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Abstract— We study a general resource sharing game where
overutilization by selfish decision makers leads to possible
failure of the resource. Our goal is to understand the effec-
tiveness of a taxation mechanism in reducing the utilization
and fragility of the resource when players have behavioral
risk preferences. In particular, we incorporate risk preferences
drawn from prospect theory, an empirically validated behavioral
model of human decision making. We first identify counter-
intuitive behavior under prospect theory, where utilization
(and hence fragility) can increase under taxation, depending
on the resource characteristics. We then identify conditions
under which taxation is effective in reducing the fragility of
the resource. We also show that homogeneous sensitivities to
taxes leads to smaller failure probability compared to the case
where players have heterogeneous (player-specific) sensitivities
to taxes.

I. INTRODUCTION

There are many settings where self-interested individ-
uals compete over a shared resource, both natural (such
as fisheries and groundwater [1]), and engineered (such as
transportation networks [2]). Game-theoretic analyses of re-
source sharing have been carried out in multiple disciplines,
including economics [1], psychology [3], engineering [4] and
computer science [5]. Controlling the resource utilization
levels through economic incentives such as taxes and rewards
has been studied extensively [6]–[8].

In many of the above resource sharing settings, the util-
ities of the players are uncertain, possibly due to resource
failure caused by overutilization [3], [9], [10]. When mak-
ing decisions under uncertainty, the risk preferences of the
individuals often have a significant impact on their behavior.
Most of the existing work on uncertainty in resource sharing
settings (with the exception of our recent work [11]) models
decision makers as risk neutral (expected value maximizers)
or risk averse (expected utility maximizers with respect to a
concave utility function).

Empirical evidence, however, has shown that the prefer-
ences of human decision makers systematically deviate from
the preferences of a risk neutral or risk averse decision maker
[12]. For example, humans compare different outcomes with
a reference utility level, and exhibit different attitudes to-
wards gains and losses. In their Nobel-prize winning work,
Kahneman and Tversky proposed prospect theory [13] in
order to capture these attitudes with appropriately defined
utility and probability weighting functions.1
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1The probability weighting function captures the transformation of true
probabilities into perceived probabilities by human decision makers. In this
work, we focus exclusively on the transformation of the utility function.

In this paper, we investigate how behavioral risk attitudes
affect users’ decisions in resource sharing settings. Specif-
ically, we focus on how prospect-theoretic decision makers
respond to tax mechanisms imposed by central planners. We
build upon our prior work in [11], where we analyzed the im-
pact of prospect-theoretic preferences on users’ equilibrium
strategies in the absence of taxation.

We consider the following game-theoretic setting. A set of
players independently choose their level of utilization of (or
“investment” in) a shared resource. As the total investment by
all players increases, it becomes more likely for the resource
to fail, causing the players to lose their investments. If the
resource does not fail, then the players receive a return per
unit investment according to a rate of return function. We
refer to this setting as a resource sharing game.

Resources with increasing rates of return exhibit so-
called network effects [14]; examples include shared online
platforms such as peer to peer file sharing systems, where
increased use leads to greater return. However, there are
instances where authorities have shut down large online plat-
forms, such as illegal peer to peer file sharing systems [15]
and websites encouraging terrorism [16]. This is captured
by resource failure in our setting. Resources with decreas-
ing rates of return model congestion effects and describe
engineered systems such as communication networks [4]
and open-access natural resources such as fisheries [1]. We
consider both network and congestion effects in our analysis.

To control utilization, we study a tax mechanism where
a player is charged a tax amount proportional to her in-
vestment in the resource. It is perhaps natural to expect
that a higher tax rate will reduce the utilization and hence
failure probability (or fragility) of the resource at a pure Nash
equilibrium (PNE). However, perhaps counter-intuitively, we
find that behavioral risk preferences can sometimes cause
utilization (and fragility) to increase with a higher tax rate.
Therefore, the goal of this paper is provide an understanding
of how prospect-theoretic risk attitudes influence utilization
and fragility of the resource under taxation.

