Fourier Transform Examples. Hmuk. 7 Holp Prob. 4.10 Find FT of:

$$
x(t)=t\left(\frac{\sin (w t)}{\pi t}\right)^{2}
$$

- For Prob 4.10, $W=1 \Rightarrow$ special case
- At least 2 ways to solve problem
- Method 1:

$$
\begin{aligned}
x(t) & =t \frac{\sin (w t)}{\pi t} \frac{\sin (w t)}{\pi t} \\
& =\frac{1}{\pi} \frac{\sin (w t)}{\pi t} \sin (w t)
\end{aligned}
$$

recall:

$$
\begin{aligned}
& \frac{\operatorname{recall}:}{\sin (w t)} \underset{\pi t}{\pi} \operatorname{rect}\left(\frac{\omega}{2 w}\right) \\
& x(t) \sin \left(w_{0} t\right) \stackrel{F}{\longleftrightarrow} \frac{1}{2 j} X\left(w-w_{0}\right)-\frac{1}{2 j} X\left(u+w_{0}\right)
\end{aligned}
$$

-Thus: $\quad \frac{1}{\pi}\left\{\frac{1}{2 j} \operatorname{rect}\left(\frac{w-w}{2 w}\right)-\frac{1}{2 j} \operatorname{rect}\left(\frac{w+w}{2 w}\right)\right\}$
\Rightarrow purely imaginary, since $x(t)$ is odd f_{n}.

Method 2:
-recall: $x(t) y(t) \stackrel{\mp}{\longrightarrow} \frac{1}{2 \pi} X(\omega) * Y(w)$

- thus: $\quad x^{2}(t) \stackrel{7}{\longleftrightarrow} \frac{1}{2 \pi} X(\omega) * X(\omega)$

$$
\left\{\frac{\sin (w t)}{\pi t}\right\}^{2} \underset{ }{ } \mp \frac{1}{2 \pi} \prod_{-w}^{T_{w}^{1}} * \prod_{-w}^{\prod_{w}} w
$$

On crib sheet, have FT of $\frac{\sin \left(W_{1} t\right)}{\pi t} \frac{\sin \left(W_{2} t\right)}{\pi t}$

- recall: $t x(t) \stackrel{\mp}{\leftrightarrows} j \frac{d X(\omega)}{d \omega}$
-Thus:
slope $=\frac{\frac{W}{T}}{2 W}$

- same answer!
4.10(b) Find: $A=\int_{-\infty}^{\infty}\left\{t\left(\frac{\sin (w t)}{\pi t}\right)^{2}\right\}^{2} d t$

Parseval's Theorem: $\int_{-\infty}^{\infty} x^{2}(t) d t=\frac{1}{2 \pi} \int_{-\infty}^{\infty}|x(\omega)|^{2} d \omega$
Thus:

$\left(\frac{1}{2 \pi}\right)^{2}\|x(w)\|^{2}$	
$-2 w$	$2 w \rightarrow$

$$
\begin{aligned}
& \text { Area }=\left(\frac{1}{2 \pi}\right)^{2}(4 W) \\
& \text { under } \\
&=\frac{W}{\pi^{2}}
\end{aligned}
$$

Prob 4.12 (a) Find FT of $x(t)=t e^{-|t|}$ again: $t x(t) \stackrel{F}{\longrightarrow} j \frac{d x(w)}{d w}$

$$
\underset{\text { Example }}{\text { Ex }} \text { int ext } \quad e^{-a|t|} \stackrel{F}{\longleftrightarrow} \frac{2 a}{\omega^{2}+a^{2}}
$$

Thus:

$$
t e^{-|t|} \stackrel{\mp}{\longleftrightarrow} j \frac{d}{d w}\left\{\frac{2}{w^{2}+1}\right\}=j \frac{-2(2 \omega)}{\left(w^{2}+1\right)^{2}}
$$

(b) $\quad t e^{-|t|} \stackrel{\mp}{\longleftrightarrow} \frac{-4 \omega j}{\left(1+\omega^{2}\right)^{2}}$

Recall Duality:
Property

$$
\begin{aligned}
& x(t) \stackrel{I}{\longleftrightarrow} X(\omega) \\
& X(t) \stackrel{F}{\longleftrightarrow} 2 \pi x(-\omega)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Thus: } \\
& \frac{-4 j t}{\left(1+t^{2}\right)^{2}} \stackrel{\mp}{\rightleftarrows} \omega e^{-|\omega|} 2 \pi \Rightarrow \frac{4 t}{\left(1+t^{2}\right)^{2}} \stackrel{\mp}{\longleftrightarrow} j \omega e^{-|\omega|} 2 \pi
\end{aligned}
$$

