ECE301, Complex Numbers Overview

$x+j y$ (rectangular) Representation
Consider a complex number $z_{1}=x_{1}+j y_{1}$, where $x_{1}, y_{1} \in \mathbb{R}$ and $j=\sqrt{-1}$. We define the "real part" of z as $\Re\left\{z_{1}\right\}=x_{1}$, and the "imaginary part" of z_{1} as $\Im\left\{z_{1}\right\}=y_{1}$.
Now define another complex number $z_{2}=x_{2}+j y_{2}$ similarly. We have then that

$$
\begin{aligned}
z_{1}+z_{2} & =\left(x_{1}+j y_{1}\right)+\left(x_{2}+j y_{2}\right) \\
& =\left(x_{1}+x_{2}\right)+j\left(y_{1}+y_{2}\right), \\
\text { and } z_{1} z_{2} & =\left(x_{1}+j y_{1}\right)\left(x_{2}+j y_{2}\right) \\
& =\left(x_{1} x_{2}-y_{1} y_{2}\right)+j\left(x_{1} y_{2}+x_{2} y_{1}\right),
\end{aligned}
$$

so that $\Re\left\{z_{1}+z_{2}\right\}=x_{1}+x_{2}, \Im\left\{z_{1}+z_{2}\right\}=y_{1}+y_{2}$; and $\Re\left\{z_{1} z_{2}\right\}=$ $x_{1} x_{2}-y_{1} y_{2}, \Im\left\{z_{1} z_{2}\right\}=x_{1} y_{2}+x_{2} y_{1}$.

Magnitude of Complex Number

For a complex number $z=x+j y$, we define the magnitude, $|z|$, as follows:

$$
|z|=\sqrt{x^{2}+y^{2}} .
$$

The magnitude can be thought of as the distance a complex number z lies from the origin of the complex plane.

Complex Conjugate

For a complex number $z=x+j y$, we define its conjugate, z^{*}, as follows:

$$
z^{*}=x-j y .
$$

It follows, then, that $z z^{*}=x^{2}+y^{2}=|z|^{2}$, and $\left(z^{*}\right)^{*}=z$ We may also reduce fractions of complex numbers by using the conjugate. Let
$z_{1}=x_{1}+j y_{1}$ and $z_{2}=x_{2}+j y_{2}$. Then

$$
\frac{z_{1}}{z_{2}}=\frac{z_{1}}{z_{2}}\left(\frac{z_{2}^{*}}{z_{2}^{*}}\right)=\frac{z_{1} z_{2}^{*}}{\left|z_{2}\right|}=\frac{\left(x_{1}+j y_{1}\right)\left(x_{2}-j y_{2}\right)}{x_{2}^{2}+y_{2}^{2}}=\frac{\left(x_{1} x_{2}+y_{1} y_{2}\right)+j\left(x_{2} y_{1}-x_{1} y_{2}\right)}{x_{2}^{2}+y_{2}^{2}}
$$

Euler's Identity

Euler's identity states the following

$$
e^{j \theta}=\cos (\theta)+j \sin (\theta) .
$$

It follows from this and trigonometric identities $\cos (-\theta)=\cos (\theta)$ and $\sin (-\theta)=-\sin (\theta)$, that:

$$
\begin{aligned}
\cos (\theta) & =\frac{e^{j \theta}+e^{-j \theta}}{2}, \\
\text { and } \sin (\theta) & =\frac{e^{j \theta}-e^{-j \theta}}{2 j}
\end{aligned}
$$

Note that for all phase angles $\theta,\left|e^{j \theta}\right|=\cos ^{2}(\theta)+\sin ^{2}(\theta)=1$.

