Cover Sheet

Test Duration: 75 minutes.
Coverage: Chaps. 3,4 with emphasis on Chap. 4
Open Book but Closed Notes.
One 8.5 in. x 11 in. crib sheet
Calculators NOT allowed.
All work should be done on the sheets provided.
You can NOT do work on the back of a page unless permission is granted. No work on the back of a page will be graded unless permission is granted.

You must show all work for each problem to receive full credit.

Problem 1. The sum of (infinite-duration) sinewaves below

$$
x(t)=1+\pi \cos (\pi t)+\pi \cos (2 \pi t)
$$

is input to an LTI system with impulse response given by

$$
h(t)=\cos (\pi t) \operatorname{rect}(t)
$$

Determine and write a closed-form expression for the output $y(t)=x(t) * h(t)$. Show all work, state which Fourier Transform pairs and/or properties you are using, and clearly indicate your final answer.

Additional Space for Problem 1 answer and work.

Problem 2 (a). The Gaussian pulse $x(t)=\frac{1}{6 \sqrt{2 \pi}} e^{-\frac{t^{2}}{2 \sigma_{1}^{2}}}$, with $\sigma_{1}^{2}=6^{2}$, is multiplied by a complex-valued sinewave to form $y(t)=e^{j 3 t} x(t)$. Find the numerical value of $E=$ $\frac{1}{2 \pi} \int_{-\infty}^{\infty}|Y(\omega)|^{2} d \omega$. Show all work, state which Fourier Transform pairs and/or properties you are using, and clearly indicate your final answer.

Problem 2 (b). The Gaussian pulse $x(t)=\frac{1}{6 \sqrt{2 \pi}} e^{-\frac{t^{2}}{2 \sigma_{1}^{2}}}$, with $\sigma_{1}^{2}=6^{2}$, is time-shifted to form $y(t)=x(t-3)$. Find the numerical value of $E=\frac{1}{2 \pi} \int_{-\infty}^{\infty}|Y(\omega)|^{2} d \omega$. Show all work, state which Fourier Transform pairs and/or properties you are using, and clearly indicate your final answer.

Problem 2 (c). The Gaussian pulse $x(t)=\frac{1}{6 \sqrt{2 \pi}} e^{-\frac{t^{2}}{2 \sigma_{1}^{2}}}$, with $\sigma_{1}^{2}=6^{2}$, is differentiated to form $y(t)=\frac{d}{d t} x(t)$. Find the numerical value of $A=\int_{-\infty}^{\infty} y(t) d t$. Show all work, state which Fourier Transform pairs and/or properties you are using, and clearly indicate your final answer.

Problem 2 (d). The Gaussian pulse $x(t)=\frac{1}{6 \sqrt{2 \pi}} e^{-\frac{t^{2}}{2 \sigma_{1}^{2}}}$, with $\sigma_{1}^{2}=6^{2}$, is multiplied by t to form $y(t)=t x(t)$. Find the numerical value of $A=\int_{-\infty}^{\infty} y(t) d t$. Show all work, state which Fourier Transform pairs and/or properties you are using, and clearly indicate your final answer.

Problem 2 (e). The Gaussian pulse $x(t)=\frac{1}{6 \sqrt{2 \pi}} e^{-\frac{t^{2}}{2 \sigma_{1}^{2}}}$, with $\sigma_{1}^{2}=6^{2}$, is compressed in time by a factor of 2 to form $y(t)=x(2 t)$. Find the numerical value of the energy $E=\int_{-\infty}^{\infty} y^{2}(t) d t$. Show all work, state which Fourier Transform pairs and/or properties you are using, and clearly indicate your final answer.

Problem 2 (f). The Gaussian pulse $x(t)=\frac{1}{6 \sqrt{2 \pi}} e^{-\frac{t^{2}}{2 \sigma_{1}^{2}}}$, with $\sigma_{1}^{2}=6^{2}$, is input to an LTI system with a Gaussian shaped impulse response, $h(t)=\frac{1}{8 \sqrt{2 \pi}} e^{-\frac{t^{2}}{2 \sigma_{2}^{2}}}$, with $\sigma_{2}^{2}=8^{2}$. Determine a simple, closed-form expression for the output $y(t)=x(t) * h(t)$. Show all work, state which Fourier Transform pairs and/or properties you are using, and clearly indicate your final answer.

