EE301 Signals and Systems Exam 2
 Exam 2
 Monday, Mar. 24, 2008

Cover Sheet

Test Duration: 60 minutes.
Coverage: Chaps. 1,2,3, and 4, Emphasis on Chap. 4
Open Book but Closed Notes. One two-sided handwritten sheet.
Calculators NOT allowed.
This test contains three problems, each with multiple parts. All work should be done in the blue books provided.
You must show all work for each problem to receive full credit.
Do not return this test sheet, just return the blue books.

Problem 1. For this problem, the signal $x(t)$ is defined below.

$$
x(t)=\pi t\left\{\frac{\sin (2 t)}{\pi t}\right\}^{2}
$$

(a) Determine the Fourier Transform, $X(\omega)$, of $x(t)$. Plot the magnitude $|X(\omega)|$ as a function of frequency, showing as much detail as possible.
(b) Compute the energy of the signal $x(t)$ defined below. Your final answer should be a number. Show all work.

$$
E_{x}=\int_{-\infty}^{\infty} x^{2}(t) d t
$$

Problem 2. Consider an LTI system with impulse response

$$
h(t)=\pi \frac{\sin (t)}{\pi t} \frac{\sin (5 t)}{\pi t}
$$

Plot the frequency response of this system and determine the respective output for each of the following inputs. Show all work. Write a closed-form expression for the output in each case.
(a) $x_{1}(t)=\cos (6 t)$
(b) $x_{2}(t)=\sum_{k=0}^{\infty}\left(\frac{1}{2}\right)^{k} \sin (3 k t)$
(c) $x_{3}(t)=\frac{\sin (4 t)}{\pi t}$
(d) $x_{4}(t)=\left\{\frac{\sin (2 t)}{\pi t}\right\}^{2}$

Problem 3. For this problem, the signal $x(t)$ is defined below.

$$
x(t)=\frac{4}{4+t^{2}}
$$

(a) Determine and write a closed-form expression for the Fourier Transform, $X(\omega)$, of $x(t)$.
(b) Is $X(\omega)$ both real-valued and symmetric? Why or why not?
(c) Plot $X(\omega)$ as a function of frequency, showing as much detail as possible.
(d) Compute the energy of the signal $x(t)$ defined below. Your final answer should be a number. Show all work.

$$
E_{x}=\int_{-\infty}^{\infty} x^{2}(t) d t
$$

(e) Determine and write a closed-form expression for the Fourier Transform, $Y(\omega)$, of $y(t)$ defined below.

$$
y(t)=\frac{4}{4+t^{2}} \sqrt{2} \cos (10 t)
$$

(f) Is $Y(\omega)$ both real-valued and symmetric? Why or why not?
(g) Plot $Y(\omega)$ as a function of frequency, showing as much detail as possible.
(h) Compute the energy of the signal $y(t)$ defined below. Your final answer should be a number. Show all work.

$$
E_{y}=\int_{-\infty}^{\infty} y^{2}(t) d t
$$