We first demonstrate through examples that risk seeking
behavior in losses (a characteristic of prospect theory) can
cause utilization (and fragility) to potentially increase with
a higher tax rate. Then, we identify values of certain pa-
rameters in the prospect-theoretic utility function for which
taxation is effective in reducing fragility. Finally, we consider
player-specific sensitivities to the tax rate. We prove that
when players are loss averse (formally defined in Section II),
homogeneous sensitivities to the tax rate leads to a smaller
fragility compared to the heterogeneous case.
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Fig. 1: Prospect-theoretic utility function (1) with α = 0.5
and reference point z0 = 0.

II. PROSPECT THEORY

As discussed in the previous section, our focus will be
on behavioral preferences captured by prospect theory [13].
Specifically, consider a gamble that has an outcome with
value z ∈ R. A prospect-theoretic individual perceives this
value in a skewed manner, via the function

v(z) =

{
(z − z0)α, when z ≥ z0

−k(z0 − z)α otherwise,
(1)

where z0 is the reference point, α ∈ (0, 1] is the sensitivity
parameter and k ∈ (0,∞] is referred to as the loss aversion
index. Increase in utility with respect to the reference point
(z ≥ z0) is referred to as a gain and decrease in utility is
referred to as a loss (z < z0).

The parameter α shapes the utility function according to
observed behavior, i.e., the utility function is concave in
the domain of gains and convex in the domain of losses.
Accordingly, the decision maker is said to be “risk averse”
in gains and “risk seeking” in losses. As its name indicates,
the parameter k captures loss aversion behavior. Specifically,
when α = 1, a loss of $1 feels like a loss of $k to the player.
A value of k > 1 implies that the individual is loss averse,
while k < 1 implies that the individual is gain seeking. When
the reference point is an exogenous constant, the values
k = 1 and α = 1 capture risk neutral behavior. A smaller
α implies greater deviation from risk neutral behavior. The
shape of the value function is shown for different values of
k in Figure 1, with α = 0.5 and z0 = 0.

III. RESOURCE SHARING GAME

Let N = {1, 2, . . . , n} be the set of players. Each player
decides how much to invest in a shared (common pool)
resource (CPR). The investment of player i in the CPR is
denoted as xi, where xi ∈ [0, 1]. The total investment by all
players in the CPR is denoted as xT =

∑
i∈N xi.

The return from the CPR is subject to risk, captured by
a probability of failure p(xT ), which is a function of the
aggregate investment in the resource. If the CPR fails, the
players lose their investments in the CPR. If the CPR does
not fail, it has a rate of return as a function of the total
investment xT , denoted as r(xT ); in other words, player i
gets xir(xT ) from the CPR when it does not fail and −xi if it

fails. Each player is prospect-theoretic, with a player-specific
loss aversion index ki ∈ R>0 and sensitivity parameter αi ∈
(0, 1]. We assume that the reference utility is equal to 0 and
is derived when the player invests 0 in the CPR.2

Let yi =
∑n
j=1,j 6=i xj , xj ∈ [0, 1], be the total investment

of all players other than i. Using the prospect-theoretic utility
function (1), player i’s perception of the gains and losses
from the CPR is given by

ui(xi, yi) =

{
(xir(xi + yi))

αi , with prob. 1− p(xi + yi)

−kixαi
i , with prob. p(xi + yi).

(2)
The players are expected utility maximizers with respect to

the utility function given by equation (2) and thus maximize

E(ui) = (xir(xT ))αi(1− p(xT ))− kixαi
i p(xT )

= xαi
i [r(xT )αi(1− p(xT ))− kip(xT )]

, xαifi(xT ). (3)

Here fi(xT ) is referred to as the effective rate of return
of player i. We denote this resource sharing game as
Γ(N , {ui}i∈N ). We make the following assumptions.

Assumption 1: The class of resource sharing games
Γ(N , {ui}i∈N ) has the following properties.

1) The failure probability p(xT ) is convex, strictly in-
creasing and continuously differentiable for xT ∈
[0, 1) and p(xT ) = 1 for xT ≥ 1.

2) The rate of return r(xT ) is positive, concave, strictly
monotonic and continuously differentiable.

These assumptions capture a fairly broad class of resources,
while making the analysis tractable.

