
Lecture notes: January 13, 2017
Topics:
1. Selection sort wrapup

i. Pseudocode (see 1/11 notes)
ii. How long does it take to run?

2. Program stack
3. Hexadecimal and Endianness
4. GDB

Selection sort wrapup
Readings: Forouzan and Gilberg

- pp 370–371
- p 534 [Note that their analysis of selection sort is a little different than ours]

We covered the pseudocode from 1/11

Some of you may have noticed that selection sort takes a very long time to run on large inputs. 
How long, exactly?

Let’s count iterations: how many times does the inner loop (which searches for the minimum 
value in the rest of the array) run?

int input[N] = //input 
cursor = 0 //initial position of the cursor 
for (cursor = 0; cursor < N; cursor++) 
 //sorted list from [0,cursor) 
 //rest of the list from [cursor, N) 
 for (i = cursor; i < N; i++) 
  //search the rest of the list to find the smallest value 
 //swap the smallest value with the value at input[cursor] 

The inner loop runs N times, and each time it runs, it runs for (N - cursor) iterations. Cursor 
takes on every value from 0 to N - 1:

That summation is the same as:

Note, also, that most of the work happens in the inner loop, so how long selection sort takes is 
dominated by how long that inner loop takes. Trying to be precise about just how long the inner 
loop takes is tricky: depending on how you wrote it, it may take more or fewer instructions to 
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execute. But what matters is, no matter how you wrote that inner loop, if we make N twice as 
big, the inner loop will run about four times as many times! That’s the dominating factor here: 
double the input, take four times as long. So all that really matters is the quadratic term. The 
next +N or /2 doesn’t really matter.
Thinking about run time this way is called asymptotic analysis, and we’ll come back to it later in 
class.

Program stack
When a program runs, your computer’s memory is divided up into four segments:
1. The stack – this is where local variables for functions, function arguments, return values, 

and return addresses go. Every function has a stack frame that stores this information. 
When a function gets called, its stack frame is “pushed” onto the stack, and when it returns, 
the frame is “popped” off the stack.

2. The heap – this is where memory you allocate using malloc goes
3. The “text” – this is where the code of the program is stored
4. The “data” – this is where global variables of various sorts are stored. This space is broken 

up into smaller chunks:
i. “data” holds global or static variables in the program that are initialized (e.g., if you 

declare a global variable int x = 7;)
ii. “bss” holds global or static variables that are uninitialized (e.g., if you declare a global 

variable int y;) This whole segment is initialized to zero when the program starts  
(Why distinguish bss from data? Initialized variables need to have the correct values 
initialized for them, so they need to be stored in your program’s binary. Uninitialized 
values don’t need values stored, so the binary just tracks how much space the 
uninitialized variables take up.)

How are these segments placed in memory? One thing to note is that the text segment and the 
data segment(s) have fixed size, but the stack and the heap do not—as the program runs, you 
may call additional functions (requiring space on the stack) or allocate more memory using 
malloc (requiring space on the heap). To make room, the stack is organized as follows (higher 
addresses on top, lower addresses on the bottom):



When the program starts (i.e., we call main()), all of the local variables for main() are placed 
on the stack in a stack frame. We use the register $rbp (the base pointer) to mark the “bottom” 
of the stack frame, and the register $rsp (the stack pointer) to mark the “top” of the stack. (Note 
that when we draw the stack this way, the “top” of the stack has a lower address, and looks like 
it’s lower than the base of the stack. Confusing, I know.)

If main calls foo, a bunch of things happen: the arguments to foo, and space for its return 
value, are “pushed” onto the stack (this automatically decrements $rsp to move the top of the 
stack). The address of the next instruction in main is pushed onto the stack (this is where 
execution will go to when foo returns). The current value of $rbp is pushed onto the stack, and 
then $rbp is moved to $rsp. $rsp is then moved down. This new space between $rbp and $rsp is 
foo’s stack frame: it’s where any local variables for foo can get stored. When foo returns, the 
process is rewound, “popping” the frame off the stack, and the program resumes from the return 
address saved on the stack.

Essentially, as functions are called, we push stack frames for them onto the stack, so the stack 
keeps growing as long as we call more functions. Whatever function is currently executing has 
its frame at the top of the stack. When a function returns, its frame is popped off the stack.

(PA02 asks the following question: what if you find a way to overwrite the part of the stack that 
stores the return address of a function?)
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Hexadecimal and Endianness
Readings: Forouzan and Gilberg, Appendix D (especially pp 1033–1037)

Computers don’t store numbers in decimal (base 10). Instead, they store data in binary (base 
2):

5 = 101
21 = 1 0101
1547 = 110 0000 1011

And so on. Because it’s difficult to read base 2, we often instead write numbers in base 16, or 
hexadecimal. We use the letters A through F to represent 10 through 15. That lets us write 
groups of four binary digits as a single hexadecimal digit:

5 = 101 = 0x5
21 = 1 0101 = 0x15
1547 = 110 0000 1011 = 0x60B

Exercise: what are the following numbers in binary and in hexadecimal?

73
2918
206

One very confusing thing about the way data is stored in memory is endianness. When we write 
a single number:

1257

We put the most significant digit (the ‘1’) at the left, and the least significant digit (the ‘7’) on the 
right. When a program wants to store a number, it thinks of it as a series of bytes. In C, integers 
take up four bytes. So, the number 1257, when thought of as an integer, takes up four bytes. 
One byte in a computer is eight binary bits (digits), so each byte can be represented by two 
hexadecimal digits. 

Written in hexadecimal, 1257 is:

0x00 00 04 E9

( 256 * 4 + 16 * 14 + 9)

What order should those bytes be stored in memory? In big endian systems, we store the most 
significant byte (0x00) at the lowest address, and the least significant byte (0xE9) at the highest 
address. If the addresses are written left to right, from low to high, we get:

0x00 00 04 E9



Which matches the way we “normally” write numbers. In little endian systems, we store the most 
significant byte (0x00) at the highest address, and the least significant byte (0xE9) at the lowest 
address. If the addresses are written left to right, from low to high, we get:

0xE9 04 00 00

Which looks “backwards.” “Luckily” for us, x86 systems (like all the ones we use in this course) 
are little endian. When you’re reading data from memory, things will look backwards to you. 
Luckily, we usually don’t have to worry about endianness. The compiler and processor know 
about it, so when you read an integer from memory, you get the value you expect, and you don’t 
have to reverse any bytes.

The only time that endianness really matters is when you try to look at the contents of memory 
yourself. Like with GDB.

GDB
Demo of GDB using wrongindex3.c from PA02

1. Compiling with -g
2. Starting gdb
3. Adding breakpoints, running, continuing, stepping
4. Printing values, registers, addresses
5. Printing contents of memory


