order to



10

ensure that the rank condition (11) in Theorem 4 is satisfied
for nodexi, we can focus on the problem of choosing the
weights so that the set

(WJ̄N̄
,WJN̄ ,J̄N̄

,WJ̄N̄ ,J̄N
,WJN̄ ,J̄N

)

will have no invariant zeros for any setJ of 2f nodes. To
accomplish this, we will use techniques from control theory
pertaining tolinear structured systems[35], [36], [37]. Specif-
ically, a linear system of the form (13) is said to be structured
if each entry of the matricesA, B, C and D is either a
fixed zero or an independent free parameter. It is known
that linear systems have certain structural properties (such as
observability, controllability, etc.), and these properties hold
generically. In other words, if the structural property holds
for some particular choice of free parameters, it will hold for
almost any choice of parameters (i.e., the set of parameters
for which the property does not hold has Lebesgue measure
zero) [36], [37]. It turns out that the number of invariant zeros
of a linear system is also a structured property (i.e., a linear
system with a given zero/nonzero structure will have the same
number of invariant zeros for almost any choice of the free
parameters) [33].

To analyze structural properties (such as the number of
invariant zeros) of linear systems, one first associates a graph
H with the structured set(A,B,C,D) as follows. The vertex
set ofH is given byX ∪U ∪Y, whereX = {x1, x2, . . . , xN}
is the set of state vertices,U = {u1, u2, . . . , um} is the set of
input vertices, andY = {y1, y2, . . . , yp} is the set of output
vertices. The edge set ofH is given byExx∪Eux∪Exy ∪Euy,
where

• Exx = {(xj , xi)| Aij 6= 0} is the set of edges corre-
sponding to interconnections between the state vertices,

• Eux = {(uj, xi)| Bij 6= 0} is the set of edges corre-
sponding to connections between the input vertices and
the state vertices,

• Exy = {(xj , yi)| Cij 6= 0} is the set of edges corre-
sponding to connections between the state vertices and
the output vertices, and

• Euy = {(uj, yi)| Dij 6= 0} is the set of edges corre-
sponding to connections between the input vertices and
the output vertices.

The following theorems from [33] and [37] characterize the
generic number of invariant zeros of a structured system and
the normal-rank of a structured matrix pencil in terms of the
associated graphH. The terminologyY-topped pathis used
to denote a path with end vertex inY.

Theorem 6 ([33], [37]): Let P(z) be the matrix pencil of
the structured set(A,B,C,D), and let the normal-rank of
P(z) be N + m, even after the deletion of an arbitrary
row from P(z). Let H be the graph associated with the set
(A,B,C,D), and consider all possible subgraphs ofH that
consist of a disjoint union of a sizem linking from U to
Y, a set of cycles inX , and a set ofY-topped paths. From
these subgraphs, denote bȳH the one that contains the largest
number of vertices fromX . Then the generic number of
invariant zeros of system (4) is equal toN minus the number
of vertices ofX contained inH̄.

Theorem 7 ([33]): Let P(z) be the matrix pencil of the
structured set(A,B,C,D). Then the normal-rank ofP(z)
is generically equal toN plus the maximum size of a linking
from U to Y.

To apply these results to the problem of
determining the number of invariant zeros of the set
(WJ̄N̄

,WJN̄ ,J̄N̄
,WJ̄N̄ ,J̄N

,WJN̄ ,J̄N
), we note that all

matrices in this set are essentially structured matrices (since
all of the nonzero entries in the above matrices represent
weights which can be chosen arbitrarily and independently).
In particular, the nodes in set̄JN̄ act as the state vertices
for the structured system, the nodes in the setJN̄ act as the
input vertices, and the nodes in the setJ̄N act as the output
vertices. Recall that the above results on structured systems
assumed that the number of outputs is larger than (or equal
to) the number of inputs. The following lemma shows that
this property does in fact hold for the sets̄JN andJN̄ if the
in-degree of nodexi is sufficiently high.

Lemma 5: If degi ≥ 2f + 1, then for any setJ of 2f
nodes,|J̄N | > |JN̄ |.

