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Abstract

We study the problem of stabilizing a linear system over a wireless network using a simple

in-network computation method. Specifically, we study an architecture called the “Wireless Control

Network” (WCN), where each wireless node maintains a state, and periodically updates it as a linear

combination of neighboring plant outputs and node states. This architecture has previously been shown

to have low computational overhead and beneficial scheduling and compositionality properties. In this

paper we characterize fundamental topological conditions to allow stabilization using such a scheme. To

achieve this, we exploit the fact that the WCN scheme causes the network to act as a linear dynamical

system, and analyze the coupling between the plant’s dynamics and the dynamics of the network.

We show that stabilizing control inputs can be computed in-network if the vertex connectivity of the

network is larger than the geometric multiplicity of any unstable eigenvalue of the plant. This condition

is analogous to the typical min-cut condition required in classical information dissemination problems.

Furthermore, we specify equivalent topological conditions for stabilization over a wired (or point-to-

point) network that employs network coding in a traditional way – as a communication mechanism

between the plant’s sensors and decentralized controllers at the actuators.
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I. INTRODUCTION

With recent revolutions in sensor and actuator technologies, availability of powerful but

inexpensive embedded computing and introduction of new multi-hop wireless network standards

for industrial automation, control over wireless networks is becoming a disruptive technology.

Traditional wired interconnections between the plant sensors, controllers and actuators can

be replaced by wireless multi-hop mesh networks, yielding cost and space savings for the

plant operator. These improvements have also enabled more efficient and robust means of

communication, and the opportunity to move the computation of the control law within the

network.

Despite this tremendous promise, the introduction of wireless communications into the feed-

back loop presents several challenges for real-time feedback control. For instance, delays may

be introduced if a multi-hop wireless network is used to route information between the plant

sensors, actuators and controllers. Furthermore, transmissions in the network must be scheduled

carefully to avoid packet dropouts due to collisions between neighboring nodes. These issues

can be detrimental to the goal of maintaining stability of the closed loop system if not explicitly

accounted for, and substantial research has been devoted to understanding the performance

limitations in such settings (e.g., [2], [3], [4]). These works typically adopt the convention

of having one or more dedicated controllers or state estimators located in the system, and study

the stability of the closed loop system assuming that the sensor-estimator and/or controller-

actuator communication channels are unreliable (dropping packets with a certain probability, for

example). For this standard architecture, shown in Fig. 1(a), the use of dedicated controllers

imposes a routing requirement along one or more fixed paths through the network, along with

strict end-to-end delay constraints to ensure stability [5].

Routing couples the communication, computation and control problems [6]. This introduces

additional problems when the network is shared among control loops (i.e., a node may be

involved in the feedback path for many plants), and new control loops are added at run-time.

With standard architectures for control over wireless networks, it may be necessary to completely

recompute the control algorithms, communication and computation schedules every time a new
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loop is added to the system. To avoid this complexity, it is necessary to derive a composable

control scheme, where control loops can be easily added and a simple compositional analysis can

be performed at run-time to ensure that a new loop does not affect the functioning of existing

control loops. In order to do so, one requires an alternative to the routing-based approaches

currently employed for control over wireless networks.

A. The Wireless Control Network

Motivated by the above issues, in a recent paper [7] we asked the following question: is it

possible to do away with the standard “sensor → channel → controller/estimator → channel

→ actuator” architecture (Fig. 1(a)) and have the computation of the control law be performed

in-network? In other words, is it possible to formulate a distributed algorithm for the (resource

constrained) wireless nodes to follow so that the network itself acts as a controller for the plant?

To answer this question, we considered a setup where a network of wireless nodes is deployed

in the proximity of a plant, with some nodes having access to the sensor measurements (outputs)

of the plant, and some nodes placed within the listening range of the plant’s actuators (as shown

in Fig. 1(b)). To model resource constrained nodes, we assumed that each node is capable of

maintaining only a limited internal state. We then presented a distributed algorithm in the form

of a linear iterative strategy for each node to follow, where each node periodically updates

its state to be a linear combination of the states of the nodes in its immediate neighborhood.

The actuators of the plant also apply linear combinations of the states of the nodes in their

neighborhood. Given a linear plant model and the network’s topology, we devised a design-time

procedure to derive the coefficients of the linear combinations for each node and actuator to

apply in order to stabilize the plant. We showed that our method could also handle a sufficiently

low rate of packet dropouts in the network to maintain mean square stability. We referred to this

paradigm, where the computation of the control law is done in-network (i.e., in a distributed

fashion by the wireless nodes), as a Wireless Control Network (WCN). The scheme has several

benefits, including easy scheduling of wireless transmissions, compositional design, and the

ability to handle geographically separated sensors and actuators. We illustrated the use of the

WCN in industrial process control applications [8].

While our previous work has established the feasibility of in-network computation for control,

and provided numerical algorithms to obtain appropriate control laws, an important question

March 26, 2013 DRAFT



4

��

��

�� ��

��

�� ��

��

��	

�A

��

��

��

��

��

��

��

��

			

AB�CD
EFCD�FBB��

��

��

�� ��

��

�� ��

��

��	

�A

��

��

��

��

��

��

��

��

			

AB�CD

���

Fig. 1. (a) Standard architectures used for control over wireless network; Red links/nodes - routing data from the plant’s

sensors to the controller; Blue links/nodes - routing data from the controller to the actuators; (b) A multi-hop Wireless Control

Network, where the network acts as a distributed controller.

remains unanswered: What fundamental topological conditions should the network satisfy to be

able to stabilize a given plant? This question is the focus of this paper.

B. Topological Conditions For Stabilization Versus Information Transmission

The simple linear updates performed by each node in the WCN resembles the linear iterative

algorithms used for distributed function calculation and consensus (e.g., [9], [10], [11]) and

network coding (e.g., [12], [13], [14]). The key difference pertains to the objective of the network.

Specifically, the goal of the WCN is not to get all nodes in the network to agree on a certain

value, or to allow sink nodes to recover values injected into the network by source nodes. Instead,

the objective is to provide a simple distributed scheme (suitable for implementation on resource

constrained nodes), such that the resulting network dynamics facilitate the stabilization of the

attached physical system.

To illustrate the difference in the objectives, consider a plant with p sensors (measuring plant

outputs), and m actuators (that apply control inputs to the plant to stabilize it), together with

the network shown in Fig. 2. Node v1 has access to the measurements provided by the p

sensors at each time-step (or sampling period), and the actuators apply control inputs based upon

information received from node v2. Viewing the network in its traditional role as a transmission

medium, the values from the p sensors (sources) would be expected to make their way to the

actuators within one time-step. Each source injects one unit1 of information per time-step into

the network, and so the network needs a capacity of p units per time-step to deliver all of this

1In this paper, we consider the case of real-valued measurements, but in practice, the measurements and computations will

be quantized to some finite precision.
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Fig. 2. A simple example of a wireless network between the plant’s sensors s1:p and actuators a1:m.

information to the actuators. If the capacity of the edge (v1, v2) is only 1, the Min-Cut Max-

Flow theorem [15] indicates that this objective is not achievable in this network, even without

considering delay on any of the links.

However, the fact that this network is not capable of delivering all of the source information to

all of the sinks at each time-step is not necessarily a cause for concern when the main objective

is to stabilize the system. Specifically, the actuators do not necessarily need all of the source

information, and the information received by the actuators at each time-step does not necessarily

need to be a direct function of the information injected into the network at that time-step. Instead,

the network only needs to supply the actuators with an appropriate set of inputs to apply at each

time-step (perhaps after some additional computation at the actuators), and the fidelity of these

inputs can be continually improved by the network based on the values received from the plant

sensors. Given this (potentially relaxed) objective, what conditions should the network satisfy?

C. Contributions of this Paper

We answer the questions posed above by characterizing network topologies that allow stabi-

lization of a given linear dynamical system. We consider the WCN scheme, which causes the

network to acts as a linear dynamical system, and study the coupling between the dynamics of

the physical plant and the dynamics of the network. Our analysis draws upon ideas from linear

system theory, decentralized control theory [16], [17], [18], [19], [20], [21], [22], and structured

system theory [23], [24], which allows for the use of graph-theoretic tools to analyze dynamical

systems. We show that for stabilizable and detectable plants, if the wireless network provides a

sufficient number of vertex disjoint paths from certain plant sensors to certain plant actuators,

then, for the specific topology, there exists a WCN configuration (i.e., coefficients used in the

linear iterative strategy) for which the closed-loop system is stable.

