Cover Sheet

Test Duration: 120 minutes.
Coverage: Comprehensive.
Open Book but Closed Notes.
Calculators NOT allowed.
This test contains six problems.
All work should be done in the blue books provided.
You must show all work for each problem to receive full credit.
Do not return this test sheet, just return the blue books.

For EACH of the part of this problem:

- You need only plot the magnitude of the DTFT over $-\pi<\omega<\pi$, but it is very important to keep in mind that a DTFT is always periodic with period 2π.
- You must clearly label the DTFT magnitude plot requested and show as much detail as possible, clearly pointing out regions over $-\pi<\omega<\pi$ for which the DTFT is zero.
- You MUST show all work and explain how you got your answer concisely but with sufficient detail to receive full credit.
- The unit of T_{s} is seconds for all parts.

Problem 1.

Consider the continuous-time signal $x_{1}(t)=\left\{\frac{\sin (3 t)}{\pi t}\right\}^{2} \cos (4 t)$. A discrete-time signal is created by sampling $x_{1}(t)$ according to $x_{1}[n]=x_{1}\left(n T_{s}\right)$ for $T_{s}=\frac{2 \pi}{16}$.
(i) Plot the magnitude of the DTFT of $x_{1}[n]$ over $-\pi<\omega<\pi$.
(ii) $x_{1}[n]$ is passed through a DT linear system with impulse response $h_{a}[n]=(-1)^{n}\left\{\frac{\sin \left(\frac{\pi}{4} n\right)}{\pi n}\right\}$ yielding the output $y_{a 1}[n]$. Plot magnitude of the DTFT of $y_{a 1}[n]$.
(iii) $x_{1}[n]$ is passed through a DT linear system with impulse response $h_{b}[n]=2 \cos \left(\frac{\pi}{2} n\right)\left\{\frac{\sin \left(\frac{\pi}{4} n\right)}{\pi n}\right\}$ yielding the output $y_{b 1}[n]$. Plot magnitude of the DTFT of $y_{b 1}[n]$ over $-\pi<\omega<\pi$.
(iv) $x_{1}[n]$ is passed through a DT linear system with impulse response $h_{c}[n]=\frac{\sin \left(\frac{\pi}{4} n\right)}{\pi n}$ yielding the output $y_{c 1}[n]$. Plot magnitude of the DTFT of $y_{c 1}[n]$ over $-\pi<\omega<\pi$.

Problem 2.

Consider the continuous-time signal $x_{2}(t)=\frac{\sin (4 t)}{\pi t}$. A discrete-time signal is created by sampling $x_{2}(t)$ according to $x_{2}[n]=x_{2}\left(n T_{s}\right)$ for $T_{s}=\frac{2 \pi}{6}$.
(i) Plot the magnitude of the DTFT of $x_{2}[n]$ over $-\pi<\omega<\pi$.
(ii) $x_{2}[n]$ is passed through a DT linear system with impulse response $h[n]=(-1)^{n}\left\{\frac{\sin \left(\frac{2 \pi}{3} n\right)}{\pi n}\right\}$ yielding the output $y_{2}[n]$. Plot magnitude of the DTFT of $y_{2}[n]$ over $-\pi<\omega<\pi$.
(iii) $x_{2}[n]$ is passed through the DT linear system drawn below with impulse response $h_{a}[n]=(-1)^{n}\left\{\frac{\sin \left(\frac{\pi}{3} n\right)}{\pi n}\right\}$ AND $h_{b}[n]=2\left\{\frac{\sin \left(\frac{2 \pi}{3} n\right)}{\pi n}\right\}$ yielding the output denoted $y_{a b}[n]$. Plot magnitude of the DTFT of $y_{a b}[n]$ over $-\pi<\omega<\pi$.

Problem 3.

Consider the continuous-time signal $x_{3}(t)=x(t) *\left\{\frac{\sin (2 t)}{\pi t}\right\}$, where $*$ denotes convolution and $x(t)$ is the periodic signal $x(t)$ below with period $T=3 \pi$.

