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This test contains four problems, each with multiple parts.
You have to draw your own plots.

You must show all work for each problem to receive full credit.
Good luck! It was great having you in class this semester!

Have a great Summer!



Problem 1. Using the Z-Transform, determine the impulse response, h[n], of the LTI system
defined by the Difference Equation below. There is no partial fraction expansion needed as
there is only a single pole.

y[n] =
1

2
y[n− 1] + x[n]− 1

16
x[n− 4]

You must use the Z-Transform to solve this problem, i.e., use basic Z-Transform properties
and a basic Z-Transform pair to ultimately determine the impulse response h[n].



Show your work and plots for Problem 1 here.



Problem 2.
The rectangular pulse xin(t) = 4{u(t)−u(t−3)} of duration 3 sec with amplitude 4 is input
to the following integrator

xa(t) =
∫

t

t−1

xin(τ)dτ

The output xa(t) is sampled every Ts = 1/4 seconds to form x[n] = xa(nTs). The sampling
rate is fs = 4 samples/sec. Show work. Clearly label and write your final answer in the
space provided on the next few pages.

(a) You can simply write the numbers that comprise x[n] in sequence form (indicate with
an arrow where the n = 0 value is) OR do a stem plot of the DT signal x[n].

(b) The Discrete-Time (DT) signal x[n], created as described above, is input to the DT
system described by the difference equation below:

y[n] = −x[n] + 2x[n− 1]− x[n− 2]

(i) First, determine the impulse response h[n] for this system.

(ii) Determine the output y[n] by convolving the input x[n] defined above with the
impulse response h[n]. Show all work in the space provided. You can simply write
the numbers that comprise y[n] in sequence form (indicate with an arrow where
the n = 0 value is) OR do a stem plot of the DT signal y[n].



Show your work and plots for Problem 2 here.



Show your work and plots for Problem 2 here.



Problem 3 (a). Consider an analog signal xa(t) with maximum frequency (bandwidth)
ωM = 30 rads/sec. That is, the Fourier Transform of the analog signal xa(t) is exactly zero
for |ω| > 30 rads/sec. This signal is sampled at a rate ωs = 80 rads/sec., where ωs = 2π/Ts

such the time between samples is Ts =
2π

80
sec. This yields the discrete-time sequence

x[n] = xa(nTs) =







sin
(

π

4
n
)

πnTs

+
sin

(

π

2
n
)

πnTs

+
sin

(

3π

4
n
)

πnTs







where: Ts =
2π

80

A reconstructed signal is formed from the samples above according to the formula below.
Determine a simple, closed-form expression for the reconstructed signal xr(t). Show work.

xr(t) =
∞
∑

n=−∞

x[n]h (t− nTs) where: Ts =
2π

80
and h(t) = Ts

π

10

sin(10t)

πt

sin(40t)

πt

Problem 3 (b). Consider the SAME analog signal xa(t) with maximum frequency (band-
width) ωM = 30 rads/sec. This signal is sampled at the same rate ωs = 80 rads/sec., but
is reconstructed with a different lowpass interpolating filter according to the formula below.
Does this achieve perfect reconstruction, that is, does xr(t) = xa(t)? For this part, you
do not need to determine xr(t), just need to explain whether xr(t) = xa(t) or not.

xr(t) =
∞
∑

n=−∞

x[n]h (t− nTs) where: Ts =
2π

80
and h(t) = Ts

1

2

{

sin(30t)

πt
+

sin(50t)

πt

}

Problem 3 (c). Consider the SAME analog signal xa(t) with maximum frequency (band-
width) ωM = 30 rads/sec. This signal is sampled at the same rate ωs = 80 rads/sec., but
is reconstructed with a different lowpass interpolating filter according to the formula below.
Does this achieve perfect reconstruction, that is, does xr(t) = xa(t)? For this part, you
do not need to determine xr(t), just need to explain whether xr(t) = xa(t) or not.

xr(t) =
∞
∑

n=−∞

x[n]h (t− nTs) where: Ts =
2π

80
and h(t) = Ts

1

2

{

sin(35t)

πt
+

sin(45t)

πt

}

Show all your work for Prob. 3, parts (a)-(b)-(c) on next page.



Show your work for Prob. 3, parts (a)-(b)-(c) below.



Show your work for Prob. 3, parts (a)-(b)-(c) below.



