Module 14 – Efficient Host-Device Data Transfer
Lecture 14.1 - Pinned Host Memory
Objective

– To learn the important concepts involved in copying (transferring) data between host and device
 – Direct Memory Access
 – Pinned memory
CPU-GPU Data Transfer using DMA

- DMA (Direct Memory Access) hardware is used by `cudaMemcpy()` for better efficiency
 - Frees CPU for other tasks
 - Hardware unit specialized to transfer a number of bytes requested by OS
 - Between physical memory address space regions (some can be mapped I/O memory locations)
 - Uses system interconnect, typically PCIe in today’s systems
Virtual Memory Management

- Modern computers use virtual memory management
 - Many virtual memory spaces mapped into a single physical memory
 - Virtual addresses (pointer values) are translated into physical addresses
- Not all variables and data structures are always in the physical memory
 - Each virtual address space is divided into pages that are mapped into and out of the physical memory
 - Virtual memory pages can be mapped out of the physical memory (page-out) to make room
 - Whether or not a variable is in the physical memory is checked at address translation time
Data Transfer and Virtual Memory

- DMA uses physical addresses
 - When `cudaMemcpy()` copies an array, it is implemented as one or more DMA transfers
 - Address is translated and page presence checked for the entire source and destination regions at the beginning of each DMA transfer
 - No address translation for the rest of the same DMA transfer so that high efficiency can be achieved

- The OS could accidentally page-out the data that is being read or written by a DMA and page-in another virtual page into the same physical location
Pinned Memory and DMA Data Transfer

- Pinned memory are virtual memory pages that are specially marked so that they cannot be paged out
- Allocated with a special system API function call
- a.k.a. Page Locked Memory, Locked Pages, etc.
- CPU memory that serve as the source or destination of a DMA transfer must be allocated as pinned memory
CUDA data transfer uses pinned memory.

- The DMA used by cudaMemcpy() requires that any source or destination in the host memory is allocated as pinned memory.

- If a source or destination of a cudaMemcpy() in the host memory is not allocated in pinned memory, it needs to be first copied to a pinned memory – extra overhead.

- cudaMemcpy() is faster if the host memory source or destination is allocated in pinned memory since no extra copy is needed.
Allocate/Free Pinned Memory

- `cudaHostAlloc()`, **three parameters**
 - Address of pointer to the allocated memory
 - Size of the allocated memory in bytes
 - Option – use `cudaHostAllocDefault` for now

- `cudaFreeHost()`, **one parameter**
 - Pointer to the memory to be freed
Using Pinned Memory in CUDA

- Use the allocated pinned memory and its pointer the same way as those returned by `malloc()`;

- The only difference is that the allocated memory cannot be paged by the OS

- The `cudaMemcpy()` function should be about 2X faster with pinned memory

- Pinned memory is a limited resource
 - over-subscription can have serious consequences
Putting It Together - Vector Addition Host Code Example

int main()
{
 float *h_A, *h_B, *h_C;
...
 cudaHostAlloc((void **) &h_A, N* sizeof(float),
 cudaHostAllocDefault);
 cudaHostAlloc((void **) &h_B, N* sizeof(float),
 cudaHostAllocDefault);
 cudaHostAlloc((void **) &h_C, N* sizeof(float),
 cudaHostAllocDefault);
...
 // cudaMemcpy() runs 2X faster
}
The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under the Creative Commons Attribution-NonCommercial 4.0 International License.
Module 14 – Efficient Host-Device Data Transfer
Lecture 14.2 - Task Parallelism in CUDA
Objective

– To learn task parallelism in CUDA
 – CUDA Streams
Serialized Data Transfer and Computation

– So far, the way we use `cudaMemcpy` serializes data transfer and GPU computation for `VecAddKernel()`
Device Overlap

- Some CUDA devices support device overlap
 - Simultaneously execute a kernel while copying data between device and host memory

```c
int dev_count;
cudaDeviceProp prop;

cudaGetDeviceCount( &dev_count);
for (int i = 0; i < dev_count; i++) {
  cudaGetDeviceProperties(&prop, i);
  if (prop.deviceOverlap) ...
```
Ideal, Pipelined Timing

– Divide large vectors into segments
– Overlap transfer and compute of adjacent segments
CUDA Streams

- CUDA supports parallel execution of kernels and `cudaMemcpy()` with “Streams”
- Each stream is a queue of operations (kernel launches and `cudaMemcpy()` calls)
- Operations (tasks) in different streams can go in parallel
 - “Task parallelism”
Streams

- Requests made from the host code are put into First-In-First-Out queues
 - Queues are read and processed asynchronously by the driver and device
 - Driver ensures that commands in a queue are processed in sequence. E.g., Memory copies end before kernel launch, etc.
Streams cont.