IV. TAXATION

In order to control the amount of utilization (and fragility)
of the shared resource (CPR), we investigate the impact of
a uniform tax rate t per unit investment in the CPR, i.e., a
player i with investment xi in the CPR is charged txi as
tax. As before, the reference utility is 0, which arises when
xi = 0. When the CPR does not fail, the reference dependent
utility of player i is (xi(r(xT )− t))αi . When the CPR fails,
the magnitude of loss is (1 + t)xi, which is the sum of the
wealth xi invested in the CPR, and the tax txi. The modified
reference dependent expected utility function is

E(ui) = xαi
i (r(xT )− t)αi(1− p(xT ))

− kixαi
i (1 + t)αip(xT )

= xαi
i [(r(xT )− t)αi(1− p(xT ))− ki(1 + t)αip(xT )]

, xαi
i fi(xT , t). (4)

The effective rate of return fi(xT , t) is now a function of
the tax rate t in addition to xT .

The above utility function is analogous to the original
utility function in equation (3) with a modified rate of return
function, r̃(xT ) , r(xT ) − t, and a modified loss aversion

2The above formulation is equivalent to an instance of atomic splittable
congestion games [4], [5] over a network with two nodes and two parallel
links (resources) joining them. One link corresponds to the CPR described
above and the second one has a constant delay of 1. The reference utility is
the utility of a player when she sends her entire traffic by the second link.



index ki(1 + t)αi . We denote t̄ , minxT∈[0,1] r(xT ), i.e.,
it is the infimum tax rate at which r̃(xT ) < 0 for some
xT ∈ [0, 1]. In this paper, we restrict ourselves to tax rates
in [0, t̄) for convenience. For a given t ∈ [0, t̄), we have the
following result on the existence and uniqueness of a PNE.

Theorem 1: A resource sharing game satisfying Assump-
tion 1 and any fixed tax rate t ∈ [0, t̄) possesses a unique
pure Nash equilibrium (PNE).

The proof follows the same arguments as for the case
without taxation in [11]. In particular, for any fixed tax rate
t ∈ [0, t̄), if r(xT ) has the properties defined in Assumption 1
(i.e., monotone, positive and concave), then r̃(xT ) retains
those properties. In other words, for any fixed t, the function
fi(xT , t) in (4) has the same properties (of interest) as
the function fi(xT ) in (3). As a result, our results on the
uniqueness and continuity of best responses from [11] for
the utility function (3) carry over to the modified game with
taxation. The existence of a PNE in the resource sharing
game at a fixed tax rate follows from Brouwer’s fixed point
theorem [17]. The uniqueness follows from the monotonicity
of nonzero best responses in the total investment from [11].

Having established the existence of PNE under any fixed
tax rate, we now study how the characteristics of the PNE
are affected by the tax rate.

V. HIGHER TAX RATE CAN INCREASE UTILIZATION

We start our investigation with the following example that
considers resources that exhibit network effects (captured by
increasing r(xT )). As we discussed earlier, online platforms
such as peer to peer file sharing systems exhibit such effects.

Example 1: Consider a resource sharing game with n = 3
players. Let the rate of return of the resource be r(xT ) =
10xT + 5 and the failure probability of the resource be
p(xT ) = x4

T . Let α = 1 and k = 0.05 for all the players,
i.e., the players are gain seeking.

Figure 2a shows a plot of the failure probability p(xT ) of
the resource at the PNE investment xT as the tax rate is swept
from t = 0 to t = 4.9. As shown in the figure, the utilization
and failure probability of the CPR at the corresponding PNE
increases with tax rate.

In the above example, imposing a higher tax rate to
discourage utilization instead leads to larger investment and
fragility of the resource. When the tax rate is increased,
the modified return r̃(xT ) = r(xT ) − t decreases. Since
r(xT ) is increasing in xT , players increase their investment
to compensate for the decrease in r̃(xT ) due to higher
tax rate. While this increase in investment also causes the
failure probability to increase, the magnitude of p(xT ) = x4

T

remains relatively small when xT is bounded away from 1.
Furthermore, since players have a small loss aversion index
k = 0.05, the (dis)utility from a loss is small compared to
the increase in utility due to the growing r(xT ).

The following example shows that such behavior is not
limited to the case of players with k < 1.

Example 2: Consider a resource sharing game with n = 3
players. Let the rate of return of the resource be r(xT ) =
8xT + 5 and the failure probability of the resource be
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(b) k = 1.2 and α = 0.15

Fig. 2: Fragility increases with tax rate due to prospect-
theoretic preferences (with parameters shown above).

p(xT ) = xT . Let α = 0.15 and k = 1.2 for all the players,
i.e., all the players are loss averse, and the deviation from
risk neutral behavior (α = 1 and k = 1) is significant. As
shown in Figure 2b, when the tax rate increases from t = 0
to t = 4.9, the fragility is not monotonically decreasing.

