
Finite-Time Distributed Consensus in Graphs with
Time-Invariant Topologies

Shreyas Sundaram and Christoforos N. Hadjicostis

Abstract— We present a method for achieving consensus in
distributed systems in a finite number of time-steps. Our scheme
involves a linear iteration where, at each time-step, each node
updates its value to be a weighted average of its own previous
value and those of its neighbors. IfD denotes the degree of
the minimal polynomial of the weight matrix associated with
the linear iteration, we show that each node can immediately
calculate the consensus value as a linear combination of itsown
past values over at mostD time-steps. We also show that each
node can determine the coefficients for this linear combination
in a decentralized manner. The proposed scheme has the
potential to significantly reduce the time and communication
required to reach consensus in distributed systems.

I. I NTRODUCTION

In distributed systems, it is often necessary for the various
nodes to come to an agreement about certain parameters. For
example, the nodes might be voting on a course of action,
or attempting to balance their workload across all available
computing resources. The problem of reaching consensus in
such systems has received extensive attention in the computer
science literature over the past few decades [1], leading tothe
development of various protocols. The topic of distributed
consensus has also attracted the attention of the control
community due to its applicability to tasks such as data
fusion in sensor networks and coordination of multi-agent
systems [2]. In these cases, the approach to consensus is to
use a linear iteration, where each node repeatedly updates
its value as a weighted linear combination of itself and its
neighbors [3], [4], [5], [6], [7]. These works have revealed
that if the network topology satisfies certain conditions, the
weights for the linear iteration can be chosen so that all of the
nodes asymptotically converge to the same value. One of the
benefits of using linear iteration-based consensus schemesis
that, at each time-step, each node only has to transmit a
single value to each of its neighbors. However, almost all of
the linear iteration schemes currently present in the literature
only produce asymptotic convergence (i.e., exact consensus
is not reached in a finite number of steps).

In this paper, we present a method to address the above
shortcoming of linear iteration-based consensus schemes.
Specifically, in graphs with time-invariant topologies, we

This material is based upon work supported in part by the National
Science Foundation under NSF Career Award 0092696 and NSF EPNES
Award 0224729, and in part by the Air Force Office of ScientificResearch
under URI Award No F49620-01-1-0365URI. Any opinions, findings, and
conclusions or recommendations expressed in this publication are those of
the authors and do not necessarily reflect the views of NSF or AFOSR.

The authors are with the Coordinated Science Laboratory andthe
Department of Electrical and Computer Engineering, University of Illinois
at Urbana-Champaign, Urbana, IL, 61801, USA. E-mail{ssundarm,
chadjic}@uiuc.edu

show that each node can immediately calculate the consensus
value after observing the evolution of its own value over a
finite number of time-steps. The topic of finite-time conver-
gence was briefly discussed by Kingston and Beard in [8].
However, the method described in that paper requires the
graph to be fully-connected for at least one time-step, which
is a very strict condition. In contrast, our method applies
to graphs with arbitrary (connected) topologies. Finite-time
consensus was also studied for continuous-time systems in
[9]. The approach in that paper was to have the nodes evolve
according to the gradient of a suitably defined function of
their values. The resulting protocol, which is nonlinear, does
not directly translate to discrete-time systems, and the paper
only considered a restricted class of possible consensus val-
ues. In contrast, our method achieves finite-time consensus
in discrete-time systems by running a simple linear iteration,
and allows the consensus value to be a broad range of linear
functions.

In our development, we will use the notationei to indicate
the column vector with a1 in its i’th position and zeros
elsewhere. We will say that an eigenvalue of a matrixW
is simple to indicate that it isalgebraically simple(i.e., it
appears only once in the spectrum ofW ) [10]. The notation
(·)′ indicates matrix transpose.

II. BACKGROUND

The interaction constraints in distributed systems can be
conveniently modeled via a directed graphG = {X , E},
whereX = {x1, . . . , xN} is the set of nodes in the system
and E ⊆ X × X is the set of directed edges (i.e., there
is a directed edge(xj , xi) ∈ E if node xj can transmit
information to nodexi). Note that undirected graphs can
be readily handled by treating each undirected edge as
two directed edges. All nodes that can transmit information
to node xi are said to be neighbors of nodei, and are
represented by the setNi. Suppose that each node has
some initial value, given byxi[0]. At each time-stepk, all
nodes update their values based on some strategy. For ease
of analysis, the values of all nodes at time-stepk will be
aggregated into the value vector

x[k] =
[
x1[k] x2[k] · · · xN [k]

]′
.