Problem 2 (g). The Gaussian pulse $x(t)=\frac{1}{6 \sqrt{2 \pi}} e^{-\frac{t^{2}}{2 \sigma_{1}^{2}}}$, with $\sigma_{1}^{2}=6^{2}$, is input to an LTI system with a Gaussian shaped impulse response, $h(t)=\frac{1}{8 \sqrt{2 \pi}} e^{-\frac{t^{2}}{2 \sigma_{2}^{2}}}$, with $\sigma_{2}^{2}=8^{2}$. Determine the numerical value of the area, $A=\int_{-\infty}^{\infty} y(t) d t$, under the output $y(t)=x(t) * h(t)$. Show all work, state which Fourier Transform pairs and/or properties you are using, and clearly indicate your final answer.

Problem 2 (h). The Gaussian pulse $x(t)=\frac{1}{6 \sqrt{2 \pi}} e^{-\frac{t^{2}}{2 \sigma_{1}^{2}}}$, with $\sigma_{1}^{2}=6^{2}$, is input to an LTI system with a Gaussian shaped impulse response, $h(t)=\frac{1}{8 \sqrt{2 \pi}} e^{-\frac{t^{2}}{2 \sigma_{2}^{2}}}$, with $\sigma_{2}^{2}=8^{2}$. Determine the numerical value of the energy $E=\int_{-\infty}^{\infty} y^{2}(t) d t$ of the output $y(t)=x(t) * h(t)$. Show all work, state which Fourier Transform pairs and/or properties you are using, and clearly indicate your final answer.

Problem 2 (i). The Gaussian pulse $x(t)=\frac{1}{6 \sqrt{2 \pi}} e^{-\frac{(t-2)^{2}}{2 \sigma_{1}^{2}}}$, with $\sigma_{1}^{2}=6^{2}$, is input to an LTI system with a Gaussian shaped impulse response, $h(t)=\frac{1}{8 \sqrt{2 \pi}} e^{-\frac{(t-3)^{2}}{2 \sigma_{2}^{2}}}$, with $\sigma_{2}^{2}=8^{2}$. Determine the numerical value of the energy $E=\int_{-\infty}^{\infty} y^{2}(t) d t$ of the output $y(t)=x(t) * h(t)$. Show all work, state which Fourier Transform pairs and/or properties you are using, and clearly indicate your final answer.

Problem 2 (j).
The signal $z(t)=x(t) y(t)$ is the PRODUCT of the Gaussian pulse $x(t)=\frac{1}{6 \sqrt{2 \pi}} e^{-\frac{t^{2}}{2 \sigma_{1}^{2}}}$, with $\sigma_{1}^{2}=6^{2}$, and the Gaussian pulse $y(t)=\frac{1}{8 \sqrt{2 \pi}} e^{-\frac{t^{2}}{2 \sigma_{2}^{2}}}$, with $\sigma_{2}^{2}=8^{2}$. Determine a simple expression for the Fourier Transform, $Z(\omega)$, of $z(t)=x(t) y(t)$. Show all work, state which Fourier Transform pairs and/or properties you are using, and clearly indicate your final answer.

Problem 3. The signal

$$
x(t)=\frac{1}{t^{2}+1} \cos (20 t)-\left\{\frac{1}{t^{2}+1} * \frac{1}{\pi t}\right\} \sin (20 t)
$$

is input to an LTI system with impulse response

$$
h(t)=\left\{\frac{\pi}{5} \frac{\sin (5 t)}{\pi t} \frac{\sin (15 t)}{\pi t}\right\}
$$

Determine the output $y(t)=x(t) * h(t)$. Show all work, state which Fourier Transform pairs and/or properties you are using, and clearly indicate your final answer.

Additional Space for Problem 3 answer and work.

