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Abstract— We present a method for achieving consensus in show that each node can immediately calculate the consensus
distributed systems in a finite number of time-steps. Our scame  value after observing the evolution of its own value over a
involves a linear iteration where, at each time-step, eachae finita number of time-steps. The topic of finite-time conver-
updates its value to be a weighted average of its own previous briefly di d by Ki d Beard in I8
value and those of its neighbors. IfD denotes the degree of gence was brietly discusse ] y _'ngSton an ear ] in [8].
the minimal polynomial of the weight matrix associated with However, the method described in that paper requires the
the linear iteration, we show that each node can immediately graph to be fully-connected for at least one time-step, Wwhic

calculate the consensus value as a linear combination of ivn  js a very strict condition. In contrast, our method applies
past values over at mostD time-steps. We also show that each to graphs with arbitrary (connected) topologies. Finiteet

node can determine the coefficients for this linear combinabn . . ; .
in a decentralized manner. The proposed scheme has the CONSENSUS was also studied for continuous-time systems in

potential to significantly reduce the time and communicatim  [9]. The approach in that paper was to have the nodes evolve
required to reach consensus in distributed systems. according to the gradient of a suitably defined function of

their values. The resulting protocol, which is nonlinearesl
o o _not directly translate to discrete-time systems, and theepa

In distributed systems, it is often necessary for the varioy considered a restricted class of possible consensus va
nodes to come to an agreement about certain parameters. Fg& |n contrast, our method achieves finite-time consensus

example, the nodes might be voting on a course of actiof giscrete-time systems by running a simple linear itergti
or attempting to balance their workload across all avaglablyng gllows the consensus value to be a broad range of linear
computing resources. The problem of reaching consensusiifhctions.

such systems has received extensive attention in the cemput |, our development, we will use the notatiento indicate
science literature over the past few decades [1], leadititeto he column vector with & in its i'th position and zeros

development of various protocols. The topic of distributed|sewhere. We will say that an eigenvalue of a maifix
consensus has also attracted the attention of the Cont@lsimpleto indicate that it isalgebraically simple(i.e., it

community due to its applicability to tasks such as datﬁppears only once in the spectrumia [10]. The notation
fusion in sensor networks and coordination of muIti—agen(t,zx indicates matrix transpose.

systems [2]. In these cases, the approach to consensus is to

use a linear iteration, where each node repeatedly updates Il. BACKGROUND

its value as a weighted linear combination of itself and its The interaction constraints in distributed systems can be
neighbors [3], [4], [5], [6], [7]. These works have revealedconveniently modeled via a directed gragh— {X,&}

that if the network topology satisfies certain conditiomsg t s

iahts for the i Herati be ch that alh ftwhereX = {x1,...,xn} is the set of nodes in the system
weignts for the linear iterafion can be cnosen so that anett 4 ¢ C X x X is the set of directed edges (i.e., there

nodes asymptotically converge to the same value. One of t €. directed edgéz;,z;) € € if node z; can transmit

:Jher;eﬂt;s of uﬁ'rt'.g Imetar |terat|<r)]n-b%sed clonienSlth tSCth?t?nformation to nodezx;). Note that undirected graphs can
al, at each ime-step, each node only has to transmit,a readily handled by treating each undirected edge as

single value to each of its neighbors. However, almost all Yo directed edges. All nodes that can transmit information

| d ot ¢ to node z; are said to be neighbors of node and are
only produce asymptotic convergence (i.e., exac Conﬂensﬁépresented by the seV,. Suppose that each node has

IS Inoihr_eached in a finite nutmber (t)rf1 Séefs)‘dd the abesame initial value, given by;[0]. At each time-steg, all
n IS paper, we present a Method o address the aboygq g update their values based on some strategy. For ease
shortcoming of linear iteration-based consensus schem%