Recall from Figure 1 that values of α < 1 gives rise to
risk seeking behavior in losses and risk averse behavior in
gains. When the value of α approaches 0, the modified loss
aversion index k(1 + t)α does not increase by much at a
higher tax rate. Similar to the discussion after Example 1,
this encourages the players to increase their investment into
the CPR with network effects.

In the subsequent sections, we will provide conditions
under which the fragility (and utilization) will decrease at
a higher tax rate. The proofs of our analytical results heavily
rely on certain properties of the best response. We thus start
by introducing these preliminary results.

VI. PROPERTIES OF THE BEST RESPONSE

Consider a resource sharing game with tax rate t ∈ [0, t̄).
For a player i, let yi be the total investment in the CPR
by all players other than i. The best response of player i
is the investment that maximizes her utility for a given yi,
and is denoted as bi(yi). The utility in (4) is not concave
(in general) over the entire strategy space of a player.
Nonetheless, the following lemma shows that for a given
yi and fixed t, bi(yi) is unique. The proof follows from the
analysis of the best responses in non taxed settings from [11].

Lemma 1: [11] For a player i in a resource sharing game
satisfying Assumption 1 and with a fixed tax rate t, the
following are true.

1) There exists a ȳi ∈ [0, 1], depending on the tax rate t,
such that 0 is a best response if and only if yi ≥ ȳi.

2) When ȳi > 0, fi(ȳi, t) = 0 and there exists an interval
Iti ⊂ [0, ȳi) such that if yi < ȳi, then there exists
a unique positive best response bi(yi) that satisfies
bi(yi) + yi ∈ Iti .

3) For xT ∈ Iti , we have fi(xT , t) > 0 and fi,x(xT , t) ,
∂fi(xT ,t)
∂xT

< 0.
From Assumption 1, we observe that irrespective of the

value of yi, it is never an optimal strategy for a player to
invest xi = 1 in the resource, since it leads to certain failure
of the resource (and a loss for the player). Therefore, from
(4), when the best response of a player is nonzero, it must



satisfy the first order condition ∂E(ui)
∂xi

= 0, leading to

xifi,x(xT , t) + αifi(xT , t) = 0 (5)

=⇒ xi =
αifi(xT , t)

−fi,x(xT , t)
, gi(xT , t), (6)

where xT = xi + yi. We have the following result on the
monotonicity of the function gi(xT , t) with respect to xT .

Lemma 2: [11] If xT ∈ Iti defined in Lemma 1, then
∂gi(xT ,t)
∂xT

< 0.
As we will show later, gi(xT , t) is not always decreasing

in t. We present a helpful characterization of the total
investment x∗T at the PNE as follows.

Definition 1: We define the support of the PNE of a
resource sharing game Γ as the set of players with nonzero
investment at the PNE, and denote it as Supp(Γ).

With the above definition and equation (6), we have∑
i∈Supp(Γ)

gi(x
∗
T , t) = x∗T . (7)

We also require the following lemma for the subsequent
analysis. Let Γ1 and Γ2 be two instances of a resource
sharing game, with tax rates t1 and t2, respectively. Let r(·)
and p(·) satisfy Assumption 1. Denote the total investments
at the PNEs of the two games by xT1

and xT2
, respectively.

Lemma 3: If t1 > t2 and xT1 > xT2 , we have
Supp(Γ1) ⊆ Supp(Γ2).

Proof: When r(xT ) is decreasing, the effective rate of
return (4) for player i, fi(xT , t), is decreasing in both of
its arguments. Thus, whenever t1 > t2 and xT1

> xT2
,

fi(xT2
, t2) ≥ fi(xT1

, t1). If player j ∈ Supp(Γ1), then
fj(xT1

, t1) > 0. It follows that fj(xT2
, t2) > 0 and j ∈

Supp(Γ2).
When r(xT ) is increasing, direct calculation shows that

fi(xT , t) is concave in xT whenever r̃(xT ) > 0. If player
i /∈ Supp(Γ2), then it follows from Lemma 1 that xT2 ∈
[ȳi, 1]. From the definition of ȳi, we have fi(xT2 , t2) < 0.
Furthermore, since f is concave, we have fi,x(x, t2) <
0,∀x > ȳi. Therefore fi(xT1

, t2) < 0 since ȳi < xT2
< xT1

.
As a result, fi(xT1

, t1) < 0, and i /∈ Supp(Γ1).
We are now ready to analyze the impact of the tax rate

on resource utilization under increasing r(xT ) (Section VII)
and decreasing r(xT ) (Section VIII).

