
Lecture notes: January 30, 2017
Topics:
1. Pointer arithmetic
2. Arrays
3. Memory allocation

Pointer arithmetic

What does *(p + 1) mean?

If p is a int *, it means “access one integer past whatever p points to.” Remember that 
because p is a pointer, it holds the address of a location in memory. Because p is an int 
pointer, that location in memory holds an integer. When we add 1 to the address, the compiler 
interprets this as “the address of the next integer.” In other words, we will add 4 to the address 
in p (because integers take up 4 bytes). If p pointed to doubles, the compiler would interpret this 
as “the address of the next double” and add 8 to the address (because doubles take up 8 
bytes).

We can put numbers other than 1 there. For example, p + 3 will give the address of the integer 
that is three integers past whatever p currently points to. p - 1 will give the address of the 
integer right before whatever p points to.

Arrays
Another data type!

Array data types

Arrays of ints, arrays of structs

Arrays of chars: the C way to represent strings

How do arrays work?

They’re weird — they work a little bit like pointers:

int a[10] //a is an array of 10 integers 

Can access the first integer with a[0]
Can access the second integer with a[1]
etc.

Note that these 10 integers are guaranteed to be next to each other in memory

So what’s a itself? It actually refers to the first location of the a array. Can see this by printing a, 
printing the address of a, printing the address of a[0] — all the same!



a[0] really means: *(a + 0)
a[1] really means: *(a + 1)

And so on.

Can use pointers to represent arrays, too:

int * p = a 

(aside: internally, your C compiler thinks that the type of a is int *! If you try int * p = &a, 
your code will work, but the compiler will complain)

Now we can use p the same way we would use a:

p[0] really means *(p + 0) which is the same as *(a + 0) which is a[0]
p[1] really means *(p + 1) which is the same as *(a + 1) which is a[1]

Dynamic memory allocation
What if we don’t know how big we want an array to be? One way to do this is to use variable 
length arrays, but those are not always supported, and using them is potentially very dangerous 
(we don’t allow you to use them, in fact: -Wvla gives a warning if you try to use them)

We can instead use the heap — that other space in memory where we can store data. The 
basic way we interact with the heap is to ask the program to either “give us X bytes of data from 
the heap that we can use to store data” or “take back this data so that it can be reused for 
something else.”

void * malloc(size_t size) // give me size bytes of data from the 
heap, return the address of the first byte of that chunk 

free (void * ptr) //take back the chunk of memory where ptr points to 
the beginning of that chunk 

So, remembering that pointers can be used as arrays, here’s how we could allocate an array of 
N integers when we don’t know what N is at compile time:

int * arr = malloc(N * sizeof(int)); 

What’s happening here?

1. find 40 bytes of memory on the heap.
2. reserve it for the program’s use. Means that no other call to malloc will return any of that 

part of memory unless you call free
3. return the address of the beginning of the chunk

Note that the chunk is guaranteed to be 40 consecutive bytes in memory. arr points to the 
beginning of the chunk. So we can treat this chunk of memory just like an array:



arr[0], arr[5], etc.

When we’re done with the memory, we can tell the program that we’re done with it:

free(arr); 

Now when we call malloc() again, we might get back the same memory. [Note: arr still 
points to that location in memory — this is potentially dangerous! Always a good idea to null-out 
a pointer when you free the data it points to)


