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Chapter 1

2-D Linear Systems and
Spectral Analysis

1.1 Chapter Overview

In this chapter, we will discuss:

1. Special 2-D signals

2. 2-D continuous-space Fourier transform (CSFT)

3. Linear, Shift-invariant imaging systems

4. Periodic structures
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1.2 Special Signals

rect(x, y) =
{

1, |x|, |y| < 1
2

0, |x|, |y| > 1
2

sinc(x, y) =
sin(πx)
πx

sin(πy)
πy

circ(x, y) =
{

1,
√
x2 + y2 < 1

2

0,
√
x2 + y2 > 1

2

jinc(x, y) =
J1

(
π
√
x2 + y2

)
2
√
x2 + y2

Figure 1.2.1 2-D special signals
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2-D Impulse Function

δ(x, y) = lim
∆→0

1
∆2

rect
( x

∆
,
y

∆

)

Figure 1.2.2 2-D Impulse Function

Sifting Property

∫∞
−∞ f(x, y)δ(x− x0, y − y0)dxdy = f(x0, y0)
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⇒ f(x, y)δ(x− x0, y − y0) = f(x0, y0)δ(x− x0, y − y0)

δ(ax− b, cy − d) =
1
|ac|

δ

(
x− b

a
, y − d

c

)

Spatial Frequency Components

Spatial domain: ρ0 =
√
u2

0 + v2
0 = 1

P0

Frequency domain: Φ0 = arctan
(
v0
u0

)

Figure 1.2.3 A cos[2π(u0x+ v0y) + θ]

1.3 2-D Continuous-Space Fourier
Transform (CSFT)

Forward Transform

F (u, v) =
∫ ∞
−∞

∫ ∞
−∞

f(x, y)e−j2π(ux+vy)dxdy
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Inverse Transform

f(x, y) =
∫ ∞
−∞

∫ ∞
−∞

F (u, v)ej2π(ux+vy)dudv

Hermitian Symmetry for Real Signals

Let F (u, v) = A(u, v)ejθ(u,v)

If f(x, y) is real,

F (u, v) = F ∗(−u,−v)

⇒ A(u, v) = A(−u,−v) even symmetry

θ(u, v) = −θ(−u,−v) odd symmetry

In this case, the inverse transform may be written as

f(x, y) = 2
∫ ∞

0

∫ ∞
−∞

A(u, v)cos[2π(ux+ vy) + θ(u, v)]dudv

2-D Transform Relations

• Linearity

a1f1(x, y) + a2f2(x, y) CSFT↔ a1F1(u, v) + a2F2(u, v)

• Scaling and shifting

f(x−x0
a , y−y0

b ) CSFT↔ |ab|F (au, bv)e−j2π(ux0+vy0)

• Modulation

f(x, y)ej2π(u0x+v0y) CSFT↔ F (u− u0, v − v0)

• Reciprocity

F (x, y) CSFT↔ f(−u,−v)
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• Parseval’s Relation∫ ∞
−∞

∫ ∞
−∞
|f(x, y)|2dxdy =

∫ ∞
−∞

∫ ∞
−∞
|F (u, v)|2dudv

• Initial value∫ ∞
−∞

∫ ∞
−∞

f(x, y)dxdy = F (0, 0)

Separability

A function f(x, y) is separable if it factors as:

f(x, y) = g(x)h(y)

Some important seperable functions are:

rect(x, y) = rect(x)rect(y)

sinc(x, y) = sinc(x)sinc(y)

δ(x, y) = δ(x)δ(y)

Transform Relation for Separable Functions

Let

g(x) 1−D CSFT↔ G(u)

h(y) 1−D CSFT↔ H(v)

then

g(x)h(y) 2−D CSFT↔ G(u)H(v)

Important Transform Pairs

1. rect(x, y) CSFT↔ sinc(u, v)

2. circ(x, y) CSFT↔ jinc(u, v)
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3. δ(x, y) CSFT↔ 1 (by sifting property)

4. 1 CSFT↔ δ(u, v) (by reciprocity)

5. ej2π[u0x+v0y] CSFT↔ δ(u− u0, v − v0) (by modulation property)

6. cos[2π(u0x+ v0y)] CSFT↔ 1
2

[δ(u− u0, v − v0) + δ(u+ u0, v + v0)]
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7. rect(x) = rect(x).1 CSFT↔ sinc(u)δ(v)

8. δ(x) = δ(x).1 CSFT↔ 1.δ(v) = δ(v)

9. Rotation
f̃(r, θ + θ0) CSFT↔ F̃ (ρ, φ+ θ0)

10. Circular Symmetry
f̃(r, θ) = f̃0r ⇔ F̃ (ρ, φ) = F̃0(ρ)
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Polar Coordinate CSFT

Polar Coordinate transformation

Spatial domain frequency domain
x = r cos(θ) u = ρ cos(φ)
y = r sin(θ) v = ρ sin(φ)
f̃(r, θ) = f(x, y) F̃ (ρ, φ) = F (u, v)

F (u, v) =
∫ ∞
−∞

∫ ∞
−∞

f(x, y)e−j2π(ux+vy)dxdy

ux+ vy = ρr cos(φ− θ)dxdy = rdrdθ

Forward Transform

F̃ (ρ, φ) =
∫ 2π

0

∫ ∞
0

f̃(r, θ)e−j2πρr cos(φ−θ)rdrdθ

Inverse Transform

f̃(r, θ) =
∫ 2π

0

∫ ∞
0

F̃ (ρ, φ)ej2πρr cos(φ−θ)ρdρdφ

Fourier-Bessel (Zero Order Hankel) Transform Pair

Forward transform

Assume f̃(r, θ) = f̃0(r)

F̃ (ρ, φ) =
∫ ∞

0

f̃0(r)
∫ 2π

0

e−j2πρr cos(φ−θ)dθrdr

= 2π
∫ ∞

0

f̃0(r)J0(2πρr)rdr

= F̃0(ρ)

Inverse transform

f̃0(r) = 2π
∫ ∞

0

F̃0(ρ)J0(2πρr)ρdρ
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1.4 Linear, Shift-Invariant (LSIV) Imaging
Systems

1
f = 1

di
+ 1

d0

M = di
d0

Magnification

Alternate Representation
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Relation between Pupil and Point Spread

Coherent Imaging System

hc(x, y) CSFT↔ HC(u, v) (coherent tranfer function)

HC(u, v) = P (λdiu, λdiv) (λ − (wavelength of optical radiation)

Incoherent Imaging System

h1(x, y) CSFT↔ H1(u, v)

h1(x, y) = |hC(x, y)|2

Optical Transfer Function

H(u, v) = HI(u, v)/HI(0, 0)

Modulation Transfer Function (MTF)

M(u, v) = |H(u, v)|

Imaging Two Point Sources

It is possible to modify the transmittance function within the pupil to
improve resolution. This is referred to as apodization.
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Imaging an Extended Object

f(x, y) =
∫ ∫

f(ξ, η)δ(x− ξ, y − η)dξdη

By superposition

g(x, y) =
∫ ∫

f(ξ, η)h(x−Mξ, y −Mη)dξdη

g(x, y) =
1
M2

∫ ∫
f

(
ξ

M
,
η

M

)
h(x− ξ, y − η)dξdη

This type of analysis extends to a very large class of imaging systems.
Generally, the shape of the point spread function will depend of its
position in the image plane. In this case, the image plane is partitional
into patches within which the point spread function is approximately the
same. In what follows, we will always assume unity magnification.

CSFT and LSIV Imaging Systems Convolution
Theorem

As in the 1-D case, we have the following identity for any functions
f(x, y) and h(x, y),∫ ∫

f(ξ, η)h(x− ξ, y − η)dξdη =
∫ ∫

f(x− ξ, y − η)h(ξ, η)dξdη

Consider the image of a complex exponential object:

ei2π[ux+vy] Imaging system→
∫ ∫

ei2π[u(x−ξ)+v(y−η)] × h(ξ, η)dξdη

ei2π[ux+vy] Imaging system→ ei2π[ux+vy]
∫ ∫

h(ξ, η)e−i2π[uξ+vη]dξdη

⇒ ei2π[ux+vy] is an eigenfunction of the system
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Now consider again the extended object:

f(x, y) =
∫ ∫

F (u, v)ei2π[ux+vy]dudv

By Linearity:

g(x, y) =
∫ ∫

H(u, v)F (u, v)ei2π[ux+vy]dudv ⇒ G(u, v) = H(u, v)F (u, v)

Convolution Theorem

Since f(x, y) and h(x, y) are arbitrary signals, we have the following
Fourier transform relation:∫ ∞
−∞

∫ ∞
−∞

f1(ξ, η)f2(x− ξ, y − η)dξdη CSFT↔ F1(u, v)F2(u, v)

or

f1(x, y) ∗ ∗f2(x, y) CSFT↔ F1(u, v)F2(u, v)

Product Theorem

By reciprocity, we also have the following result

f1(x, y)f2(x, y) CSFT↔ F1(u, v) ∗ ∗F2(u, v)

As in the 1-D case, this can be very useful for calculating the transforms
of certain functions.