- To allow concurrent copying and kernel execution, use multiple queues, called “streams”
 - CUDA “events” allow the host thread to query and synchronize with individual queues (i.e. streams).
Conceptual View of Streams

Operations (Kernel launches, cudaMemcpy() calls)
The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under the [Creative Commons Attribution-NonCommercial 4.0 International License](https://creativecommons.org/licenses/by-nc/4.0/).
Module 14 – Efficient Host-Device Data Transfer
Lecture 14.3 - Overlapping Data Transfer with Computation
Objective

– To learn how to overlap data transfer with computation
 – Asynchronous data transfer in CUDA
 – Practical limitations of CUDA streams
Simple Multi-Stream Host Code

cudaStream_t stream0, stream1;
cudaStreamCreate(&stream0);
cudaStreamCreate(&stream1);

float *d_A0, *d_B0, *d_C0; // device memory for stream 0
float *d_A1, *d_B1, *d_C1; // device memory for stream 1

// cudaMalloc() calls for d_A0, d_B0, d_C0, d_A1, d_B1, d_C1 go here
Simple Multi-Stream Host Code (Cont.)

for (int i=0; i<n; i+=SegSize*2) {
 cudaMemcpyAsync(d_A0, h_A+i, SegSize*sizeof(float),..., stream0);
 cudaMemcpyAsync(d_B0, h_B+i, SegSize*sizeof(float),..., stream0);
 vecAdd<<<SegSize/256, 256, 0, stream0>>>(d_A0, d_B0, ...);
 cudaMemcpyAsync(h_C+i, d_C0, SegSize*sizeof(float),..., stream0);
 cudaMemcpyAsync(d_A1, h_A+i+SegSize, SegSize*sizeof(float),..., stream1);
 cudaMemcpyAsync(d_B1, h_B+i+SegSize, SegSize*sizeof(float),..., stream1);
 vecAdd<<<SegSize/256, 256, 0, stream1>>>(d_A1, d_B1, ...);
 cudaMemcpyAsync(d_C1, h_C+i+SegSize, SegSize*sizeof(float),..., stream1);
}
A View Closer to Reality in Previous GPUs

Operations (Kernel launches, cudaMemcpy() calls)
Not quite the overlap we want in some GPUs

– C.0 blocks A.1 and B.1 in the copy engine queue
Better Multi-Stream Host Code

for (int i=0; i<n; i+=SegSize*2) {
 cudaMemcpyAsync(d_A0, h_A+i, SegSize*sizeof(float),..., stream0);
 cudaMemcpyAsync(d_B0, h_B+i, SegSize*sizeof(float),..., stream0);
 cudaMemcpyAsync(d_A1, h_A+i+SegSize, SegSize*sizeof(float),..., stream1);
 cudaMemcpyAsync(d_B1, h_B+i+SegSize, SegSize*sizeof(float),..., stream1);

 vecAdd<<<SegSize/256, 256, 0, stream0>>>(d_A0, d_B0, ...);
 vecAdd<<<SegSize/256, 256, 0, stream1>>>(d_A1, d_B1, ...);

 cudaMemcpyAsync(h_C+i, d_C0, SegSize*sizeof(float),..., stream0);
 cudaMemcpyAsync(h_C+i+SegSize, d_C1, SegSize*sizeof(float),..., stream1);
}

C.0 no longer blocks A.1 and B.1

Operations (Kernel launches, cudaMemcpy() calls)
Better, not quite the best overlap

– C.1 blocks next iteration A.0 and B.0 in the copy engine queue
Ideal, Pipelined Timing

– Will need at least three buffers for each original A, B, and C, code is more complicated
Hyper Queues

- Provide multiple queues for each engine
- Allow more concurrency by allowing some streams to make progress for an engine while others are blocked
Wait until all tasks have completed

- `cudaStreamSynchronize(stream_id)`
 - Used in host code
 - Takes one parameter – stream identifier
 - Wait until all tasks in a stream have completed
 - E.g., `cudaStreamSynchronize(stream0)` in host code ensures that all tasks in the queues of stream0 have completed

- **This is different from** `cudaDeviceSynchronize()`
 - Also used in host code
 - No parameter
 - `cudaDeviceSynchronize()` waits until all tasks in all streams have completed for the current device
The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under the Creative Commons Attribution-NonCommercial 4.0 International License.