The proof of the above lemma can be found in Appendix B.
Note that if κji ≥ 2f + 1 for every j, and there is at least
one node that is not a neighbor of nodexi, thendegi must
necessarily be no smaller than2f + 1 (since otherwise, there
would not be2f + 1 vertex-disjoint paths from any nodexj

to nodexi). We can now use the above results on structured
systems to prove the following lemma for the linear iteration
in (4); the lemma will be used in conjunction with Lemma 4
and Theorem 5 to show that nodexi can uniquely determine
the initial valuesx[0] after running the linear iteration for at
mostN time-steps, even with up tof malicious nodes.

Lemma 6:Consider nodexi in the networkG, and suppose
that κji ≥ 2f + 1 for all j. Then for almost any real-
valued choice of weights (withwij = 0 if xj /∈ Ni ∪ {xi}),
the set(WJ̄N̄

,WJN̄ ,J̄N̄
,WJ̄N̄ ,J̄N

,WJN̄ ,J̄N
) will have no

invariant zeros for any setJ of 2f nodes.
The proof of the above lemma appears in Appendix C. With

the above lemma in hand, it is a simple matter to prove the
following theorem.

Theorem 8:Given a fixed network withN nodes described
by a graphG = {X , E}, let f denote the maximum number
of malicious nodes that are to be tolerated in the network, and
let κji denote the size of the smallest(j, i)-cut between any
two verticesxj andxi. Define

T = {xi | κji ≥ 2f + 1 for all xj ∈ X} .

Then, with almost any choice of real-valued weight matrixW

(with wij = 0 if xj /∈ Ni∪{xi}), every node inT can uniquely
determine all of the initial values in the network after running
the linear iteration for at mostN time-steps, regardless of the
updates applied by up tof malicious nodes.

Proof: If node xi is in setT , then from Lemmas 4 and
6, we see that for almost any choice of weight matrixW,
and for any setJ of cardinality2f , the set(W,BJ ,Ci,0)
will have no invariant zeros. Furthermore, since the set of
weights for which this property does not hold has measure
zero, it will hold generically for all nodes in setT . From
Theorem 5, we see that rank

([
Oi,N−1 MJ

i,N−1

])
= N +



11

rank
(

MJ
i,N−1

)

for all xi ∈ T and all setsJ of 2f nodes.
Thus, Theorem 4 indicates that every node inT can calculate
any arbitrary function of the initial values after running the
linear iteration for at mostN time-steps.

Theorem 8 proves the “if” part of Theorem 1, and in
conjunction with Theorem 3, we see that Theorem 1 is proved
in full.

Remark 6:The above theorem provides anupper boundof
N on the number of time-steps required by nodexi to obtain
the initial values despite the presence of malicious agents. The
actual number of time-steps required depends on the network
topology, and there is not a general relationship describing
how the actual number of time-steps grows with the number
of agentsN . As a trivial example, consider the fully-connected
graph onN nodes; in this case, any nodexi can obtain all of
the initial values accurately after just one time-step, regardless
of N . It is easy to construct more complicated graphs where
the number of time-steps is independent ofN . A tighter upper
bound on the number of time-steps required for any node to
accumulate all of the initial values when there arenomalicious
nodes is presented in [38].

VI. I DENTIFYING THE MALICIOUS NODES

Note that although the procedure described in the proof of
Theorem 4 allows a given nodexi to determine the entire
set of initial values, it does not necessarily require nodexi

to determine theactual set of malicious nodes. Instead, node
xi is only required to find acandidateset Fj of malicious
nodes, and then write the values that it has received over the
pastL+ 1 time-steps as a linear combination of the columns
in the corresponding invertibility matrix and the observability
matrix. In many cases, this candidate set will be the actual set
of malicious nodes, but there can also be cases where the two
sets are different. As a trivial example, consider the case of a
network where two nodesxi andxj are separated by distance
D, and suppose that nodexi requiresL + 1 time-steps in
order to calculate the initial values of all nodes via the linear
iteration. Now suppose that nodexj is malicious, but only
commits its first additive error during one of the lastD − 1
time-steps. This additive error will not propagate to nodexi

before time-stepL, and thus nodexi will not be aware that
nodexj has acted maliciously. In other words, as far as node
xi is concerned, the case where nodexj is malicious during the
lastD−1 time-steps of the linear iteration is indistinguishable
from the case where nodexj behaves completely correctly for
all time-steps. Note that this fact does not hamper nodexi from
correctly obtaining the initial values of all the nodes. However,
there may be applications when it is desirable for nodes to
distributively identify the exact set of malicious nodes (e.g.,
in order to remove them from the network). The following
theorem indicates that if nodexi examines the values that it
receives from the linear iteration over a number of time-steps
larger than that required purely for function calculation,it can
determine the exact set of nodes that were malicious during
the initial stages of the iteration.