Transfer function of Incoherent Imaging System

Recall

hI(x, y) = |hC(x, y)|2

= hC(x, y)h∗C(x, y)
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F {h∗C(x, y)} =
∫ ∫

h∗C(x, y)e−j2π[ux+vy]dxdy

=
{∫ ∫

hC(x, y)e−j2π[(−u)x+(−v)y]dxdy

}∗
= H∗C(−u,−v)

H1(u, v) = HC(u, v) ∗ ∗H∗C(−u,−v)

1.5 Periodic Structures

f(x, y) = repX [rect(x/A)].1

F (u, v) =
1
X

comb 1
X

[Asinc(Au)]δ(v)

g(x, y) = [1.rect(y/B)]f(x, y)

G(u, v) = δ(u)Bsinc(Bv) ∗ ∗F (u, v)
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F (u, v) =
1
X

comb 1
X

[Asinc(Au)]δ(v)

=
A

X

∑
k

sinc
(
A

X
k

)
δ

(
u− k

X
, v

)

G(u, v) =
∫ ∫

δ(u− µ)Bsinc[B(v − υ)]F (µ, υ)dµdυ

=
A

X

∑
k

sinc
(
A

X
k

)∫
Bsinc[B(v − υ)]

×
∫
δ(u− µ)δ

(
µ− k

X
, υ

)
dµdυ

G(u, v) = A
X

∑
k

sinc
(
A

X
k

)
Bsinc(Bv)δ

(
u− k

X

)
g(x, y) = [rect(x/B).1]f(x, y)

G(u, v) = Bsinc(Bu)δ(v) ∗ ∗F (u, v)
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2-D Comb and Replication Operators

combXY [f(x, y)] =
∑
m

∑
n

f(mX,nY )δ(x−mX, y − nY )

repXY [f(x, y)] =
∑
m

∑
n

f(x−mX, y − nY )

Transform relation

repXY [f(x, y)] CSFT↔ 1
XY

comb 1
X

1
Y

[F (u, v)]

f(x, y) = repXX
[
rect

(
x
A ,

y
A

)]
F (u, v) = 1

X2 comb 1
X

1
X

[A2sinc(Au,Av)]

g(x, y) = rect
(
x
B ,

y
B

)
f(x, y)

G(u, v) = B2sinc(Bu,Bv) ∗ ∗F (u, v)
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General Relations between Space and frequency
domains

Spatial Domain Frequency Domain
spatial lattice reciprocal lattice
microscopic properties macroscopic properties
macroscopic properties microscopic properties
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Chapter 2

Sampling and Scanning

2.1 Chapter Overview

In this chapter, we will discuss:

• Scanning Technologies

• Development of a General Model

• Analysis of Sampling

• Sampling on Arbitrary Lattices

• Analysis of Scanning

Terminology

Sampling is the mapping from a continuous-parameter to a discrete
parameter.
Scanning is the mapping from 2-D or 3-D to 1-D.

2.2 Scanning Technologies

• Flying Spot
Mechanisms:

23



24 CHAPTER 2. SAMPLING AND SCANNING

Electron beam Analog TV camera
Electromechanical Drum Scanner
Diffractive Supermarket Scanner
Phased array Radar

Aperture effects:

1. illuminating spot
2. read spot
3. dwell time

• Focal plane arrays
Mechanisms:

1. 1D array with electromechanical scan
2. 2D staring mosaic
3. CCD or CID

2.3 Development of a General Model

Line-Continuous Flying Spot Process

s(t) =
∫ ∞
−∞

∫ ∞
−∞

pi[ξ − xs(t), η − ys(t)]pr[ξ − xs(t), η − ys(t)]

×g(ξ, η)dξdη

pi(x, y) - illuminating spot profile

pr(x, y) - read spot profile

[xs(t), ys(t)] - scan trajectory

g(x, y) - continuous-space still image

s(t) - scan signal

1. Combine illuminating and read spot profiles as one function

p(x, y) = pi(x, y)pr(x, y)

2. Separate the three processes

• integration over aperture
• sampling
• scanning



2.3. DEVELOPMENT OF A GENERAL MODEL 25

Integration over Aperture

s(t) =
∫ ∫

p[ξ − xs(t), η − ys(t)]g(ξ, η)dξdη

define

g̃(x, y) =
∫ ∫

p[ξ − x, η − y]g(ξ, η)dξdη

=
∫ ∫

p[−(x− ξ),−(y − η)]g(ξ, η)dξdη

= p(−x,−y) ∗ ∗g(x, y)

then

s(t) = g̃[xs(t), ys(t)]

Sampling

Define

q(x, y) =
∫ ∞
−∞

δ[x− xs(t), y − ys(t)]dt

then let

g̃s(x, y) = q(x, y)g̃(x, y)

This signal embodies all the effects due to the fact that we only see
g̃(x, y) along the locus of points [xs(t), ys(t)], −∞ < t < ∞

With regard to these sampling effects, it is unimportant how we map the
signal information into a 1-D function of time.

Focal Plane Array Scan Process

smN+n =
∫ mX+a/2

mX−a/2

∫ nY+b/2

nY−b/2
g(ξ, η)dξdη
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Integration over Aperture

smN+n =
∫ ∞
−∞

∫ ∞
−∞

rect
(
ξ −mX

a
,
η − nY

b

)
g(ξ, η)dξdη

Let

p(x, y) = rect
(x
a
,
y

b

)
Define

g̃(x, y) =
∫ ∞
−∞

∫ ∞
−∞

p(ξ − x, η − y)g(ξ, η)dξdη

= p(−x,−y) ∗ ∗g(x, y)

then

smN+n = g̃(mX,nY )

Sampling

Define

q(x, y) =
∑
m

∑
n

δ(x−mX, y − nY )

then let gs(x, y) = q(x, y)g̃(x, y)

Again, this signal embodies all the effects due to the fact that we observe
g(x, y) only at locations (mX,nY )
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General Model for Scanning and Sampling

Aperture effects

g̃(x, y) = p(−x,−y) ∗ ∗g(x, y)

G̃(u, v) = P (−u,−v)G(u, v)

1. Aperture acts as a filter

2. As p(x, y) spreads out, P (u, v) contracts resulting in attenuation of
the higher frequency components of the image g(x, y)

Sampling effects

g̃s(x, y) = q(x, y)g̃(x, y)

G̃s(u, v) = Q(u, v) ∗ ∗G̃(u, v)

1. Since q(x, y) generally contains periodic structures, Q(u, v) will
consist of an array of impulses.

2. Convolution of Q(u, v) with G̃(u, v) will result in replications of
G̃(u, v) located at the coordinates of each impulse in Q(u, v)

2.4 Analysis of Sampling

Line-Continuous Scanning

q(x, y) =
∫ ∞
−∞

δ[x− xs(t), y − ys(t)]dt
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q(x, y) =
∑
m

δ(x−mX)

= repX [δ(x)].1

Q(u, v) =
1
X

comb 1
X

[1].δ(v)

=
1
X

∑
k

δ(u− k/X)δ(v)

=
1
X

∑
k

δ(u− k/X, v)

g̃s(x, y) = q(x, y)g̃(x, y)

Gs(u, v) = Q(u, v) ∗ ∗G̃(u, v)

=

[
1
X

∑
k

δ(u− k/X, v)

]
∗ ∗G̃(u, v)

=
1
X

∑
k

G̃(u− k/X, v)
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Nyquist condition for line-continuous scanning

The aperture smoothed image g̃(x, y) may be uniquely reconstructed
from its line-continuous scanned version g̃s(x, y) provided

G̃(u, v) = 0, |u| > 1/(2X)

Note that this condition is sufficient but not necessary condition for
perfect reconstruction.

Perfect reconstruction is possible in both cases shown below.

Pre-Scan Bandlimiting Effect of Aperture

g̃(x, y) = p(−x,−y) ∗ ∗g(x, y)

G̃(u, v) = P (−u,−v)G(u, v)
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Sampling Effects with Focal Plane Arrays

q(x, y) =
∑
m

∑
n

δ(x−mX, y − nY )

g̃s(x, y) = q(x, y)g̃(x, y)
= combXY [g̃(x, y)]

G̃s(u, v) =
1
XY

rep 1
X

1
Y

[G̃(u, v)]

=
1
XY

∑
k

∑
`

G̃(u− k/X, v − `/Y )
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Nyquist condition for 2-D sampling on a rectangular
lattice

The aperture smoothed image g̃(x, y) may be uniquely reconstructed
from its sampled version g̃s(x, y) provided

G̃(u, v) = 0, |u| > 1/(2X) and |v| > 1/(2Y )

Again, condition is sufficient but not necessary.