The scheme that we study in this paper makes use of linear
iterations; specifically, at each time-step, each node updates
its value as

xi[k + 1] = wiixi[k] +
∑

j∈Ni

wijxj [k]



where thewij ’s are a set of weights. The update strategy for
the entire system can then be represented as

x[k + 1] =








w11 w12 · · · w1N

w21 w22 · · · w2N

...
...

. . .
...

wN1 wN2 · · · wNN








︸ ︷︷ ︸

W

x[k] (1)

for k = 0, 1, . . ., wherewij = 0 if (xj , xi) /∈ E .
Definition 1 (Distributed Consensus):The system is said

to achieve distributed consensus if

lim
k→∞

x[k] = 1c
′x[0] ,

where1 is the column vector consisting of all1’s, andc
′ is

some constant row vector. In other words, the values of all
nodes converge to the same linear combination of the initial
node valuesc′x[0]. Whenc

′ = 1
N

1
′, the system is said to

perform distributed averaging(i.e., the consensus value is
the average of all initial node values).

The following result from [5] characterizes the conditions
under which the iteration (1) achieves consensus.

Theorem 1 ([5]): The iteration given by (1) achieves dis-
tributed consensus (under the technical condition thatc is
normalized so thatc′1 = 1) if and only if the weight matrix
W satisfies the following conditions:

1) W has a simple eigenvalue at1, and all other eigen-
values have magnitude strictly less than1.

2) The left and right eigenvectors ofW corresponding to
eigenvalue1 arec

′ and1, respectively.

Furthermore, [5] showed that the rate of convergence is
determined by the second largest eigenvalue ofW . Conse-
quently, to maximize the rate of convergence, the authors
of [5] formulated a convex optimization problem to obtain
the weight matrix satisfying the above conditions while
minimizing the magnitude of the second largest eigenvalue.

A salient feature of the analysis in [5], and of other linear
iterations studied in the literature (e.g., see [2] and the ref-
erences therein), is that they are concerned with asymptotic
convergence. However, we show in the next section that if
the matrixW satisfies the conditions in Theorem 1, then we
can obtain consensus in afinite number of steps. We then
extend our discussion to a larger class of weight matrices
(including matrices with unstable eigenvalues).

III. C ONVERGENCE IN AFINITE NUMBER OF STEPS

To see how one can obtain consensus in a finite number of
time-steps, we use the concept of theminimal polynomialof
a matrix. Specifically, the minimal polynomial of the matrix
W is the unique monic polynomialq(t) of smallest degree
such thatq(W ) = 0 . If the distinct eigenvalues ofW are
denoted byλ1, λ2, . . . , λm, then the minimal polynomial can
be explicitly calculated as

q(t) =

m∏

i=1

(t − λi)
ri , (2)

where ri is the size of the largest Jordan block ofW
corresponding to eigenvalueλi [10]. Note that the minimal
polynomial will have degree at mostN (since the sizes of
all Jordan blocks ofW have to add up toN ). Suppose the
minimal polynomial ofW has degreeD + 1 (D + 1 ≤ N ),
and expand (2) asq(t) = tD+1 +αDtD + · · ·+α1t+α0 for
some constantsα0, α1, . . . , αD. Sinceq(W ) = 0, we obtain
the identity

WD+1 + αDWD + · · · + α1W + α0I = 0 . (3)

Examining the linear iteration in (1), we note thatx[k] =
W kx[0] for all k. However, from (3), we see that the value
x[D + 1] can equivalently be obtained as

x[D + 1] = WD+1x[0]

= −(αDWD + · · · + α1W + α0I)x[0]

= −αDx[D] − · · · − α1x[1] − α0x[0] .

Therefore for allk ≥ 0 and for all1 ≤ i ≤ N , xi[k] satisfies
a linear difference equation of the form

xi[k+D+1]+αDxi[k+D]+· · ·+α1xi[k+1]+α0xi[k] = 0 .