Prob. $4.27 \quad x(t)=u(t-1)-2 u(t-2)+u(t-3)$

$$
\begin{aligned}
& \left.\tilde{x}(t)=\sum^{\infty} x(t-k T)\right\} \begin{array}{l}
\text { replicates } x(t) \text { above }
\end{array} \\
& \begin{array}{l}
\text { every } T \text { sels } \Rightarrow \\
\text { periodie siginal }
\end{array} \\
& \tilde{x}(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j k \frac{2 \pi}{T} t} \\
& a_{k}=\frac{1}{T} \int_{-T / 2}^{T / 2} x(t) e^{-j \frac{k 2 \pi}{T} t} d t=\frac{1}{T} \int_{-\infty}^{\infty}\left\{x(t) \operatorname{rect}\left(\frac{t}{T}\right) e^{-j \omega t}\right\} d t \\
& \text { evaluatod at } w=\frac{h 2 r}{T}
\end{aligned}
$$

Thus: $a_{h}=\left.\frac{1}{T} T\{$ one period $\}\right|_{w=k \frac{2 \pi}{T}}$

- In this case: $x(t)$ is one period of $\tilde{x}(t)$

$$
\begin{equation*}
X(t) \stackrel{F}{\longleftrightarrow} X(\omega) \Rightarrow a_{k}=\frac{1}{T} X\left(k \frac{2 \pi}{T}\right) \tag{6}
\end{equation*}
$$

recall: $\operatorname{rect}\left(\frac{t}{T}\right) \stackrel{\mp}{\leftrightarrows} \frac{\sin \left(\frac{T}{2} \omega\right)}{\frac{\omega}{2}}=\frac{\sin \left(T \frac{\omega}{2}\right)}{\frac{\omega}{2}}$

$$
x\left(t-t_{0}\right) \stackrel{\mp}{\longleftrightarrow} e^{-j \omega t_{0}} X(\omega)
$$

-Thus: $X(\omega)=\frac{\sin \left(\frac{\omega}{2}\right)}{\frac{\omega}{2}}\left\{e^{-j \frac{3}{2} \omega}-e^{-j \frac{5}{2} \omega}\right\}$

$$
\begin{aligned}
& =\frac{\sin \left(\frac{\omega}{2}\right)}{\frac{\omega}{2}} e^{-j 2 \omega}\left\{e^{\frac{\bar{j}}{2}}-e^{-j \frac{\omega}{2}}\right\} \frac{2 j}{2 j} \\
& =4 j \frac{\sin ^{2}\left(\frac{\omega}{2}\right)}{\omega} e^{-j 2 \omega} \\
& a_{h}=\frac{1}{T} 4 j \frac{\sin ^{2}\left(\frac{1}{2} k \frac{2 \pi}{T}\right)}{h^{2 \pi / T}} e^{-j 2 \frac{2 \pi}{T}}
\end{aligned}
$$

Prot. 4.28.
For parts (i) -(iii), just use FT property

$$
x(t) \cos \left(\omega_{0} t\right) \stackrel{7}{\longleftrightarrow} \frac{1}{2} X\left(\omega-\omega_{0}\right)+\frac{1}{2} X\left(\omega+\omega_{0}\right)
$$

- For parts (vi)-(viii), review Chap. 7 "Basic Sampling Theory" Handout

$$
\begin{aligned}
& x(t) p(t) \stackrel{ }{\rightleftarrows} \frac{1}{2 \pi} X(\omega) * P(\omega) \\
& P(t)=\sum_{k=-\infty}^{\infty} \delta(t-n T) \stackrel{F}{\longrightarrow} P(w)=? \begin{array}{l}
\text { It's in } \\
\text { Table } 4.2 \\
\text { an page } 329
\end{array} \\
& =\sum_{k=-\infty}^{\infty} \frac{1}{T} e^{j k \frac{2 \pi}{T} t} \stackrel{T}{\longleftrightarrow}=\frac{2 \pi}{T} \sum_{k=-\infty}^{\infty} \delta\left(\omega-k \frac{2 \pi}{T}\right) \\
& \text { Periodic sieral = } \\
& \text { es expansion } \\
& \text { FS cuffs } a_{h}=\frac{1}{T}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Thus: } \\
& \begin{aligned}
x(t) p(t) \stackrel{\mp}{\longleftrightarrow} & \frac{1}{2 \pi} X(\omega) * \frac{2 \pi}{T} \sum_{k=-\infty}^{\infty} \delta\left(\omega-k \frac{2 \pi}{T}\right) \\
& =\frac{1}{T} \sum_{k=-\infty}^{\infty} X(\omega) * \delta\left(\omega-k \frac{2 \pi}{T}\right) \\
& =\frac{1}{T} \sum_{k=-\infty}^{\infty} X\left(\omega-k \frac{2 \pi}{T}\right)
\end{aligned}
\end{aligned}
$$

For this problem, and

(vi) $T=\pi \Rightarrow \frac{2 \pi}{T}=\frac{2 \pi}{\pi}=2$
(vii) $T=2 \pi \Rightarrow \frac{2 \pi}{T}=\frac{2 \pi}{2 \pi}=1$

$$
(v i i i) T=4 \pi \Rightarrow \frac{2 \pi}{T}=\frac{2 \pi}{4 \pi}=\frac{1}{2}
$$

(Viii) same answer as (vii)

You get the double the number of triangles as occurring in in the answer to (vii), which can be viewed as the answer to (vii) plus the answer to (vi) shifted to the right by $1 / 2$. That doubles the amplitude BUT the value of $1 / T$ for (viii) is half of the value of $1 / \mathrm{T}$ for (vii) -- so you get the same amplitude.