2.5 Sampling on Non-Rectangular Lattices

Consider lattice structure of the following form

Represent as two interlaced rectangular lattices
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q(x, y) = repX,Y [δ(x, y) + δ(x−X/2, y − Y/2)]

Q(u, v) =
1
XY

comb 1
X

1
Y

[
1 + ej2π[uX/2+vY/2]

]
=

1
XY

∑
k

∑
`

[
1 + e−j2π[( kX )X/2+( `Y )Y/2]

]
× δ(u− k/X, v − `/Y )

=
1
XY

∑
k

∑
`

{
1 + e−jπ(k+`)

}
δ(u− k/X, v − `/Y )

gs(x, y) = q(x, y)g(x, y)

Gs(u, v) = Q(u, v) ∗ ∗G(u, v)

=
1
XY

∑
k

∑
`

{
1 + e−jπ(k+`)

}
G(u− k/X, v − `/Y )

Note that{
1 + e−jπ(k+`)

}
=
{

2, k + ` even
0, k + ` odd

∴ Reciprocal Lattice has same structure as spatial lattice.

Sampling of Circularly Band-Limited Signals

G(u, v) = 0, (u/U)2 + (v/U)2 > 1

Rectangular lattice

1/X = 1/Y = 2U
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Sampling density

dR = 1
XY = 4U2 samples/unit area

Non-Rectangular (hexagonal) lattice

1/X = U 1/Y =
√

4U2 − U2 =
√

3U

Sampling density

dH = 2
XY = 2

√
3U2 samples/unit area

dH
dR

= 2
√

3U2

4U2 =
√

3
2 = 0.866

⇒ 13.4 percent savings

When X = 1/U and Y = 1/(
√

3U), each lattice point is equidistant from
its six nearest neighbours, so lattice is hexagonal.

Linear Algebra formalism

Spatial coordinates
~x = (x, y)T

X = [ ~x1, ~x2]

where ~x1 and ~x2 are basic vectors which define the sampling lattice

Integer vector

~n = (m,n)T

q(~x) =
∑
~n

δ(~x−X~n)
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Examples

Sampling density

d = |det[X]|−1 ≡ |X|−1

Examples

Fourier Analysis

Reciprocal Lattice U satisfies

UTX = I

⇒ U = (XT )−1

Examples
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Frequency coordinates

~u = (u, v)T

Fourier transform of sampling function

Q(~u) = |X|−1
∑
~k

δ(~u− U~k)

Fourier transform of sampled image

GS(~u) = Q(~u) ∗ ∗G(~u)

= |X|−1
∑
~k

G(~u− U~k)

2.6 Analysis of Scanning

Line-Continuous Scanning

Consider lexicographic scanning of a still image g(x, y)
Assume: scan lines have slope B/X

Line retrace is horizontal
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A/X = M an integer (number of scan lines)

During Scanning of a single frame, scan line passes back and forth across
a field of view (FOV). We can achieve the same effect by replicating the
FOV and scanning along a straight line.

Replicated image

gp(x, y) = repAB [g(x, y)]

Equation of scan line

ax+ y = 0 a = −B/X

Sampled image

gs(x, y) = gp(x, y)δ(ax+ y)

Projection of sampled image onto x-axis

r(x) =
∫ ∞
−∞

gs(x, y)dy
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Conversion to function of time

s(t) = r(V t) V=velocity of scan beam along x axis

Fourier Analysis of Line-Continuous Scanning

s(t) = r(V t)

S(f) = 1
V R

(
f
V

)
r(x) =

∫ ∞
−∞

gs(x, y)dy

R(u) =
∫ ∞
−∞

{∫ ∞
−∞

gs(x, y)dy
}
e−j2πµxdx

=
∫ ∞
−∞

∫ ∞
−∞

gs(x, y)e−j2π(ux+0y)dxdy

= Gs(u, 0)

gs(x, y) = gp(x, y)δ(ax+ y)
= gp(x, y)d(x, y)

Gs(u, v) = Gp(u, v) ∗ ∗D(u, v)

D(u, v) =
∫ ∞
−∞

∫ ∞
−∞

δ(ax+ y)e−j2π(ux+vy)dxdy

=
∫ ∞
−∞

e−j2π[ux+v(−ax)]dx

=
∫ ∞
−∞

e−j2π(u−av)xdx

= δ(u− av)

Gs(u, v) =
∫ ∞
−∞

∫ ∞
−∞

Gp(u− µ, v − υ)D(µ, υ)dµdυ

=
∫ ∞
−∞

∫ ∞
−∞

Gp(u− µ, v − υ)δ(µ− aυ)dµdυ

=
∫ ∞
−∞

Gp(u− aυ, v − υ)dυ



38 CHAPTER 2. SAMPLING AND SCANNING

gp(x, y) = repAB [g(x, y)]

Gp(u, v) =
1
AB

comb1/A1/B [G(u, v)]

=
1
AB

∑
k

∑
`

G(k/A, l/B)δ(u− k/A, v − `/B)

Now combine everything

Gs(u, v) =
∫ ∞
−∞

Gp(u− aυ, v − υ)dυ

=
∫ ∞
−∞

{
1
AB

∑
k

∑
`

G(k/A, `/B)

}
δ(u− aυ − k/A, v − υ − `/B)

=
1
AB

∑
k

∑
`

G(k/A, `/B)∫ ∞
−∞

δ(u− aυ − k/A)δ(v − υ − `/B)dυ

=
1
AB

∑
k

∑
`

G(k/A, `/B)δ[u− a(v − `/B)− k/A]

R(u) = Gs(u, 0)

=
1
AB

∑
k

∑
`

G(k/A, `/B)δ(u+ `a/B − k/A)

=
1
AB

∑
k

∑
`

G(k/A, `/B)δ[u− (`M + k)/A]

since a = −B/X and 1/X = M/A

Interpretation
R(u) = 1

AB

∑
k

∑
`

G(k/A, l/B)δ[u− (`M + k)/A]

Spectral groups will not overlap provided
G(u, v) = 0, |u| > M/(2A) = 1/(2X)

This is the Nyquist condition that was derived earlier.
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Spectrum of Scanned Signal

S(f) =
1
V
R

(
f

V

)
=

1
ABV

∑
k

∑
`

G(k/A, `/B)δ[f/V − (`M + k)/A]

Recall identity

δ(ax+ b) `
|a|δ

(
x+ b

a

)
S(f) = 1

AB

∑
k

∑
`

G(k/A, `/B)δ(f − (`M + k)(V/A)]

Frame period TF = A/V = 1/fF

Line period TL = TF /M = 1/fL

S(f) = 1
AB

∑
k

∑
l

G(k/A, l/B)δ[f − (lfL + kfF )]
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Example(NTSC video)

fF = 30Hz M = 500 fl = 15kHz

Maximum spatial frequency along y axis = M/(2B)⇒W = 3.75 MHz

Spectral Mappings

1. High vertical spatial frequencies in G(u, v) are mapped to edge of
each spectral group.

2. High horizontal spatial frequencies in G(u, v) are mapped to the
higher index spectral groups.

Extensions to the analysis.

1. 2 : 1 line-interlaced scanning

• proper choice of model parameters

2. Scanning along horizontal lines

• shift each succeeding column of replications of g(x, y)up by X
to obtain gp(x, y)

• ry = gp(0, y)

• results are essentially the same as those that we obtained

3. Scanning of time-varying imagery

• replicate g(x, y, t) in (x, y) with period (A,B) to obtain
gp(x, y, t)

• tilt scan line out along time axis
gs(x, y, t) = gp(x, y, t)δ(ax+ t, by + t)

• project onto time axis

s(t) =
∫ ∞
−∞

∫ ∞
−∞

gs(x, y, t)dxdy

• results are similar to those obtained with still imagery; each
spectral line is spread into a profile representing effect of time
variation

4. Horizontal and vertical blanking interval

• replicate g(x, y, t) in (x, y) with period (A′, B′) where (A′ > A)
and (B′ > B)
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Dot-Interlaced Scanning

1. Motivation

• reduce flicker due to phosphor decay at display

• improve resolution of high spatiotemporal frequency
components

2. Model
gs(x, y, t) = q(x, y, t)g(x, y, t)

q(x, y, t) =
∞∑

k=−∞

δ(x− αkX, y − βkY, t− kTs)

TS - sampling interval

(αk, βk) - sampling pattern

Properties of the Sampling Pattern

1. FOV is M ×N

2. (αk, βk),k = 0, ...MN − 1 is a permutation of the integer pairs
(a, b), 0 ≤ a ≤M − 1 and 0 ≤ b ≤ N − 1

3. Sampling pattern repeats from frame to frame
(αk+cMN , βk+cMN ) = (αk, βk) for all integers c

4. frame interval TF = MNTS



42 CHAPTER 2. SAMPLING AND SCANNING

Sampling Patterns

Conventional Patterns

Examples

1. Lexicographic
βk =k mod N
αk = bk/Nc mod M

2. 2:1 Line-Interlaced
βk =k mod N
αk = 2 bk/Nc mod M/2 bk/Nc mod M ≤ M/2-1
αk = 2 bk/Nc mod M/2+1 bk/Nc mod M≥ M/2
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Frame Instaneous Sampling

Time-Sequential sampling

Lexicographic Pattern

Novel Patterns
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Congruential
αk = α1 k mod M

