TRANSPARENCY
4.2

The convolution sum for linear, timeinvariant discrete-time systems expressing the system output as a weighted sum of delayed unit impulse responses.

TRANSPARENCY 4.3

One interpretation of the convolution sum for an LTI system. Each individual sequence value can be viewed as triggering a response; all the responses are added to form the total output.

\qquad

$x[0] h[n]$
$x[1] p \times[1] 8[n-1]$

$x[1] n[n-1]$
\longrightarrow
$x[-1] n[n+1]$
$\times[-2] \quad x[-2] 8[n+2]$
$\longrightarrow \quad-\bullet \frac{\text { ifipeee }}{0} \quad x[-2] h[n+2]$

$$
x[n]=\sum_{k=-\infty}^{+\infty} x[k] \delta[n-k]
$$

Linear System:

$$
\begin{aligned}
& y[n]=\sum_{k=-\infty}^{+\infty} x[k] h_{k}[n] \\
& \delta[n-k] \rightarrow h_{k}[n]
\end{aligned}
$$

If Time-Invariant:

$$
h_{k}[n]=h_{0}[n-k]
$$

LTI:

$$
y[n]=\sum_{k=-\infty}^{+\infty} x[k] h[n-k]
$$

TRANSPARENCY 4.4

Approximation of a continuous-time signal as a linear combination of weighted, delayed, rectangular pulses. [The amplitude of the fourth graph has been corrected to read $x(0)$.]

$$
\begin{aligned}
x(t) \cong & x(0) \delta_{\Delta}(t) \Delta+x(\Delta) \delta_{\Delta}(t-\Delta) \Delta \\
& +x(-\Delta) \delta_{\Delta}(t+\Delta) \Delta+\ldots \\
x(t) \cong & \sum_{k=-\infty}^{+\infty} x(k \Delta) \delta_{\Delta}(t-k \Delta) \Delta \\
x(t)= & \lim _{\Delta \rightarrow 0} \sum_{k=-\infty}^{+\infty} x(k \Delta) \delta_{\Delta}(t-k \Delta) \Delta
\end{aligned}
$$

$$
=\int_{-\infty}^{+\infty} \mathbf{x}(\tau) \delta(\mathbf{t}-\tau) \mathbf{d} \tau
$$

$$
x(t)=\lim _{\Delta \rightarrow 0} \sum_{k=-\infty}^{+\infty} x(k \Delta) \delta_{\Delta}(t-k \Delta) \Delta
$$

Linear System:

$$
\begin{aligned}
y(t) & =\lim _{\Delta \rightarrow 0} \sum_{k=-\infty}^{+\infty} x(k \Delta) h_{k \Delta}(t) \Delta \\
& =\int_{-\infty}^{+\infty} x(\tau) h_{\tau}(t) d \tau
\end{aligned}
$$

If Time-Invariant:

TRANSPARENCY
4.7

Interpretation of the convolution integral as a superposition of the responses from each of the rectangular pulses in the representation of the input.

$$
\begin{gathered}
h_{k \Delta}(t)=h_{o}(t-k \Delta) \\
h_{\tau}(t)=h_{o}(t-\tau) \\
\text { LTI: } y(t)=\int_{-\infty}^{+\infty} x(\tau) h(t-\tau) d \tau
\end{gathered}
$$

Convolution Integral

$\Rightarrow \underbrace{\hat{y}(t)}_{0}$

$\Rightarrow \underbrace{\underbrace{y(t)}}_{0}$

Convolution Sum:

$$
\begin{aligned}
& x[n]=\sum_{k=-\infty}^{+\infty} x[k] \delta[n-k] \\
& y[n]=\sum_{k=-\infty}^{+\infty} x[k] h[n-k]=x[n] * h[n]
\end{aligned}
$$

TRANSPARENCY 4.8

Comparison of the convolution sum for discrete-time LTI systems and the convolution integral for continuous-time LTI systems.

TRANSPARENCY 4.9

Evaluation of the convolution sum for an input that is a unit step and a system impulse response that is a decaying exponential for $n>0$.

$$
x(t)=u(t)
$$

TRANSPARENCY 4.10

Evaluation of the convolution integral for an input that is a unit step and a system impulse response that is a decaying exponential for $t>0$.

$$
y(t)=\int_{-\infty}^{+\infty} x(\tau) h(t-\tau) d \tau
$$

$$
h(t)=e^{-o t} u(t)
$$

MARKERBOARD

4.2

overlap for $k=0,1, \ldots n$

$$
\begin{aligned}
y[n] & =\sum_{k=0}^{n} \alpha^{n-k} \\
& =\alpha^{n} \sum_{k=0}^{n}\left(\alpha^{-1}\right)^{k}
\end{aligned}
$$

$$
\begin{aligned}
& \text { No overlap } \Rightarrow \\
& y[n]=0 \quad n<0 \\
& \sum_{k=0}^{r} \beta^{k}=\frac{1-\beta^{r+1}}{1-\beta}
\end{aligned}
$$