Specifically. i hs with time-i iant toooloai ?'analysis, the values of all nodes at time-stepvill be
pecifically, in graphs with time-invariant topologies, Weaggregated into the value vector
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where thew;;’s are a set of weights. The update strategy fowhere r; is the size of the largest Jordan block of
the entire system can then be represented as corresponding to eigenvalug [10]. Note that the minimal
polynomial will have degree at mogt (since the sizes of

Z; Z;z Z;z all Jordan blocks ofV have to add up taV). Suppose the
alk+1] = _ _ _ _ z[k] (1) minimal polynomial of ¥ has degred + 1 (D + 1 < N),
: ; : : and expand (2) ag(t) = tPH1 +apt? +- - + ot + ap for
wWN1 WN2 +  WNN some constantsg, a1, . .., ap. Sinceq(W) = 0, we obtain
the identity
w
for k= 0,1,..., wherew;; = 0 if (z;,2;) ¢ €. WP L apWP 4. 4 W +agl =0 . (3)
Definition 1 (Distributed Consensus)he system is said Examining the linear iteration in (1), we note thaitk] =
to achieve distributed consensus if W¥kz[0] for all k. However, from (3), we see that the value
kllnolox[k] — 1c/z[0] | z[D + 1] can equivalently be obtained as

herel is th I t isti f all dc’i oD +1) = W)
where1 is the column vector consisting of alls, andc’ is D
some constant row vector. In other ng’ds, the values of all = —(apW7+ -+ W + aoD)z[0]
nodes converge to the same linear combination of the initial = —apz[D] — -+ — aqz[l] — aoz[0] .
node values:’z[0]. Whenc’ = 1, the system is said to Therefore for all: > 0 and for all1 < i < N, z;[k] satisfies
perform distributed averagingi.e., the consensus value isg linear difference equation of the form
the average of all initial node values). O
The following result from [5] characterizes the conditiong’i [F+ D+1]+api[k+D]+- - +onai[k+1]+aowi[k] = 0 .
under which the iteration (1) achieves consensus. In particular, after time-ste@® + 1, each node only needs
Theorem 1 ([5]): The iteration given by (1) achieves dis-to know its ownD + 1 previous values in order to compute
tributed consensus (under the technical condition thég the linear iteration (1), and does not need to receive furthe
normalized so that’1 = 1) if and only if the weight matrix information from its neighbors. Taking the Z-transform of
W satisfies the following conditions: the above expression, we obtain

1) W has a simple eigenvalue at and all other eigen-

D+1 D, () —
values have magnitude strictly less than (277 +apzT 4o+ a1z + a0) Xi(2)

2) The left and right eigenvectors &F corresponding to 4 D41—j = D—j
eigenvaluel arec’ and1, respectively. Zoxi[J]Z +tap ZO wilflem T 4 anza(0]
Jj= Jj=
- 4

Furthermore, [5] showed that the rate of convergence
determined by the second largest eigenvaluélaf Conse-
qguently, to maximize the rate of convergence, the autho ;
of [5] formulated a convex optimization problem to obtainanz ar;se_s fr;)(m the Z-trgnsfordm (e];g.ihthel 1Z -ttrahnsftorm of
the weight matrix satisfying the above conditions whilej”i[lt_JrI ] 'S; i(2) _thmi[f]( g:jn ﬁh orth) [t' 1. The tﬁrm
minimizing the magnitude of the second largest eigenvaluén.u tp yllngl i(2) .Orll f?/[/e| S! e? Ie e.i“;; |ontg$]f), tﬁ

A salient feature of the analysis in [5], and of other lineaf"!NMal polynomial oty in particufar, | sausties the
iterations studied in the literature (e.g., see [2] and #fe r cpndmons in Theorem 1, the minimal poI_ynomlaI will hgve a
erences therein), is that they are concerned with asymptoﬁIngle root at_z = 1, and all other root_s \.N'” have mag_mtude
convergence. However, we show in the next section that ﬁss t_hanl (since the roots of the minimal polynamial are
the matrixI¥ satisfies the conditions in Theorem 1, then wdhe eigenvalues o). We can therefore factar(z) as
can obtain consensus infmite number of steps. We then P pap P+ faztag = (z—=1)p(z) ,
extend our discussion to a larger class of weight matricqﬁh
. . ) . : ere
(including matrices with unstable eigenvalues).