Theorem 9:Suppose nodexi can calculate the entire set
of initial values after running the linear iteration forLi + 1

x1

x2

x3

x4
x5

x6

Fig. 2. Nodex1 needs to calculate the sum of squares of all initial values
in the network, even if one node is malicious.

time-steps, despite the actions of up tof malicious nodes (i.e.,
there is a weight matrixW that satisfies equation (11) with
L = Li). Let F be the set of nodes that are malicious during
the course of the linear iteration (with cardinalityf or lower).
Then, for any nonnegative integerL̄, afterLi+1+L̄ time-steps
of the linear iteration, nodexi can uniquely identify the nodes
in setF that were malicious during the first̄L time-steps of
the iteration.

Proof: Note that the theorem holds trivially for̄L = 0,
and so we focus on the case ofL̄ ≥ 1 in the rest of the
proof. From Theorem 4, we know that nodexi can uniquely
determine the correct value ofx[0] based on the values
yi[0 : Li]. Now, view x[1] as the vector of initial values in
the network; once again, Theorem 4 indicates that nodexi

can recoverx[1] from the valuesyi[1 : Li + 1]. From (4),
nodexi can now obtainx[1] − Wx[0] = BFuF [k]. Thus,
every nonzero component in the vector on the left hand side
of the above equation indicates an additive error injected by
the corresponding node, and so every node that is malicious
during time-step0 can be identified by the above method.
The same process can be repeated to find all nodes that were
malicious during the first̄L time-steps from the transmitted
valuesyi[0 : Li + L̄].

VII. E XAMPLE

Consider the network shown in Fig. 2. The objective in this
network is for nodex1 to calculate the function

∑6
j=1 x

2
j [0],

even if there is up tof = 1 malicious node in the network.

A. Network Design

Examining the network, we see that there are three internally
vertex-disjoint paths from nodex5 to nodex1, and also from
nodex6 to nodex1. Since all other nodes are neighbors of
nodex1, we have thatκj1 ≥ 3 for all j, and so Theorem 8
indicates that nodex1 can calculate the desired function after
running the linear iteration (with almost any choice of weights)
for at mostN = 6 time-steps, despite the presence of up to
1 malicious node. For this example, we will take each of the
edge- and self-weights to be i.i.d. random variables chosen
from the set10 {−5,−4,−3,−2,−1, 1, 2, 3, 4, 5} with equal

10In general, the result in Theorem 8 will hold with probability 1 if one
chooses the weights for the linear iteration from a continuous distribution
over the real numbers (such as a Gaussian distribution). Forthis pedagogical
example, however, it will suffice to consider a distributionon a small set of
integers; this makes the presentation of the numerical values more concise.



12

probabilities. These weights produce the matrix

W =











−3 1 −1 3 0 0
1 2 −1 1 1 0
0 0 1 0 0 2
0 4 0 2 2 5
0 2 0 0 −1 5
0 0 1 3 −4 −4











.

Since nodex1 has access to its own value, as well as those
of its neighbors (nodesx2, x3 andx4) at each time-step, the
matrix C1 is given byC1 =

[
I4 0

]
. With the above weight

matrix, one can verify that equation (11) is satisfied withi = 1
andL = L1 = 2 for all setsJ of 2f = 2 nodes, whereOi,Li

and MJ
i,Li

are defined in equation (5) (the exact numerical
values are omitted in the interest of space). We make the above
matrices available to nodex1, and at this point, nodex1 has all
the information it needs to be able to calculate the function
∑6

j=1 x
2
j [0] (or indeed, any arbitrary function of the initial

values) afterL1 + 1 = 3 time-steps of the linear iteration,
even in the presence of one malicious node.