In particular, after time-stepD + 1, each node only needs
to know its ownD + 1 previous values in order to compute
the linear iteration (1), and does not need to receive further
information from its neighbors. Taking the Z-transform of
the above expression, we obtain

(zD+1 + αDzD + · · · + α1z + α0)Xi(z) =
D∑

j=0

xi[j]z
D+1−j + αD

D−1∑

j=0

xi[j]z
D−j + · · ·+ α1zxi[0] .

(4)

The expression on the right side of the above equation repre-
sents the initial conditions of the linear difference equation,
and arises from the Z-transform (e.g., the Z-transform of
xi[k + 1] is zXi(z) − zxi[0], and so forth) [11]. The term
multiplying Xi(z) on the left side of the equation isq(z), the
minimal polynomial ofW . In particular, if W satisfies the
conditions in Theorem 1, the minimal polynomial will have a
single root atz = 1, and all other roots will have magnitude
less than1 (since the roots of the minimal polynomial are
the eigenvalues ofW ). We can therefore factorq(z) as

zD+1 + αDzD + · · · + α1z + α0 = (z − 1)p(z) ,

where

p(z) = zD + (1 + αD)zD−1 + (1 + αD + αD−1)z
D−2

+ · · · + (1 +
D∑

j=2

αj)z + (1 +
D∑

j=1

αj) . (5)

Since the roots ofp(z) have magnitude strictly less than1,
we can now use (4) and (5) in the final value theorem (e.g.,
see [11]) to obtain

lim
k→∞

xi[k] = lim
z→1

(z − 1)Xi(z)

=

[
xi[D] xi[D − 1] · · · xi[0]

]
S

[
1 1 · · · 1

]
S

, (6)



where

S =










1
1 + αD

1 + αD−1 + αD

...
1 +

∑D

j=1 αj










. (7)

Note that (6) is completely decentralized, in the sense thatthe
calculation of the final value of each component ofx does not
depend on any other component ofx. The only requirement
is that the linear difference equation be initialized with a
sufficiently large number of values. During this initialization
phase, each node obtains enough information about the
values of the other nodes to calculatec

′x[0].

0.2

0.2

0.2

0.2

−0.1

0.4

0.4

0.2

0.2 0.2

0.2

0.2

0.2

0.2

0.20.2
0.2

2

3

4

5

6

7

0.2

8

0.2
0.2

0.2

0.2

0.2

−0.1

−0.1

1

Fig. 1. Graph with optimal weights to maximize convergence rate [5].

Example 1:Consider the undirected graph from [5]
shown in Fig. 1. The objective in this system is for the
nodes to perform distributed averaging via linear iterations
(i.e., x[k] → 1

N
11

′x[0]). The weights on the nodes and
edges indicate the optimal weights to maximize the rate of
convergence for the system (or equivalently, to minimize
the second largest eigenvalue ofW ), as calculated in [5].
The corresponding weight matrixW is symmetric and has
eigenvalues eig(W ) = {1, 0.6, 0.4, 0, 0, 0,−0.4,−0.6}. The
eigenvalue1 is simple, and has1 as a right eigenvector and
c
′ = 1

N
1
′ as a left eigenvector. SinceW is symmetric, the

largest Jordan block for each eigenvalue will have size1.
Therefore, from (2), the minimal polynomial will be

q(t) = (t − 1)(t − 0.6)(t − 0.4)(t)(t + 0.4)(t + 0.6)

= t6 − t5 − 0.52t4 + 0.52t3 + 0.0576t2 − 0.0576t

≡ t6 + α5t
5 + α4t

4 + α3t
3 + α2t

2 + α1t + α0 ,

with degreeD +1 = 6. Using the above values for theαi’s,
the vectorS from (7) is

S =
[
1 0 −0.52 0 0.0576 0

]′
.