While this is reminiscent of the classical min-cut max-flow condition for information transmis-
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sion, we prove that the size of the minimum network cut required to stabilize the network is not

determined by the number of source nodes, as in typical information dissemination schemes, but

rather by the maximal geometric multiplicity of all unstable eigenvalues of the plant. This reveals

the interdependence between the dynamics of the physical process and the network topology. We

also provide generic network conditions that are sufficient to stabilize almost any plant with a

given structure – in the context of the example shown in Fig. 2, we show that a class of generic

plants satisfying very loose structural conditions can be stabilized with this simple network.

Finally, we use ideas from the algebraic approach to network coding (e.g., [12], [25]) to specify

equivalent topological conditions for the case of control over a wired (point-to-point) network,

where network coding is used in its traditional role as a transmission mechanism between the

plant’s sensors and controllers located at the actuators.

D. Organization of the Paper

The rest of the paper is organized as follows. Section II provides our notation and a basic

overview of linear systems. In Section III, we describe the WCN paradigm, along with its

mathematical model. Section IV introduces concepts from decentralized control theory and

structured system theory, which are used to derive topological conditions for stabilization of

a generic class of linear systems with the WCN (Section V). In Section VI, we describe how to

design a network with the minimal connectivity for stabilization. Section VII provides topological

conditions for a numerically specified plant; this plant might fall within the measure zero set that

is not covered by our analysis of generic systems. In Section VIII, we translate our results to

the case when network coding over networks with point-to-point links is used to communicate

information from sensors to controllers (placed at the actuators). Finally, we summarize our work

in Section IX.

II. NOTATION AND TERMINOLOGY

We use ei to denote the column vector (of appropriate size) with a 1 in its i-th position and

0’s elsewhere. With IN we denote the N×N identity matrix, while I denotes the identity matrix

of appropriate dimensions. In addition, A′ indicates the transpose of matrix A. For a square

matrix Q, Λ(Q) denotes the set of eigenvalues of Q. The cardinality of a set S is denoted by
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|S|, and for two sets S and R, we use S \R to denote the set of elements in S that are not in

R. Finally, we denote the sets M = {1, 2, ...,m} and P = {1, 2, ..., p}.

A. Linear Systems

Consider a system Σ of the form:

x[k + 1] = Ax[k] + Bu[k]

y[k] = Cx[k],
(1)

where x[k] ∈ Rn is the system state, u[k] ∈ Rm is the input, and y[k] ∈ Rp is the output,

and the matrices are of appropriate dimensions. For convenience, we will denote the system as

Σ = (A,B,C).

The system is said to be stable if x[k]→ 0 for any initial state x[0] when u[k] = 0 for all k.

The system is said to be controllable if for any initial state x[0] and for any final state xf , there

exists an input sequence of finite length that transfers the state from x[0] to xf . The system

is said to be stabilizable if for any initial state x[0], there is a sequence of inputs that causes

x[k]→ 0 as k →∞. The system is observable if for any unknown initial state x[0], there exists

a finite integer k1 > 0 such that the knowledge of the input and output sequences u[k] and y[k]

from k = 0 to k1 suffices to uniquely determine x[0]. A generalization of observability is the

concept of detectability, which says that y[0] = 0 and u[k] = 0 for all k implies that x[k]→ 0

as k →∞.

B. Structured Linear Systems

A linear system of the form (1) is said to be structured if each entry in the system matrices

is either a fixed zero or an independent free parameter [23]. A structured system Σ can be

represented via a directed graph GΣ = {VΣ, EΣ}, which is sometimes refer to as structural

graphs. The vertex set is given by VΣ = {X ∪U ∪Y} where X = {x1, ..., xn} denotes the set of

state vertices, while U = {u1, ..., um} and Y = {y1, ..., yp} denote the sets of input and output

vertices, respectively. The edge set is given by EΣ = EA∪EB∪EC with EA = {(xi, xj)|aji 6= 0},

EB = {(ui, xj)|bji 6= 0}, EC = {(xi, yj)|cji 6= 0}.

For a structured system, a simple path is called a U-rooted path if the path has its begin vertex

in U. A number of mutually disjoint U-rooted paths is called a U-rooted path family. Similarly,
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a simple path that has its end vertex in Y is called a Y-topped path, while a number of mutually

disjoint Y-topped paths is called a Y-topped path family.

We will be interested in properties of a structured system that can be inferred purely from

the zero/nonzero structure of the system matrices. These properties will hold almost everywhere

(i.e., the set of parameters for which the property does not hold has Lebesgue measure zero),

and thus they are called generic properties [23]. Finally, two systems will be called structurally

equivalent if they have the same number of states, inputs and outputs, and their system matrices

have zeros in the same locations.

III. THE WIRELESS CONTROL NETWORK

We consider the system presented in Fig. 1(b), where a wireless network is placed in the

proximity of a system Σ = (A,B,C) with state x ∈ Rn, input u ∈ Rm and output y ∈ Rp. The

output vector y[k] contains measurements of the plant state vector x[k] provided by the sensors

from the set S = {s1, s2, . . . , sp}, while the input vector u[k] corresponds to the signals applied

to the plant by actuators from the set A = {a1, a2, . . . , am}.

The wireless network is described by a graph G = {V , E}, where V = {v1, v2, . . . , vN} is the

set of N nodes and E ⊆ V × V represents the radio connectivity (communication topology) in

the network (i.e., edge (vj, vi) ∈ E if node vi can receive information directly from node vj). We

define VS ⊆ V as the set of nodes that can receive information directly from at least one sensor,

and VA ⊆ V as the set of nodes whose transmissions can be heard by at least one actuator.

Furthermore, we define a new graph Ḡ = {V ∪ S ∪ A, E ∪ Ein ∪ Eout} that includes the initial

graph G, the plant’s sensors and actuators and the edge sets:

Eout =

 (sl, vi)
sl ∈ S, vi ∈ VS ,

vi can receive values from sensor sl

 , (2)

Ein =

 (vi, al)
al ∈ A, vi ∈ VA,

actuator al can receive values from vi

 . (3)

In [7], we proposed a method for distributed in-network computation of a stabilizing input

sequence. The WCN scheme requires that each wireless node maintains a scalar2 state and

2The small state size accounts for resource and computational constraints in the wireless nodes. The procedure can be extended

to handle vector states at each node in a straightforward manner. However, the fundamental topological conditions for system

stabilization, which are derived in this paper, will not change.
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implements a simple, lightweight linear iterative procedure. At every time step (i.e., once every

communication frame) each node in the network updates its state to be a linear combination

of its previous state and the states of its neighbors. The update procedure of each node from

the set VS also includes a linear combination of the sensor measurements (i.e., plant outputs)

from all sensors in its neighborhood. Denoting node vi’s state at time step k by zi[k], the update

procedure is given by:3

zi[k + 1] = wiizi[k] +
∑
vj∈Nvi

wijzj[k] +
∑
sj∈Nvi

hijyj[k]. (4)

Remark 1: For each node, the above update rule mimics the form of a traditional dynamical

controller for system stabilization, with the difference that each node also views the states of

adjacent nodes as inputs (and most nodes will not have access to the plant’s outputs). Furthermore,

the dimension of the state maintained by each node can be very small (e.g., a scalar), which

is in contrast to the usual large state vectors maintained in typical controllers. As mentioned in

the introduction, the WCN can also be viewed as a form of linear network coding [12], where

each node repeatedly updates and transmits a value which is a linear combination of received

values. Once again, the salient point is that the dynamics are introduced at each node to facilitate

stabilization of the attached plant, and not to simply transmit information from one side of the

network to the other.

The original WCN scheme from [7] requires each plant input ui[k], i ∈ {1, 2, ...,m}, to be

a linear combination of values from the nodes in actuator ai’s neighborhood. In this work we

generalize this and allow each actuator ai, (i ∈ {1, 2, ...,m}) to maintain a (possibly) vector

state4 denoted by zai [k] ∈ Rni (for some ni ∈ Z). The procedure implemented by actuator ai

can be described as:

zai [k + 1] = Waizai [k] +
∑
vj∈Nai

gijzj[k]

ui[k] = t′aizai [k] +
∑
vj∈Nai

kijzj[k],
(5)

3The neighborhood Nv of a vertex v is with respect to the graph Ḡ.
4This scenario is motivated by practical reasons, since actuators are usually placed on fixed positions and are not power

constrained, allowing them to utilize more powerful CPUs than the battery-operated low-power wireless nodes.
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for some matrices Wai , vectors gij , tai and scalars kij . Note that the above equation models

the situation where the plant sensors and actuators are geographically separated, preventing the

plant input from directly depending on any of the plant’s outputs.