B. Performing Function Calculation

Suppose that the initial values of the nodes arex[0] =
[
3 −1 4 −4 7 11

]′
. In order for nodex1 to calcu-

late the function
∑6

j=1 x
2
j [0], the nodes run the linear iteration

with the weight matrix provided above. Suppose that node
x4 is malicious, and at time-steps1 and 2, it updates its
value asx4[1] = 4x2[0] + 2x4[0] + 2x5[0] + 5x6[0] − 8
and x4[2] = 4x2[1] + 2x4[1] + 2x5[1] + 5x6[1] − 12, i.e.,
during the first time-step, it commits an additive error of
u4[0] = −8, and during the second time-step, it commits an
additive error ofu4[1] = −12. All other nodes follow the
predefined (correct) strategy of updating their values according
to the weighted average specified by the weight matrixW. The
values of all nodes over the first three time-steps of the linear
iteration are given byx[0] =

[
3 −1 4 −4 7 11

]′
,

x[1] =
[
−26 0 26 49 46 −80

]′
, and x[2] =

[
199 43 −134 −222 −446 309

]′
. The values seen by

nodex1 at time-stepk are given byy1[k] = C1x[k], and
nodex1 can now use these values to calculate the vector of
initial values, despite the efforts of the malicious node. As
discussed in Theorem 4, nodex1 finds the first setFj for
which y1[0 : 2] is in the column space ofO1,2 and M

Fj

1,2;
in this example, nodex1 finds that this holds forj = 4. It
now finds vectors̄x and uF4

[0 : 1] such thatyi[0 : 2] =
O1,2x̄+MF4

1,2uF4
[0 : 1] asx̄ =

[
3 −1 4 −4 7 11

]′

anduF4
[0 : 1] =

[
−8 −12

]′
. Nodex1 now has access to

x[0] = x̄, and can calculate the function
∑6

j=1 x
2
j [0] to obtain

the value212.
Note that in this example, the candidate setFj found by

nodex1 does, in fact, contain the actual malicious nodex4.
This will not be true in general; if we want nodex1 to be
guaranteed to locate any node that is malicious during the first
L̄ time-steps of the iteration, we should have nodex1 repeat
the above procedure forLi + L̄ + 1 = 3 + L̄ time-steps of
the linear iteration, as described in Theorem 9. The numerical

details are very similar to those in the above example, and are
omitted here.

It is worth noting that the network in Fig. 2 also hasκj2 ≥ 3
for all j, and so nodex2 can also follow the same procedure
to calculate any arbitrary function of all values in the system
in the presence of up to one faulty node (with the same weight
matrix, and in parallel to nodex1). On the other hand, consider
nodex6 in the network. The setF = {x4, x5} forms a(2, 6)-
cut (i.e., removing nodesx4 and x5 removes all paths from
nodex2 to nodex6), and soκ26 = 2. Thus, nodex6 is not
guaranteed to be able to calculate any function of nodex2’s
value when there is a faulty node in the system. In fact, one can
verify that in the example above, where nodex4 is malicious
and updates its values with the errorsu4[0] = −8 andu4[1] =
−12, the values seen by nodex6 during the first three time-
steps of the linear iteration are the same as the values seen
by nodex6 when x1[0] = 4, x2[0] = −3 and nodex5 is
malicious, with u5[0] = 4 and u5[1] = 6. In other words
nodex6 cannot distinguish the case when nodex4 is faulty
from the case where nodex5 is faulty (with different initial
values in the network). As discussed in Section IV, nodex4

can continue to update its values erroneously so that nodex6

can never resolve this ambiguity, regardless of the number of
time-steps for which the linear iteration is run, and thus it
cannot correctly calculate a function of the values of nodex1

and nodex2.

VIII. S UMMARY

We considered the problem of using linear iterative strate-
gies for distributed function calculation in the presence of ma-
licious agents that can update their values in an arbitrary and
possibly coordinated manner, under the broadcast model of
communication. We showed that the ability of linear iterative
strategies to tolerate such malicious behavior is completely
determined by the topology of the network. If there exists
a pair of nodesxi and xj such thatκji ≤ 2f , then we
showed that it is possible for a particular set off malicious
nodes to update their values in a coordinated fashion so that
nodexi cannot correctly determine the value of nodexj , and
thus cannot calculate any function that involves that value,
regardless of the number of time-steps for which the linear
iteration is run. We then showed that it is possible for a given
node xi to calculate any arbitrary function in the presence
of up to f malfunctioning or malicious nodes as long as the
size of the smallest(j, i)-cut with any other nodexj is at least
2f+1. For all nodes that satisfy the connectivity requirements,
we showed that they can calculate their desired functions after
running the linear iteration with almost any real-valued choice
of weights for at mostN time-steps. Furthermore, under these
connectivity requirements, any node that is malicious or faulty
during the first part of the linear iteration can be uniquely
identified by the other nodes in the network if they run the
linear iteration for more time-steps than that required to simply
perform function calculation.