LFhe expression on the right side of the above equation repre-
pents the initial conditions of the linear difference edqurat

p(z) =22+ (1 +ap)’ '+ (1 +ap+ap_1)zP2
Ill. CONVERGENCE IN AFINITE NUMBER OF STEPS D I
To see how one can obtain consensus in a finite number of ++ (1 + Z aj)z+ (1+ Z a;) . (5)
time-steps, we use the concept of thmimal polynomiabf j=2 j=1

a matrix. Specifically, the minimal polynomial of the matrixgjnce the roots ob(z) have magnitude strictly less than

W is the unique monic polynomial(t) of smallest degree \ye can now use (4) and (5) in the final value theorem (e.g.,
such thatg(W) = 0 . If the distinct eigenvalues of” are  goq [11]) to obtain

denoted by, Ao, ..., A\, then the minimal polynomial can . .
be explicitly calculated as Jim k] = lim (2 — 1).X,(2)
m _ [;[D] a[D—1] - ;0] S
g(t) = [T =2, 2) = T 1S . (6)



where which has a mean df.9715. Running iteration (1) forD +

1 1 = 6 time-steps, we get

1+ap

s_ [1taptan| @ Bl el 2B ef2) 2] o)) = _
: 3.1148 2.7022 3.2728 2.2782 3.2039 1.3889
14 Z'D o 2.9303 3.0128 2.8791 2.8445 2.8521 2.0277
J=1"1 2.9240 3.0825 2.8395 3.2797 2.6049 1.9872
2.9050 3.0507 2.7866 3.1915 2.4579 6.0379
2.9050 3.0507 2.7866 3.1915 2.4579 2.7219
2.9050 3.0507 2.7866 3.1915 2.4579 1.9881

Note that (6) is completely decentralized, in the sensettieat
calculation of the final value of each componeniafoes not
depend on any other componentofThe only requirement
is that the linear difference equation be initialized with a 3.1705 2.6705 3.6210 2.0804 5.3800 0.1527
sufficiently large number of values. During this initialiman [2.9177 3.1521 2.8000 3.7149 2.3576 7.4679]

phase, each node obtains enough information about tEech node can now obtain the consensus value by using (6)

values of the other nodes to calculate[0]. to get
i 5 i 4 i 3 i 2 i 1 i 0l| S
(8] aild] ails) @il wdt) wlo]s o
11111 18
for 1 <4 <8. OJ

IV. FINITE-TIME CONVERGENCE UNDERMORE
GENERAL CONDITIONS

We now discuss an extension of the above ideas to a
more general framework. We showed in the last section
that it is possible to obtain finite-time consensus with any
weight matrix that satisfies the conditions for asymptotic
consensus. In this section, we will show that one does not

Fig. 1. Graph with optimal weights to maximize convergerae {5]. ~ N€ed to restrict attention to such matrices. To accomplish
this, we use (6) as a guide to ask the question: when is it

Example 1:Consider the undirected graph from [5] possible for_ no_da' to calculate the consensus value as a
shown in Fig. 1. The objective in this system is for thdin€ar combination of the values, [0}, z;[1], . .., ;[Dy], for
nodes to perform distributed averaging via linear iterio someD,;? Mathematically, we would Ilke/to find acoeff|C|.ent
(i.e., (k] — %11'z[0)). The weights on the nodes andVectorli = (%0, %ipi—1 -+ o] for each node
edges indicate the optimal weights to maximize the rate Gt/ch that
convergence for the _system (or equivalently, to r_ninimize [a:i[D-] Dy —1] - a:i[O]] I, =cz0] . (8)
the second largest eigenvalue 0f), as calculated in [5].

