

$$\sum_{n=-\infty}^{\infty} \chi^{2}(n) = \sum_{n=-\infty}^{\infty} \chi^{2}(n) + 2 \sum_{n=-\infty}^{\infty} \chi^{2}(n) + \sum_{n=-\infty}^{\infty} \chi^{2}(n)$$

product of even and odd signal is odd

Thus:
$$\sum_{n=-\infty}^{\infty} \chi^{2}(n) = \sum_{n=-\infty}^{\infty} \chi_{e}^{2}(n) + \sum_{n=-\infty}^{\infty} \chi_{o}^{2}(n)$$

Prob 1.34 (d) Similarly for CT:

Me(t) No(t) is an odd function such that

Thus:
$$\int_{-\infty}^{\infty} \chi^{2}(t) dt = \int_{-\infty}^{\infty} \chi^{2}(t) dt + \int_{-\infty}^{\infty} \chi^{2}(t) dt$$

	ECE301					
Text Pub 1.26	(a) 7(In) = sin (fr. h+1) do not have any factors in common.					
	Note) x [N] is periodic if wo = 27/m/N for an and N = positive integer					
	No 21 m 7 m N Ha could reduce)					
	Wo 3 => When m=3 1 makes N He' smallest integer),					
	<i>V</i> =7					
	The signal is periodic with fundamental period N=7					
	(b) π (in) = $\cos\left(\frac{h}{p} - T\right)$					
	N= 270m = 1670m = There is NO integer m it can make Nan integer.					
	I be stone is NOT probable.					
	$(c) \times (n) = \cos(\frac{\pi}{8}n^2)$ Grader: don't grade part (c) of this problem: don't take any pts off					
	To show XIND = ZCIN+W],					
	$\frac{\pi}{8}N^2+\frac{\pi}{4}NN=2\pi k, \forall n \in \mathbb{Z}$					
	= 27 (l+m) = 27 l + 21 m, l, m & Z.					
	i) $\mathcal{T}_{N^2 \to \mathcal{T}_{N}}$ $\Rightarrow N^2 = 16 \mathcal{L}$, $N = 4 \sqrt{2}$					
	When JIEB, N=multiple + 4 (*)					
	$\frac{7}{4} \frac{7}{N} = 27 \frac{m}{n}$					
	$N = 3 \frac{\pi}{n}$					
	Whom MEX, N= multiple of 8 (+x)					
	=> N=8 to settsfy both condition (*) and (**)					
Agas ya ngiya ayaya a maadan aran ka a mara yidan di diigindadii a dinaka amaay daya aya mee daa ah	is the signal is periodic with fundamental period N=8.					
Shadawar di Makalaka 19 Faleshing Whiteleys yang yang ara ana gara bakarat di distribut bing d						
n - barn garpeger v. serveredende oppgennersen ververen gestellt det enteren en ekstellt det enteren en ekstellt det						

(d)
$$x \text{Im} = \cos(\frac{\pi}{2}n) \cos(\frac{\pi}{4}n)$$

Recall) $\cos A \cos B = 0.5 (\cos(A-P)) + \cos(A+B)$

$$\Rightarrow (\tan B) = \frac{1}{2} \left\{ \cos(\frac{\pi}{4}n) + \cos(\frac{3\pi}{4}n) \right\}^{2}$$

i) Regarding term 0 (ii) Regarding term 0

 $N_{1} = \frac{3}{3}m_{1}$, $m_{1}, N_{1} = \text{positive}$ $N_{2} = \frac{9}{3}m_{2}$, $m_{2}, N_{3} = \frac{9}{3}\text{ positive}$ integers

$$\Rightarrow \text{The positive integers} \quad N_{1} = \frac{3}{3} \text{ and} \quad m_{12} = 1$$
 , $m_{13} = \frac{9}{3}$

the positive integers $N = N_{1} = N_{2} = 0$ the smallest.

"o The signal is peciatic with hardwarental period $N = 8$

(e) $x \sin B = 2\cos(\frac{\pi}{4}n) + \sin(\frac{\pi}{3}n) - 2\cos(\frac{\pi}{4}n + \frac{\pi}{6})$

(f) Regarding term 0

 $N_{1} = \frac{3}{3}m_{1}$, for $m_{2}, N_{1} = \frac{9}{3}\text{positive}$ integers.

10) Regarding term 0

 $N_{2} = \frac{3}{3}m_{1}$, for $m_{2}, N_{3} = \frac{9}{3}\text{positive}$ integers.

11) Regarding term 0

 $N_{3} = \frac{3}{3}m_{1}$, for $m_{2}, N_{3} = \frac{9}{3}\text{positive}$ integers.