VII. INCREASING RATE OF RETURN

We first consider shared resources with increasing r(xT ).
We focus on understanding the impact of loss aversion
on resource utilization levels under taxation, and therefore
consider players with α = 1 in this section. We obtain a
sufficient condition in terms of the smallest loss aversion
index among all players such that a higher tax rate leads to
smaller total investment.

Without loss of generality, let players be ordered such
that k1 ≤ k2 ≤ . . . ≤ kn. When αi = 1 for all players
i, the effective rate of return (from (4)) and its derivative
with respect to the total investment are

fi(x, t) = f̂i(x)− t(1− p(x) + kip(x)), (8)

fi,x(x, t) = f̂ ′i(x)− t(ki − 1)p′(x), (9)

with f̂i(x) , r(x)(1 − p(x)) − kip(x) being the effective
rate of return function with αi = 1 and tax rate t = 0.

Note that when r(xT ) is increasing, the interval Iti defined
in Lemma 1 is [ẑi, ȳi] where ẑi := inf{z ∈ (0, 1)|fi,x(z, t) <
0}, i.e., fi,x(ẑi, t) = 0 and fi(ȳi, t) = 0 [11].

Proposition 1: Consider a resource sharing game with
increasing r(xT ) and let all players have α = 1. Let the
total investment at the PNE at a tax rate t2 be xT2

. Suppose

1− k1 <
−f̂ ′1(xT2

)

(f̂1(xT2)p′(xT2)− f̂ ′1(xT2)p(xT2))
.

Then, at any tax rate t1 with t1 > t2, the corresponding total
PNE investment xT1

satisfies xT1
≤ xT2

. In particular, for
k1 ≥ 1, utilization always decreases with tax rate.

Proof: Assume on the contrary that xT1 > xT2 for
some tax rate t1 > t2. According to Lemma 3, we have
Supp(Γ1) ⊆ Supp(Γ2). From the characterization of PNE
in equation (7), we obtain∑

j∈Supp(Γ1)

gj(xT1 , t1) > xT2 =
∑

j∈Supp(Γ2)

gj(xT2 , t2)

=⇒
∑

j∈Supp(Γ1)

gj(xT1 , t1) >
∑

j∈Supp(Γ1)

gj(xT2 , t2). (10)

In the remainder of the proof, our goal is to contradict the
inequality in equation (10). In particular, for a player j ∈
Supp(Γ1), we show that gj(xT1

, t1) < gj(xT2
, t2).

Consider a player j ∈ Supp(Γ1). Let ẑ1 and ẑ2 be such
that fj,x(ẑ1, t1) = 0 and fj,x(ẑ2, t2) = 0. Similarly, let ȳ1

and ȳ2 be such that fj(ȳ1, t1) = 0 and fj(ȳ2, t2) = 0. From
equation (8), we know that fj(x, t) is strictly decreasing in t,
which implies fj(ȳ1, t2) > 0. Thus, ȳ1 < ȳ2. We thus have
ẑ2 < xT2 < xT1 < ȳ1 < ȳ2 and [xT2 , xT1 ] ⊂ It2j . From our
result on the monotonicity of gj(xT , t) in xT in Lemma 2,
we obtain gj(xT1

, t2) < gj(xT2
, t2).

It remains to show that gj(xT1 , t1) < gj(xT1 , t2). If kj ≥
1, it is easy to see from equations (8) and (9) that fj(x, t)
is decreasing in t and −fj,x(x, t) is non decreasing in t.

It is now sufficient to show that when kj < 1, ∂gj(xT1
,t)

∂t <
0 for t ∈ [t2, t1] when kj satisfies the condition stated in
the proposition. We drop the subscript j in the following
computations. Following (8) and (9), we compute the partial
derivatives of f(x, t) and fx(x, t) with respect to t as

ft(x, t) = −(1− p(x))− kp(x), fx,t(x, t) = (1− k)p′(x).