The corresponding weight matri¥’ is symmetric and has Note that we are not requiring all nodes to have the same
eigenvalues eigV) = {1,0.6,0.4,0,0,0,—0.4, —0.6}. The value of D;; we will comment more on this later in the

eigenvaluel is simple, and hag as a right eigenvector and section. Sincez;[k] = elz[k] = e,W*z[0], and since
¢ = %1/ as a left eigenvector. Sindd is symmetric, the equation (8) has to hold for any{0], we need to solve the
largest Jordan block for each eigenvalue will have dize equivalent problem of finding; o, v:,1, - -.,7:,p, such that
Therefore, from (2), the minimal polynomial will be _ __
@ poy e (Vi p, WP +4ip, A WPy 0l) =L (9)
q(t) = (t = 1)(t = 0.6)(t = 0.4)(1)(t + 0.4)(t + 0.6) The following theorem provides a method to determine
=15 — 5 — 0.52t* +0.52t3 + 0.0576t> — 0.0576t the coefficientsy; ; satisfying equation (9). Note that the
=10 + a5t + aut* + ast® + ast? + ait + ap conditions onl required by the theorem are less restrictive

than those required for asymptotic convergence (as given
with degreeD + 1 = 6. Using the above values for thg’s, in Theorem 1): the only constraint oW is that it have

the vectorS from (7) is a simple eigenvalue with a right eigenvector that has all
entries nonzero. However, the magnitudes of the eigensalue
S = [1 0 —0.52 0 0.0576 0]’ . are completely unconstrained (e.g., they can be unstdble, i
desired).
Suppose the initial values of the nodes are given by Theorem 2:Let W be the weight matrix for a graph, with
the constraint thatv;; = 0 if there is no edge from nodg
z[0] = [1.3889 2.0277 1.9872 6.0379 2.7219 to nodei. SupposéV has a simple eigenvalue af with

1.9881 0.1527 7.4679]" | Wd = pd, W = pc



for some column vectore andd, where all entries ofl are Theorem 3:The minimal polynomial;(t) of node: di-
nonzero. Letg;(¢t) be any monic polynomial with a single vides the minimal polynomiaj(t) of W forall 1 <i < N.

root att = . that satisfieg’g; (W) = 0, and letp;(t) = th(L) O

Then Proof: First, note that since(1W) = 0, we automat-
o c'd p(W) =¢ (10) ically have e;q(W) = 0 for all i. Therefore, the degree
‘pi(p)eld™” ' of ¢;(t) is upper bounded by the degree gft). Now

supposeq;(t) does not divideg(t). Then we can write
q(t) = ¢;(t)h;(t) +r;(t) for some quotient polynomiai;(t)
and some remainder polynomial(¢) (of smaller degree
thang;(t)). Therefore, we have,q(W) = eiq;(W)h;(W) +
elr;(W), and since botk;q(W) ande.q;(W) are zero, we
This means that/p;(W)W = pelp; (W), which indicates must havee;ri(W) = 0. However, this means that(¢) is
that e;p;(W) is a left eigenvector of¥/ corresponding to not_the polynomlal of smallest dggree such #at(W) = 0,
eigenvalue.. Sincey is a simple eigenvalue i with left which contradicts our assumption. Thereferét) must be

|
Proof: Sincee,q;(W) = 0 and §;(t) = pi(t)(t — ),
we have
eipi(W) (W —pul) =0 .

eigenvectorc’, we have identically zero, and sq;(t) must divideq(?). [ |
' Lemma 1:Suppose the weight matri¥’ has a simple
eipi(W) = v;c (11) eigenvalue aj: with right eigenvectod, where all entries

of d are nonzero. Then;(t), the minimal polynomial of
for some constant;. Now, sinced is a right eigenvector of nodei, has a single root at= x for all 1 <i < N.
W corresponding to eigenvalyg we havee;Wd = e;ud = Proof: Let the Jordan decomposition Bf be given by
peid. Right-multiplying (11) byd we get 0
W =T [“ } T,