To specify the evolution of the states of all nodes and actuators in the network, we define at

each time step k the node state vector z[k] =
[
z1[k]′ z2[k]′ . . . zN [k]′

]′
and the actuator state

vector za[k] =
[
za1 [k]′ za2 [k]′ . . . zam [k]′

]′
. Therefore, these states evolve as:

z[k + 1] = Wz[k] + Hy[k] , (6)

za[k + 1] = Waza[k] + Gz[k]. (7)

In the above equations, the matrix Wa ∈ R(
∑m
i=1 ni)×(

∑m
i=1 ni) is a block-diagonal matrix, while

the matrices W ∈ RN×N , H ∈ RN×p and G ∈ Rm×N have sparsity constraints imposed by the

underlying WCN topology – the connections between the nodes in the network (for matrix W),

from the sensors to the nodes (for H), and from the nodes to the actuators (for G). Specifically,

for all i ∈ {1, . . . , N}, wij = 0 if vj /∈ Nvi ∪ {vi}, hij = 0 if sj /∈ Nvi , and gij = 0 if vj /∈ Nai .

Aggregating the node and actuator states into the network state vector ẑ =
[
z[k]′ za[k]′

]′
,

the behavior of the network can be described as:

ẑ[k + 1] =

 W 0

G Wa


︸ ︷︷ ︸

Wd

ẑ[k] +

 H

0


︸ ︷︷ ︸

Hd

y[k]

u[k] = Taza[k] + Kz[k] =
[
K Ta

]
︸ ︷︷ ︸

Gd

ẑ[k],

(8)

where Ta ∈ Rm×m is a block-diagonal matrix, and K ∈ Rm×N is a structured matrix with

sparsity constraints imposed by the links from the network nodes to the actuators. From (8) we

observe that the linear iterative strategy employed by all nodes and actuators causes the entire

network to behave as a structured linear system. The dynamics of the system will be designed

to stabilize the plant, and thus the wireless nodes and the actuators together act as a dynamical

compensator.

Remark 2: Note that in the above scheme, the network operates at the same rate as the plant

(i.e., the duration of the time-step k in (8) is the same as the duration of the time-step k for the

plant Σ in (1)). In particular, there is no routing involved in this control scheme: information does
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not have to travel from the sensors to the actuators within one time-step. Instead, the dynamics

of the network (encapsulated by its state vector and the update rule in (8)) allow the network

to generate an appropriate stabilizing input u[k] at each time-step k. Meanwhile, the injected

sensor measurements propagate through the network (via the nearest-neighbor rule specified in

(4)) over time, updating the state and refining the control inputs that are generated.

To be able to describe the closed-loop system we denote with x̂[k] =
[
x[k]′ z[k]′ za[k]′

]′
the overall system state that contains the state of the plant and states of the nodes and actuators.

Using this notation, the overall closed-loop system evolves as:

x̂[k + 1] =

 A BGd

HdC Wd

x[k]

ẑ[k]

 , Âx̂[k]. (9)

The closed-loop system described by (9) is stable if the matrix Ãd = Ãd(Wd,Hd,Gd) has

all of its eigenvalues inside the unit circle. Since matrices Wd,Hd,Gd are structured, choosing

their values to obtain a stable Â can be cast in the form of a static output feedback problem with

sparsity constraints on the gain matrix. This is a nonconvex problem (and hence difficult to solve

in general), but various numerical procedures have been proposed in the literature (e.g., [26],

[27]). In [7], we adapted some of these numerical procedures to find values for the nonzero WCN

parameters so that the closed-loop system is stable, given a network topology and a predefined

state size maintained by each node. In addition, a procedure similar to the ones from [7], [8]

can be used to extract a stabilizing configuration5 for the closed-loop system with unreliable

communication links.6 However, the proposed procedure is iterative in nature, and convergence

depends on the initialization point for the algorithm. Therefore, even in cases when a stabilizing

configuration exists, the procedure might not be able to find it.

In this paper, we take a more fundamental approach and identify topological conditions on

the network that guarantee the existence of a stabilizing configuration. To do this, we will

use concepts from decentralized control theory pertaining to fixed modes of the linear system.

Furthermore, since the WCN acts as a structured linear dynamical compensator, we use ideas

5In this work, matrices Wd, Hd and Gd that satisfy the topological constraints and guarantee stability of Â are referred to

as a stabilizing configuration.
6If the links can be modeled as independent Bernoulli processes, the stabilizing configuration guarantees mean square stability

of the system.
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from the structured systems theory to obtain generic conditions that guarantee stabilization in

this scenario.

IV. DECENTRALIZED FIXED MODES

In decentralized control systems, a set of non-interacting local controllers is used to control

a dynamical system (plant); each of the controllers generates the appropriate plant inputs by

observing only a subset of the plant’s outputs. Due to these limitations imposed on each of the

local controllers, it is possible that even a controllable and observable system can not be stabilized

with the aforementioned setup. As shown in [16], the problem of decentralized control can be

formulated as a static output feedback control problem, where the feedback matrix potentially

has some sparsity constraints. Furthermore, [16] introduced the notion of fixed modes to derive

conditions for the existence of a stabilizing set of decentralized controllers. The concept of fixed

modes was generalized in [24] to handle arbitrary feedback patterns, and to enable a graph-

theoretic analysis of the problem.

To formally define fixed modes, we consider a discrete-time system Σ = (A,B,C) controlled

by a set of m controllers where each controller is located at a different actuator, and has direct

access to only a subset of the plant outputs.

Definition 1: The decentralized feedback patterns are specified as m sets J1, J2, ..., Jm ⊆ P

(P = {1, 2, ..., p}) such that for each i ∈ M (M = {1, 2, ...,m}), j ∈ Ji if and only if output

yj can be directly used to calculate input ui.

Using the above definition, m linear time-invariant dynamical feedback compensators are

described as (i = 1, ...,m):

zi[k + 1] = Fizi[k] +
∑
j∈Ji

qijyj[k]

ui[k] = h′izi[k] +
∑
j∈Ji

kijyj[k],
(10)

where zi ∈ Rni is the controller’s state vector, while matrix Fi and vectors qi,hi are of the

appropriate dimensions. Based on the feedback patterns J1, J2, . . . , Jm, we define the set

Kf =
{
K ∈ Rm×p|kij = 0 if j /∈ Ji

}
. (11)

Definition 2 ([16], [24]): For the system Σ = (A,B,C), the set Λf =
⋂

K∈Kf
Λ (A + BKC)

is called the set of fixed modes with respect to the feedback structure constraints specified by

J1, J2, ..., Jm.
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In words, the fixed modes are the eigenvalues of A + BKC that remain fixed despite the

choice of matrix K ∈ Kf . The following classical result explains the vital of fixed modes in the

stabilizability analysis of linear dynamical systems.

Theorem 1 ([16]): The system Σ can be stabilized using the set of controllers defined in (10)

if and only if all of its fixed modes are stable.

Remark 3: The above result applies to the case where each of the decentralized controllers is

a linear time-invariant (LTI) system. In general, it has been shown in the literature that one can

obtain more relaxed conditions for decentralized stabilization by considering linear time-varying

(LTV) controllers; these conditions are in terms of a concept known as quotient fixed modes [22],

building on the notion of system completeness from [20], [21]. Furthermore, it has been shown

that it is without loss of generality to consider LTV controllers for decentralized stabilization

(i.e., if a given LTI system cannot be stabilized by a set of decentralized LTV controllers, then it

cannot be stabilized by decentralized nonlinear controllers either) [22]. In this paper, we focus on

LTI controllers of the form (5) at the actuators in order to develop a framework for stabilization

over a WCN (with dynamics of the form (8)); the extension of our results to the general case

of time varying controllers is an avenue for future research.

For any subset I ⊆ M we define J =
⋃
i∈M\I Ji. The following theorem characterizes the

fixed modes of a given system with respect to the feedback pattern J1, J2, . . . , Jm.

Theorem 2 ([18]): A complex number λ is a fixed mode of the system Σ = (A,B,C) if and

only if there exists a subset I ⊆M such that

rank

A− λI BI

CJ 0

 < n, (12)

where BI and CJ are the columns and rows of B and C indexed by the elements in sets I and

J , respectively.

Various other algebraic tests have been proposed to determine if a given system Σ has unstable

fixed modes with respect to a given feedback pattern (e.g. [28], [17], [19]). These numerical

tests are usually computationally intensive, and require calculation of the rank of a large number

of matrices. In an effort to get away from numerical calculations and to analyze fixed modes

of large-scale systems with uncertain parameters, a purely graph-theoretic test was provided in

[24] to test whether a given system with a certain sparsity structure would have any fixed modes

under a given feedback pattern.
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As described in [17], there are two distinct reasons for a fixed mode. A fixed mode can either

arise from a loss of rank due to a ‘perfect cancellation’ of the numerical parameters (which is

a degenerate case), or it can be caused by deeper issues relating to the system structure. The

latter set of fixed modes are called structural fixed modes.

