EE301 Signals and Systems Exam 3

In-Class Exam Thursday, April 19, 2007

Cover Sheet

Test Duration: 75 minutes.
Coverage: Chaps. 5 and 7
Open Book but Closed Notes (NO LOOSE SHEETS)
Calculators NOT allowed.
This test contains two problems.
All work should be done in the blue books provided.
You must show all work for each problem to receive full credit.
Do not return this test sheet, just return the blue books.

Problem 1. For EACH part of this problem, plot the magnitude $\left|X\left(e^{j \omega}\right)\right|$ of the DTFT of the sampled signal $x[n]$ over $-\pi<\omega<\pi$. Show as much detail as possible.
(a) $x[n]=x_{a}\left(n T_{s}\right)$ where $T_{s}=\frac{2 \pi}{9}$ and $x_{a}(t)=T_{s}\left\{\frac{\sin (t)}{\pi t}+\frac{\sin (3 t)}{\pi t}\right\}$.
(b) $x[n]=x_{a}\left(n T_{s}\right)$ where $T_{s}=\frac{2 \pi}{6}$ and $x_{a}(t)=T_{s}\left\{\frac{\sin (t)}{\pi t}+\frac{\sin (3 t)}{\pi t}\right\}$.
(c) $x[n]=x_{a}\left(n T_{s}\right)$ where $T_{s}=\frac{2 \pi}{5}$ and $x_{a}(t)=T_{s}\left\{\frac{\sin (t)}{\pi t}+\frac{\sin (3 t)}{\pi t}\right\}$.
(d) $x[n]=x_{a}\left(n T_{s}\right)$ where $T_{s}=\frac{2 \pi}{4}$ and $x_{a}(t)=T_{s}\left\{\frac{\sin (t)}{\pi t}+\frac{\sin (3 t)}{\pi t}\right\}$.
(e) $x[n]=x_{a}\left(n T_{s}\right)$ where $T_{s}=\frac{2 \pi}{12}$ and $x_{a}(t)=2 T_{s}\left\{\frac{\sin (t)}{\pi t}+\frac{\sin (3 t)}{\pi t}\right\} \cos (3 t)$.
(f) $x[n]=x_{a}\left(n T_{s}\right)$ where $T_{s}=\frac{2 \pi}{5}$ and $x_{a}(t)=2 T_{s}\left\{\frac{\sin (t)}{\pi t}+\cos (2 t)\right\}^{2}$.
(g) $x[n]=x_{a}\left(n T_{s}\right)$ where $T_{s}=\frac{2 \pi}{32}$ and $x_{a}(t)=2 T_{s}\left\{\frac{\sin (t)}{\pi t} \frac{\sin (3 t)}{\pi t}\right\} \cos (4 t)$.

Problem 2. Consider the discrete-time LTI system described by the following simple difference equation.

$$
\begin{equation*}
y[n]=x[n]-x[n-1] \tag{1}
\end{equation*}
$$

(a) Determine the impulse response of this system, $h[n]$. Plot $h[n]$ (stem plot).
(b) Determine and write a closed-form expression for the DTFT, $H\left(e^{j \omega}\right)$, of $h[n]$. $H\left(e^{j \omega}\right)$ is the frequency response of the system.
(c) Plot the magnitude $\left|H\left(e^{j \omega}\right)\right|$ over $-\pi<\omega<\pi$.
(d) Plot the phase $\angle H\left(e^{j \omega}\right)$ over $-\pi<\omega<\pi$.

$$
\begin{equation*}
x_{a}(t)=3(1-|t|)\{u(t+1)-u(t-1)\} \tag{2}
\end{equation*}
$$

Observe $x_{a}(t)$ has a triangle shape of height 3 and of duration two seconds center at $t=0$. Let $x[n]=x_{a}\left(n T_{s}\right)$ where $T_{s}=\frac{1}{3}$. That is, $x[n]$ obtained by sampling $x_{a}(t)$ at a rate of three samples per second.
(e) Plot $x[n]$ (stem plot).
(f) Determine and write a closed-form expression for the DTFT, $X\left(e^{j \omega}\right)$, of $x[n]$.
(g) Plot the magnitude $\left|X\left(e^{j \omega}\right)\right|$ over $-\pi<\omega<\pi$.
(h) Determine the output signal $y[n]$ when the sampled signal $x[n]$ is input to the system $y[n]=x[n]-x[n-1]$. Plot $y[n]$ (stem plot).
(i) Determine and write a closed-form expression for the DTFT, $Y\left(e^{j \omega}\right)$, of $y[n]$.
(j) Plot the magnitude $\left|Y\left(e^{j \omega}\right)\right|$ of the DTFT of $y[n]$ over $-\pi<\omega<\pi$.
(k) Determine the numerical value of $\sum_{n=-\infty}^{\infty} y^{2}[n]$. Show all work.