0 Z

. . _— I where Z is the set of Jordan blocks of all eigenvalues not
from which we obtainy; = . Substituting this into . . )
equal tou, andT is a nonsingular matrix whose columns are

(11), we get the desired equation (10). . . -
The result in Theorem 2 applies to any monic polynomiatlhe (generalized) eigenvectors Bf [10]. By the definition

Gi(t) with a single root att = . satisfying e/g; (W) = 0. of ¢;(t), we havee;jq; (W) = 0, or equivalently,

vic'd = eip;i(W)d = e;pi(p)d = pi(p)ed

pi(p)e;d
'd

For any such polynomial, we can obtain the coefficients T qi(w) 0 T-1—0
vi; In (9) as follows. First, findp,(¢) = ‘iT(i) = tDi + ‘ 0  a¢(2) -

. D;—-1 - . i . . . .
Bi,p; -1t Tt Pi0. Comparing (10) to (9), We €an gjnce./7 s thei'th row of T, and since the first column of
then obtainl’; = [vi.p, %ip,-1 -+ 7o) as T is d, the above equation becomes

c'd (1) 0
Yig = Bij (12) d; To [‘h ] =0,
T pi(peid [ an] M %(2)
taking 8; p, = 1. Node i can then use (8) to calculate whered; is thei'th entry ofd, andT; ».y represents the last

the consensus value aftdd; + 1 time-steps. Note that N — 1 entries in thei'th row of 7. This means that
nodei does not necessarily have to store all of the values
x;[0],...,z;[D;] in order to calculate’z[0]. Instead, node [digi()  Tizvai(2)] =0,
i only requires a single additional register, denotgfk], from which we have that is a root of the polynomiay;(t)
initialized with z;[0] = ~; 02;[0]. At each time-step, after (sinced; is nonzero). To show that it is a single root, note
node: calculatesr;[k], it updates this additional register asthat ¢;(¢) divides the minimal polynomiag(¢) of W (from
z;[k] = Zi[k — 1] 4+i 1 [k]. In this way,z;[D;] will contain  Theorem 3). Since: is a simple eigenvalue i/, ¢(t) will
the consensus value given by (8). have a single root at= u (from (2)), and say;(¢) also has
One choice ofg;(t) satisfying the required conditions is a single root at = p. ]
q(t), the minimal polynomial oft¥’. With this choice, the Based on the above propertiesgft) (the minimal poly-
coefficient vectord’; will be the same for all nodes, and all nomial of node:), we see that if one chooségt) = ¢;(t)
nodes will takeD + 1 time-steps to calculate the coefficientin Theorem 2, then nodé could potentially calculate the
value (i.e.,D; = D for all 7). Note that whery = 1,d =1, consensus value faster thanjift) = q(¢) (specifically after
¢l =1, andg;(t) = ¢(t), equation (8) reduces to equationD; + 1 time-steps, rather than aftér + 1 time-steps). Note
(6). We now develop another choice of polynomials that cathat the values ofD; might not be the same for all nodes,
be used to obtain finite-time consensus. We introduce tland so some nodes can calculate the consensus value faster
notion of theminimal polynomial of nodé and characterize than others (as we will see in a later example). In fact, once
some properties of this polynomial. a node has calculated the consensus value, it can then send
Definition 2 (Minimal Polynomial of Nodé&: The mini- that value to its neighbors with a flag indicating that it is th
mal polynomial of nodei, denotedg;(t), is the monic consensus value, and not simply the next step in the linear
polynomial of smallest degree such thég; (W) =0. O iteration. In this way, slower neighbors of nodean also



obtain the consensus value at most one time-step after node- 1,..., N and0 < k < N — 1). Each node then has
i obtains the value. access to theV x (D; + 2) matrix
no'll:rnzlscqst for obtaining faster consensus is that the poly_ 2ia[Di 41 @a[Di] - wia[0]