A discrete-time signal is created by sampling $x_{3}(t)$ according to $x_{3}[n]=x_{3}\left(n T_{s}\right)$ for $T_{s}=\frac{2 \pi}{4}$.
(i) Plot the magnitude of the DTFT of $x_{3}[n]$ over $-\pi<\omega<\pi$.
(ii) $x_{3}[n]$ is passed through a DT linear system with impulse response $h[n]=\frac{\sin \left(\frac{3 \pi}{4} n\right)}{\pi n}$ yielding the output $y_{3}[n]$. Plot magnitude of the DTFT of $y_{3}[n]$ over $-\pi<\omega<\pi$.

Problem 4.

The CT signal $y(t)$ is obtained by passing the periodic input signal (period 3π)

through the system $y(t)=\int_{t-\pi}^{t+\pi} x(\tau) d \tau$. NEXT, consider the CT signal $x_{4}(t)$ defined in terms of $y(t)$ as $x_{4}(t)=y(t) *\left\{\frac{\sin (2 t)}{\pi t}\right\}$, where $*$ denotes convolution. A DT signal is obtained by sampling $x_{4}(t)$ according to $x_{4}[n]=x_{4}\left(n T_{s}\right)$ for $T_{s}=\frac{2 \pi}{4}$.
(i) Plot the magnitude of the DTFT of $x_{4}[n]$ over $-\pi<\omega<\pi$.
(ii) $x_{4}[n]$ is passed through a DT linear system with impulse response $h[n]=\frac{\sin \left(\frac{3 \pi}{4} n\right)}{\pi n}$ yielding the output $y_{4}[n]$. Plot magnitude of the DTFT of $y_{4}[n]$ over $-\pi<\omega<\pi$.

Problem 5.

Consider the continuous-time signal below equal to a sum of four sinewaves.

$$
x(t)=\cos (3 t)+\cos (6 t)+\cos (9 t)+\cos (12 t)
$$

A discrete-time signal is created by sampling $x(t)$ according to $x[n]=x\left(n T_{s}\right)$ for $T_{s}=\frac{2 \pi}{12}$.
(i) Plot the magnitude of the DTFT of $x[n]$ over $-\pi<\omega<\pi$.
(ii) $x[n]$ is passed through a DT linear system described by the difference equation

$$
y[n]=\frac{1}{2} y[n-1]+x[n]-2 x[n-1]
$$

Plot magnitude of the DTFT of the output $y[n]$ over $-\pi<\omega<\pi$.

Problem 6.

Consider the continuous-time signal $x_{6}(t)=\left\{\frac{\sin (4 t)}{\pi t}\right\}\left\{\frac{\sin (8 t)}{\pi t}\right\}$. A DT signal is obtained by sampling $x_{6}(t)$ according to $x_{6}[n]=x_{6}\left(n T_{s}\right)$ for $T_{s}=\frac{2 \pi}{36}$.
(i) Plot the magnitude of the DTFT of $x_{6}[n]$ over $-\pi<\omega<\pi$.
(ii) $x_{6}[n]$ is passed through a DT linear system with impulse response $h_{a}[n]=(-1)^{n}\left\{\frac{\sin \left(\frac{\pi}{3} n\right)}{\pi n}\right\}$ yielding the output $y_{a 1}[n]$. Plot magnitude of the DTFT of $y_{a 1}[n]$.
(iii) $x_{6}[n]$ is passed through a DT linear system with impulse response $h_{b}[n]=2 \cos \left(\frac{4 \pi}{9} n\right)\left\{\frac{\sin \left(\frac{2 \pi}{9} n\right)}{\pi n}\right\}$ yielding the output $y_{b 1}[n]$. Plot magnitude of the DTFT of $y_{b 1}[n]$ over $-\pi<\omega<\pi$.
(iv) $x_{6}[n]$ is passed through a DT linear system with impulse response $h_{c}[n]=\frac{\sin \left(\frac{2 \pi}{9} n\right)}{\pi n}$ yielding the output $y_{c 1}[n]$. Plot magnitude of the DTFT of $y_{c 1}[n]$ over $-\pi<\omega<\pi$.

