EE 301 SIGNALS AND SYSTEMS

Offered Fall, Spring. Lecture Hrs: 3. Total Credits: 3.

Prerequisites: EE 202

Prerequisites By Topic:

an understanding of basic concepts of linear circuits as examples of linear systems; an understanding of the application of unilateral Laplace transforms to circuit problems; a familiarity with the solution of linear constant coefficient differential equations; a familiarity with complex numbers and calculus, including power series.

Engineering Science Credits: 3.0 **Engineering Design Credits:** 0.0

Course Description:

Classification, analysis and design of systems in both the time- and frequency-domains. Continuous-time linear systems: Fourier Series, Fourier Transform, bilateral Laplace Transform. Discrete-time linear systems: difference equations, Discrete-Time Fourier Transform, bilateral z-Transform. Sampling, quantization, and discrete-time processing of continuous-time signals. Discrete-time nonlinear systems: median-type filters, threshold decomposition. System design examples such as the compact disc player and AM radio.

Required Text(s):

Signals and Systems, Oppenheim, Willsky, and Young, Prentice-Hall, 1983, ISBN No: 0-13-809731-3.

Recommended Reference(s):

MatLab: Student Version, current edition, The MathWorks, Inc.

Outcomes:

A student who successfully fulfills the course requirements will have demonstrated:

- i. an ability to classify signals (e.g. periodic, even) and systems (e.g. causal, linear) and an understanding of the difference between discrete and continuous time signals and systems [1,2;a]
- ii. an ability to determine the impulse response of a differential or difference equation [1,2;a]
- iii. an ability to determine the response of linear systems to any input signal by convolution in the time domain [1,2,4;a,e,k]
- iv. an understanding of the definitions and basic properties (e.g. time-shift, modulation, Parseval's Theorem) of Fourier series, Fourier transforms, bilateral Laplace transforms, Z transforms, and discrete time Fourier transforms and an ability to compute the transforms and inverse transforms of basic examples using methods such as partial fraction expansions [1,2;a]
- v. an ability to determine the response of linear systems to any input signal by transformation to the frequency domain, multiplication, and inverse transformation to the time domain [1,2,4;a,e,k]
- vi. an ability to apply the Sampling theorem, reconstruction, aliasing, and Nyquist's theorem to represent continuous-time signals in discrete time so that they can be processed by digital computers [1,2,4;a,e,k]

Lecture Outline:

Lectures Topic(s)

3 Systems design tasks and tool, system classifications

- 6 Time-domain solution of difference equations
- 5 Discrete-time impulse responses and convolution
- 4 Sums of sinusoids and the Fourier Series
- 5 The Fourier Transform and its properties, transfer functions
- 3 Sampling and quantization
- 4 Discrete-Time Fourier Transform and its properties
- 2 Discrete-time processing of continuous-time signals
- 5 The bilateral z-Transform and its properties
- 3 The bilateral Laplace Transform and its properties
- 2 System design examples
- 3 Tests

Description Prepared By: P. C. Doerschuk