Definition 3 ([17]): The system Σ has structural fixed modes with respect to the feedback

pattern J1, J2, . . . , Jm if every system structurally equivalent to Σ has fixed modes with the

same feedback pattern.

As described in Section II-B, one can associate a graph GΣ = {VΣ, EΣ} with the structure of

a given system Σ. The graph can be augmented to capture a given feedback pattern J1, J2..., Jm

via a set of edges EJ = {(yj, ui)|i ∈M, j ∈ Ji}. This produces the graph GΣ,J = {VΣ, EΣ∪EJ}.

From this graphical representation of the closed-loop system, and using the approach from [24],

we can state the following theorem that provides a graph-theoretic characterization of the con-

ditions for nonexistence of structural fixed modes.

Theorem 3: The discrete-time system Σ with feedback pattern J1, J2, . . . , Jm has no structural

fixed modes if and only if both of the following conditions hold:

i. Each state vertex xk ∈ X is contained in a strong component of GΣ,J that includes an

edge from EJ .

ii. There exists a set of disjoint cycles Ck that covers all state vertices.

The second condition from the above theorem ensures that the system Σ does not have any

fixed modes at zero. Although such modes are a concern for continuous-time systems, they are

not an issue for stabilization of discrete-time plants (because fixed modes at zero are stable and

would not violate Theorem 1). Hence, we state the following corollary.

Corollary 1: The discrete-time system Σ with feedback pattern J1, J2, . . . , Jm has no structural

fixed modes (other than at the origin) if and only if each state vertex xk ∈ X is contained in a

strong component of GΣ,J that includes an edge from EJ .

Since a system can have stable fixed modes outside of zero, the above corollary specifies suf-

ficient (but not necessary) conditions for the existence of a set of stabilizing feedback controllers

for almost every plant that has the given structure, with the given feedback pattern. A couple of

caveats are in order. First, the theorem does not specify the size of the stabilizing controllers (i.e.,

the values for ni, i = 1, ...,m, from (10)); only that sufficiently large controllers can be found at
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each actuator to jointly stabilize the system. This could be an issue when resource constrained

processors are used as controllers (e.g., when wireless nodes in the WCN are used to compute

the control laws). The second major caveat is that the existing analysis of decentralized feedback

control systems assumes that each actuator has direct access to at least one of the plant outputs

(i.e., the quantities qij and kij in (10) are nonzero). This leads to a nonempty set Kf in (11),

and this assumption is utilized in the proof of sufficiency from [16] to show that all non-fixed

modes can be stabilized.

These caveats prevent Corollary 1 from being directly used to analyze whether the system can

be stabilized using a WCN. We would like the wireless nodes to maintain only small state vectors

(ideally scalars). Even more importantly, from (5) it can be seen that plant inputs (actuators) do

not have a direct connection from plant outputs. Instead, each node in the network uses the values

received from other neighboring nodes, with only a few nodes incorporating sensor measurements

in their updates. As a result, Kf from (11) contains only the zero matrix. Therefore, in this case,

the role of fixed modes in stabilization over a network must be carefully studied. We do this in

the subsequent sections.

V. GENERIC TOPOLOGICAL CONDITIONS FOR SYSTEM STABILIZATION WITH WIRELESS

CONTROL NETWORKS

In this section, we provide conditions for a given system to not have structural fixed modes

when controlled using a WCN, where each node in the network maintains only a scalar state,

and the actuator nodes maintain vector states.

We start our analysis by initially disregarding the effects of the actuators on the plant; i.e.,

we assume that at each time-step the plant actuators do not use transmissions from the nodes

in the set VA to actuate the plant (via (5)). This allows us to consider the plant Σ = (A,B,C)

and the WCN together as a linear system Σ̃, where the outputs of the plant are injected into the

WCN (see Fig. 3). If we view the transmissions of the nodes in VA as the output of the system
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Fig. 3. Dynamical system Σ̃ that contains the dynamics of the plant and WCN; the states of the nodes from the set VA
represent the output of the system.

Σ̃, the system can be specified as:

x̂[k + 1] =

x[k + 1]

z[k + 1]

 =

 A 0

HC W


︸ ︷︷ ︸

Ã

x[k]

z[k]

+

B
0


︸ ︷︷ ︸

B̃

u[k],

ŷ[k] =
[
0 EVA

]
︸ ︷︷ ︸

C̃

x[k]

z[k]

 . (13)

Here, EVA =
[
ei1 ei2 ... eit

]′
select the state values from the set VA = {vi1 , vi2 , ..., vit}

(where t = |VA|). In other words, the vector ŷ[k] contains the states transmitted by the wireless

nodes closest to the actuators at time-step k.

The structural graph GΣ̃ = (VΣ̃, EΣ̃) of the system Σ̃ is obtained by composing the structural

graph of the initial plant Σ and the network graph G = (V , E):7

VΣ̃ = X ∪ U ∪ V , EΣ̃ = EA ∪ EB ∪ E ∪ EO.

Recall that X is the set of state vertices (corresponding to the states of the plant), U is the set of

p input vertices (corresponding to the actuators), and V is the set of vertices corresponding to the

network nodes. The set EA represents the edges between state vertices (given by the matrix A),

and EB represents edges from the plant inputs to the states (given by the matrix B). The set E

represents the topology of the network, and the set EO captures how the state vertices influence

7While G = (V, E) refers to the ‘physical’ graph, when all the nodes in the network maintain a scalar state there is a one-to-

one correspondence between this graph and a structural graph of the WCN (viewed as a structured controller (6)). Therefore,

we will also use G as a structural graph.
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the vertices in the wireless network. Specifically, the states of the plant affect the outputs of the

plant (via the edge set EC), and each plant output connects to one or more nodes (via the edge set

Eout defined in (2)). As the output vertices simply pass the information about the state vertices

through to the wireless network, we can remove the output vertices from the representation and

introduce connections directly from the state vertices to the wireless vertices as follows:

EO = {(xi, vj) ∈ X × VS |∃yk ∈ Y, (xi, yk) ∈ EC, (yk, vj) ∈ Eout}.

Remark 4: Note that the edges from the set EO correspond to elements in the matrix HC

from (13). To be able to reason about generic properties of a structured system, it is necessary

for technical reasons to ensure that all of the system’s parameters are independent [23]. Hence,

we assume that the matrices H and C satisfy the property that either H has a single nonzero

entry in each column (e.g., by having a dedicated node for each plant output), or C has a single

nonzero entry in each row. This guarantees that each nonzero entry in HC will be an independent

free parameter if each nonzero entry in H and C is an independent free parameter.

Furthermore, the matrix EVA in (13) is a zero-one matrix with a single 1 in each row. While

these are not independent free parameters, this does not affect the structural analysis because

each row i can be effectively scaled by an independent free parameter pi to produce the matrix

EVA = [p1ei1 p2ei2 ... pteit ]
′; these parameters can then be taken into account while deriving

the values for matrix G from (7). Thus, to simplify the notation and without loss of generality,

we directly work with the system Σ̃ as specified in (13).

The above representation of the system Σ̃ allows us to map the problem of stabilization using

the WCN into a decentralized feedback control framework. Note that in (5), for each actuator ai

and each node vj ∈ Nai there exists some row l of ŷ[k] in (13) such that zj[k] = ŷl[k]. Hence,

the terms
∑

vj∈Nai
gijzj[k] and

∑
vj∈Nai

kijzj[k] correspond to linear combinations of the system

Σ̃’s outputs ŷ[k]. In this setup, the overall system Σ̃ in (13) is to be controlled with a set of m

decentralized feedback controllers described by (5). In addition, the feedback pattern is specified

with the edge set Ein from (3) (i.e., in this case EJ = Ein). The key insight is the following: by

having each wireless node run a linear strategy, the WCN and the plant together form a linear

system Σ̃. Then, by viewing the transmissions of the wireless nodes closest to the actuators as

the new ‘outputs’ of the system Σ̃, the problem of stabilizing the system with compensators at

the actuators fits within the classical decentralized control formulation described in Section IV.
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Consequently, Corollary 1 can be applied to obtain the following topological condition that

guarantees the existence of a stabilizing WCN configuration.

Theorem 4: Almost any system structurally equivalent to system Σ = (A,B,C) can be

stabilized with a WCN if for each plant state vertex xi ∈ X in the structural graph GΣ̃in
=

(VΣ̃, EΣ̃ ∪ Ein) there exists a cycle that contains the state vertex xi ∈ X and any WCN vertex

from V .