$|z| e^{j \angle z}$ (polar) Representation

Let complex number $z_{1}=x_{1}+j y_{1}$. It follows from Euler's identity that $z_{1}=\left|z_{1}\right| e^{j \theta_{1}}$, where $\theta_{1}=\angle z_{1}=\tan ^{-1}\left(y_{1} / x_{1}\right)$.
We can thus represent a complex number z_{1} in terms of a real and imaginary component (rectangular coordinates), or in terms of a magnitude, $\left|z_{1}\right|$, and a phase angle $\angle z_{1}$ (polar coordinates).
(Note that $\Re\left\{z_{1}\right\}=\left|z_{1}\right| \cos \left(\theta_{1}\right)$ and $\Im\left\{z_{1}\right\}=\left|z_{1}\right| \sin \left(\theta_{1}\right)$ define the inverse transformation back to rectangular coordinates.)
Let $z_{2}=\left|z_{2}\right| e^{j \theta_{2}}$, and z_{1} defined as above. We have then that

$$
\begin{aligned}
z_{1}+z_{2} & =\left(\left|z_{1}\right| \cos \left(\theta_{1}\right)+\left|z_{2}\right| \cos \left(\theta_{2}\right)\right)+j\left(\left|z_{1}\right| \sin \left(\theta_{1}\right)+\left|z_{2}\right| \sin \left(\theta_{2}\right)\right) \\
z_{1} z_{2} & =\left|z_{1}\right|\left|z_{2}\right| e^{j \theta_{1} \theta_{2}}
\end{aligned}
$$

so that

$$
\begin{aligned}
\left|z_{1}+z_{2}\right| & =\sqrt{\left(\left|z_{1}\right| \cos \left(\theta_{1}\right)+\left|z_{2}\right| \cos \left(\theta_{2}\right)\right)^{2}+\left(\left|z_{1}\right| \sin \left(\theta_{1}\right)+\left|z_{2}\right| \sin \left(\theta_{2}\right)\right)^{2}}, \\
\angle\left(z_{1}+z_{2}\right) & =\tan ^{-1}\left(\frac{\left|z_{1}\right| \cos \left(\theta_{1}\right)+\left|z_{2}\right| \cos \left(\theta_{2}\right)}{\left|z_{1}\right| \sin \left(\theta_{1}\right)+\left|z_{2}\right| \sin \left(\theta_{2}\right)}\right) ; \\
\left|z_{1} z_{2}\right| & =\left|z_{1}\right|\left|z_{2}\right|, \\
\angle\left(z_{1} z_{2}\right) & =\angle z_{1}+\angle z_{2}
\end{aligned}
$$

Visualization of complex number z_{1} on complex plane

In general, it is easier to add complex numbers in rectangular coordinates, and multiply them in polar coordinates.
Note also that if $z_{1}=\left|z_{1}\right| e^{j \theta_{1}}=\left|z_{1}\right| \cos \theta_{1}+j\left|z_{1}\right| \sin \theta_{1}$, then

$$
z_{1}^{*}=\left|z_{1}\right| \cos \theta_{1}-j\left|z_{1}\right| \sin \theta_{1}=\left|z_{1}\right| e^{-j \theta_{1}} .
$$

Some Complex Signals

Consider the following signals: $x_{1}(t)=e^{j 2 \pi t}, x_{2}(t)=e^{(-2+j 10 \pi) t}$. For $x_{1}(t)$, we find its real and imaginary, magnitude and phase (all functions of t):

$$
\begin{aligned}
\Re\left\{x_{1}(t)\right\} & =\cos (2 \pi t) \\
\Im\left\{x_{1}(t)\right\} & =\sin (2 \pi t) \\
\left|x_{1}(t)\right| & =1 \\
\angle x_{1}(t) & =2 \pi t .
\end{aligned}
$$

Similarly for $x_{2}(t)$, we have

$$
\begin{aligned}
\Re\left\{x_{2}(t)\right\} & =e^{-2 t} \cos (10 \pi t) \\
\Im\left\{x_{2}(t)\right\} & =e^{-2 t} \sin (10 \pi t) \\
\left|x_{1}(t)\right| & =e^{-2 t} \\
\angle x_{1}(t) & =10 \pi t .
\end{aligned}
$$