ACKNOWLEDGMENT

The authors thank the anonymous reviewers for their con-
structive comments and insights.



13

APPENDIX A
PROOF OFLEMMA 4

Proof: The matrix pencil for the set(W,BJ ,Ci,0) is

given by P(z) =
[
W−zIN BJ

Ci 0

]

. By a simple renumbering

of the nodes,11 we can assume without loss of generality that
W,BJ , andCi are of the form

W =







WJ̄N̄
WJ̄N ,J̄N̄

WJN̄ ,J̄N̄
WJN ,J̄N̄

WJ̄N̄ ,J̄N
WJ̄N

WJN̄ ,J̄N
WJN ,J̄N

WJ̄N̄ ,JN̄
WJ̄N ,JN̄

WJN̄
WJN ,JN̄

WJ̄N̄ ,JN
WJ̄N ,JN

WJN̄ ,JN WJN






,

BJ =







0 0

0 0

I|JN̄ | 0

0 I|JN |






, Ci =

[
0 I|J̄N | 0 0

0 0 0 I|JN |

]

,

sinceBJ contains a single1 in each row corresponding to a
node inJ , andCi measures nodes that are neighbors of node
xi, or nodexi itself. Based on this, one can see that

rank(P(z)) = |JN̄ |+ |JN |+ |J̄N |+ |JN |

+ rank

([
WJ̄N̄

− zI|J̄N̄ | WJN̄ ,J̄N̄

WJ̄N̄ ,J̄N
WJN̄ ,J̄N

])

,

and so the invariant zeros of the set(W,BJ ,Ci,0)
are exactly the invariant zeros of the set
(WJ̄N̄

,WJN̄ ,J̄N̄
,WJ̄N̄ ,J̄N

,WJN̄ ,J̄N
).

APPENDIX B
PROOF OFLEMMA 5

Proof: First, note from the definition of̄JN andJN that
|J̄N |+ |JN | = degi +1 (since the setsJ andJ̄ partition the
vertex set of the graph, and therefore contain all neighbors
of nodexi, along with nodexi itself). Furthermore|JN | +
|JN̄ | = 2f (since those two sets partition the setJ ). Thus,
|J̄N | = degi +1−|JN | = degi +1−2f+ |JN̄ |. Sincedegi ≥
2f + 1, this expression becomes|J̄N | ≥ |JN̄ | + 2 > |JN̄ |,
thereby proving the lemma.

APPENDIX C
PROOF OFLEMMA 6

Proof: The matrix pencil for the set
(WJ̄N̄

,WJN̄ ,J̄N̄
,WJ̄N̄ ,J̄N

,WJN̄ ,J̄N
) is

P(z) =

[
WJ̄N̄

− zI|J̄N̄ | WJN̄ ,J̄N̄

WJ̄N̄ ,J̄N
WJN̄ ,J̄N

]

.

We will show that this pencil has full normal-rank even after
the deletion of an arbitrary row, and then use Theorem 6 to
prove the lemma.

We start by constructing the graphH associated with the
set (WJ̄N̄

,WJN̄ ,J̄N̄
,WJ̄N̄ ,J̄N

,WJN̄ ,J̄N
). For this set of

matrices, note that the state vertices in the graphH are given
by the setJ̄N̄ , the input vertices are given by the setJN̄ , and

11Note that this does not affect the invariant zeros of the system, since this
renumbering of the nodes simply corresponds to pre– and post–multiplying the
original matrix pencil by appropriate permutation matrices. Since permutation
matrices are nonsingular, the rank of the new pencil matrix will be the same
as the rank of the original matrix pencil for all values ofz.

the output vertices are given by the setJ̄N . In particular,H
can be obtained by first taking the graph of the networkG and
removing all incoming edges to nodes inJN̄ (since the nodes
in JN̄ are treated as inputs), and removing all outgoing edges
from nodes inJ̄N (since those nodes are treated as outputs).
Furthermore, remove all nodes that are in the setJN and their
incident edges (since these nodes do not appear anywhere in
the matrix pencil), and add a set of self loops to every state
vertex to correspond to the nonzero entries on the diagonal of
the weight matrixWJ̄N̄