βk = β1 k mod N

gcd(α1,M) = 1

gcd(β1, N) = 1

gcd(M,N) = 1

Spectral Analysis of Dot-Interlaced Scanning

Gs(u, v, f) =
1

XY TF

∑
m

∑
n

∑
p

Qmnp

G(u−m/A, v − n/B, f − p/TF )

where

Qmnp = 1
MN

MN−1∑
k=0

e−j2π(αkm/M+βkn/N+pk/MN)

Properties of the coefficients

Q000 = 1

Qmn0 = δm mod M δn mod N

Q00p = δp mod MN
Spectral characteristics of the sampling pattern examples

1. Lexicographic
|Q±1,0,±1| ∼= 1

2. 2:1 Line-Interlaced
|Q±1,0,±2| ∼= 1
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Spectrum Under Worst Case Nyquist Conditions

3. Bit reversed

|Qmnp| ≤

 2π min(m2, n2)|p|/(MN), 0 < |m| < M, 0 < |n| < N
2π m2|p|/(MN), 0 < |m| < M,n = 0
2π n2|p|/(MN), 0 < |n| < N,m = 0

4. Congruential
Qmnp = δm − α̃p δn − β̃p

where (α̃p, β̃p) is the dual congruential sampling pattern

α̃p = α̃1p mod M

β̃p = β̃1p mod N
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Spectrum Under Nyquist Conditions with Optimal
Sampling Pattern

Evaluation of sampling patterns

1. Assume a signal model

• g(x, y, t) band limited to hyperellipsoid

Ω =
{

(u, v, f) : (u/U)2 + (v/U)2 + (f/W )2 ≤ 1
}

• g(x, y, t) wide-sense stationary stochastic process with power
spectral density

Sgg(u, v, f) =
{

(3σ2
g)/4πU2W, (u, v, f) ∈ ω

0, else

2. Nyquist rate

• fix X and Y

• increase Ts until overlap of spectra occurs

3. Signal-to-aliasing noise power ratio

e(x, y, t) = LPFΩ {gs(x, y, t)− g(x, y, t)}
φ = σ2

g/σ
2
e
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Tradeoff between maximum resolvable spatial and
temporal frequencies



Chapter 3

Display and Printing

3.1 Chapter Outline

1. Essential function of display and printing processes

• map 1-D scanned signal back to 2-D or 3-D sampled format

• interpolate from sampled format to continuous parameter form
spot profile of display or printing device

human visual system

2. Display systems generate the image representation on a fixed device
output surface.

3. Printing systems generate the image representation on a separate
medium.

Display and Printing Technologies

1. Display

• cathode ray tube (CRT)

• flat panel
matrix addressable
examples
liquid crystal
plasma panel

49
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2. Printing

• electrographic

• ink jet

• thermal

• pressure-sensitive microencapsulated dyes

3.2 General Model for Display and Printing
Processes

Line-Continuous Scanning Systems

gr(x, y) =
∫ ∞
−∞

pw[x− xs(t), y − ys(t)]s(t)dt

gr(x, y) - reconstructed image

pw(x, y) - write spot

s(t) - scan signal

s(t) = g̃[xs(t), ys(t)]

g̃(x, y) = p(−x,−y) ∗ ∗g(x, y)

Recall

g̃s(x, y) = q(x, y)g̃(x, y)

q(x, y) =
∫ ∞
−∞

δ[x− xs(t), y − ys(t)]dt

gr(x, y) =
∫ ∞
−∞

pw[x− xs(t), y − ys(t)]g̃[xs(t), ys(t)]dt

=
∫ ∞
−∞

{∫ ∞
−∞

∫ ∞
−∞

pw(x− ξ, y − η)g̃(ξ, η)
}

= ×{δ[ξ − xs(t), η − ys(t)]dξdη} dt
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gr(x, y) =
∫ ∞
−∞

∫ ∞
−∞

pw(x− ξ, y − η)g̃(ξ, η)

×
{∫ ∞
−∞

δ[ξ − xs(t), η − ys(t)]dt
}
dξdη

=
∫ ∞
−∞

∫ ∞
−∞

pw(x− ξ, y − η)g̃(ξ, η)q(ξ, η)dξdη

=
∫ ∞
−∞

∫ ∞
−∞

pw(x− ξ, y − η)g̃s(ξ, η)dξdη

= pw(x, y) ∗ ∗g̃s(x, y)

Matrix-Addressable systems

gr(x, y) =
M−1∑
m=0

N−1∑
n=0

smN+npw(x−mX, y − nY )

smN+n = g̃(mX,nY )

Recall

g̃s(x, y) = q(x, y)g̃(x, y)

q(x, y) =
∑
m

∑
n

δ(x−mX, y − nY )

gr(x, y) =
∑
m

∑
n

g̃(mX,nY )pw(x−mX, y − nY )

=
∑
m

∑
n

{∫ ∞
−∞

∫ ∞
−∞

g̃(ξ, η)pw(x− ξ, y − η)
}

× {δ(x−mX, η − nY )dξdη}

=
∫ ∞
−∞

∫ ∞
−∞

g̃(ξ, η)pw(x− ξ, y − η)

×

{∑
m

∑
n

δ(ξ −mX, η − nY )

}
dξdη
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gr(x, y) =
∫ ∞
−∞

∫ ∞
−∞

g̃(ξ, η)pw(x− ξ, y − η)q(ξ, η)dξdη∫ ∞
−∞

∫ ∞
−∞

pw(x− ξ, y − η)g̃s(ξ, η)dξdη

= pw(x, y) ∗ ∗g̃s(x, y)

General model

gr(x, y) = pw(x, y) ∗ ∗g̃s(x, y)

Gr(u, v) = Pw(u, v)G̃s(u, v)

Ideal Reconstruction

G̃s(u, v) = 1
XY

∑
k

∑
l

G̃(u− k/X, v − l/Y )

Pw(u, v) = XY rect(Xu, Y v)

Spatial domain interpretation

pw(x, y) = sinc(x/X, y/Y )

gr(x, y) = pw(x, y) ∗ ∗g̃s(x, y)

gs(x, y) = q(x, y)g̃(x, y)
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q(x, y) =
∑
m

∑
n

δ(x−mX, y − nY )

g̃s(x, y) =
∑
m

∑
n

g̃(mX,nY )δ(x−mX, y − nY )

gr(x, y) =
∑
m

∑
n

g̃(mX,nY )sinc
(
x−mX

X
,
y − nY
Y

)
gr(kX, `Y ) =

∑
m

∑
n

g̃(mX,nY )

sinc
(
kX −mX

X
,
`X − nY

Y

)
=
∑
m

∑
n

g̃(mX,nY )sinc(k −m, `− n)

= g̃(kX, `Y )

If Nyquist conditions are satisfied, i.e

G̃(u, v) = 0 |u| > 1/(2X), |v| > 1/(2Y ),

then

gr(x, y) ≡ g̃(x, y)

Zero Order Hold Reconstruction

pw(x, y) = rect(x/X, y/Y )

Pw(u, v) = XY sinc(Xu,Xv)

Gr(u, v) = sinc(Xu,Xv)
∑
k

∑
`

G̃(u− k/X, v − `/Y ) 6= G̃(u, v)

Aliasing Artifacts

1. Due to presence of replications for which (k, `) 6= (0, 0) in spectrum
of reconstructed image
Gr(u, v) = Pw(u, v)

∑
k

∑
l

G̃(u− k/X, v − `/Y )

2. result in spurious low frequency patterns in displayed or printed
image

• moire patterns
• jagged rendition of straight edges
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Example illustrating moire formation during sampling
of a sine wave grating

3.3 Human Visual System

Image Quality Paradigm

1. How good does reproduction need to be in order to appear identical
to the original?

2. If image quality is high, it may be argued that threshold phenomena
will govern the percieved difference between the two images
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Viewing Geometry

1. Both arrows A and B generate the same retinal image R.

2. It is convenient to measure the size of the retinal image in terms of
the subtended angle θ
θ = arctan

(
hA
dA

)
= arctan

(
hB
dB

)
Relative Luminous Efficiency

1. The human viewer is not equally sensitive to light at all
wavelengths



56 CHAPTER 3. DISPLAY AND PRINTING

2. Luminance

L = km

∫ ∞
0

V (λ)S(λ)dλ (cd/m2)

km − 680 lm/W

S(λ) − spectral radiance density of stimulus

• Luminance is a measure of the percieved brightness of the
stimulus

• Luminances of 0.1 to 1000 cd/m2 are typically encountered in
displays

Weber’s Law

1. Dependence of detectability of a change in stimulus on the
magnitude of the stimulus

2. The minimum value of ∆L for whch the two subfields are
distinguished fifty percent of the time satisfies

∆L
L

= k

k - constant(Weber fraction) ≈ 0.01 − 0.02

3. Define contrast as ∆L/L
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Response to Spatially varying Stimulus

1. Dependence of contrast sensitivity on spatial frequency
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Response to Temporally Varying Stimulus

1. Dependence of flicker sensitivity on temporal frequency
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Spatial Frequency Channels

Spatial Summation

Spatial masking
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3.4 Quantization

1. Quantization refers to the process whereby a continuum of
amplitude values is represented by a finite set of discrete values

