EE301 Signals and Systems

 Exam 3Exam 3 Thursday, April 22, 2010

Cover Sheet

Test Duration: 75 minutes.
Coverage: Chaps. 7 and 5, but will need Chap. 4 material
Open Book but Closed Notes. One two-sided handwritten sheet.
Calculators NOT allowed.
This test contains one long problem, with many parts.
All work should be done in the blue books provided.
You must show all work for each problem to receive full credit.
Do not return this test sheet, just return the blue books.
NOTE: All the signals in this exam have a purely real-valued Fourier Transform, but there may be frequency bands for which the Fourier Transform is negative-valued. Since each Fourier Transform is real-valued, I am asking you to plot the DTFT showing the regions where it is negative. You do NOT have to plot the magnitude.

Problem 1.

(a) Consider the continuous-time signal $x_{1}(t)$ below A discrete-time signal is created by sampling $x_{1}(t)$ according to $x_{1}[n]=x_{1}\left(n T_{s}\right)$ for $T_{s}=\frac{2 \pi}{40}$. Plot the DTFT of $x_{1}[n]$, $X_{1}(\omega)$, over $-\pi<\omega<\pi$.

$$
x_{1}(t)=j T_{s} 2 \pi t\left\{\frac{\sin (5 t)}{\pi t}\right\}^{2}
$$

(b) Repeat part (a) for $T_{s}=\frac{2 \pi}{15}$.
(c) Consider the continuous-time signal $x_{2}(t)$ below A discrete-time signal is created by sampling $x_{2}(t)$ according to $x_{2}[n]=x_{2}\left(n T_{s}\right)$ for $T_{s}=\frac{2 \pi}{30}$. Plot the DTFT of $x_{2}[n]$, $X_{2}(\omega)$, over $-\pi<\omega<\pi$.

$$
x_{2}(t)=-j T_{s} \frac{d}{d t}\left\{\frac{\sin (10 t)}{\pi t}\right\}
$$

(d) Repeat part (c) for $T_{s}=\frac{2 \pi}{15}$.
(e) Consider the continuous-time signal $x_{3}(t)$ below A discrete-time signal is created by sampling $x_{3}(t)$ according to $x_{3}[n]=x_{3}\left(n T_{s}\right)$ for $T_{s}=\frac{2 \pi}{20}$. Plot the DTFT of $x_{3}[n]$, $X_{3}(\omega)$, over $-\pi<\omega<\pi$.

$$
x_{3}(t)=j T_{s} \frac{1}{2}\left\{\frac{\sin \left(10\left(t-\frac{\pi}{10}\right)\right)}{\pi\left(t-\frac{\pi}{10}\right)}-\frac{\sin \left(10\left(t+\frac{\pi}{10}\right)\right)}{\pi\left(t+\frac{\pi}{10}\right)}\right\}
$$

(f) Repeat part (e) for $T_{s}=\frac{2 \pi}{15}$.
(g) Consider the continuous-time signal $x_{4}(t)$ below A discrete-time signal is created by sampling $x_{4}(t)$ according to $x_{4}[n]=x_{4}\left(n T_{s}\right)$ for $T_{s}=\frac{2 \pi}{60}$. Plot the DTFT of $x_{4}[n]$, $X_{4}(\omega)$, over $-\pi<\omega<\pi$.

$$
x_{4}(t)=T_{s} \frac{\pi}{2}\left\{\frac{\sin (2 t)}{\pi t} \frac{\sin (8 t)}{\pi t}\right\}
$$

(h) Repeat part (g) for $T_{s}=\frac{2 \pi}{18}$.
(i) Repeat part (g) for $T_{s}=\frac{2 \pi}{16}$.
(j) Consider the continuous-time signal $x_{5}(t)$ below A discrete-time signal is created by sampling $x_{5}(t)$ according to $x_{5}[n]=x_{5}\left(n T_{s}\right)$ for $T_{s}=\frac{2 \pi}{48}$. Plot the DTFT of $x_{5}[n]$, $X_{5}(\omega)$, over $-\pi<\omega<\pi$.

$$
x_{5}(t)=\cos (6 t)+\cos (12 t)+\cos (15 t)+\cos (18 t)+\cos (21 t)+\cos (24 t)
$$

(k) Repeat part (j) for $T_{s}=\frac{2 \pi}{24}$.

