
Lecture notes: January 20, 2017
Topics:
1. Data types
2. Strucutres

Data types
What is a data type? It is a way of indicating what a variable is.

When you declare a variable and give it a type:

int x; 

You are saying several things:
1. What is the set of values this variable can take on? An int in C can take on integer values 

from -231 to (231 - 1)
2. How much space does this variable take up? An int in C occupies 32 bits (indeed, there is 

a relationship (for integer types) between the answer to this question and the answer to 
question 1.

3. How should operations on this variable be handled? The interpretation of various arithmetic 
operations can change depending on the type of the variable. Performing division on ints is 
different than performing division on floats: 
3 / 2 = 1 //integer division  
3.0 / 2.0 = 1.5 //floating point division 

Data types also help programmers understand what their code is doing.

Structures
C does not have many built in datatypes: int, char, short, long, float, double, and a few 
others, as well as arrays of each and pointers to each. But what if you want to talk about more 
complex pieces of data?

What if we want to represent a point on a graph? We cannot represent that point with just a 
single value, like a float. We need two values: an x coordinate and a y coordinate:

float point_x; 
float point_y; 

But what is a point? It’s not a float. It’s a float representing its x coordinate and a float 
representing its y coordinate. Can we define data types that let us say that a variable is <thing 
one> and <thing two> and <thing three>?

C structures let us do this. We can define a new type that lets us say that if a variable is a point, 
it is two floats!



typedef struct { 
  float x; 
  float y; 
} Point; 

And now when we declare a new variable, we can say that it is a Point:

Point p1; 
Point p2; 

To access the components of a structure, we use ‘.’:

p1.x = 2.5; 
p1.y = 3.7; 

p2.x = p1.x - 3; 
p2.y = p1.x * 2;