Proof: Consider the graph GΣ̃ = (VΣ̃, EΣ̃) of the structured system (13) composed of the

plant and the WCN. For each plant state vertex xi ∈ X in the structural graph GΣ, let Ai denote

the set of input vertices from which xi is reachable in the initial system, while VAi denotes the

set of the WCN nodes that are neighbors of the actuators in Ai. If for a plant state vertex xi there

exists a WCN state vertex zj ∈ VAi reachable from xi, then xi belongs to a strong component

with an edge from Ein. Since this holds for all plant state vertices, if all network state vertices

belong to a strong component that contains an edge from Ein, Corollary 1 will be satisfied, and

the system will not have structural fixed modes outside of the origin.

On the other hand, a fixed mode will be introduced with each WCN state vertex zi that does

not belong to a strong component in the graph GΣ̃in
= (VΣ̃, EΣ̃ ∪ Ein) with an edge from Ein

(this might happen if the network is disconnected). However, by setting to zero all the weights

associated with the links outgoing from zi, this WCN state vertex is effectively removed from

the network. In this case, due to the state vertex zi the system has a structured fixed mode in

the origin. Thus, in both cases the closed-loop system does not have structured fixed-modes

outside of zero, meaning that almost every system with this structure will be stabilizable using

the WCN.

VI. MINIMAL STABILIZING FEEDBACK CONNECTIONS

In this section, we investigate the minimal connectivity that the WCN should provide to ensure

that the conditions from the previous section hold.

For traditional decentralized continuous-time systems, [29] considered the problem of deter-

mining the minimal number of direct connections between plant outputs and inputs to ensure that

the system does not have structured fixed modes. We will now present a simplified procedure

for discrete-time control systems by leveraging the fact that fixed modes at zero do not cause

problems for stabilization in discrete-time. Specifically, we determine a minimal set of feedback
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edges that guarantee the absence of nonzero structural fixed modes. We will then use this result

in conjunction with our results from the previous section to infer properties that the WCN should

satisfy in order to stabilize the plant.

Consider a system Σ = (A,B,C). For all sets I ⊆ M and J ⊆ P we denote with BI and

CJ submatrices of B and C consisting of columns of B and rows of C with indices in I and J ,

respectively. A system ΣIJ = (A,BI ,CJ) can be described with a graph GΣIJ = {VΣIJ , EΣIJ},

which can be obtained from GΣ = {VΣ, EΣ} by keeping input vertices from the index set I and

output vertices associated with set J . These sets are denoted by UI and YJ , respectively. Since

we consider structurally controllable and observable systems, we will use the following results

that specify a set of conditions for structural controllability/observability.

Theorem 5 ([23]): A structured system is structurally controllable (observable) if and only if

each state vertex in the corresponding graph is the end (beginning) of a U-rooted (Y-topped)

path, and there exists a disjoint union of a U-rooted (Y-topped) path family and a cycle family

that covers all state vertices.

The condition pertaining to disjoint paths and cycles in the above theorem is only to preclude

uncontrollable and unobservable modes at zero. As with the case of fixed modes, these modes at

the origin are not a major concern for discrete-time systems, and thus we present the following

simplified tests for structural stabilizability and detectability.

Corollary 2: A structured system is structurally stabilizable (detectable) if each state vertex

is the end (beginning) of a U-rooted (Y-topped) path.

Definition 4: A stabilizable subset of the plant inputs (i.e., actuators) is a set I ⊆M such that

(A,BI) is structurally stabilizable. Similarly, a detectable subset of the outputs (i.e., sensors) is

a set J ⊆ P for which (A,CJ) is structurally detectable.

For some stabilizable subsets I , it may be possible to find an even smaller stabilizable subset

I ′ ⊂ I . Since we wish to investigate the minimal feedback connectivity requirements, we use

the notion of essential input and output sets from [29].

Definition 5: A stabilizable subset I is called an essential input set if there is no structurally

stabilizable (strict) subset I ′ ⊂ I . A detectable subset J is called an essential output set if there

is no structurally detectable (strict) subset J ′ ⊂ J .

Note that for a particular system Σ = (A,B,C) there might exist several different essential

input and output sets, with potentially different numbers of elements. We use essential input and
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output sets to determine the minimal number of feedback connections that would guarantee that

a system does not have nonzero structural fixed modes. From Corollary 1, for essential input

and output sets I and J , at least max(|I|, |J |) feedback connections have to be used. We now

show that this number of feedback connections is also sufficient.

Theorem 6: For a structurally stabilizable and detectable system Σ = (A,B,C), let I and J

be an essential input and output set, respectively. Then the system can be stabilized by introducing

max(|I|, |J |) feedback connections (directly between appropriate outputs and inputs).

The proof (in Appendix A) defines Algorithm 1 that takes the sets I and J as input and

creates max(|I|, |J |) feedback lines between output vertices from YJ and input vertices from

UI , which satisfy the conditions from Corollary 1.

We now apply these general results to the case where a WCN is used for control. As before,

the key trick is to view the composition of the WCN and the plant as a new dynamical system. In

this case, the set of nodes VA (in the neighborhood of the actuators) corresponds to the outputs

of the new system. The new system will be structurally detectable if there exists a path between

each essential plant output and a node from VA. Therefore, we introduce the following results.

Definition 6: A detectable set of WCN nodes VDET ⊆ VA is a set of nodes such that for each

sensor sj that corresponds to an output yj from an essential output set J , there exists a path

from sj to a node from VDET .

Corollary 3: Consider a structurally stabilizable and detectable system Σ(A,B,C) with es-

sential input and output sets I and J . The system can be stabilized with a WCN described by a

graph G = {V , E} using max(|I|, |VDET |) links between the nodes from a detectable set VDET
and actuators corresponding to the essential input set I .

The proof of the above corollary is readily obtained by noticing that if such a detectable set

of nodes VDET ⊆ VA exists, then due to structural detectability of the plant there would be

a path from each plant state vertex to a vertex representing the state of a node from VDET .

Furthermore, all network nodes that do not have a path to at least one node from VDET can be

disregarded as in the proof of Theorem 4 (by setting all related weights to zero). Hence, the

‘new’ system Σ̃ that contains the plant and the network is structurally detectable. Similarly, it

can be shown that the ‘new’ system is stabilizable and the proof follows from Theorem 6, by

applying Algorithm 1.

However, there is a possibility that the feedback edges created by Algorithm 1 cannot be
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physically implemented, as it might cause an actuator to rely on a wireless node that is not

actually in its neighborhood (e.g., if an actuator is outside of a node’s communication range). The

following corollary introduces a straightforward condition to preclude this case, and a requirement

for designing WCNs that guarantee stabilization of almost all systems with a certain structure.

Corollary 4: Almost every structurally stabilizable and detectable system Σ = (A,B,C) can

be stabilized if the following conditions are met:

i. The WCN is strongly connected.

ii. There exists an essential output set with each sensor in the set connected to the network.

iii. There exists an essential input set where each actuator in the set is a neighbor of at least

one network node.

The corollary follows from Theorem 4 since in a strongly connected network where each

sensor (i.e., plant output) connects to at least one network node, there is a path from every

sensor to every node, including all nodes from VA.

To highlight the difference between the above corollary and Theorem 4, consider the WCN

with the topology presented in Fig. 2. From Theorem 4, the WCN can be used to stabilize almost

all structurally stabilizable and detectable plants whose sensors and actuators are connected to

the WCN (as shown in the figure). On the other hand, Corollary 4 requires that the WCN

is strongly connected. Since the network has only directed links this condition is clearly not

satisfied. However, the corollary can be used if we allow the network nodes to have undirected

links (i.e., by adding the link v2 → v1).

VII. WCN TOPOLOGY DESIGN TO STABILIZE A NUMERICALLY SPECIFIED PLANT

In the previous sections, we have been focused on designing a WCN for a plant from a purely

structural perspective, without regard for the numerical values. This allowed us to characterize

WCN properties that would guarantee stabilization of almost any plant having a certain structure.

However, one may be interested in designing a WCN for a given (numerically specified) system

Σ = (A,B,C). If this system falls within the measure zero set that is not covered by the

structural analysis, one has to be more careful in designing the WCN. Specifically, any plant

that has nonzero eigenvalues of multiplicity larger than 1 will not be captured by the generic set

[18], and we will show that the multiplicity of eigenvalues in the plant will require the WCN to
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contain linkings of a sufficiently large size.8 To the best of our knowledge this is the first work

that studies the interplay between numerically specified systems (with eigenvalues of multiplicity

larger than one), and structured systems (where graph-theoretic analysis dominates). Previous

approaches that used graph-theory to analyze numerical systems were limited to the cases where

all eigenvalues have multiplicity equal to one (e.g., [19]).