.
We will now examine what happens when we remove a

single row fromP(z). Suppose we remove one of the rows
of P(z) corresponding to a vertexv ∈ J̄N̄ (i.e., one of the
top |J̄N̄ | rows of P(z)), and denote the resulting matrix by
P̄(z). The generic rank of̄P(z) can be found by examining
the associated graph, which we will denote byH̄. Note thatH̄
is obtained fromH simply by removing all incoming edges
to vertexv in H, since we removed the row corresponding
to v from P(z); however, all outgoing edges fromv are still
left in the graph (since the column corresponding to vertex
v is left in matrix P̄(z)). Thus, we see that vertexv can be
treated as an input vertex in̄H, leaving|J̄N̄ |−1 state vertices
(corresponding to the set̄JN̄ \ {v}). Now, note that the set
J ∪{v} has cardinality2f+1, and thus Lemma 1 indicates that
there is a linking of size2f+1 fromJ ∪{v} to {xi}∪Ni in G.
In this linking, consider the paths starting at vertices in the set
JN̄ ∪ {v}; none of these paths passes through the vertices in
JN (since these vertices are the start vertices of other paths in
the linking). GraphG thus contains a linking fromJN̄ ∪ {v}
to J̄N , where each path in the linking only passes through
vertices in the setJ̄N̄ , and therefore this linking also exists
in the graphH̄. According to Theorem 7,̄P(z) has generic
normal-rank equal to the number of state vertices inH̄ (equal
to |J̄N̄ | − 1) plus the maximal size of a linking from the
inputs to the outputs (equal to|JN̄ ∪ {v}|), for a total of
|J̄N̄ | − 1+ |JN̄ ∪{v}| = |J̄N̄ |+ |JN̄ |. The pencilP̄(z) thus
has generically full normal-rank.

Now, suppose that we remove a row ofP(z) corresponding
to a vertexv ∈ J̄N (i.e., one of the bottom|J̄N | rows of
P(z)), and again denote the resulting matrix byP̄(z). The
associated graph̄H is obtained by simply removing vertexv
from H. Sinceκji ≥ 2f +1 for everyj in graphG, Lemma 1
indicates that there will be a linking of size2f+1 from the set
J ∪{v} to the set{xi}∪Ni in G. In particular, there will be a
linking of size|JN̄ | from the setJN̄ to the setJ̄N \{v}, and
none of the paths in this linking would go through any of the
vertices in the setJN ∪ {v} (since these vertices are the start
vertices of other paths in the linking). The linking from the
setJN̄ to the setJ̄N \ {v} will therefore also exist in graph
H̄, and once again, Theorem 7 indicates that the matrix pencil
will have generically full normal-rank equal to|J̄N̄ |+ |JN̄ |.

We have thus shown thatP(z) will have generically full
normal-rank even after the deletion of an arbitrary row. From
Theorem 6, the number of invariant zeros ofP(z) is equal to
|J̄N̄ | minus the maximal number of vertices in̄JN̄ contained
in the disjoint union of a size|JN̄ | linking from JN̄ to J̄N ,
a cycle family in J̄N̄ , and aJ̄N -topped path family. If we
simply take any|JN̄ |-linking from JN̄ to J̄N , and include



14

all the self-loops on state vertices inH that are not included
in the linking (corresponding to the nonzero weights on the
diagonal of the weight matrixWJ̄N̄

), we will have a linking
and a set of disjoint cycles that covers all|J̄N̄ | vertices in
J̄N̄ . Thus, the matrix pencilP(z) will generically have no
invariant zeros, thereby proving the lemma.

REFERENCES

[1] A. Giridhar and P. R. Kumar, “Computing and communicating functions
over sensor networks,”IEEE Journal on Selected Areas in Communica-
tions, vol. 23, no. 4, pp. 755–764, Apr. 2005.

[2] M. Rabbat and R. D. Nowak, “Distributed optimization in sensor
networks,” in Proceedings of the 3rd International Symposium on
Information Processing in Sensor Networks (IPSN), 2004, pp. 20–27.