Problem 3 (d). Consider an analog signal xa(t) with maximum frequency (bandwidth)
ωM = 30 rads/sec. This signal is sampled at a rate ωs = 50 rads/sec., where ωs = 2π/Ts

such the time between samples is Ts =
2π

50
sec, yielding the following discrete-time sequence:

x[n] = xa(nTs) =







sin
(

2π

5
n
)

πnTs

+
sin

(

4π

5
n
)

πnTs

+
sin

(

6π

5
n
)

πnTs







where: Ts =
2π

50

A reconstructed signal is formed from the samples above according to the formula below.
Determine a closed-form expression for the reconstructed signal xr(t). Show all work.

xr(t) =
∞
∑

n=−∞

x[n]h (t− nTs) where: Ts =
2π

50
and h(t) = Ts

sin(25t)

πt

Problem 3 (e). Consider the SAME analog signal xa(t) with maximum frequency (band-
width) ωM = 40 rads/sec. This signal is sampled at the same rate ωs = 50 rads/sec., where
ωs = 2π/Ts and the time between samples is Ts =

2π

50
sec, but offset by Ts/2 from t = 0, i.e.,

at the points t = nTs + Ts/2. This yields the Discrete-Time x[n] signal below:

x[n] = xa(nTs) =







sin
(

2π

5
(n + 0.5)

)

π(n+ 0.5)Ts

+
sin

(

4π

5
(n+ 0.5)

)

π(n+ 0.5)Ts

+
sin

(

6π

5
(n+ 0.5)

)

π(n+ 0.5)Ts







where: Ts =
2π

50

A reconstructed signal is formed from the samples above according to the formula below.
Determine a simple, closed-form expression for the reconstructed signal xr(t). Hint: before
you do a lot of work, look at the interpolating lowpass filter being used below.

xr(t) =
∞
∑

n=−∞

xǫ[n]h (t− (n+ 0.5)Ts) where: Ts =
2π

50
and h(t) = Ts

sin(25t)

πt

Show your work for Prob. 3, parts (d)-(e) on next page.



Show all your work for Prob. 3, parts (d)-(e) on this page.



Show all your work for Prob. 3, parts (d)-(e) on this page.



Problem 4. For each part: show all work, state which Fourier Transform pairs and/or
properties you are using, and clearly indicate your final answer.
Problem 4 (a). Determine the Fourier Transform X(ω) of the signal defined below

x(t) = 1 + cos(πt), for |t| < 1 (1)

= 0, for |t| > 1 (2)

(3)

You don’t need to plot X(ω), just determine a closed-form expression for X(ω) . Note that
x(t) is an even-symmetric function of time so that its Fourier Transform X(ω) is purely
real-valued. There should be no j =

√
−1 anywhere in your final answer.



Problem 4 (b). Compute the energy E =
∫

∞

−∞

x2(t)dt of the signal below.

x(t) =
4

t2 + 4
(4)

Show all work and clearly indicate your final answer.



Problem 4 (c). You are given that the Fourier Transform of a Gaussian pulse x(t) = e
−t

2

2

is X(ω) =
√
2π e

−ω
2

2 . That is,

x(t) = e
−t

2

2 ←→ X(ω) = α e
−ω

2

2

This says that, except for the scalar α =
√
2π, the functional form of the Fourier Transform

is the same as in the time-domain function. Is the same true for the y(t) = te
−t

2

2 ? That is,
is the following true:

y(t) = t e
−t

2

2

??

←→X(ω) = β ωe
−ω

2

2

Determine if the above is true and, if so, determine the numerical value of β. Show all work
and clearly indicate which Fourier Transform properties you are using.



Problem 4 (d). Given the real-valued signal

x(t) = t e
−t

2

2

a complex-valued signal is formed as

y(t) = x(t) + jx̂(t) where: x̂(t) = x(t) ∗ 1

πt

Determine and plot Y (ω), the Fourier Transform, of y(t). Show work and sketch the magni-
tude |Y (ω)|. Explicitly indicate the frequency at which Y (ω) achieves its maximum value.
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−1

0

1

2

3



Problem 4 (e). Determine the Fourier Transform X(ω) of the signal

x(t) =
1

π
ln(t)

where ln(t) is the natural logarithm of t such that

d

dt
x(t) =

1

πt

You don’t need to plot X(ω). You just need to determine a closed-form expression for X(ω).



Problem 4 (f). Determine the value of the integral below, where a is a real-valued constant
with a > 0. Does the answer depend on the constant a? Show all work and explain your
answer.

∫

∞

−∞

2a

ω2 + a2
dω =??


