EE301 Signals and Systems Exam 3

In-Class Exam Thursday, Apr. 22, 2004

Cover Sheet

Test Duration: 70 minutes. Coverage: Chaps. 5 and 7. Open Book but Closed Notes. Calculators NOT allowed. This test contains **one** problem with 15 parts. All work should be done in the blue books provided. You must show all work for each problem to receive full credit. Do **not** return this test sheet, just return the blue books.

For EACH of the part of this problem:

- You need only plot the magnitude of the DTFT over $-\pi < \omega < \pi$, but it is very important to keep in mind that a DTFT is always periodic with period 2π .
- You must clearly label the DTFT magnitude plot requested and show as much detail as possible, clearly pointing out regions over $-\pi < \omega < \pi$ for which the DTFT is zero.
- You MUST show all work and explain how you got your answer concisely but with sufficient detail to receive full credit.
- The unit of T_s is seconds for all parts.

(a)
$$x_1(t) = \cos(4t)$$
. Plot the magnitude of the DTFT of $x_1[n] = x_1(nT_s)$ for $T_s = \frac{2\pi}{6}$.
(b) $x_2(t) = \frac{\sin(4t)}{\pi t}$. Plot the magnitude of the DTFT of $x_2[n] = x_2(nT_s)$ for $T_s = \frac{2\pi}{16}$.
(c) $x_3(t) = \frac{\sin(4t)}{\pi t}$. Plot the magnitude of the DTFT of $x_3[n] = x_3(nT_s)$ for $T_s = \frac{2\pi}{12}$.
(d) $x_4(t) = \frac{\sin(4t)}{\pi t}$. Plot the magnitude of the DTFT of $x_4[n] = x_4(nT_s)$ for $T_s = \frac{2\pi}{8}$.
(c) $x_5(t) = \frac{\sin(4t)}{\pi t}$. Plot the magnitude of the DTFT of $x_5[n] = x_5(nT_s)$ for $T_s = \frac{2\pi}{6}$.
(f) $x_6(t) = \frac{d}{dt} \left\{ \frac{\sin(4t)}{\pi t} \right\}$. Plot the magnitude of the DTFT of $x_5[n] = x_7(nT_s)$ for $T_s = \frac{2\pi}{8}$.
(g) $x_7(t) = \frac{d}{dt} \left\{ \frac{\sin(4t)}{\pi t} \right\}$ Plot the magnitude of the DTFT of $x_7[n] = x_7(nT_s)$ for $T_s = \frac{2\pi}{8}$.
(h) $x_8(t) = \left\{ \frac{\sin(4t)}{\pi t} \right\}^2$. Plot the magnitude of the DTFT of $x_8[n] = x_8(nT_s)$ for $T_s = \frac{2\pi}{12}$.
(j) $x_{10}(t) = t \left\{ \frac{\sin(4t)}{\pi t} \right\}^2$. Plot magnitude of the DTFT of $x_{10}[n] = x_{10}(nT_s)$ for $T_s = \frac{2\pi}{12}$.
(k) $x_{11}(t) = t \left\{ \frac{\sin(4t)}{\pi t} \right\}^2$. Plot magnitude of the DTFT of $x_{10}[n] = x_{10}(nT_s)$ for $T_s = \frac{2\pi}{12}$.
(i) $x_{10}(t) = \left\{ \frac{\sin(4t)}{\pi t} \right\}^2$. Plot magnitude of the DTFT of $x_{10}[n] = x_{10}(nT_s)$ for $T_s = \frac{2\pi}{12}$.
(j) $x_{10}(t) = t \left\{ \frac{\sin(4t)}{\pi t} \right\}^2$. Plot magnitude of the DTFT of $x_{11}[n] = x_{11}(nT_s)$ for $T_s = \frac{2\pi}{12}$.
(i) $x_{11}(t) = t \left\{ \frac{\sin(4t)}{\pi t} \right\}^2$ cos(6t). Plot magnitude of DTFT of $x_{12}[n] = x_{12}(nT_s)$ for $T_s = \frac{2\pi}{21}$.
(m) $x_{13}(t) = \left\{ \frac{\sin(2t)}{\pi t} \right\}^2$ cos(6t). Plot magnitude of DTFT of $x_{13}[n] = x_{13}(nT_s)$ for $T_s = \frac{2\pi}{21}$.
(n) $x_{14}(t) = \left\{ \frac{\sin(2t)}{\pi t} \right\} \left\{ \frac{\sin(4t)}{\pi t} \right\}$. Plot the magnitude of the DTFT of $x_{14}[n] = x_{14}(nT_s)$ for $T_s = \frac{2\pi}{16}$.
(o) $x_{15}(t) = \left\{ \frac{\sin(2t)}{\pi t} \right\} \left\{ \frac{\sin(4t)}{\pi t} \right\}$, where $*$ denotes convolution. Plot the magnitude of the DTFT of $x_{14}[n] = x_{16}(nT_s)$ for $T_s = \frac{2\pi}{8}$.