Q(x) = yk, xk < x ≤ xk+1

Quantization of a waveform
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Quantization Error Statistics

Deterministic Sawtooth Waveform Error Model

Mean-Squared value

ems = lim
T→∞

1
2T

∫ T

−T
|e(t)|2dt

=
1
t1

∫ t1

0

∣∣∣∣∆/2t1 t

∣∣∣∣2 dt
=

1
t31

∆2

4
t3

3

∣∣∣∣t1
0

=
∆2

12

Mean Value

eavg = lim
T→∞

1
2T

∫ T

−T
e(t)dt

= 0

Stochastic Model

Let e(t) be a random variable uniformly distributed on the interval[−∆
2 , ∆

2

]
Mean value

Ee(t) =
∫
epe(e)de = 0
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Mean-Squared Value

E|e(t)|2 =
∫
e2pe(e)de

=
1
∆

∫ ∆
2

−∆
2

e2de

=
1
∆
e3

3

∣∣∣∣∆
2

−∆
2

=
∆2

12

Signal-to-Noise Ratio for Uniform Quantizer

Let x(t) be uniformly distributed on interval [−X,X).Assume a B bit
quantizer

N = 2B

∆ =
2X
N

= 2−(B−1)X

Signal Power E {|x(t)|}2 = 4X2

12

Noise power E {|e(t)|}2 = ∆2

12 = 2−2(B−1)X2

Signal-to-Noise Ratio

SNR =
X2/3

2−2(B−1)X2

=
1
12

22B

= 6B − 10.8dB
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General form of expression remains the same for other densities px(x);
only the constant changes.

Optimum (Nonuniform) Quantizer

Let the signal x(t) be a random variable with probability density function
px(x)

How do we choose optimum threshold levels and output values?

Mean-Squared Quantizer Error

E
{
|e(t)|2

}
= E

{
|x(t)− y(t)|2

}
= E

{
|x(t)−Q[x(t)]|2

}
=
∫
|x−Q[x]|2px(x)dx

=
N−1∑
k=0

∫ xk+1

xk

[x− yk]2px(x)dx

E|e(t)|2 =
N−1∑
k=0

∫ xk+1

xk

[x− yk]2px(x)dx

For fixed `, differentiate with respect to y`

∂E|e(t)|2
∂y`

=
∫ x`+1

x`

2[x− y`]px(x)dx
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Set derivative equal to zero

y(`) =

∫ x`+1

x`

xpx(x)dx∫ x`+1

x`

px(x)dx
= E {x|x` < x ≤ x`+1}

E
{
|e(t)|2

}
=
N−1∑
k=0

∫ xk+1

xk

[x− yk]2px(x)dx

For fixed `, differentiate with respect to x`
∂E|e(t)|2
∂x`

= [x` − y`−1]2px(x`)− [x` − y`]2px(x`)

Set derivative equal to zero

x− ` = 1
2 [y` + y`−1]

Summarizing

y` =

∫ x`+1

x`

xpx(x)dx∫ x`+1

x`

px(x)dx
, ` = 0, ..., N − 1

x` =

 −∞ , ` = 0
1
2 [y` + y`−1] , ` = 1, ..., N − 1
∞ , ` = N

Comments

1. These equations must be solved iteratively

2. The two necessary conditions for optimality were independently
reported by Lukaszewicz and Steinhaus(1955),Lloyd(1957), and
Max(1960)

3. These ideas can be generalized to the quantization of vector-valued
signals

• color image quantization

• image compression
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Image Quantization

1. The primary artifacts caused by image quantization are contouring
and blockiness

2. Generally, 256 levels (8 bits) per pixel will be sufficient to prevent
the appearance of such artifacts in monochrome images

3. If fewer levels must be used, halftoning techniques may be employed
to increase the number of effective output levels at the possible
expense of texturing or noise artifacts and some loss of detail

Color Image Paletization

1. With 24 bits/pixel of video memory, color images may be displayed
directly without artifacts

2. Many color displays have only 8 bits of video memory which are
mapped into a lookup table (LUT) with 24 bits at the output

3. Choosing the best palette of 256 colors from the full set of 224

possible colors is a quantization problem

4. Three steps in palettization

• palette design which results in a set of 256 24-bit color vectors
Ck, k = 0, 1, ..., 255
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• mapping every 24-bit pixel in the image to the 8 bit label k
corresponding to an output color Ck from the palette

• mapping every pixel in the label image to a 24-bit output color
(accomplished via display hardware LUT)

Techniques for Palette Design

Image Independent Methods:

1. Scalar quantization of R, G, and B (Goertzel and Thompson, 1990)

• Image is prequantized to 6 bits/color (0-63 in digital value)

• Red and Green are quantized to 7 levels each, and blue is
quantized to 4 levels for a total of 7 X 7 X 4=196 colors

• The remaining 60 colors are reserved for other uses

• The output colors are spaced non-uniformly to yield steps in
L* when only one primary is nonzero.

• Halftoning is needed for reasonable quality

• Mapping can be done via 3 LUT’s
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Scalar Quantization of R, G, and B

• Application of image-dependent techniques to a uniform histogram
(Gentile, Allebach, and Walowit, 1990)

1. Since the palette has no structure. the mapping requires a
search for the nearest output color

2. Halftoning is still needed for reasonable quality

Image dependent methods

1. Based on histogram of image



68 CHAPTER 3. DISPLAY AND PRINTING

2. Splitting methods

• Splits orthogonal to coordinate axes

Median cut (Heckbert,1982)

Split along coordinate with greatest range at median point of
that coordinate

Split region with greatest total squared error (TSE) along
coordinate that results in greatest reduction in TSE. Slpit
region is centroid

Splitting Orthogonal to Coordinate Axis

Splitting of Color Space by Median Cut and Variance Based Algorithms
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Splits orthogonal to direction of greatest variation
(Orchard and Bouman, 1991)

Splitting of color space by binary

splitting algorithm

Merging Methods (Balasubramanian and Allebach,
1991)

• Start with every image color assigned to a separate cluster

• Apply Equitz’s (1989) pairwise nearest neighbor merging technique
to iteratively merge nearest clusters until desired number of clusters
is obtained

• K-D trees are used to efficiently organize search

Peak-based Methods (Braudaway, 1987)

• Choose color coordinate corresponding to maximum value of
histogram as an output color

• Reduce histogram in neighborhood of this color by applying a
weighting that increases exponentially with distance from the
chosen color

• Repeat the above two steps wuntil the desired number of colors is
obtained
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Refinement techniques (Linde, Buzo, and Gray, 1980)

• Given a set of quantization cells, choose new output color for each
cell as the centroid of that cell

• Given a set of output colors, determine new quantization cells by
mapping each color to the nearest output color

• Repeat the above steps until convergence

• Applied to color image quantization by Heckbert (1982),
Braudaway (1987), and Gentile, Allebach, and Walowit (1990)

Incorporation of Spatial Activity Measures (Orchard
and Bouman, 1991) (Balasubramanian and Allebach,
1991)

• The human viewer is less sensitive to quantization errors in busy
areas of the image that contain significant spatial detail

• Weight distance in the color space inversely with the spatial
activity in regions of the image where the colors occur.

• Divide image into 8X8 blocks Pk
αk = 1

64

∑
p∈Pk

||Cp − Ck||

• Assign each color C an activity measure
α̃C = mink∈KCαk

Prequantization and Efficient Histogramming
(Balasubramanian and Allebach, 1991)

• Reduce the number of distinct colors in the image by
prequantization. Can also be done in a manner that accounts for
spatial activity

• Use digital values for R and G to index into a 2-D array. Each
location in the array is the root of a tree or linked list. The nodes
of the tree or list contain the B values of colors that occur in the
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image with a particular RG value and the number of times the color

occurs

Mapping the image color to the palette

• The palette designed by splitting techniques has a tree structure
that allows for efficient mapping

• The palette designed by other methods has no structure. Mapping
can be accomplished by nearest neighbor search or by keeping track
of the cluster to which each pixel belongs throughout the palette
design

Computational Complexity

Np - image size

Nc - number of distinct colors in the image

M - palette size

• preprocessing (prequantization, activity measure and histogram) O
(Np)

• splitting O (Nc log2M)

• mapping O (Np log2M)
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Summary of Quantization Algorithm

3.5 Halftoning

• Used for representation of continuous-tone with devices that are
bi-level, or which can generate more than two output levels but not
a sufficient number of levels to prevent the appearance of
quantization artifacts

• All halftoning techniques rely on a local spatial average over binary
textures by the human viewer to create the impression of
continuous-tone

• Detail is rendered by locally modulating these textures

Units for Gray-Value (Ideal)

Digital value 255 191 127 63 0
Absorptance 0.0 0.25 0.5 0.75 1.0
Reflectance/Transmittance 1.0 0.75 0.5 0.25 0.0
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Notation

0 ≤ f [m,n] ≤ 1, digital, continuous-tone original image
g[m,n] = 0, 1, digital halftone image
g(x, y) - displayed/printed halftone image

Model for Printed/Displayed Images

g(x, y) =
∑
m

∑
n

g[m,n]ps(x−mR, y − nR)

