EE301 Signals and Systems Exam 3

In-Class Exam
Thursday, Apr. 22, 2004

Cover Sheet

Test Duration: 70 minutes.
Coverage: Chaps. 5 and 7.
Open Book but Closed Notes.
Calculators NOT allowed.
This test contains one problem with 15 parts.
All work should be done in the blue books provided.
You must show all work for each problem to receive full credit.
Do not return this test sheet, just return the blue books.

For EACH of the part of this problem:

- You need only plot the magnitude of the DTFT over $-\pi<\omega<\pi$, but it is very important to keep in mind that a DTFT is always periodic with period 2π.
- You must clearly label the DTFT magnitude plot requested and show as much detail as possible, clearly pointing out regions over $-\pi<\omega<\pi$ for which the DTFT is zero.
- You MUST show all work and explain how you got your answer concisely but with sufficient detail to receive full credit.
- The unit of T_{s} is seconds for all parts.
(a) $x_{1}(t)=\cos (4 t)$. Plot the magnitude of the DTFT of $x_{1}[n]=x_{1}\left(n T_{s}\right)$ for $T_{s}=\frac{2 \pi}{6}$.
(b) $x_{2}(t)=\frac{\sin (4 t)}{\pi t}$. Plot the magnitude of the DTFT of $x_{2}[n]=x_{2}\left(n T_{s}\right)$ for $T_{s}=\frac{2 \pi}{16}$.
(c) $x_{3}(t)=\frac{\sin (4 t)}{\pi t}$. Plot the magnitude of the DTFT of $x_{3}[n]=x_{3}\left(n T_{s}\right)$ for $T_{s}=\frac{2 \pi}{12}$.
(d) $x_{4}(t)=\frac{\sin (4 t)}{\pi t}$. Plot the magnitude of the DTFT of $x_{4}[n]=x_{4}\left(n T_{s}\right)$ for $T_{s}=\frac{2 \pi}{8}$.
(e) $x_{5}(t)=\frac{\sin (4 t)}{\pi t}$. Plot the magnitude of the DTFT of $x_{5}[n]=x_{5}\left(n T_{s}\right)$ for $T_{s}=\frac{2 \pi}{6}$.
(f) $x_{6}(t)=\frac{d}{d t}\left\{\frac{\sin (4 t)}{\pi t}\right\}$. Plot the magnitude of the DTFT of $x_{6}[n]=x_{6}\left(n T_{s}\right)$ for $T_{s}=\frac{2 \pi}{12}$.
(g) $x_{7}(t)=\frac{d}{d t}\left\{\frac{\sin (4 t)}{\pi t}\right\}$ Plot the magnitude of the DTFT of $x_{7}[n]=x_{7}\left(n T_{s}\right)$ for $T_{s}=\frac{2 \pi}{8}$.
(h) $x_{8}(t)=\left\{\frac{\sin (4 t)}{\pi t}\right\}^{2}$. Plot the magnitude of the DTFT of $x_{8}[n]=x_{8}\left(n T_{s}\right)$ for $T_{s}=\frac{2 \pi}{16}$.
(i) $x_{9}(t)=\left\{\frac{\sin (4 t)}{\pi t}\right\}^{2}$. Plot magnitude of the DTFT of $x_{9}[n]=x_{9}\left(n T_{s}\right)$ for $T_{s}=\frac{2 \pi}{12}$.
(j) $x_{10}(t)=t\left\{\frac{\sin (4 t)}{\pi t}\right\}^{2}$. Plot magnitude of the DTFT of $x_{10}[n]=x_{10}\left(n T_{s}\right)$ for $T_{s}=\frac{2 \pi}{24}$.
(k) $x_{11}(t)=t\left\{\frac{\sin (4 t)}{\pi t}\right\}^{2}$. Plot magnitude of the DTFT of $x_{11}[n]=x_{11}\left(n T_{s}\right)$ for $T_{s}=\frac{2 \pi}{16}$.
(ℓ) $x_{12}(t)=\left\{\frac{\sin (4 t)}{\pi t}\right\}^{2} \cos (6 t)$. Plot magnitude of DTFT of $x_{12}[n]=x_{12}\left(n T_{s}\right)$ for $T_{s}=\frac{2 \pi}{24}$.
(m) $x_{13}(t)=\left\{\frac{\sin (4 t)}{\pi t}\right\}^{2} \cos (6 t)$. Plot magnitude of DTFT of $x_{13}[n]=x_{13}\left(n T_{s}\right)$ for $T_{s}=\frac{2 \pi}{16}$.
(n) $x_{14}(t)=\left\{\frac{\sin (2 t)}{\pi t}\right\}\left\{\frac{\sin (4 t)}{\pi t}\right\}$. Plot the magnitude of the DTFT of $x_{14}[n]=x_{14}\left(n T_{s}\right)$ for $T_{s}=\frac{2 \pi}{18}$.
(o) $x_{15}(t)=\left\{\frac{\sin (2 t)}{\pi t}\right\} *\left\{\frac{\sin (4 t)}{\pi t}\right\}$, where $*$ denotes convolution. Plot the magnitude of the DTFT of $x_{15}[n]=x_{15}\left(n T_{s}\right)$ for $T_{s}=\frac{2 \pi}{8}$.