Note that ∂g(x,t)
∂t =

f(x,t)fx,t(x,t)−ft(x,t)fx(x,t)
(fx(x,t))2 . We com-

pute the numerator while dropping the arguments x and t
for ease of notation. In particular,

ffx,t − ftfx
= f̂(1− k)p′ − t(1− p+ kp)(1− k)p′ + f̂ ′(1− p+ kp)

− t(k − 1)p′(1− p+ kp)

= f̂ ′ − (1− k)f̂ ′p+ (1− k)f̂p′.

The requirement ∂g(xT1
,t)

∂t < 0 is equivalent to

1− k < −f̂ ′

f̂p′ − f̂ ′p
=

−f̂ ′

rp′ − r′p(1− p)
, h(xT1

). (11)



The above inequality holds because f̂j(xT1
) > 0 and

f̂ ′j(xT1
) < 0.3 A direct computation shows that h(x) is an

increasing function of x when f(x) > 0 and r(x) is concave.
Now, suppose we have 1 − kj < hj(xT2

) for every player
j ∈ Supp(Γ1) with kj < 1. Since xT1 > xT2 according to
our contradiction hypothesis, we obtain 1 − kj < hj(xT1).
Accordingly, ∂g(xT1

,t)

∂t < 0 for t ∈ [t2, t1], and we have
gj(xT1

, t1) < gj(xT1
, t2), which is the desired contradiction.

In resource sharing games with α = 1, the smallest loss
aversion index k1 is part of the support at every PNE with
nonzero total investment [11]. The L.H.S. of equation (11)
is decreasing in k, while the R.H.S. is increasing in k.
Therefore, if equation (11) is satisfied for k1, every other
k1 ≤ k < 1 satisfies it. This concludes the proof.

The above result states that when the users are risk neutral
or loss averse (i.e., have ki ≥ 1) and have αi = 1, imposing
a higher tax rate leads to a decrease in the total investment
(and therefore fragility) at the PNE. On the other hand, if
certain players are gain seeking (with ki < 1), then at a given
tax rate t with a resulting total investment in the CPR x∗T ,
we can check the stated condition to determine if a higher
tax rate will lower the total investment.

VIII. DECREASING RATE OF RETURN

In Section V, we showed that in games with increasing
r(xT ), behavioral attitudes can impact users’ investment
strategies in the presence of taxation in counter-intuitive
ways. In contrast, for resources with a decreasing r(xT ),
we show here that an increase of tax rate always leads
to a reduced total PNE investment. The result holds under
heterogeneous risk preferences among players, i.e., when
ki ∈ R>0 and αi ∈ (0, 1] are player-specific.

We start with the following useful lemma, which holds for
the general form of the utility function (4) with αi ∈ (0, 1].
The proof is mostly an exercise in algebra and is omitted.

Lemma 4: Consider gi(x, t) := αifi(x,t)
(−fi,x(x,t)) as defined in

(6). If fi(x, t) > 0, we have ∂gi(x,t)
∂t < 0.

Proposition 2: Consider a resource sharing game with
decreasing r(xT ) where all players have α ∈ (0, 1] and
k > 0. Then, the total investment at the PNE is decreasing
in the tax rate, i.e., if t1 > t2, we have xT1

≤ xT2
.

Proof: Assume on the contrary that xT1
> xT2

. From
Lemma 3 and following identical arguments as the proof of
Proposition 1, we can show that (10) holds in our case, i.e.,∑

j∈Supp(Γ1)

gj(xT1
, t1) >

∑
j∈Supp(Γ1)

gj(xT2
, t2). (12)

We obtain a contradiction to the above equation as follows.
Consider a player j ∈ Supp(Γ1). Then xT1 ∈ I

t1
j , where

It1j is the interval such that for x ∈ It1j , we have fj(x, t1) >
0 and fj,x(x, t1) < 0, following Lemma 1. When r(x) (and
accordingly fj(x, t)) is decreasing in x and xT1

> xT2
, then

3From equation (8), we note that fj(x, t) is strictly decreasing in t.
Since fj(xT1