[3] W. Ren, R. W. Beard, and E. M. Atkins, “A survey of consensus
problems in multi-agent coordination,” inProceedings of the American
Control Conference, 2005, pp. 1859–1864.

[4] N. A. Lynch, Distributed Algorithms. Morgan Kaufmann Publishers,
Inc., 1996.

[5] R. Koetter and M. Médard, “An algebraic approach to network coding,”
IEEE/ACM Transactions on Networking, vol. 11, no. 5, pp. 782–795,
Oct. 2003.

[6] J. Hromkovic, R. Klasing, A. Pelc, P. Ruzicka, and W. Unger, Dissem-
ination of Information in Communication Networks. Springer-Verlag,
2005.

[7] J. Cortés, “Distributed algorithms for reaching consensus on general
functions,” Automatica, vol. 44, no. 3, pp. 726–737, Mar. 2008.

[8] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and coop-
eration in networked multi-agent systems,”Proceedings of the IEEE,
vol. 95, no. 1, pp. 215–233, Jan. 2007.

[9] J. N. Tsitsiklis, “Problems in decentralized decision making and compu-
tation,” Ph.D. dissertation, Massachusetts Institute of Technology, 1984.

[10] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,”
Systems and Control Letters, vol. 53, no. 1, pp. 65–78, Sep. 2004.

[11] A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups of mobile
autonomous agents using nearest neighbor rules,”IEEE Transactions on
Automatic Control, vol. 48, no. 6, pp. 988–1001, June 2003.

[12] L. Moreau, “Stability of multiagent systems with time-dependent com-
munication links,” IEEE Transactions on Automatic Control, vol. 50,
no. 2, pp. 169–182, Feb. 2005.

[13] S. Sundaram and C. N. Hadjicostis, “Distributed function calculation and
consensus using linear iterative strategies,”IEEE Journal on Selected
Areas in Communications, vol. 26, no. 4, pp. 650–660, May 2008.

[14] K. Sampigethaya, M. Li, R. Poovendran, R. Robinson, L. Bushnell, and
S. Lintelman, “Secure wireless collection and distribution of commercial
airplane health data,” inProceedings of the 26th IEEE/AIAA Digital
Avionics Systems Conference, 2007, pp. 4.E.6–1–4.E.6.8.

[15] C. N. Hadjicostis,Coding Approaches to Fault Tolerance in Combina-
tional and Dynamic Systems. Kluwer Academic Publishers, 2002.

[16] D. B. West,Introduction to Graph Theory. Prentice-Hall Inc., Upper
Saddle River, New Jersey, 2001.

[17] D. B. Johnson and D. A. Maltz, “Dynamic source routing inad
hoc wireless networks,” inMobile Computing. Kluwer Academic
Publishers, 1996, pp. 153–181.

[18] D. Dolev, C. Dwork, O. Waarts, and M. Yung, “Perfectly secure message
transmission,”Journal of the Association for Computing Machinery,
vol. 40, no. 1, pp. 17–47, Jan. 1993.

[19] L. Lamport, R. Shostak, and M. Pease, “The Byzantine Generals
problem,” ACM Transactions on Programming Languages and Systems,
vol. 4, no. 3, pp. 382–401, July 1982.

[20] V. Bhandari and N. H. Vaidya, “On reliable broadcast in aradio
network,” in Proceedings of the 24th Annual ACM Symposium on
Principles of Distributed Computing (PODC), 2005, pp. 138–147.

[21] S. Jaggi, M. Langberg, S. Katti, T. Ho, D. Katabi, M. Médard, and
M. Effros, “Resilient network coding in the presence of Byzantine
adverseries,”IEEE Transactions on Information Theory, vol. 54, no. 6,
pp. 2596–2603, June 2008.

[22] V. Gupta, C. Langbort, and R. M. Murray, “On the robustness of
distributed algorithms,” inProceedings of the 45th IEEE Conference
on Decision and Control, 2006, pp. 3473–3478.

[23] F. Pasqualetti, A. Bicchi, and F. Bullo, “Distributed intrusion detection
for secure consensus computations,” inProceedings of the 46th IEEE
Conference on Decision and Control, 2007, pp. 5594–5599.

[24] S. Sundaram and C. N. Hadjicostis, “Distributed function calculation via
linear iterations in the presence of malicious agents – partI: Attacking
the network,” inProc. of the American Control Conference, 2008, pp.
1350–1355.