Suppose the initial values of the nodes are given by

x[0] =
[
1.3889 2.0277 1.9872 6.0379 2.7219

1.9881 0.1527 7.4679
]′

,

which has a mean of2.9715. Running iteration (1) forD +
1 = 6 time-steps, we get

[
x[5] x[4] x[3] x[2] x[1] x[0]

]
=















3.1148 2.7022 3.2728 2.2782 3.2039 1.3889
2.9303 3.0128 2.8791 2.8445 2.8521 2.0277
2.9240 3.0825 2.8395 3.2797 2.6049 1.9872
2.9050 3.0507 2.7866 3.1915 2.4579 6.0379
2.9050 3.0507 2.7866 3.1915 2.4579 2.7219
2.9050 3.0507 2.7866 3.1915 2.4579 1.9881
3.1705 2.6705 3.6210 2.0804 5.3800 0.1527
2.9177 3.1521 2.8000 3.7149 2.3576 7.4679















.

Each node can now obtain the consensus value by using (6)
to get

[
xi[5] xi[4] xi[3] xi[2] xi[1] xi[0]

]
S

[
1 1 1 1 1 1

]
S

= 2.9715

for 1 ≤ i ≤ 8.

IV. F INITE-TIME CONVERGENCE UNDERMORE

GENERAL CONDITIONS

We now discuss an extension of the above ideas to a
more general framework. We showed in the last section
that it is possible to obtain finite-time consensus with any
weight matrix that satisfies the conditions for asymptotic
consensus. In this section, we will show that one does not
need to restrict attention to such matrices. To accomplish
this, we use (6) as a guide to ask the question: when is it
possible for nodei to calculate the consensus value as a
linear combination of the valuesxi[0], xi[1], . . . , xi[Di], for
someDi? Mathematically, we would like to find a coefficient
vector Γi ≡

[
γi,Di

γi,Di−1 · · · γi,0

]′
for each nodei

such that
[
xi[Di] xi[Di − 1] · · · xi[0]

]
Γi = c

′x[0] . (8)

Note that we are not requiring all nodes to have the same
value of Di; we will comment more on this later in the
section. Sincexi[k] ≡ e′ix[k] = e′iW

kx[0], and since
equation (8) has to hold for anyx[0], we need to solve the
equivalent problem of findingγi,0, γi,1, . . . , γi,Di

such that

e′i
(
γi,Di

WDi + γi,Di−1W
Di−1 + · · · + γi,0I

)
= c

′ . (9)

The following theorem provides a method to determine
the coefficientsγi,j satisfying equation (9). Note that the
conditions onW required by the theorem are less restrictive
than those required for asymptotic convergence (as given
in Theorem 1): the only constraint onW is that it have
a simple eigenvalue with a right eigenvector that has all
entries nonzero. However, the magnitudes of the eigenvalues
are completely unconstrained (e.g., they can be unstable, if
desired).

Theorem 2:Let W be the weight matrix for a graph, with
the constraint thatwij = 0 if there is no edge from nodej
to nodei. SupposeW has a simple eigenvalue atµ, with

Wd = µd, c
′W = µc

′ ,



for some column vectorsc andd, where all entries ofd are
nonzero. Letq̂i(t) be any monic polynomial with a single
root att = µ that satisfiese′iq̂i(W ) = 0, and letpi(t) ≡

q̂i(t)
t−µ

.
Then

e′i
c
′
d

pi(µ)e′id
pi(W ) = c

′ . (10)

Proof: Sincee′iq̂i(W ) = 0 and q̂i(t) = pi(t)(t − µ),
we have

e′ipi(W ) (W − µI) = 0 .

This means thate′ipi(W )W = µe′ipi(W ), which indicates
that e′ipi(W ) is a left eigenvector ofW corresponding to
eigenvalueµ. Sinceµ is a simple eigenvalue ofW with left
eigenvectorc′, we have

e′ipi(W ) = νic
′ (11)

for some constantνi. Now, sinced is a right eigenvector of
W corresponding to eigenvalueµ, we havee′iWd = e′iµd =
µe′id. Right-multiplying (11) byd we get