• device-addressable points lie on a square lattice with interval RXR

• ps(x, y) - printed/displayed spot profile

• If there is spot overlap, it is assumed to be additive

Halftoning Techniques

1. Binarization with a constant threshold

2. Pattern printing

3. Screening

4. Error diffusion

Binarization with a Constant Threshold

g[m,n] =
{

1, f [m,n] ≥ 0.5
0, else

• minimizes mean-squared error

E =
∑
m

∑
n

|f [m,n]− g[m,n]|2

• does not yield acceptable quality

Pattern Printing

• pattern library p[m,n; `]

• M X N patterns yield MN+1 output quantization levels (Here
M = N = 2)

• quantizer design
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• Mapping to index image
fi[m,n] = ` : [`− 1/2] /MN < f [m,n] ≤ [`+ 1/2] /MN

• Halftone image is larger than continuous- tone original by factor M
X N

• If device resolution is sufficiently high, pattern printing will yield
acceptable results

• At lower resolution, images appear blocky and lack detail

• There is a tradeoff between detail resolution and number of
quantization levels

Alternate Representations for Pattern Library

• Dot profile function p[m,n; `]

• Index matrix

– Entries indicate order in which dots are added to binary
structure
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– Stacking constraint must be satisfied

Stacking Constraint

For any 0 ≤ ` ≤MN ,

p[m,n; `] = 1⇒ p[m,n; k] = 1 ∀ k ≥ `

or

p[m,n; `] = 0⇒ p[m,n; k] = 0 ∀ k ≤ `

• A dot profile that does not satisfy this constraint:

Alternate Representations for Pattern Library (cont.)

• Index matrix i[m,n]

• Threshold Matrix t[m,n]
t[m,n] = (i[m,n]− 0.5)/MN
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Alternate Implementation for Pattern Printing

• t[m,n] = t[m+ kM, n+ `N ]

Screening

g[m,n] =
{

1, f [m,n] ≥ t[m,n]
0, else

• Halftone image is same size as continuous-tone original image

• Technique is equivalent to photographic contact screening process
traditionally used in graphic arts and printing

• Dot profile function must satisfy stacking constraint

• Screening achieves better detail rendition than pattern printing via
partial dotting property
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Different Representations for Screening

1. Spatially varying threshold

2. Addition of dither signal

3. Point-to-Point Nonlinear Mapping Via Dot Profile Function

• p[m+ kM, n+ `N ; b] = p[m,n; b]

• g[m,n] = p[m,n; f [m,n]]
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Choice of Threshold Matrix (Screen Function)

• Size of matrix (M and N) determines period of screen and number
of quantization levels

• Thresholds are chosen to yield correct tone reproduction (minimum
quantization error)

• Spatial arrangement of the thresholds determines characteristics of
the texture that results
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Recall Dual Representation

Clustered Dot Screen

• Consecutive thresholds are located in close spatial proximity.

Properties of Clustered Dot Screen

1. Relatively visible texture

2. Relatively poor detail rendition

3. Uniform texture across entire grayscale

4. Robust performance with non-ideal output devices

• non-additive sopt overlap

• spot-to-spot variability

• noise
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Dispersed Dot Screen

Bayer’s Optimum Index Matrix (1973)
Recursive Definition (Judice, Jarvice, Ninke, 1974)

1. Let i’[m,n] be any M X N index matrix

2. Define a new 2M X 2N index matrix i[m,n] as

3. Recursively generate 2KX2K matrix starting with 1 X 1 index
matrix [1].

Example 1

• Consecutive thresholds are located far apart spatially
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Recursive Definition for Threshold Matrix

• Yields finer amplitude quantization over larger (2M X 2N) area

• Retains good retail rendition within smaller M X N regions

Example illustrating improved detail rendition with a dispersed dot
screen

Properties of Dispersed Dot Screen

1. Within any region containing K dots, the K thresholds should be
distributed as uniformly as possible between 0 and 1

2. Textures used to represent individual gray levels have low visibility

3. Improved detail rendition

4. Transition between textures corresponding to different gray levels
may be more visible

5. Poor performance with non-ideal output devices

Fourier Analysis

1. Screening
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• Continuous-tone, continuous-parameter original image

f(x, y) CSFT↔ F (u, v)

f [m,n] = f(mR,nR)

• Halftone image

g(x, y) CSFT↔ G(u, v)

g(x, y) =
∑
m

∑
n

g[m,n]ps(x−mR, y − nR)

ps(x, y) CSFT↔ Ps(u, v)

Definition of Transforms

• Continuous-space Fourier transform (CSFT)

F (u, v) =
∫ ∫

f(x, y)e−j2π(ux+vy)dxdy

• Discrete Fourier transform (DFT)
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P [k, `; b] = 1
MN

M−1∑
m=0

N−1∑
n=0

p[m,n; b]e−j2π(mkM +n`
N )

• Dot profile function (M X N period)

p[m,n; b] DFT↔ P [k, `; b]

g[m,n] = p[m,n; f [m,n]]

• Halftone cell - X × Y X = MR, Y = NR

Spectrum of Halftone Image

G(u, v) = Ps(u, v)
∑
m

∑
n

Fmn(u−m/X, v − n/Y )

Fmn(u, v) = CSFT {fmn(x, y)}

fmn(x, y) = P [m,n; f(x, y)]



84 CHAPTER 3. DISPLAY AND PRINTING

Relation between Dot Profile and Spectral
Nonlinearities

Pattern Printing

• Continuous-tone, continuous-parameter original image

f(x, y) CSFT↔ F (u, v)

• Halftone cell - X × Y , X = MR Y = NR

• Sample-and-hold image

f̃(x, y) = rect
(
x
X ,

y
X

)
∗ ∗combXY [f(x, y)]

F̃ (u, v) = sinc(Xu, Y v)rep 1
X

1
Y

[F (u, v)]
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In analysis of screening, replace f(x,y) by f̃(x, y) and F(u,v) by F̃ (u, v).

Other Screen Functions

• Optimized Threshold Matrices (Allebach and Stradling, 1979)

• Angled Screens (Holladay, 1980)

• Macroscreens

Error Diffusion

Definition of terms

• Continuous-tone, discrete parameter, original image - f[m,n]
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• Modified continuous-tone image - f̃ [m,n]

• Diffusion weights - w[k,`]
w[k, `] ≥ 0,

∑
k

∑
l

w[k, `] = 1

• Halftone image - g[m,n]

Description of algorithm

• Start with f̃ [m,n] ≡ f [m,n]

• Scan pixels in image in a predetermined order, and carry out
following computations

Threshold g[m,n] =
{

1, f̃ [m,n] ≥ 0.5
0, else

Compute error

e[m,n] = g[m,n]− f̃ [m,n]
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Diffuse error

f̃ [m+ k, n+ `] = f̃ [m+ k, n+ `]− w[k, `]e[m,n]

Characteristics of Error Diffusion

• At each step, error diffusion preserves local average over part of
image that has been binarized and part that is yet to be binarized

• No fixed number of quantization levels

• Requires more computation than screening
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• Excellent detail rendition (sharpens image)

• Generally good texture with some exceptions:

– texture contouring

– worm-like patterns

– texture used to render a given gray level is context-dependent

2-D Error Diffusion Weighting Filters

Fourier Analysis (Knox, 1991)

Two Views of Error Diffusion

1. Diffuse error immediately after binarizing pixel to all pixels in

neighborhood g[m,n] =
{

1, f̃ [m,n] ≥ 0.5
0, else

e[m,n] = g[m,n]− f̃ [m,n]
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f̃ [m+ k, n+ `] = f̃ [m+ k, n+ `]− w[k, `]e[m,n]

2. Diffuse error from all neighboring pixels to pixel to be binarized,
just prior to binarization

f̃ [m,n] = f [m,n]−
∑
k

∑
`

w[k, `]e[m− k, n− `] (3.1)

g[m,n] =
{

1, f [m,n] ≥ 0.5
0, else (3.2)

e[m,n] = g[m,n]− f̃ [m,n] (3.3)

Recursive Expression for the Error Image

Combine Eqs. (3.1) and (3.2)
e[m,n] = g[m,n]− f [m,n] +

∑
k

∑
`

w[k, `]e[m− k, n− `]

Discrete-Space Fourier Transform (DSFT)

E(µ, υ) =
∑
m

∑
n

e[m,n]e−j(mµ+nυ)

E(µ, υ) = G(µ, υ)− F (µ, υ) +W (µ, υ)E(µ, υ)

• We would like an expression for G(µ, υ) in terms of F (µ, υ)

• Instead, we have

G(µ, υ) = F (µ, υ) +W (µ, υ)E(µ, υ)
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• High-pass filter

W (µ, υ) = 1−W (µ, υ)

• Error spectrum is not known

E(µ, υ) = G(µ, υ)− F̃ (µ, υ)

Error Model

E(µ, υ) = cF (µ, υ) +R(µ, υ)

• Original image component cF (µ, υ); constant c depends on
weighting and input image