[25] ——, “Distributed function calculation via linear iterations in the
presence of malicious agents – part II: Overcoming malicious behavior,”
in Proc. of the American Control Conference, 2008, pp. 1356–1361.

[26] V. Barnett and T. Lewis,Outliers in Statistical Data. John Wiley and
Sons Ltd., West Sussex, England, 1996.

[27] M. K. Sain and J. L. Massey, “Invertibility of linear time-invariant
dynamical systems,”IEEE Transactions on Automatic Control, vol. AC-
14, no. 2, pp. 141–149, Apr. 1969.

[28] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,Introduction
to Algorithms. The MIT Press, Cambridge, MA, 2001.

[29] G. Takos and C. N. Hadjicostis, “Error correction in DFTcodes
subject to low-level quantization noise,”IEEE Transactions on Signal
Processing, vol. 56, no. 3, pp. 1043–1054, Mar. 2008.

[30] M. L. J. Hautus, “Strong detectability and observers,”Linear Algebra
and its Applications, vol. 50, pp. 353–368, Apr. 1983.

[31] D. Rappaport and L. M. Silverman, “Structure and stability of discrete-
time optimal systems,”IEEE Transactions on Automatic Control, vol. 16,
no. 3, pp. 227–233, June 1971.

[32] W. Kratz, “Characterization of strong observability and construction of
an observer,”Linear Algebra and its Applications, vol. 221, pp. 31–40,
May 1995.

[33] J. van der Woude, “The generic number of invariant zerosof a structured
linear system,”SIAM Journal on Control and Optimization, vol. 38,
no. 1, pp. 1–21, Nov. 1999.

[34] L. M. Silverman, “Discrete Riccati equations: Alternative algorithms,
asymptotic properties and system theory interpretations,” in Control and
Dynamic Systems, C. T. Leondes, Ed. Academic Press, 1976, vol. 12,
pp. 313–386.

[35] C.-T. Lin, “Structural controllability,” IEEE Transactions on Automatic
Control, vol. 19, no. 3, pp. 201–208, June 1974.

[36] K. J. Reinschke,Multivariable Control: A Graph-Theoretic Approach.
Springer-Verlag, 1988.

[37] J.-M. Dion, C. Commault, and J. van der Woude, “Generic properties
and control of linear structured systems: a survey,”Automatica, vol. 39,
no. 7, pp. 1125–1144, July 2003.

[38] S. Sundaram and C. N. Hadjicostis, “On the time complexity of
information dissemination via linear iterative strategies,” in Proceedings
of the American Control Conference, 2010, pp. 6789–6794.

Shreyas Sundaram(M’09) is an Assistant Professor
in the Department of Electrical and Computer Engi-
neering at the University of Waterloo. He received
his MS and PhD degrees in electrical engineering
from the University of Illinois at Urbana-Champaign
in 2005 and 2009, respectively. He was a Post-
doctoral Researcher in the GRASP Laboratory at
the University of Pennsylvania from 2009-2010. His
research interests include secure and fault-tolerant
control of distributed systems and networks, linear
system and estimation theory, and the application

of algebraic graph theory to system analysis. He was a finalist for the Best
Student Paper Award at the 2007 and 2008 American Control Conferences.

Christoforos N. Hadjicostis (M’99, SM’05) re-
ceived S.B. degrees in Electrical Engineering, in
Computer Science and Engineering, and in Mathe-
matics, the M.Eng. degree in Electrical Engineering
and Computer Science in 1995, and the Ph.D. degree
in Electrical Engineering and Computer Science in
1999, all from the Massachusetts Institute of Tech-
nology, Cambridge, MA.

In 1999 he joined the Faculty at the University
of Illinois at Urbana-Champaign where he served
as assistant and then associate professor with the

Department of Electrical and Computer Engineering, the Coordinated Science
Laboratory, and the Information Trust Institute. Since 2007, Dr. Hadjicostis
has been with the Department of Electrical and Computer Engineering at the
University of Cyprus. His research focuses on fault diagnosis and tolerance
in distributed dynamic systems; error control coding; monitoring, diagnosis
and control of large-scale discrete event systems; and applications to network
security, anomaly detection, energy distribution systems, medical diagnosis,
biosequencing, and genetic regulatory models.