$$
\begin{aligned}
& \text { Prob. 4.32 } h(t)=\frac{\sin (4(t-1))}{\pi(t-1)} \\
& \text { Vien as: } h(t)=\frac{\sin (4 t)}{\pi t} * \delta(t-1) \\
& x(t) \longrightarrow h_{1}(t)=\frac{\sin (4 t)}{\pi t} \xrightarrow{y_{1}(t)} h_{2}(t)=\delta(t-1) \underset{=}{y}(t)
\end{aligned}
$$

Recall for complox sinewave:

$$
\begin{gathered}
e^{j w_{0} t} \xrightarrow{\longrightarrow h(t)} H\left(w_{0}\right) e^{j w_{0} t} \\
h(t) \stackrel{H}{\rightleftarrows} H(w)
\end{gathered}
$$

- See Handout on Response of LTI Systems to Sinewaves. Generalizations

$$
\begin{aligned}
& A \cos \left(\omega_{0} t+\theta\right) \longrightarrow h(t) \\
& H(\omega) A\left|H\left(\omega_{0}\right)\right| \cos \left(\omega_{0} t+\theta+<H\left(\omega_{0}\right)\right) \\
& H\left(\omega_{0}\right)=\left|H\left(\omega_{0}\right)\right| e^{j<H\left(u_{0}\right)} \\
& \text { Polar form } \\
& A \sin \left(\omega_{0} t+\theta\right) \rightarrow h(t) \rightarrow A\left|H\left(\omega_{0}\right)\right| \sin \left(u_{0} t+\theta+<H\left(\omega_{0}\right)\right)
\end{aligned}
$$

For sum of sinewayes, invoke linearity

$$
\Rightarrow \text { Superposition }
$$

\Rightarrow de one at a time and then sum
(a) $x_{1}(t)=\cos \left(6 t+\frac{\pi}{2}\right)$
since $H(6)=0 ; y_{1}(t)=0$

$$
\begin{aligned}
& \text { (b) } x_{2}(t)=\sum_{k=0}^{\infty}\left(\frac{1}{2}\right)^{k} \sin (k 3 t) \\
& =\underbrace{(1) \sin (0 \cdot t)}_{=0}+\underbrace{\frac{1}{2} \sin (3 t)}_{\text {Passes }}+\underbrace{}_{\begin{array}{c}
\text { all } \\
\text { Since } H(u)
\end{array}+\frac{1}{4} \sin (6 t)+\frac{1}{2} \sin (a t)}+\ldots
\end{aligned}
$$

Final answer: for $\omega>4$

$$
y_{2}(t)=\frac{1}{2} \sin (3(t-1))
$$

(d) $x_{4}(t)=\left(\frac{\sin (2 t)}{\pi t}\right)^{2}$

See handout of Fourier Transforms involving product of sine functions

$$
\left(\frac{\sin (2 t)}{\pi t}\right)^{2} \stackrel{T}{\longleftrightarrow}
$$

Since $X_{4}(u)=0$ for $u>4$, passes right then system \Rightarrow ultimately delayed by 1

$$
y_{A}(t)=\left(\frac{\sin (2(t-1))}{\pi(t-1)}\right)^{2}
$$

- For Hawk. 7 (later), Prob. 4.12 uses Dualizy to find the FT of $x(t)=\frac{2 a}{t^{2}+a^{2}} \quad a=$ cont. $X(\omega)=\int_{-\infty}^{\infty}\left(\frac{2 a}{t^{2}+a^{2}}\right) e^{-j \omega t} d t=$? hard integral
-instead, employ duality:
Since: $e^{-a|t|} \stackrel{7}{\longleftrightarrow} \frac{2 a}{w^{2}+a^{2}}$
Then: $\frac{2 a}{t^{2}+a^{2}} \stackrel{\mp}{\longleftrightarrow} 2 \pi e^{-a|-\omega|}=2 \pi e^{-a|\omega|}$
Divide by 2 on both sides

$$
\frac{a}{t^{2}+a^{2}} \longleftrightarrow \pi e^{-a|\omega|}
$$

Prob. 4.12 $e^{-|t|} \longleftrightarrow \frac{2}{1+\omega^{2}}$
(a) $t e^{-|t|} \stackrel{\mp}{\longleftrightarrow} ? ?=j \frac{d}{d \omega}\left\{\frac{2}{1+\omega^{2}}\right\}$

$$
=j^{2(-1)} 2 w \frac{1}{\left(1+w^{2}\right)^{2}}
$$

(b) Duality Property:

$$
\begin{aligned}
& \text { D) Duality Property: } \\
& -j \frac{t}{\left(1+t^{2}\right)^{2}} \stackrel{\text { P }}{\leftrightarrows} 2 \pi(-w) e^{-|-w|}
\end{aligned}
$$

Multiply both sides by j :

$$
\frac{4 t}{\left(1+t^{2}\right)^{2}} \stackrel{+}{\longleftrightarrow}-j 2 \pi \omega e^{-|\omega|}
$$