Consider a WCN used to control a given (numerically specified) system Σ = (A,B,C),

where the pair (A,C) is detectable, and the pair (A,B) is stabilizable. Assuming for now that

the plant actuators do not close the loop via the transmissions of nearby wireless nodes, the

overall system Σ̃ = (Ã, B̃, C̃) (plant and wireless network) is given by (13). As in the previous

sections, we consider the following problem. How should the WCN be designed to guarantee

that a dynamic compensator can be designed at each actuator to stabilize the system, when each

actuator only receives the transmissions of the wireless nodes in its neighborhood?

To answer this, for any actuator ai, let Vai denote the WCN nodes whose transmissions can

be heard by ai. For any set I ⊆M, define VM\I =
⋃
i∈M\I Vai as the set of all nodes that are in

the neighborhood of actuators not in I . To show that the system (13) has no fixed modes with

respect to the feedback structure Va1 , ...,Vam , we use Theorem 2 to prove that for all unstable

eigenvalues λ of the matrices A or W, rank(M̃I,F (λ)) ≥ n+N where

M̃I,F (λ) ,


A− λI 0 BI

HC W − λI 0

0 EF 0

 . (14)

Here, EF is a matrix with a single 1 in each row, selecting the portions of the WCN state vector

z[k] corresponding to the nodes in VM\I . We start with the follwing lemma.

Lemma 1: For almost any choice of nonzero parameters in W, a nonzero eigenvalue λ of

A is a fixed mode of Σ̃ = (Ã, B̃, C̃) if and only if it is a fixed mode of the system Σ =

(A,B,EF (W − λI)−1HC).

Proof: For a structured square matrix W and for a finite set of nonzero complex numbers

L, the eigenvalues of W will all be different from the elements of L for almost any choice of

parameters in W [18]. In particular, this implies that any nonzero eigenvalue λ of A will not

8For a directed graph G = {V, E}, given two subsets V1,V2 ⊂ V , an r-linking from V1 to V2 is a set of r vertex disjoint

paths, each with start vertex in V1 and end vertex in V2.
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be an eigenvalue of W (for almost any choice of free parameters). Then, for any I ⊆ M, the

matrix M̃I,F from (14) has rank

rank
(
M̃I,F (λ)

)
= rank


A− λI 0 BI

0 W − λI 0

EF (W − λI)−1HC 0 0


= N + rank

 A− λI BI

EF (W − λI)−1HC 0

 . (15)

Therefore, λ is a fixed mode of Σ̃ = (Ã, B̃, C̃) with respect to Va1 , ...,Vam if and only if it is a

fixed mode of (A,B,EF (W− λI)−1HC), with respect to the feedback pattern Va1 , ...,Vam .

Consider any set I ⊆M, and let rank
[
A− λI BI

]
= n−dI , where dI is a nonnegative inte-

ger. Thus, to ensure that λ is not a fixed mode of the system Σ̃, the matrix
[
EF (W − λI)−1HC 0

]
must provide dI rows that are linearly independent of all rows in

[
A− λI BI

]
. We will derive

conditions on the WCN topology to guarantee this.

Due to the assumption that the pair (A,C) is detectable, we have rank
[
A−λI
C

]
= n for any

unstable eigenvalue λ of A [30]. This means that for any set I ⊆ M, there are at least dI

rows in the matrix
[
C 0

]
that are linearly independent of the rows in

[
A− λI BI

]
. Let

J ′1, J
′
2, . . . , J

′
s be all possible sets of dI rows of C that satisfy this linear independence property,

and let Y1,Y2, . . . ,Ys be the sets of dI outputs of the plant corresponding to those rows. If we

can guarantee that the row space of CJ ′i
is contained in the row space of EF (W − λI)−1HC

for some i, then the right hand side of (15) will be at least N + n.

To satisfy this condition, we start by noting that EF (W − λI)−1H in (15) is the transfer

function of the WCN (where the outputs are taken to be nodes in the set VM\I) evaluated at λ.

This matrix must have rank at least dI in order for the right hand side of (15) to have rank n. To

analyze this condition, we can consider a general structured linear system Σ. We are interested

in the largest possible rank of the transfer function over all possible values of the nonzero free

parameters and λ; this is called the generic rank of the transfer function matrix for the system.

The following results relate this rank to a property of the graph associated with the system.

Lemma 2 ([31]): Let Σ = (A,B,C) be a linear system, and let λ be such that A − λI is

invertible. Then rank(M(λ)) = rank (C(A− λI)−1B) + n, where M(λ) =
[
A−λI B
C 0

]
Theorem 7 ([31]): Let Σ = (A,B,C) be a structured linear system, and GΣ its associated

graph. The generic rank of the transfer function matrix is equal to the size of the largest linking
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from the input vertices to the output vertices in GΣ.

We can now derive a condition that guarantees that the transfer function matrix has full rank

when evaluated at certain values λ.

Lemma 3: Consider the structured system Σ = (A,B,C) where the graph GΣ contains a

linking of size m from the input to the output vertices. Let L = {λ1, λ2, . . . , λr} be a predefined

finite set of nonzero complex numbers. Then,

rank(C(A− λiI)−1B) = m, i ∈ {1, 2, . . . , r} (16)

for almost any choice of free parameters in (A,B,C).

The proof of the lemma can be found in Appendix B.

Now that we have a handle on some rank properties of the matrix EF (W − λI)−1H, we

return to the problem of ensuring that the row space of CJ ′i
is contained in the row space of

EF (W − λI)−1HC, for some i ∈ {1, 2, . . . , s}. The following theorem provides topological

conditions for the WCN to satisfy in order to guarantee that this condition holds.

Theorem 8: Consider the detectable and stabilizable (numerical) system Σ = (A,B,C), along

with a WCN. Let λ be an unstable eigenvalue of A. For any subset I ⊆ M, let dI = n −

rank
[
A− λI BI

]
. If for every possible subset I , there exists a subset J ′ of dI plant outputs

such that rank
[
A−λI BI
CJ′ 0

]
= n, and the WCN contains a dI linking from those outputs to VM\I ,

then for almost any choice of free parameters in W and H, λ is not a fixed mode of the system

Σ̃. Furthermore, if the above holds for every unstable eigenvalue of A, then for almost any choice

of parameters in W and H such that W is a stable matrix, system Σ̃ will have no unstable fixed

modes.

The proof of the theorem is provided in Appendix C.

To illustrate the use of the above theorem, we consider a WCN with the topology from Fig. 2,

where the network provides a path between each sensor-actuator pair. Thus, if for any unstable

eigenvalue λ the plant satisfies the condition that rank(A − λI) = n − 1, then the WCN can

guarantee closed-loop system stability. Note that the condition is true if all eigenvalues of A

are distinct. However, even if some of the unstable eigenvalues are repeated (i.e., have algebraic

multiplicity larger than one), the WCN can ensure system stability as long as the rank condition

is satisfied. To specify this condition we can also use the notion of geometric multiplicity of

eigenvalues of the plant: for any eigenvalue λ, rank(A − λI) = n − dλ, where dλ denotes its
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geometric multiplicity. Therefore, for the topology from Fig. 2, the WCN can stabilize all plants

that have the maximal geometric multiplicity of all unstable eigenvalues (d) equal to 1. Similarly,

we observe that the WCN from Fig. 4(b) can ensure stability of all plants with d ≤ 3.

While the above result provides a method to check if the system has any fixed modes when

controlled over a WCN, it requires all possible subsets of M to be tested. The following much

simpler result provides a sufficient condition for the system to have no fixed modes.

Theorem 9: Consider the detectable and stabilizable system Σ = (A,B,C), along with a

WCN. Let d denote the largest geometric multiplicity of any unstable eigenvalue of A. Suppose

the vertex connectivity of the network is at least d, and each actuator has at least d WCN nodes

in its neighborhood. Then, there exists a stabilizing WCN configuration.

Proof: First, note that for any unstable eigenvalue λ of A, we have rank(A−λI) ≥ n−d, and

thus the quantity dI specified in Theorem 8 is no larger than d. Also, for any subset I ⊂ M,

let J ′ be the set of dI outputs specified in that theorem, let Y ′ be the corresponding set of

outputs, and let V ′S be the nodes in the WCN that receive information from the outputs in Y ′.

Next, note that |VM\I | ≥ d ≥ dI by the assumption that each actuator has at least d wireless

nodes in its neighborhood. Since the connectivity of the network is d, and since |VM\I | ≥ d and

|V ′S| = |Y ′| = dI ≤ d (by the assumption from Remark 4), there exists a linking of size dI from

the set V ′S to VM\I [32]. Thus, for almost any choice of parameters in W and H such that W is

stable, all conditions in Theorem 8 are satisfied; the system will have no unstable fixed modes

which means that it can be stabilized via a dynamic compensator at each actuator.