, t1) > 0, we must have fj(xT1
, 0) > 0, i.e., f̂j(xT1

) > 0.
Similarly, since xT1

is the total PNE investment at the tax rate t1, we have
0 > fj,x(xT1 , t1) = f̂ ′

j(xT1 )− t1(kj − 1)p′(xT1 ) > f̂ ′
j(xT1 ).

it is easy to see that xT2
∈ It1j . Therefore, from Lemma 2

we have gj(xT1
, t1) < gj(xT2

, t1).
Now for player j ∈ Supp(Γ1), fj(xT1 , t1) > 0. Under our

assumption that xT2
< xT1

, we obtain fj(xT2
, t1) > 0 since

fj(x, t) is decreasing in x. Since fj(x, t) is also decreasing
in the second argument t, fj(xT2

, t) > 0 for t ∈ [t2, t1]. As
a result, from Lemma 4, we have gj(xT2 , t1) < gj(xT2 , t2).
Thus, for every player j ∈ Supp(Γ1), gj(xT1 , t1) <
gj(xT2

, t2), which contradicts equation (12).

IX. HETEROGENEITY IN TAX SENSITIVITIES

In this section, we examine the effect of heterogeneous
sensitivities to the tax rate on the fragility of the resource.
The sensitivity of player i is captured by a parameter γi ∈
[0, 1]. Accordingly, for a tax rate t, player i experiences (or
perceives) an equivalent tax rate of γit. Note that the impact
of tax sensitivities on price of anarchy was studied recently
in [7], outside of the context of behavioral risk attitudes.

In order to isolate the effect of heterogeneous tax sensitiv-
ities, we assume that all players have identical loss aversion
indices k and α = 1. Following equation (4), the expected
utility of player i is defined as

E(ui) = xi(r(xT )− γit)(1− p(xT ))− k(1 + γit)xip(xT )

= xi[f̂(xT )− tγi(1 + (k − 1)p(xT ))]

, xi[f̂(xT )− γitv(xT )] , xif(xT , γit), (13)

where f̂(xT ) , r(xT )(1 − p(xT )) − kp(xT ), and v(xT ) ,
1 + (k − 1)p(xT ).

In the following result, we show that when the players are
loss averse, i.e., k > 1, the total investment at the PNE is
smaller when the players have homogeneous tax sensitivities,
compared to the PNE of a game where the tax sensitivities
are heterogeneous. The result holds for both increasing and
decreasing rate of return functions.

Proposition 3: Let Γm be the set of resource sharing
games with n players and the following characteristics. Let
the resource be the same across all games in Γm, with r(xT )
and p(xT ) satisfying Assumption 1. Let α = 1 and k > 1
for all players and let the mean of the sensitivities in each
game be γm. Then, for any tax rate t ∈ [0, t̄), among all
games in Γm, the instance where all players have identical
tax sensitivity γm has the smallest total PNE investment.

Proof: Let ΓH ,ΓM ∈ Γm be two instances of resource
sharing games, with respective total PNE investments being
xHT and xMT . In ΓM , all players have sensitivity parameters
equal to γm, while in ΓH , the sensitivity parameters (γi, i ∈
{1, 2, . . . , n}) are player-specific. Without loss of generality,
let 0 ≤ γ1 ≤ γ2 ≤ . . . ≤ γn ≤ 1, with

∑n
i=1 γi = nγm.

Suppose xHT = 0. Then, we have f̂(xT ) − γ1tv(xT ) ≤ 0
for xT ∈ [0, 1]. Since γm ≥ γ1, we also have f̂(xT ) −
γmtv(xT ) ≤ 0 for xT ∈ [0, 1], which implies xMT = 0.

Now suppose that xHT > 0. For j /∈ Supp(ΓH), we have

f̂(xHT )− γjtv(xHT ) ≤ 0 =⇒ f̂(xHT )− γtv(xHT ) ≤ 0,

for every γ ≥ γj . Therefore, Supp(ΓH) consists of a set of
players with smallest sensitivity parameters. Since xHT > 0,



player 1 ∈ Supp(ΓH). From equation (7) for ΓH , we have

xHT =
∑

i∈Supp(ΓH)

gi(x
H
T , t) =

n∑
i=1

max(gi(x
H
T , t), 0)

=

n∑
i=1

max

(
f̂(xHT )− γitv(xHT )

−f̂ ′(xHT ) + γitv′(xHT )
, 0

)

,
n∑
i=1

max(hxH
T ,t

(γi), 0),

where hxH
T ,t

(·) is a function of the tax sensitivity γ at a
given total investment xHT and tax rate t. Note that, since the
players are loss averse, we have v′(xT ) = (k−1)p′(xT ) > 0.
As a result, for γ ≥ γ1, the numerator of hxH

T ,t
(γ) is strictly

decreasing in γ, while the denominator is strictly increasing
in γ. We now define an interval J ⊆ [γ1, 1] as follows.