¢i(t) have to be calculated for each node, and con ialDi+1]  wiolDi] - wil0)
sequently, the coefficients; may also be different for each x w2l w2l L2
node. Given the matri¥/’, we can calculate;(¢) for each : : . :
i as follows. Suppose;(t) = tPi*! +a; p,tP  + - + i . v N[Di+1] zn[Di] -+ xin[0]
Sinceelq; (W) = 0, we have

i,D; = (15)

forany0 < D; < N — 1. The value of thei'th node at

el (WDHrl + Oéi.,DiWDi 4ot aiyoj) =0, (13) time-stepk for the j'th initial condition can be written as
or equivalently, i j[k] = efa. 5 [k] = ;W Pz, (0] . (16)
el SupposeD; is the smallest integer for which the matrix
esw X, p; in (15) is not full column rank. Then there exists
[@io -+ aip, 1] : =0. avectora; = [1 «;p, aip,-1 - am}/ such that
e'.W.DT:H X, p,;a; = 0, which means that
T Tij [DZ + 1] + oy, p; T 5 [DZ] + a0 [0] =0
The matrix©; in the above expression has the form of thdor 7 = 1,..., N. Substituting (16) into the above expres-
observability matrix for the paifiv,e;) (e.g., see [11]). Sion, we get
Thus, ¢;(t) can be found by forming the matri®; and ¢! (WDH»l + g p, WD 4o aiol) 20 = 0

increasingD; until ©; loses rank. The coefficients qf(¢)
can then be obtained from the left nullspace@f In the for j = 1,2,...,N. Now, if the set of initial conditions

next section, we show how each node can calculate its1[0],. ..,z n[0] are linearly independent, the above ex-
minimal polynomial (and hence its coefficient vecity) in  pression is equivalent to (13). In other words, the degree of
a decentralized fashion. the minimal polynomial of nodécan be determined from the

smallest integeD; for which the matrix in (15) loses rank,
V. DECENTRALIZED CALCULATION OF THE MINIMAL and the nullspace of the corresponding matrix provides the
POLYNOMIAL coefficients ofg; (t).

If the global topology of the graph and all of the weights Remark 1:There are various ways to ensure the linear
are knowna priori to some centralized source, then théndependence of thév different initial conditions. For ex-
minimal polynomials and th&;’s can be calculated from the ample, if all initial conditions are taken to be independent
weight matrix W and conveyed to the nodes, which coulddentically distributed random variables with a Gaussian
then use these parameters to achieve distributed consenslistribution, then the vectors, 1[0], . . ., z. x[0] will almost
However, in practice, it may the case that there is no cemsurely be linearly independent (e.g., [13]). Alternatwef
tralized decision maker to assign the weights and calculatee nodes have unique identifiers, one can artificially choos
the coefficient vectors, and therefore it will be necessarhe initial conditions to impose linear independence. For
for the nodes to calculate these parameters using only lodastance, during thg’th run, the node with thg'th smallest
information. For example, if the graph is undirected and ifdentifier can choose its initial condition to keand all other

each node know#V (or an upper bound foiV), each node nodes set their initial conditions to be zero. O

i can independently choose its weights as Based on the above analysis, we see that each node can
) o learn its own minimal polynomial after runniny different
N it j € N; linear iterations, each for at leadt+1 time-steps. For exam-

