EE301 Signals and Systems Room EE129, 7-8 pm

Exam 1 Monday, Feb. 11, 2008

Cover Sheet

Test Duration: 60 minutes.
Coverage: Chaps. 1,2.
Open Book but Closed Notes.
Calculators NOT allowed.
This test contains **two** problems.

All work should be done in the blue books provided. You must show all work for each problem to receive full credit. Do **not** return this test sheet, just return the blue books.

Prob. No.	Topic(s)	Points
1.	Continuous Time Signals and System Properties	50
2.	Discrete Time Signals and System Properties	50

Problem 1. [50 points]

Two linear and time-invariant (LTI) systems are connected in parallel as depicted in the figure above. The input-output (I/O) relationship for System 1 is

$$y_1(t) = \int_{t-1}^t x(\tau)d\tau$$

The I/O relationship for System 2 is

$$y_2(t) = -\int_{t-4}^{t-2} x(\tau)d\tau$$

- (a) Determine and plot the impulse response $h_1(t)$ for System 1.
- (b) Is System 1 causal? You must use $h_1(t)$ to justify your answer.
- (c) Is System 1 stable? You must use $h_1(t)$ to justify your answer.
- (d) Determine and plot the impulse response $h_2(t)$ for System 2.
- (e) Is System 2 causal? You must use $h_2(t)$ to justify your answer.
- (f) Is System 2 stable? You must use $h_2(t)$ to justify your answer.
- (g) Determine and plot the impulse response h(t) of the overall system.
- (h) Determine and plot the output y(t) of the overall system when the input is the signal

$$x(t) = u(t) - u(t-1)$$

(i) Determine and plot the output $y_1(t)$ of just System 1 when the input is the signal

$$x(t) = t\{u(t) - u(t-2)\}\$$

Hint: example in textbook.

Problem 2. [50 points]

Two LTI systems are again connected in parallel as in the figure in Problem 1, except now they are Discrete-Time (DT) systems. The input-output (I/O) relationship for DT System 1 is

$$y_1[n] = \sum_{k=n-2}^{n} x[k]$$

The I/O relationship for System 2 is

$$y_2[n] = -\sum_{k=n-7}^{n-4} x[k]$$

- (a) Determine and (stem) plot the impulse response $h_1[n]$ for System 1.
- (b) Is System 1 causal? You must use $h_1[n]$ to justify your answer.
- (c) Is System 1 stable? You must use $h_1[n]$ to justify your answer.
- (d) Determine and (stem) plot the impulse response $h_2[n]$ for System 2.
- (e) Is System 2 causal? You must use $h_2[n]$ to justify your answer.
- (f) Is System 2 stable? You must use $h_2[n]$ to justify your answer.
- (g) Determine and (stem) plot the impulse response h[n] of the overall system.
- (h) Determine and (stem) plot the output y[n] of the overall system when the input is the signal

$$x[n] = u[n] - u[n-3]$$

(i) Determine and plot the output y[n] of the overall system when the input is the signal

$$x[n] = (-1)^n \{ u[n] - u[n-2] \}$$