If hxH
T ,t

(1) > 0, then J = [γ1, 1]. Otherwise, J =
[γ1, γ̄), where γ̄ ≤ 1 is the unique tax sensitivity at which
hxH

T ,t
(γ̄) = 0, and every player i ∈ Supp(ΓH) satisfies

γi ∈ J . For γ ∈ J , we have f̂(xHT ) − γtv(xHT ) > 0 and
−f̂ ′(xHT ) + γtv′(xHT ) > 0, which implies

f̂(xHT )v′(xHT ) > γtv(xHT )v′(xHT ) > f̂ ′(xHT )v(xHT ). (14)

For γ ∈ J , straightforward calculations yield

h′xH
T ,t

(γ) =
t(f̂ ′(xHT )v(xHT )− f̂(xHT )v′(xHT ))

(−f̂ ′(xHT ) + γtv′(xHT ))2
,

h′′xH
T ,t

(γ) =
−2v′(xHT )t2(f̂ ′(xHT )v(xHT )− f̂(xHT )v′(xHT ))

(−f̂ ′(xHT ) + γtv′(xHT ))3
.

Following (14), we have h′′
xH
T ,t

(γ) > 0 for γ ∈ J . Therefore,
max(hxH

T ,t
(γ), 0) is continuous and convex for γ ∈ [γ1, 1].

Applying Jensen’s inequality, we obtain

xHT =

n∑
i=1

max(hxH
T ,t

(γi), 0) ≥ nmax(hxH
T ,t

(γm), 0).

We now consider two cases. First, suppose hxH
T ,t

(γm) ≤
0. Note that −f̂ ′(xHT ) + γmtv

′(xHT ) > 0 (since γm ≥ γ1

and v′(xHT ) > 0). Thus, we have f̂(xHT ) − γmtv(xHT ) ≤ 0.
When r(xT ) is decreasing, it is easy to see that f̂(xT ) −
γmtv(xT ) < 0 for xT ∈ (xHT , 1]. For an increasing and
concave r(xT ), f̂(xT )−γmtv(xT ) is strictly concave in xT .
Since f̂ ′(xHT )−γmtv′(xHT ) < 0 and f̂(xHT )−γmtv(xHT ) ≤ 0,
we have f̂(xT ) − γmtv(xT ) < 0 for xT ∈ (xHT , 1]. Thus,
xMT ≤ xHT .

Now suppose hxH
T ,t

(γm) > 0, i.e., f̂(xHT )−γmtv(xHT ) > 0

and f̂ ′(xHT )− γmtv′(xHT ) < 0. Assume on the contrary that
xMT > xHT . Thus, we have [xHT , x

M
T ] ⊂ Itm, where Itm is

the interval defined in Lemma 1 for a player m with tax
sensitivity γm. Following Lemma 2, we obtain

xHT ≥ nhxH
T ,t

(γm) = ngm(xHT , t) > ngm(xMT , t) = xMT ,

which is a contradiction.

X. CONCLUSION

We studied a game-theoretic model of human decision
makers competing over a shared failure-prone resource. We
investigated the impact of behavioral risk preferences of

users on how they respond to a taxation mechanism. We
first showed that in resources that exhibit network effects,
prospect-theoretic utilities of the players can lead to increase
in utilization and fragility with higher tax rates. However,
when the players are loss averse or the resource exhibits
congestion effects, a higher tax rate leads to a decrease in
fragility of the resource. Finally, we showed that for loss
averse players, heterogeneity in sensitivities to the tax rate
results in larger utilization compared to the case where play-
ers have homogeneous tax sensitivities, provided the average
sensitivity is identical in both cases. Obtaining an upper
bound on the utilization under heterogeneous sensitivities
remains an open question.
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