• Residual R(µ, υ) - may still be image dependent

Edge-Enhancing Property of Error Diffusion

• Combine

G(µ, υ) = G(µ, υ) +W (µ, υ)E(µ, υ) and

E(µ, υ) = cF (µ, υ) +R(µ, υ)

G(µ, υ) = [1 + cW (µ, υ)F (µ, υ) +W (µ, υ)R(µ, υ)

• Edge-Enhancing Filter 1 + cW (µ, υ)

• Blue Noise W (µ, υ)R(µ, υ)
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Image Enhancement

4.1 Overview of Image Processing
Strategies

1. Enhancement

• degradation not well defined

• criteria for improvement only qualitatively stated

2. Restoration

• detailed model for degradation

• process image to maximize mathematically specified
performance measure

3. Reconstruction

• generate image from non-image data, or image information
that is quite different from final desired form

• detailed mathematical description of process by which data
was obtained

Examples

1. Enhancement

• contrast stretching

91
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• sharpening

• smoothing

2. Restoration

• deblurring of mis-focused images

• deblurring of images degraded by motion

• removal of clouds and haze from images of ground terrain
obtained from air or space-borne platform

3. Reconstruction

• computed tomography

• synthetic aperture radar

• magnetic resonance imaging

• descreening

Types of Enhancement Operations

1. Grayscale transformations

2. Spatial filtering

• Linear filtering

• Nonlinear filtering

Preliminaries

1. Digital image
f(m,n), 0 ≤ m ≤M − 1, 0 ≤ n ≤ N − 1
M X N array of integers - each taking on a value between 0 (black)
and 255 (white) (8 bits/pixel)

2. Histogram
Density function describing the distribution of gray values in the
image
hf [b] = 1

MN No.pixels (m,n): f[m,n]=b

hf [b] = 1
MN

M−1∑
m=0

N−1∑
n=0

δ[f [m,n]− b], 0 ≤ b ≤ 255

Properties

• 0 ≤ hf [b] ≤ 1
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•
255∑
b=0

hf [b] = 1

4.2 Grayscale Transformation

g[m,n] = t[f [m,n]]
t[b] - mapping from integers 0, ..., 255 to integers 0, ..., 255
described by a lookup table
Example
M = N = 4
3 bits/ pixel b=0,1,...,7
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Comments

1. Relation between input and output histograms
hg[b] =

∑
b′:b=t[b′]

hf [b′]

2. Operation is point-to-point

Applications of grayscale Transformations

• Quantization

• Calibration
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• Contrast Modification

• Gamut Mapping

• Feature Selection

• Contour Generation

• Pseudocolor

• Classification

4.3 Spatial Filtering

Linear Filtering

1. Each pixel value in the output image is a weighted sum of the pixels
in the neighborhood of the corresponding pixel in the input image

2. Sharpening

• enhance edges in detail

• boast higher frequency components

3. Smoothing

• remove noise

4. Advantages of linear filters

• rich theory of linear systems

• ease of implementation

5. Disadvantages of linear filters

• may blur edges

• outliers exert large influence on output

Notation

1. f[m,n] - input image

2. g[m,n] - output image

3. h[m,n] - filter coefficients
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Equations for linear filtering

1. Simple weighted sum
g[m,n] =

∑
k′

∑
`′

h′[k′, `′]f [m+ k′, n+ `′]

Let k = −k′, ` = −`′, h[k, `] = h′[−k,−`]

2. Discrete convolution
g[m,n] =

∑
k

∑
`

h[k, `]f [m− k, n− `]

3. Alternate form for convolution
g[m,n] =

∑
k

∑
`

h[m− k, n− `]f [k, `]

4. Preferred form
g[m,n] =

∑
k

∑
`

h[m− k, n− `]f [k, `]

5. Filter is linear and shift-invariant

6. Impulse response is h[m,n]

7. To view impulse response as a function of (k, `)
h[m− k, n− `] = h[−(k −m),−(`− n)]
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Example 1

g[m,n] =
∑
k

∑
`

h[−(k −m),−(`− n)]f [k, `]

Extending input image beyond the boundaries

1. All zeros

2. Extend boundary pixels outward

3. Wrap around to opposite boundary

4. Final Result

5. Filter characteristics

• Smooths edges

• Preserve input in areas that are constant over the region of the
size of the filter (DC preserving)
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Spatial Domain Condition for DC Preserving Filter

Suppose f [m,n] ≡ c

g[m,n] =
∑
k

∑
`

h[m− k, n− `]f [k, `]

= c
∑
k

∑
`

h[m− k, n− `]

= c
∑
k

∑
`

h[k, `]

g[m,n] ≡ c⇔
∑
k

∑
`

h[k, `] = 1

Frequency domain analysis

Define 2-D extension of discrete time Fourier transform (DTFT):
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Discrete Space Fourier Transform

1. Forward Transform

F (µ, υ) =
∑
m

∑
n

f [m,n]e−j2π(mµ+nυ)

2. Inverse Transform
f [m,n] =

(
1

2π

)2 ∫ π

−π

∫ π

−π
F (µ, υ)ej(mµ+nυ)dµdυ

3. Spatial frequency variables
µ-radians/sample in horizontal direction
υ-radians/sample in vertical direction
2π radians= 1 cycle

4. Nyquist cutoff frequency
π radians/sample= 1

2 cycle/sample

Analysis of Disrete-Space,Linear, Shift-Invariant
Filtering

g[m,n] =
∑
k

∑
`

h[m− k, n− `]f [k, `]

G(µ, υ) =
∑
m

∑
n

g[m,n]e−j(mµ+nυ)

=
∑
k

∑
`

{∑
m

∑
n

h[m− k, n− `]

}
{
e−j(mµ+nυ)

}
f [k, `]

G(µ, υ) = H(µ, υ)
∑
k

∑
`

f [k, `]e−j(kµ+`υ)

= H(µ, υ)F (µ, υ)
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Example 1

H(µ, υ) =
∑
k

∑
`

h1(k)h1(`)e−j(kµ+`υ)

=

[∑
k

h1(k)e−jkµ
][∑

`

h1(`)e−j`υ
]

= H1(µ)H1(υ)

H1(µ) =
∑
k

h1(k)e−jkµ

=
1
4
ejµ +

1
2

+
1
4
e−jµ

=
1
2

[1 + cos(µ)]
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Frequency domain condition for DC preserving filter

H(µ, υ) =
∑
k

∑
`

h[k, `]ej[kµ+`υ]

H(0, 0) =
∑
k

∑
`

h[k, `] = 1

Example 2

1. Final Result

2. Filter characteristics

• Large response at edges

• No response where input is constant∑
k

∑
`

h[k, `] = 0
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Frequency Response

h[k, `] = δ[k, `]− h1[k]h1[`]
H(µ, υ) = 1−H1(µ)H1(υ)

H1(µ) =
∑
k

h1(k)e−jkµ

=
1
3

[ejµ + 1 + e−jµ]

=
1
3

[1 + 2 cos(µ)]
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Example 3 (Unsharp mask)

g[m,n] = f [m,n] + λ[f [m,n]− < f [m,n] >]

< . > - spatial average over neighborhood of (m,n)-th pixel

h[k, `] = δ[k, `] + λh′[k, `]

h′[k, `] - filter from example 2

λ - non-negative parameter that controls amount of sharpening

1. Filter coefficients
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2. Filter is DC preserving

3. Effect on image
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4. Edge Profile

Frequency Response of Unsharp Mask

h[k, `] = δ[k, `] + λh′[k, `]

H(µ, υ) = 1 + λH ′(µ, υ)
= 1 + λ[1−H1(µ)H1(υ)]
= (1 + λ)− λH1(µ)H1(υ)

4.4 Nonlinear Filtering

1. Relatively new area

2. Results are only beginning to appear in textbooks

3. Theory is unlikely to ever be as compact as that for linear filters

4. Much work is statistically based

Example
Consider the following 1-D sequence:
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• Moving average linear filter

g[m] =
1
3

(f [m− 1] + f [m] + f [m+ 1])

• Assume boundary value is extended on left and on right

• Final result for linear filter

• Observations

– smeared impulse(outlier) to width of filter

– broadened transition region between two constant levels

– these effects becoming increasingly pronounced as width of
filter increases

– new signal values have been introduced which makes
requantization necessary

– iterating filter will cause continued smearing of impulse and
broadening of edges

Median filter
g[m] =median(f [m− 1], f [m], f [m+ 1])
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1. Final result for median filter

2. Observations

• impulse is eliminated, independent of its amplitude

• constant regions and the edge between them are all preserved

• no new signal values occur

• repeated filtering will have no further effect

Analysis of Standard 1-D Median Filter

Definitions

1. Length L input signal: f [m] = 0, ..., L− 1

2. Length 2N + 1 median filter:
g[m] =median(f [m−N ], ..., f [m], ..., f [m+N ])

3. Constant neighborhood: a region of at least N+1 consecutive points
with same value

4. Edge: a monotonically rising or falling set of points lying between
two constant neighborhoods
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5. Impulse: any set of N or fewer points with values different from the
surrounding regions which are identically-valued constant
neighborhoods