Remark 5: The linking and connectivity conditions from Theorems 8 and 9 are reminiscent of

the classical requirement that a system having an unstable eigenvalue of geometric multiplicity d

must have at least d outputs in order to be detectable [30]; they ensure that the new plant defined

in (13) is detectable. Similar investigations of the sizes of cut-sets required for stabilization can

be found in [33], [34], [35].

It is worth noting that the obtained results only ensure the existence of a stabilizing WCN

configuration where each network node maintains a scalar state; these topological conditions do

not provide any guarantees on the sizes of the states maintained by the actuators. As shown

in [16], controllers used in the decentralized control setup from (10) could be (in the worst case)

as large as the plant itself. As described before, in most industrial automation or process control

scenarios this is not a concern since, due to physical constraints, actuators cannot typically be
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battery operated. This enables the use of more powerful computational platforms at the actuators,

capable of implementing large-state controllers.

We have investigated this issue on several examples. In [36], we considered a setup where a

single-input-single-output plant with three states is to be controlled using the WCN with two

nodes, as in Fig. 2, where the additional link v2 → v1 was added. We showed that for 3-state

plants, stabilizing WCN configurations can be extracted where the single actuator maintains

a state from R2. Furthermore, in [7] we showed that the same plant can be stabilized by a

WCN consisting of nine nodes with a mesh topology, where the actuator maintains a dynamical

controller with a scalar state. Finally, we generated stabilizing WCN configurations for 4 × 4

mesh networks used to control random plants with n = 50 states, m = 10 inputs, and p = 10

outputs, where all ten actuators maintain scalar states [7]. Consequently, it is natural to ask if

there exists a dependency between the sizes of the controllers maintained at the actuators, plant

dynamics, and the topology of the network. In the above examples, we were able to “shift”

some of the computation from the actuators into the network, thus reducing the controllers’

sizes. However, specifying a formal trade-off between the sizes of actuators’ controllers and the

network topology will be an avenue for future work.

VIII. EXTENSIONS TO POINT-TO-POINT NETWORKS

Although we have focused thus far on dynamical system stabilization using a Wireless Con-

trol Network (which employs a local broadcast communication model), our analysis can be

extended in a straightforward manner for control over networks with wired (or point-to-point)

communication links. We consider the problem of network synthesis for the case where network

coding over point-to-point communication links is used (as shown in Fig. 4(a)). Our goal is to

provide topological conditions that guarantee that there exist linear dynamical controllers (at the

actuators) that can stabilize the plant. We focus on two scenarios. We start with the case when

the network delay (over each link in the network) is equal to the sampling period of the plant.

We then investigate the case when an idealized, delay-free network is used. It is worth noting

that this scenario can be used to model closed-loop systems where the speed of the network is

much higher than the sampling period of the plant.

Suppose that Gc = (Vc, Ec ∪ Y1:p ∪U1:m) is a network with point-to-point links, where Y1:p =

∪pi=1Yi represents the links coming into the network from the plant’s sensors, and U1:m = ∪mj=1Uj
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Fig. 4. (a) Point to point communication in a simple network [12]; Sources Y1:2 represent input processes, U1:3 denotes the

network outputs; (b) The directed labeled line graph for the graph from (a) (only some of the links have been labeled to reduce

clutter).

represents the set of links coming out of the network into the plant’s actuators. As is standard in

linear network coding, the information sent on each outgoing edge from a given network node

is a linear combination of information carried on the edges entering that node. Note that in the

wired communication model, the linear combinations on each outgoing edge are allowed to be

different. As shown in [12], from the graph Gc we can obtain the (unique) directed labeled line

graph B = (VB, EB), where VB = Ec∪Y1:p∪U1:m, and for all ei, ej ∈ VB, (ei, ej) ∈ EB if and only

if there exist v1, v2, v3 ∈ Vc such that ei = (v1, v2) and ej = (v2, v3) (i.e., head(e1) = tail(e2)).

Each link (ei, ej) ∈ EB is labeled with the coefficient (i.e., weight) assigned to the information

received over edge ei in the linear combination that is used to produce information over ej . An

illustration of this procedure is shown in Fig. 4(b), where the labeled line graph is given for the

network from Fig. 4(a). Note that each link in the initial graph corresponds to a unique vertex

in the labeled line graph.

If each link in the initial network introduces a fixed communication delay (as in Time-Triggered

networks [6]), the labeled line graph directly corresponds to the WCN model. In this case the

matrices W,H,G contain the gains between network links, between inputs and network links,

and network links and the outputs, respectively. Therefore, if we are able to derive a stabilizing

configuration for the corresponding WCN, the same configuration (i.e., the network coding

parameters and parameters of the controllers) would guarantee stability when network coding is

used in the initial point-to-point network Gc. We start by noting that Theorems 8 and 9 specify

sufficient conditions for the WCN topology to ensure that such a configuration exists. These

conditions require a sufficient vertex cut (i.e., linking) for the WCN topology. Since each vertex

in the WCN corresponds to a specific edge in the initial network (and vice versa), we can directly
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obtain sufficient topological conditions for a network that uses network coding over point-to-

point links. Thus, we can specify a theorem equivalent to Theorem 9 (a theorem equivalent to

Theorem 8 can also be stated).

Theorem 10: Consider the detectable and stabilizable system Σ = (A,B,C), and a network

whose link communication delay is equal to the plant’s sampling time and which employs

network coding over point-to-point links. Let d denote the largest geometric multiplicity of any

unstable eigenvalue of A. If the minimal edge cut of the network between sensors and actuators

is at least d, then the system Σ̃ can be stabilized via a dynamic compensator at each actuator.

Similar results can be obtained in the case with delay-free communication networks, where

the information injected in the network by the plant’s sensors is expected to be instantaneously

available at the actuators. In this case, as described in [12], for the directed labeled graph of the

initial network we can define W – the adjacency matrix of the labeled graph. Here, wij is the

weight assigned to the edge ei in the linear combination used to derive ej (if head(ei) 6= tail(ej)

then wij = 0).9 Using the matrix W, as in [12] it can be shown that for any set I ⊆ M,

EF (W − I)−1H is the transfer matrix of the network, from the input edges (i.e., from the

sensors) to the output edges (i.e., to the actuators specified in the set AM\I =
⋃
i∈M\I ai).

10

This is equal to the WCN transfer function, evaluated at λ = 1, which is used in the proof

of Theorem 8. Therefore, by using the same approach from the proof of Theorem 8, we can

formulate theorems equivalent to Theorems 8 and 9 (as in the case where networks introduce

delay). This means that, even for delay-free networks that use network coding over point-to-point

links, Theorem 10 specifies sufficient conditions for the existence of network coding parameters

for which the plant can be stabilized via controllers at the actuators.

As an illustration, we consider the networks from Fig. 2 and Fig. 4(b). In the first case, all

plants with the maximal geometric multiplicity of all unstable eigenvalues (d) equal to 1 can be

stabilized with controllers at actuators. Similarly, for the network from Fig. 4(a) and for all plants

with d ≤ 3 there exist network coding parameters and stabilizing controllers at the actuators.

9Note that in this case, the initial graph has to be acyclic, which in-turn causes the line graph to be acyclic.
10In this context we can also observe that the result from Theorem 7 is a structural equivalent for the results from [12], [25],

[35] that relate the size of the minimal edge cut of the network with the rank of the transfer matrix.
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IX. CONCLUSION

In this paper, we have studied the problem of stabilizing a given dynamical system over

a network. In contrast to traditional approaches that treat the network purely as a routing

mechanism (delivering sensor measurements to controllers, and control inputs to actuators), we

propose a fundamentally different approach that relies on inducing carefully chosen dynamics on

the network (via the form of a simple distributed algorithm), and using those dynamics to stabilize

the plant. This approach does away with end-to-end routing entirely, and only requires that

nodes transmit information to their nearest neighbors at each time-step. We provided topological

conditions on the network that allow the system to be stabilized in this manner. Specifically,

we showed that if the network is sufficiently well connected, each node and actuator can use

a linear iterative strategy with appropriately chosen weights to stabilize the plant; furthermore,

the connectivity required is determined by the dynamics of the plant, rather than the number of

source nodes (as in traditional information transmission scenarios). Our approach also extends in

a straightforward manner to wired (point-to-point) networks via a standard graph transformation.

APPENDIX A

PROOF OF THEOREM 6

Proof: A directed graph GΣ = {VΣ, EΣ}, representing the structured system Σ, can be

uniquely decomposed into k strongly connected components ξ = {ξ1, ..., ξk}. A component ξi is

referred to as a root component if no vertex in the component has incoming edges from vertices

in any other component. Also, ξj is called a leaf component if no vertex in ξj has an outgoing

edge to a vertex in any other component.