νic
′
d = e′ipi(W )d = e′ipi(µ)d = pi(µ)e′id ,

from which we obtainνi =
pi(µ)e′

i
d

c′d
. Substituting this into

(11), we get the desired equation (10).
The result in Theorem 2 applies to any monic polynomial

q̂i(t) with a single root att = µ satisfying e′iq̂i(W ) = 0.
For any such polynomial, we can obtain the coefficients
γi,j in (9) as follows. First, findpi(t) = q̂i(t)

t−µ
≡ tDi +

βi,Di−1t
Di−1 + · · · + βi,0. Comparing (10) to (9), we can

then obtainΓi ≡
[
γi,Di

γi,Di−1 · · · γi,0

]′
as

γi,j =
c
′
d

pi(µ)e′id
βi,j , (12)

taking βi,Di
= 1. Node i can then use (8) to calculate

the consensus value afterDi + 1 time-steps. Note that
node i does not necessarily have to store all of the values
xi[0], . . . , xi[Di] in order to calculatec′x[0]. Instead, node
i only requires a single additional register, denotedx̄i[k],
initialized with x̄i[0] = γi,0xi[0]. At each time-step, after
nodei calculatesxi[k], it updates this additional register as
x̄i[k] = x̄i[k−1]+γi,kxi[k]. In this way,x̄i[Di] will contain
the consensus value given by (8).

One choice ofq̂i(t) satisfying the required conditions is
q(t), the minimal polynomial ofW . With this choice, the
coefficient vectorsΓi will be the same for all nodes, and all
nodes will takeD + 1 time-steps to calculate the coefficient
value (i.e.,Di = D for all i). Note that whenµ = 1, d = 1,
c
′
1 = 1, and q̂i(t) = q(t), equation (8) reduces to equation

(6). We now develop another choice of polynomials that can
be used to obtain finite-time consensus. We introduce the
notion of theminimal polynomial of nodei, and characterize
some properties of this polynomial.

Definition 2 (Minimal Polynomial of Nodei): The mini-
mal polynomial of nodei, denotedqi(t), is the monic
polynomial of smallest degree such thate′iqi(W ) = 0.

Theorem 3:The minimal polynomialqi(t) of nodei di-
vides the minimal polynomialq(t) of W for all 1 ≤ i ≤ N .

Proof: First, note that sinceq(W ) = 0, we automat-
ically have e′iq(W ) = 0 for all i. Therefore, the degree
of qi(t) is upper bounded by the degree ofq(t). Now
supposeqi(t) does not divideq(t). Then we can write
q(t) = qi(t)hi(t)+ ri(t) for some quotient polynomialhi(t)
and some remainder polynomialri(t) (of smaller degree
thanqi(t)). Therefore, we havee′iq(W ) = e′iqi(W )hi(W )+
e′iri(W ), and since bothe′iq(W ) ande′iqi(W ) are zero, we
must havee′iri(W ) = 0. However, this means thatqi(t) is
not the polynomial of smallest degree such thate′iqi(W ) = 0,
which contradicts our assumption. Thereforeri(t) must be
identically zero, and soqi(t) must divideq(t).

Lemma 1:Suppose the weight matrixW has a simple
eigenvalue atµ with right eigenvectord, where all entries
of d are nonzero. Thenqi(t), the minimal polynomial of
nodei, has a single root att = µ for all 1 ≤ i ≤ N .

Proof: Let the Jordan decomposition ofW be given by

W = T

[
µ 0
0 Z

]

T−1 ,

whereZ is the set of Jordan blocks of all eigenvalues not
equal toµ, andT is a nonsingular matrix whose columns are
the (generalized) eigenvectors ofW [10]. By the definition
of qi(t), we havee′iqi(W ) = 0, or equivalently,

e′iT

[
qi(µ) 0

0 qi(Z)

]

T−1 = 0 .

Sincee′iT is thei’th row of T , and since the first column of
T is d, the above equation becomes

[
di Ti,2:N

]
[
qi(µ) 0

0 qi(Z)

]

= 0 ,

wheredi is thei’th entry of d, andTi,2:N represents the last
N − 1 entries in thei’th row of T . This means that

[
diqi(µ) Ti,2:Nqi(Z)

]
= 0 ,

from which we have thatµ is a root of the polynomialqi(t)
(sincedi is nonzero). To show that it is a single root, note
that qi(t) divides the minimal polynomialq(t) of W (from
Theorem 3). Sinceµ is a simple eigenvalue ofW , q(t) will
have a single root att = µ (from (2)), and soqi(t) also has
a single root att = µ.