-y wo if i ple, one can incorporate this learning phasc_a into asyneptoti
leN; il J: consensus protocols as follows. For the fifétruns, the
The resulting weight matrix is symmetric and satisfies theodes simply run the linear iteration (1) in order to obtain
conditions of Theorem 1 witk’ = 11’ [12]. Many other asymptotic convergence. However, each node stores its own
choices of weights exist that provide asymptotic consenswalues over the firslv + 1 time-steps of each run. Assuming
(e.g., see [2], [4], [7], [8]). In this section, we show howthat the initial conditions for theV asymptotic consensus
the nodes can distributively calculate their own minimafuns were linearly independent, each nadean obtain its
polynomials (and, correspondingly, the coefficient vegtor minimal polynomialg; (¢) as described in this section. It then
once they choose their weights. To accomplish this, we wilisesg;(¢) to calculatep;(t) = %) " and obtains the vector

- t=1
assume that the nodes knaw (or an upper bound foN). T';, whose components are given by equation (12). For future
Let . 1[0], 2. 2[0], ...,z n[0] denote a set ofV differ- runs of the distributed consensus algorithm, néodens the

ent initial conditions. For each of these initial condition linear iteration forD; + 1 time-steps, or until it receives
suppose that the nodes run the linear iteration (1)¥or 1  the consensus value from a neighborJf + 1 time-steps
time-steps (i.e., they calculate, ;[k + 1] = Wz, ;[k] for pass without receiving the consensus value, nodan then



VI. DIScUSSION ANDFUTURE WORK

As we have seen from our development, once the matrix
W is chosen to satisfy the conditions in Theorem 2, the nodes
can obtain consensus after a finite number of time-steps
(specifically, upper bounded by the degree of the minimal
polynomial of W). This suggests that the optimality of
a weight matrix W should be determined by the degree
of its minimal polynomial, rather than the magnitude of
its eigenvalues. However, finding the weight matrix with

. ) minimal polynomial of smallest degree for a given graph is
immediately calculate the consensus value from (8). It thegh open problem [14]. Other interesting directions for fatu

transmits this value to its neighbors with a flag indicatingesearch would be to find more efficient methods for the

that it is the consensus value, and the algorithm terminatigdes to distributively determine their minimal polynotsja

(for nodes). _ o and to extend our results to handle time-varying graphseMor
Example 2:Consider the graph shown in Fig. 2. Nonegenerally, how does one incorporate robustness to errors in

of the nodes know the entire graph topology, and there {e nodes and links? We are actively pursuing these and other
no centralized decision maker to assign the edge weights igeas in our research.

calculate the coefficient vectors. However, suppose eadl no  Finally, it is worth noting that the results in this paper can
knows that there aré/ = 6 nodes in the system. With this ajso be applied to continuous-time systems. If the evalutio
information, each node can select the constant edge weiglfsthe nodes is given b)gi‘j—tx(t) = Wa(t), then for anyW

in (14), and that produces a weight mat#iX with W1 =  satisfying the conditions in Theorem 2, the nodes can obtain
1 and 1'W = §1’ (i.e, this choice of weights performs consensus in an arbitrarily short period of time by replgcin
distributed averaging). Since the nodes do not know thei, (] with Ctlit_’;xi(o) (the k'th derivative of z;, evaluated at
minimal polynomials yet, they simply use these weights t¢ _ 0) in (8).

obtain asymptotic consensus for the first= 6 runs. For
each of these runs, each node stores its own value over the
first N + 1 = 7 time-steps. It then finds the smallest;, [
for which the matrix in (15) loses rank, and determines the[2
coefficients ofy;(¢) from the nullspace of that matrix. In this
way, the minimal polynomials for eachare found to be

q1(t) = ¢2(t) = g3(t)
=t — 2.6667t> + 2.4444t* — 0.8611¢ + 0.0833
qa(t) = t° — 3.5t + 4.667t> — 2.898t% + 0.801¢ — 0.0694
g5(t) = q6(t) =t — 4t° + 6.4167t* — 5.2315t3 + 2.25¢>
— 0.4699¢ + 0.0347 .

)

5/6

4/6 16 ° 416
1//6
26 46

5/6

Fig. 2. Graph with constant edge weights ﬁf.
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