
Lecture notes: January 9, 2017
We covered the syllabus, including the use of GitHub for submitting programming assignments, 
and the course grading policies.

We also discussed the phone dropping problem:

Your goal is to figure out from how many stories high you can drop a phone from before it 
breaks. If you have one phone, the strategy is to start by dropping the phone from the 1st floor 
and work your way up floor by floor until the phone breaks. What is the optimal strategy 
(minimizes the worst case scenario of number of drops) if you have two phones? Assume you 
have a 100 story building.

Potential Approaches
Binary search (start at floor 50, then try floor 25 or 75, and continue, cutting it in half each 
time).
Issues: Usually, binary search is a great tool for these sorts of problems. The issue here is that 
you only have two phones, and once the first phone breaks you’re stuck with just one phone 
(and hence have to use the one-phone solution of trying every floor). So if the first phone breaks 
when you try floor 50, you have to use the second phone to try every floor between 1 and 49 
(worst case scenario: 50 drops total)

Intervals (Divide the building into equal intervals. Use the first phone to test the “top” of each 
interval until it breaks, use the second phone to test the floors in that interval).
Issues: This is a good general strategy. 

A good guess might be to divide the building up into 10 even intervals. The first phone tests 
floors 10, 20, 30, etc., and if it breaks (say at floor 40), use the second phone to test floors 31, 
32, etc. The worst case scenario here is that you need 19 drops (the first phone breaks on floor 
100—10 drops—then you have to try 9 additional drops from floors 91 to 99). 

In general, the worst case scenario is going to be (number_of_floors/interval_size + 
(interval_size - 1)).

Variable size intervals But we can do better. Note that if phone A breaks in the first interval, 
you only have to do 9 more drops with phone B for a total of 10 drops. If phone A breaks in the 
third interval, you still have to do 9 more drops with phone B for a total of 12 drops. Getting up to 
higher intervals means “spending” more drops with phone A before you use your 9 drops with 
phone B. If the final answer is in a higher interval, it will take you more drops to find it. 

But what if we make higher intervals smaller? That way we “spend” drops getting to the kth 
interval, and then use fewer drops exploring that interval: If the final answer is in the kth interval, 
the number of drops needed to explore that interval is: k + size of kth interval.

So to minimize the worst case scenario, we want k + size of kth interval to be constant for all k.



That means we want the size of interval 1 to be 1 bigger than the size of interval 2, which should 
be 1 bigger than the size of interval 3, and so on.

Flipping things around, we want the last interval to only have 1 story in it, and the second-to-last 
interval to only have 2 stories in it, and so on.

All that is left is to figure out how many intervals we need to cover all 100 stories!

How many stories do we cover if we have n intervals? We can turn to some simple math:

(Later in class, we’ll use a technique called induction to prove that this is true)

So if we want to cover 100 stories, we need:

Or n = 14 (technically, n = 13.65 or so, but we can’t have intervals that are fractional stories).

So we can create 14 intervals, with the top interval being 1 story, the second being 2 stories, 
etc. and then guarantee that we will need no more than 14 drops to figure out how high we can 
drop a phone from before it breaks.

nX

i=1

i =
n(n+ 1)

2

n(n+ 1)

2
= 100