Based on the above properties ofqi(t) (the minimal poly-
nomial of nodei), we see that if one chooseŝqi(t) = qi(t)
in Theorem 2, then nodei could potentially calculate the
consensus value faster than ifq̂i(t) = q(t) (specifically after
Di + 1 time-steps, rather than afterD + 1 time-steps). Note
that the values ofDi might not be the same for all nodes,
and so some nodes can calculate the consensus value faster
than others (as we will see in a later example). In fact, once
a node has calculated the consensus value, it can then send
that value to its neighbors with a flag indicating that it is the
consensus value, and not simply the next step in the linear
iteration. In this way, slower neighbors of nodei can also



obtain the consensus value at most one time-step after node
i obtains the value.

The cost for obtaining faster consensus is that the poly-
nomialsqi(t) have to be calculated for each node, and con-
sequently, the coefficientsΓi may also be different for each
node. Given the matrixW , we can calculateqi(t) for each
i as follows. Supposeqi(t) = tDi+1 +αi,Di

tDi + · · ·+αi,0.
Sincee′iqi(W ) = 0, we have

e′i
(
WDi+1 + αi,Di

WDi + · · · + αi,0I
)

= 0 , (13)

or equivalently,

[
αi,0 · · · αi,Di

1
]








e′i
e′iW

...
e′iW

Di+1








︸ ︷︷ ︸

Θi

= 0 .

The matrixΘi in the above expression has the form of the
observability matrix for the pair(W, e′i) (e.g., see [11]).
Thus, qi(t) can be found by forming the matrixΘi and
increasingDi until Θi loses rank. The coefficients ofqi(t)
can then be obtained from the left nullspace ofΘi. In the
next section, we show how each node can calculate its
minimal polynomial (and hence its coefficient vectorΓi) in
a decentralized fashion.

V. DECENTRALIZED CALCULATION OF THE M INIMAL

POLYNOMIAL

If the global topology of the graph and all of the weights
are knowna priori to some centralized source, then the
minimal polynomials and theΓi’s can be calculated from the
weight matrixW and conveyed to the nodes, which could
then use these parameters to achieve distributed consensus.
However, in practice, it may the case that there is no cen-
tralized decision maker to assign the weights and calculate
the coefficient vectors, and therefore it will be necessary
for the nodes to calculate these parameters using only local
information. For example, if the graph is undirected and if
each node knowsN (or an upper bound forN ), each node
i can independently choose its weights as

wij =







1
N

, if j ∈ Ni

0, if j /∈ Ni

1 −
∑

l∈Ni
wil, if i = j.

(14)

The resulting weight matrix is symmetric and satisfies the
conditions of Theorem 1 withc′ = 1

N
1
′ [12]. Many other

choices of weights exist that provide asymptotic consensus
(e.g., see [2], [4], [7], [8]). In this section, we show how
the nodes can distributively calculate their own minimal
polynomials (and, correspondingly, the coefficient vectors)
once they choose their weights. To accomplish this, we will
assume that the nodes knowN (or an upper bound forN ).

Let x∗,1[0], x∗,2[0], . . . , x∗,N [0] denote a set ofN differ-
ent initial conditions. For each of these initial conditions,
suppose that the nodes run the linear iteration (1) forN + 1
time-steps (i.e., they calculatex∗,j [k + 1] = Wx∗,j [k] for

j = 1, . . . , N and 0 ≤ k ≤ N − 1). Each nodei then has
access to theN × (Di + 2) matrix

Xi,Di
≡








xi,1[Di + 1] xi,1[Di] · · · xi,1[0]
xi,2[Di + 1] xi,2[Di] · · · xi,2[0]

...
...

. . .
...

xi,N [Di + 1] xi,N [Di] · · · xi,N [0]








(15)

for any 0 ≤ Di ≤ N − 1. The value of thei’th node at
time-stepk for the j’th initial condition can be written as

xi,j [k] = e′ix∗,j [k] = e′iW
kx∗,j [0] . (16)

SupposeDi is the smallest integer for which the matrix
Xi,Di

in (15) is not full column rank. Then there exists
a vectorai ≡

[
1 αi,Di

αi,Di−1 · · · αi,0

]′
such that

Xi,Di
ai = 0, which means that

xi,j [Di + 1] + αi,Di
xi,j [Di] + · · · + αi,0xi,j [0] = 0

for j = 1, . . . , N . Substituting (16) into the above expres-
sion, we get

e′i
(
WDi+1 + αi,Di

WDi + · · · + αi,0I
)
x∗,j [0] = 0

for j = 1, 2, . . . , N . Now, if the set of initial conditions
x∗,1[0], . . . , x∗,N [0] are linearly independent, the above ex-
pression is equivalent to (13). In other words, the degree of
the minimal polynomial of nodei can be determined from the
smallest integerDi for which the matrix in (15) loses rank,
and the nullspace of the corresponding matrix provides the
coefficients ofqi(t).

