E-Core Inductor Design

S.D. Sudhoff

Spring 2005

A Design Example

- Scenario. A power electronics converter design requires a filter inductor.
- Requirements
 - ➤ At maximum load, the average inductor current will be 3.0 A.
 - > Current ripple less than 0.2 A.
 - ➤ The incremental inductance required is 5 mH.
 - \triangleright The dc resistance of the inductor must be less than 0.1 Ω .
 - ➤ No dimension may exceed 15 cm.
 - ➤ It is desired to make the inductor as small as possible.
 - > Packing factor not to exceed 0.7
 - ➤ Use 3C85 Ferrite

Review of EI Core Inductor

Design Choices

- Slot depth d_s
- Slot width w_s
- Winding depth d_w
- Winding width w_w
- Depth d
- Airgap *g*
- Turns *N*
- Wire Type (w_t)

- I-Core width w_i
- E-Core end width w_e
- E-Core center width w_u
- E-Core underside width w_n
- Magnetic Material (Not this Time)
- Total Variables: 12

Mathematical Formulation of Design Problem

- This is a constrained optimization problem.
- Minimize volume, subject to
 - > Sufficient incremental inductance
 - ➤ Allowable packing factor
 - >Appropriate dc resistance
 - >Appropriate restriction on dimensions

Volume

Volume may be readily expressed

$$h_o = w_u + d_s + g + w_i$$

$$w_o = 2w_e + 2w_s + w_c$$

$$d_o = d + 2w_w$$

$$v = h_0 w_0 d_0$$

Formulation of Constraints: The Less Than Function

• To implement constraints, define the less than function

$$ltn(x, x_{\text{max}}, \Delta x) = \begin{cases} \frac{1}{1} & x \le x_{\text{max}} \\ \frac{1}{1 + \frac{x - x_{\text{max}}}{|\Delta x|}} & x > x_{\text{max}} \end{cases}$$

Constraint 1&2: Incremental inductance

• Recall

Spring 2005 ECE631 8

Constraint 1&2: Incremental Inductance

Now

$$L_{inc} = \frac{\partial \lambda}{\partial i}\Big|_{o.p.} \approx \frac{\Delta \lambda}{\Delta i} = \frac{\lambda_{\max} - \lambda_{\min}}{i_{\max} - i_{\min}}$$

To formulate as a constraint

$$\Delta \lambda_{\min} = L_{inc,required} (i_{\max} - i_{\min})$$

$$i_{\text{max}} = 3.1$$

$$i_{\min} = 2.9$$

$$c_1 = analysis \ converges$$

$$c_2 = ltn(\lambda_{\text{max}} - \lambda_{\text{min}}, \Delta \lambda_{\text{min}}, 0.01\Delta \lambda_{\text{min}})$$

Constraint 3: Packing Factor

- Current density is normally a constraint, but this is okay by virtue of wire picked
- Packing factor is a measure of how well we fill the slot

$$pf = \frac{a_c N}{w_w d_w}$$

$$c_3 = ltn(pf, pf_{\text{max}}, 0.01pf_{\text{max}})$$

• a_c is a function of the wire type

Aside: Wire Selection (Any of These Will Carry the Current)

Wire Type	AWG	Area (μin²)
1	22	503
2	20	804
3	18	1276
4	16	2027
5	14	3227
6	12	5158
7	10	8155
8	8	12970
9	6	20610

Constraint 4: Resistance

• Recall DC resistance

$$r = \frac{N^2(2d + 2w_c + \pi w_w)}{\sigma_c p_f d_w w_w}$$

• We will formulate constraint 4 as

$$c_4 = ltn(r, r_{\text{max}}, 0.01r_{\text{max}})$$

Constraint 5: Maximum Dimension

$$h_{o} = w_{u} + d_{s} + g + w_{i}$$

$$w_{o} = 2w_{e} + 2w_{s} + w_{c}$$

$$d_{o} = d + 2w_{w}$$

$$m_{o} = \max(h_{o}, w_{o}, d_{o})$$

$$c_{5} = ltn(m_{o}, m_{o \max}, 0.01m_{o, \max})$$

Objective Function

One approach

$$c = \min(c_1, c_2, c_3, c_4, c_5)$$

$$f = \begin{cases} c_1 + c_2 + c_3 + c_4 + c_5 - 5 & c < 1 \\ \frac{1}{\varepsilon + v} & c \ge 1 \end{cases}$$

Conclusion (Sort Of)

 We have thus transformed our design problem into the optimization problem

maximize
$$f(x)$$

$$x = \begin{bmatrix} g & d_s & w_s & f_{d_w} & f_{w_w} & w_i & f_{w_e} & f_{w_c} & f_{w_u} & d & N & w_t \end{bmatrix}$$

Conclusion (The Problem)

- A wide variety of optimization routines exist and are coded in standard math packages
- Examples: Matlab, Mathcadd, etc.
- The catch: you need a good initial guess