11) Regarding term 0

 $N_{2} = \frac{3}{3}m_{1}$, for $m_{2}, N_{3} = \frac{9}{3}\text{positive}$ integers.

11) Regarding term 0

 $N_{3} = \frac{3}{3}m_{1}$, for $m_{2}, N_{3} = \frac{9}{3}\text{positive}$ integers.

11) Regarding term 0

 $N_{3} = \frac{3}{3}m_{1}$, for $m_{3}, N_{3} = \frac{3}{3}$, $m_{3} =$

	(5)				
Text Prob 1,36.	(a) Note) If X[n] is periodic with period N,				
	then rothar IV] = xcn], Un E & & NEX				
	If xin) is periodic, euno(n+N)T= eunonT, where No=27/To, the Z				
	- (K)				
	From (*), we obtain				
	$e^{i\lambda_0NT} = 1 = e^{j2\pi k}$, $k \in \mathbb{Z}$.				
	This implies that				
	To NT = STILK => To N = a rational number.				
	(b) If T/To=p/g where P.BEX, then x(n)= e^2TCn(p/g)				
	Since MINI is pecialic with period N,				
	exp (J2T(P/q)(n+N)) = exp(J2T(P/q)n), Un & H.				
	— (**)				
	Fram (XX), we can get				
	$\exp(i2\pi(p/s)N) = 1 = \exp(i2\pi k), k \in \mathbb{Z}.$				
	Note) No : the smallest N scatisfying XIN+NI=XINI UNEX.				
	No = 9 = rational, of the period of x[n], but not necessarily the				
	"No ged (p.g.) . Fundamental period, and since p and q may have a Common divisor Now, the fundamental frequency of XIII is find fundamental period. Now, the fundamental frequency of XIII is find fundamental period.				
	No 2 ged (p.8)				
	271 P & ged (P, g) = 271 T ged (P, g)				
	= NoT ged (p, g)				
	(c) p/godip, g) periods of XII) one needed.				

1.36. (c) From part (b), we have that $N = \frac{q}{\gcd(p,q)}$

In other words, there are N samples in a period of x[n]. These Samples are equally spaced in time (T units of time apout).

thus the time it takes to obtain the N samples forming a Single period of x[n] is: N.T = $\frac{4}{gcd(p_1q)}$

Corresponding to $\frac{U.T}{T}$ periods of x(t).

=)
$$\frac{N \cdot T}{T_0} = \frac{q}{gcd(p_1q)} \cdot \frac{T}{T_0}$$
 where $\frac{T}{T_0} = \frac{p}{q}$

So
$$\frac{N \cdot T}{5} = \frac{\mathcal{L}}{\gcd(p, 2)} \cdot \frac{p}{\mathcal{L}} = \frac{p}{\gcd(p, 2)}$$

Hence periods of x(t) are needed!

Text Prob. 1.54	(a) 1) F	or X=1,		2
	SX	"= Z	= +	+1 = N.
	nes.	N=0	N	

i) For x +1 & XEC,

we can write

$$\frac{1-\alpha^{N}=(1+\alpha^{1}+...+\alpha^{N-1})-(\alpha^{1}+...+\alpha^{N-1}+\alpha^{N})}{\sum_{N=0}^{N-1}\alpha^{N}-\sum_{N=0}^{N-1}\alpha^{N+1}}$$

Therefore,
$$\sum_{n=0}^{N-1} x^n = \frac{1-\alpha^N}{1-\alpha}$$

(b) For
$$|\alpha| < 1$$
, $\lim_{N \to \infty} \alpha^N = 0$.
From (a), $\lim_{N \to \infty} \alpha^N = \frac{1 - \alpha^N}{1 - \alpha}$.

$$=\lim_{n\to\infty}\left(\frac{1-\alpha^n}{1-\alpha}\right)=\frac{1}{1-\alpha}.$$

for lal<1

$$\frac{d}{dx} \left\{ \sum_{n=0}^{\infty} \alpha^n = \frac{1}{1-\alpha} = (1-\alpha)^{-1} \right\}$$

take derivative unt a on both sides, using chain rule on right hand side

$$\sum_{h=0}^{10} h \, d^{h-1} = (-1)(1-d)^{-1}(-1) = \frac{1}{(1-d)^2}$$

multiply by α on both sides yields result $\sum_{n=0}^{\infty} n \alpha^n = \frac{\alpha}{(1-\alpha)^2}$

Prob. 1.54(d)

$$\sum_{n=0}^{\infty} a^n = \sum_{n=0}^{\infty} a^n - \sum_{n=0}^{k-1} a^n$$

$$= \frac{1}{1-a} - \frac{1}{1-a}$$