Remark 1:There are various ways to ensure the linear
independence of theN different initial conditions. For ex-
ample, if all initial conditions are taken to be independent,
identically distributed random variables with a Gaussian
distribution, then the vectorsx∗,1[0], . . . , x∗,N [0] will almost
surely be linearly independent (e.g., [13]). Alternatively, if
the nodes have unique identifiers, one can artificially choose
the initial conditions to impose linear independence. For
instance, during thej’th run, the node with thej’th smallest
identifier can choose its initial condition to be1, and all other
nodes set their initial conditions to be zero.

Based on the above analysis, we see that each node can
learn its own minimal polynomial after runningN different
linear iterations, each for at leastN+1 time-steps. For exam-
ple, one can incorporate this learning phase into asymptotic
consensus protocols as follows. For the firstN runs, the
nodes simply run the linear iteration (1) in order to obtain
asymptotic convergence. However, each node stores its own
values over the firstN +1 time-steps of each run. Assuming
that the initial conditions for theN asymptotic consensus
runs were linearly independent, each nodei can obtain its
minimal polynomialqi(t) as described in this section. It then
usesqi(t) to calculatepi(t) ≡ qi(t)

t−1 , and obtains the vector
Γi, whose components are given by equation (12). For future
runs of the distributed consensus algorithm, nodei runs the
linear iteration forDi + 1 time-steps, or until it receives
the consensus value from a neighbor. IfDi + 1 time-steps
pass without receiving the consensus value, nodei can then



5
 6


1
 2
 3
4

1/6
 1/6
 1/6


1/6


1/6
 1/6


5/6
 2/6
 4/6
 5/6


4/6
4/6


Fig. 2. Graph with constant edge weights of1

N
.

immediately calculate the consensus value from (8). It then
transmits this value to its neighbors with a flag indicating
that it is the consensus value, and the algorithm terminates
(for nodei).

Example 2:Consider the graph shown in Fig. 2. None
of the nodes know the entire graph topology, and there is
no centralized decision maker to assign the edge weights or
calculate the coefficient vectors. However, suppose each node
knows that there areN = 6 nodes in the system. With this
information, each node can select the constant edge weights
in (14), and that produces a weight matrixW with W1 =
1 and 1

61
′W = 1

61
′ (i.e., this choice of weights performs

distributed averaging). Since the nodes do not know their
minimal polynomials yet, they simply use these weights to
obtain asymptotic consensus for the firstN = 6 runs. For
each of these runs, each node stores its own value over the
first N + 1 = 7 time-steps. It then finds the smallestDi

for which the matrix in (15) loses rank, and determines the
coefficients ofqi(t) from the nullspace of that matrix. In this
way, the minimal polynomials for eachi are found to be

q1(t) = q2(t) = q3(t)

= t4 − 2.6667t3 + 2.4444t2 − 0.8611t + 0.0833

q4(t) = t5 − 3.5t4 + 4.667t3 − 2.898t2 + 0.801t− 0.0694

q5(t) = q6(t) = t6 − 4t5 + 6.4167t4 − 5.2315t3 + 2.25t2

− 0.4699t + 0.0347 .

Thus, nodes1, 2 and 3 can calculate the consensus value
after running the linear iteration for four time-steps, node 4
can calculate the value after five time-steps, and nodes5 and
6 can calculate it after six time-steps. Once the nodes have
calculated their minimal polynomials, they calculatepi(t) =
qi(t)
t−1 , and use (12) withµ = 1, c = 1

61 andd = 1 to obtain

Γ1 = Γ2 = Γ3 =
[
36 −60 28 −3

]′

Γ4 =
[
216 −540 468 −158 15

]′

Γ5 = Γ6 =
[
432 −1296 1476 −784 188 −15

]′
.