Consider a directed acyclic graph Gξ = {ξ ∪ UI ∪ YJ , Eξ ∪ EIξ ∪ EJ ξ}, where (ξi, ξj) ∈ Eξ if

and only if component ξj has an incoming edge from a vertex in ξi, and

EIξ =

 (ui, ξt)
i ∈ I, ξt is a root component from ξ,

ξt has an edge from input vertex ui

 ,

EJξ =

 (ξt, yj)
j ∈ J, ξt is a leaf component in ξ,

output vertex yj has an edge from ξt

 .

The graph Gξ is called a condensation of the initial graph [18].

Since the system Σ is structurally stabilizable and detectable, each leaf component has to be

connected to an output vertex yj ∈ YJ and each root component is connected to an input vertex
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Algorithm 1 Creating a minimal set of feedback connections
1. Select an input vertex ui1 ∈ UI and a corresponding output vertex yj1 ∈ YJ such that yj1
is reachable from ui1 in the graph Gξ.

2. At iteration t ≥ 1, select an input vertex uit+1 ∈ UI \ {ui1 , ..., uit} such that there exists an

output vertex yjt+1 ∈ YJ \ {yj1 , ..., yjt} reachable from uit+1 in the graph Gξ. If such an input

uit+1 does not exist, add the edge (yjt , ui1) to EF , and go to the next step. Otherwise, add the

edge (yjt , uit+1) to the set EF , set t← t+ 1 and repeat step 2.

3. If {ui1 , ..., uit} 6= I and {yj1 , ..., yjt} 6= J then select uit+1 /∈ {ui1 , ..., uit} and yjt+1 /∈

{yj1 , ..., yjt} and add the edge (yjt+1 , uit+1) to EF . Set t← t+ 1 and repeat step 3.

4. If {ui1 , ..., uit} = I then for all yj /∈ {yj1 , ..., yjt} add the edge (yj, ui) to EF , where ui is

an input vertex from which yj can be reached in the initial graph Gξ.

5. If {yj1 , ..., yjt} = J then for all ui /∈ {ui1 , ..., uit} add the edge (yj, ui) to EF , where yj is

an output vertex reachable from ui in the graph Gξ.

ui ∈ UI . We now use Algorithm 1 to introduce EF , a set of feedback links between output

vertices from YJ and input vertices from UI .

In step 1 there has to exist an output yj1 as components connected to ui1 have to be connected

to at least one output (since the system is detectable). Step 2 will create a cycle C in the newly

obtained graph Gξ,F = {ξ ∪ UI ∪ YJ , Eξ ∪ EIξ ∪ EJ ξ ∪ EF} that contains the same number of

input and output nodes. In step 3, pairs of input and output vertices are selected from all input

and output vertices from I and J that are not a part of the cycle. If (yj, ui) is such a pair, yj

is not reachable from ui in the initial graph Gξ (otherwise vertex ui would be selected in step

2). In addition, there has to exist a vertex ur ∈ C, from which vertex yj can be reached, since

if that is not the case the vertices ur, yj would be selected in step 2. Similarly, there exists a

vertex yl ∈ C reachable from ui. Therefore, in the newly created graph Gξ,F there would exist a

cycle containing vertices yj, ui, yl, ur.

After step 3, min(|I|, |J |) feedback links will be added to the set ξ. Finally, in steps 4 and 5

the remaining output or input vertices, respectively, will be connected to the vertices from which

they can be reached. Hence, Algorithm 1 will use max(|I|, |J |) feedback connections, and for
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each input and output vertex ui ∈ I and yj ∈ J , such that yj is reachable from ui in the graph

Gξ, there will exist a path from yj to ui in the new graph Gξ,F that contains an edge from EF .

Thus, each component ξi will belong to a strongly connected component with an edge from EF ,

which (from Corollary 1) implies that the system will not have structural fixed modes.

APPENDIX B

PROOF OF LEMMA 3

Proof: We first show that there exist free parameters for which rank(C(A−λiI)−1B) = m

for i ∈ {1, 2, ..., r}. We then show that this holds for almost any choice of free parameters.

If the graph GΣ contains an m-linking, Theorem 7 and Lemma 2 tell us that there is a

numerical choice of free parameters and λ for which rank(M(λ)) = n + m. Thus, there must

exist an (n + m)-th order minor of M(λ) that is nonzero. If we replace λ with a variable z,

and revert all of the nonzero values in the system matrices to free parameters, this minor is a

nonzero polynomial f(z) in z and the free parameters (we leave out the free parameters in the

argument of f(·) for clarity).

For the specific choice of free parameters that guarantees that rank(C(A− λI)−1B) = m, if

f(z) has no roots in common with the set L, then we have shown that there exists one choice of

free parameters for which (16) holds (because f(λi) 6= 0 for i ∈ {1, 2, . . . , r}, which means that

rank(M(λi)) = n+m). Otherwise let λmin be the nonzero root of f(z) with smallest magnitude,

and let α be a positive real number such that αλmin has larger magnitude than the largest element

of L. Then, if we scale A,B and C by α, one can verify that the resulting (n + m)-th order

minor of M(z) becomes αn+mf( z
α

). The roots of this polynomial are the roots of f(z) scaled

by α, and so all nonzero roots will have magnitude larger than any elements in L. Thus, there

exists a choice of free parameters for which (16) holds.

To show that (16) holds for almost any choice of free parameters, we denote with g(z) a

polynomial whose roots are the elements of L (extended to include complex conjugate roots

if necessary). By the above argument, f(z) and g(z) will have no roots in common for some

choice of free parameters, or equivalently, the resultant of f(z) and g(z) will be nonzero.11 If

11The resultant of two polynomials is the determinant of the Sylvester matrix associated with those polynomials, and is

nonzero if and only if the polynomials have no roots in common [37].
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we revert f(z) to be a polynomial in the free parameters, the resultant of g(z) and f(z) will also

be a nonzero polynomial in the free parameters. The set of parameters causing this resultant to

be zero are the parameters for which f(z) has a root in L. Thus, the set of free parameters for

which (16) does not hold lies on an algebraic variety, which proves the lemma.

APPENDIX C

PROOF OF THEOREM 8

Proof: For a given subset I and the corresponding set VM\I , denote the graph of the

structured system ΣWCN = (W,H,EF ) by GΣWCN
.12 Noting that the inputs to the WCN are the

outputs of the plant, the input vertices in GΣWCN
are given by Y . Furthermore, denote the output

vertices of GΣWCN
by VM\I . Consider any subset I ⊆M for which dI > 0, and let Y ′ be the set

of dI outputs corresponding to the set J ′ described in the theorem. According to the assumption

in the theorem, the graph GΣWCN
contains a linking of size dI from these outputs to VM\I . Let

HJ ′ denote the matrix consisting of the columns of H corresponding to the outputs in set Y ′, and

consider the system (W,HJ ′ ,EF ). The graph of this system is obtained simply by removing

the vertices that are not in Y ′ from the graph GΣWCN
. Since this reduced graph has a dI-linking

from the inputs to the outputs, Theorem 7 and Lemma 3 indicate that EF (W − λI)−1HJ ′ will

have rank dI for almost choice of free parameters in W and HJ ′ . Thus, EF (W−λI)−1HJ ′CJ ′

will have rank dI , and

rank

 A− λI BI

EF (W − λI)−1HJ ′CJ ′ 0

 = n.

The matrix
[

A−λI BI
EF (W−λI)−1HC 0

]
has rank n for some choice of W and H (i.e., by setting the

columns of H that are not in J ′ to be zero, and choosing all other parameters almost arbitrarily).

Therefore, there is an n-th order minor of the above matrix that is nonzero. Setting all nonzero

entries in the columns of H that are not in HJ ′ to be free parameters, this minor will be a

nonzero polynomial in those parameters. Thus, the set of parameters for which the rank of the

above matrix is less than n lies on an algebraic variety, and so the matrix has rank at least n

for almost any choice of free parameters.

12Although EF is a zero-one matrix, as in Remark 4 the fact that the matrix contains a single 1 in each row allows us to

consider the system as structured.
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The above analysis holds for every subset I ⊆ M, and thus λ is not a fixed mode of the

system. Furthermore, if the conditions in the theorem hold for every unstable eigenvalue of A,

all of these eigenvalues will not be fixed modes for almost any choice of free parameters in W

and H. Finally, note that the eigenvalues of Ã in (13) are the union of the eigenvalues of A

and W. The set of free parameters that makes W a stable matrix has measure greater than zero,

and the above analysis will hold for almost any such choice of parameters. This guarantees that

no eigenvalue of W can be an unstable fixed mode, which concludes the proof.
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