EE301 Signals and Systems Exam 1

In-Class Exam Thursday, Feb. 15, 2007

Cover Sheet

Test Duration: 70 minutes. Coverage: Chaps. 1,2,3 Open Book but Closed Notes. Calculators NOT allowed. This test contains **two** problems. All work should be done in the blue books provided. You must show all work for each problem to receive full credit. Do **not** return this test sheet, just return the blue books.

Prob. No.	Topic(s)	Points
1.	Continuous Time System Properties and Continuous Time Fourier Series	50
2.	Discrete Time System Properties and Discrete Time Fourier Series	50

Problem 1. [50 points]

Consider the linear and time-invariant system described by the input-output relationship:

$$y(t) = \int_{t-1}^{t} x(\tau) d\tau$$

- (a) Determine and plot the impulse response h(t) of this system.
- (b) Is this system causal? You must use h(t) to justify your answer.
- (c) Is this system stable? You must use h(t) to justify your answer.
- (d) Consider that the input to this system is the periodic signal x(t) below with period T = 3.

Determine the Fourier Series coefficients, denoted a_k , $-\infty < k < \infty$, for x(t). Express your final answer for a_k as a closed-form function of k that works for all k (like we've done in class many times.)

- (e) (i) Plot several periods of the output of the system $y(t) = \int_{t-1}^{t} x(\tau) d\tau$ to the input signal x(t) above.
 - (ii) Determine the Fourier Series coefficients, denoted b_k , $-\infty < k < \infty$, for y(t). Express answer for b_k as a closed-form function of k.
 - (ii) Is b_k real-valued for all k? Explain either why they are real-valued OR why they are not real-valued.
- (f) Consider the signal

$$w(t) = x(t)\cos\left(\frac{2\pi}{3}t\right)$$

What is the period of w(t)? Determine the Fourier Series coefficients, denoted c_k , $-\infty < k < \infty$, for w(t). Express your answer for c_k as a closed-form function of k.

Problem 2. [50 points]

Consider the linear and time-invariant system described by the input-output relationship:

$$y[n] = \sum_{k=n-2}^{n} x[k]$$

- (a) Determine and plot the impulse response h[n] of this system.
- (b) Is this system causal? Use h[n] to justify your answer.
- (c) Is this system stable? Use h[n] to justify your answer.
- (d) Consider that the input to this system is the periodic signal x[n] below with period N = 5.

Determine the Fourier Series coefficients, denoted a_k , 0 < k < 4, for x(t). Express your final answer for a_k as a closed-form function of k.

- (e) (i) Plot several periods of the output of the system $y[n] = \sum_{k=n-2}^{n} x[k]$ to the input signal x[n] above. **Hint** : you might want to solve part (f) below first.
 - (ii) Determine the Fourier Series coefficients, denoted b_k , $-\infty < k < \infty$, for y[n]. Express answer for b_k as a closed-form function of k.
 - (iii) Is b_k real-valued for all k? Explain either why they are real-valued OR why they are not real-valued.
- (f) Consider the signal w[n] = y[n] y[n-1], where y[n] is the output signal y[n]. Determine the Fourier Series coefficients, denoted c_k , $0 \le k \le 4$, for w[n]. Express your final answer as c_k as a closed-form function of k.