At this point, the nodes can obtain the average of any initial
conditions in the same way as in Example 1. After running
the linear iteration for four time-steps, the first three nodes
(i.e., i ∈ {1, 2, 3}) can immediately calculate the consensus
value via (8). During the next time-step, node1 would
provide this value to nodes4, 5 and 6, and so all nodes
reach a consensus on the average of the initial values after
five time-steps.

VI. D ISCUSSION ANDFUTURE WORK

As we have seen from our development, once the matrix
W is chosen to satisfy the conditions in Theorem 2, the nodes
can obtain consensus after a finite number of time-steps
(specifically, upper bounded by the degree of the minimal
polynomial of W ). This suggests that the optimality of
a weight matrixW should be determined by the degree
of its minimal polynomial, rather than the magnitude of
its eigenvalues. However, finding the weight matrix with
minimal polynomial of smallest degree for a given graph is
an open problem [14]. Other interesting directions for future
research would be to find more efficient methods for the
nodes to distributively determine their minimal polynomials,
and to extend our results to handle time-varying graphs. More
generally, how does one incorporate robustness to errors in
the nodes and links? We are actively pursuing these and other
ideas in our research.

Finally, it is worth noting that the results in this paper can
also be applied to continuous-time systems. If the evolution
of the nodes is given byd

dt
x(t) = Wx(t), then for anyW

satisfying the conditions in Theorem 2, the nodes can obtain
consensus in an arbitrarily short period of time by replacing
xi[k] with dk

dtk xi(0) (the k’th derivative of xi, evaluated at
t = 0) in (8).

REFERENCES

[1] N. A. Lynch, Distributed Algorithms. Morgan Kaufmann Publishers,
Inc., 1996.

[2] W. Ren, R. W. Beard, and E. M. Atkins, “A survey of consensus
problems in multi-agent coordination,” inProceedings of the American
Control Conference, 2005, pp. 1859–1864.

[3] J. N. Tsitsiklis, “Problems in decentralized decision making and com-
putation,” Ph.D. dissertation, Massachusetts Institute of Technology,
1984.

[4] V. D. Blondel, J. M. Hendrickx, A. Olshevsky, and J. N. Tsitsiklis,
“Convergence in multiagent coordination, consensus, and flocking,” in
Proceedings of the 44th IEEE Conference on Decision and Control,
and the 2005 European Control Conference, 2005, pp. 2996–3000.

[5] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,”
Systems and Control Letters, vol. 53, no. 1, pp. 65–78, Sep. 2004.

[6] R. Olfati-Saber and R. M. Murray, “Consensus problems innetworks
of agents with switching topology and time-delays,”IEEE Trans. on
Automatic Control, vol. 49, no. 9, pp. 1520–1533, Sep. 2004.

[7] A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups of
mobile autonomous agents using nearest neighbor rules,”IEEE Trans.
on Automatic Control, vol. 48, no. 6, pp. 988–1001, June 2003.

[8] D. B. Kingston and R. W. Beard, “Discrete-time average-consensus
under switching network topologies,” inProceedings of the American
Control Conference, 2006, pp. 3551–3556.

[9] J. Cortés, “Finite-time convergent gradient flows withapplications to
network consensus,”Automatica, vol. 42, no. 11, pp. 1993–2000, Nov.
2006.

[10] R. A. Horn and C. R. Johnson,Matrix Analysis. Cambridge University
Press, 1985.

[11] G. F. Franklin, J. D. Powell, and M. Workman,Digital Control of
Dynamic Systems, 3rd ed. Addison Wesley Longman, Inc., Menlo
Park, CA., 1998.

[12] L. Xiao, S. Boyd, and S. Lall, “A scheme for robust distributed
sensor fusion based on average consensus,” inProceedings of the
4th International Symposium on Information Processing in Sensor
Networks (IPSN), 2005, pp. 63–70.

[13] M. Rudelson, “Norm of the inverse of a random matrix,” inProceed-
ings of the 47th IEEE Symposium on Foundations of Computer Science
(FOCS), 2006, pp. 487–496.

[14] F. Barioli and S. M. Fallat, “On two conjectures regarding an inverse
eigenvalue problem for acyclic symmetric matrices,”Electronic Jour-
nal of Linear Algebra, vol. 11, pp. 41–50, 2004.