6. Oscillation: a sequence of points that are not part of a constant
neighborhood, edge, or impulse

7. Root: a signal that is not modified by filtering

Properties of the Standard Median Filter

1. Impulses are eliminated in one pass

2. A signal is a root if and only if it consists of only constant
neighborhoods and edges

3. A root for filter size N is a root for all filters of size M < N

4. Repeated filtering will yield a root in at most (L− 1)/2 passes
(usually fewer)

5. The degree of smoothing increases with filter size N

6. The filter resolution (size of smallest detail passed) is N + 1

7. To efficiently compute each output value, delete leftmost point in
window and insert new point in window and insert new point on
right into sorted list (0− [log2(2N + 1)] comparisons)

Example

Result of filtering oscillations with 3 point standard median filter

Extensions to Standard Median Filter

Recursive Median Filter

g[m] =median(g[m−N ], ..., g[m− 1], f [m], f [m+ 1], ..., f [m+N ])

1. Properties

• More smoothing for same size filter

• Generates a root in one pass
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• Same root set as for standard median, but some input may go
to different roots

• Output not direction-invariant

Ranked Order Filters

Output n-th largest value in window
g[m] =n-th largest value (f [m−N ], ..., f [m], ..., f [m+N ])

1. Special cases

n filter type
1 minimum

N+1 median
2N+1 maximum

2. Properties

• tend to be peak or valley detectors

• for n 6= N + 1, only root signals are constant-valued

• can also implement recursively
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Chapter 5

Image Compression

Chapter Overview

1. Reduce amount of data required to store or transmit an image

2. Early storage/transmission requirements

• original ”standard” digital image

• 512 X 512 pixels X 1 byte/pixel∼= 0.25 Mbytes

3. Contemporary storage/transmission requirements

• workstation color image
1024 X 1024 X 3 bytes/pixel ∼= 3.0 Mbytes

4. desktop publishing

• four color image (cyan, magenta, yellow, and black)

• 8.5 X 11 inch sampled at 600 dots/in ∼= 134 Mbytes

• remote sensing-hyperspectral dataset
- 1 terrain irradiance maesurement in each of 200 10 nm wide
spectral bands
- 12 bits/sample
- 25 X 25 m2 footprint on ground
- 10 X 10 km2 area ∼= 4800 Mbytes

111
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Image Compression Factors

1. Redundancy

• pixels do not take on all values with equal probability

• value of any given pixel is not dependent of that of other pixels
in the image
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2. Irrelevancy

• Not all information in the image is required for intended
application

• Under typical viewing conditions, we can remove some
information without introducing a perceptible change in the
image

– inability to detect changes in luminance over large areas
– inability to detect larger changes in luminance over very

small areas
– masking due to detail in image

• degradation may be observable, but not objectionable, e.g.
teleconferencing

• degradation may not interfere with performance task, e.g.
object recognition

Two Major Types of Compression Algorithms

1. Lossless

• reconstructed image is identical to original image

• can only exploit redundancy

2. Lossy

• reconstructed image is not identical to original image

• can exploit both redundancy and irrelevancy
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5.1 Feature Extraction

• Partition image into N X N blocks of pixels

• For each block,compute a feature vector to represent all pixels
contained within that block

• If feature vector provides a complete description of the block, it can
be used as part of a lossless algorithm; otherwise algorithm will be
lossy

Example Features

• Pixel values

1. N = 1

2. lossless

• Difference between current pixel value and that of the previous

pixel on line (N = 1)

• Previously processed pixels
� Current pixel being processed
◦ Future pixels to be processed

1. e[m,n] = x[m,n− 1]− x[m,n]

2. lossless, since x[m,n] = x[m,n− 1]− e[m,n]

3. basis for Differential Pulse Code Modulation

• Error in prediction of current pixel based on values of previously
processed neighboring pixels
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• Previously processed pixels
� Current pixel being processed
◦ Future pixels to be processed

1. e[m,n] = x̂[m,n]− x[m,n]

2. lossless, since x[m,n] = x̃[m,n]− e[m,n− 1]

3. basis for predictive encoders

• Length of runs of 0’s and 1’s in a black/white range.

1. variable block length, lossless

• Discrete cosine transform (DCT) (N = 8)
X[k, l] =

1
4C[k]C[l]

7∑
k=0

7∑
l=0

x[m,n] cos
[

(2m+ 1)kπ
16

]
cos
[

(2n+ 1)lπ
16

]

C[k] =
{

1/
√

2, k = 0
1, else

1. inverse transform exists with similar structure (⇒ lossless)

2. closely related to Discrete Fourier Transform (DFT)

3. compared to DFT, DCT is real-valued, and yields better
energy compaction

4. basis for Joint Photographic Experts Group (JPEG) standard
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• Block truncation statistics (N > 1)

1. block structure

2. first and second moments

3. binary mask

x̃i =
{
a , xi > x
b , else

4. a and b are chosen to preserve first and second moments, i.e.
x̃ = x and x̃2 = x2

5. Example

6. feature is lossy

7. mean and coarse structure of block are preserved

Example Predictors

• Linear
x̃[m,n] =

∑
(k,l)∈Ω

aklx[m− k, n− l]

1. minimum mean-squared error predictor
Coefficients are solution to∑
(k,l)∈Ω

aklr[k′ − k, l′ − l] = r[k′, l′], (k′, l′) ∈ Ω
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where
r[k, l] =

∑
(m,n)

x[m,n]x[m+ k, n+ l]

• Nonlinear (Graham Predictor)

d13 = |x1 − x3|
d23 = |x2 − x3|

x̂0 =
{
x1, d13 > d23

x2, d13 < d23

Bit Rate for Block Truncation Code

• Bit rate is number of binary digits required per image pixel

• To encode one NXN block, we must transmit:

1. values of parameters a and b - 8 bits each

2. structure of binary mask - N2 bits

• Overall bit rate

B =
N2 + 16 bits/block
N2 pixels/block

= 1 +
16
N2

bits/pixel

5.2 Vector Quantization

• Basically a clustering step

• Partition feature space into cells

• All feature vectors within a single cell are represented by a single
prototype vector
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• Quantization is a many-to-one mapping ⇒ not invertible; thus is
inherently lossy

• Illustration for 2-dimensional feature space

VQ Example

• Features are 3X3 blocks of pixels.

• Statistics:

1. 29 = 512 different blocks of pixels

2. only 32 different blocks actually occur

3. encode with 5 different prototypes
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Scalar Quantization
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Scalar Quantization in DPCM
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Block DCT Quantization

• Transform coefficients are independently quantized as scalars.

• Each element of bit allocation mask is an integer between 0 and 255
specifying quantizer step size for corresponding transform coefficient

• Scaled and quantized transform coefficients
XSQ
kl = bXkl/Qkl + 0.5c

• Reconstructed transform coefficients
XQ
kl = XklQkl

5.3 Entropy Encoding

• Convert stream of prototype vectors as a stream of binary
codewords.

• Objective is to minimize average number of binary digits per
prototype vector.

• Shannon showed that the theoretical amount is given by source
entropy.
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• Process is generally lossless.

• Source alphabet (prototype vectors) a1, ..., aM

• Source probability distribution p1, ..., pM

• Source Entropy

H = −
M∑
m=1

pm log2(pm) bits/source symbol

• Codeword lengths l1, ..., lM

• Average codeword length

l̃ =
M∑
m=l

pmlm binary digits/source symbol
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Huffman Code

• Huffman code is optimum variable-length code.

• Rate for Huffman code will always be within 1 binary digit of
source entropy.

• By encoding source symbols in blocks of length L, we can get to
within 1/L binary digits of source entropy.

• Huffman code satisfies prefix condition - no codeword is the prefix
of another ⇒ no markers are needed to separate codewords.

• JPEG standard for lossy coding specifies entropy coding using
either Huffman code or arithmetic code.
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Summary of JPEG Picture Quality

For color images with moderately complex scenes



Chapter 6

Image Reconstruction

6.1 Chapter Outline

In this chapter, we will discuss:

1. Computed tomography

2. Algebraic Reconstruction Technique

3. Fourier-based reconstruction

4. Synthetic aperture radar

Image Reconstruction involves starting with non-image data and
reconstructing an image from that data.
Examples include computed tomography, synthetic aperture radar
(SAR), magnetic resonance imaging and coded aperture imaging.

Projection Radiography

Intensity incident at detector plane

Id(xd, yd) = Ii(xd, yd)e−
1

cos θ

∫ d

0

µ0

(
xd

M(z)
,
yd

M(z)
, z

)
dz

M(z) = d
z depth dependent magnification

µ0(x, y, t)-attenuation function
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6.2 Computed Tomography

Scanning systems for Computed Tomography

First generation system

Fourth generation system



6.2. COMPUTED TOMOGRAPHY 127

Radon Transform

Unknown object attenuation f(x,y)

Ray: x cos θ + y sin θ = t1

Ray integral:

pθ(t1) =
∫ ∫

f(x, y)δ(x cos θ + y sin θ − t1)dxdy

Projection:

pθ(t),−∞ < t <∞, θ-fixed

Radon transform

pθ(t),−∞ < t <∞,−π < θ < π

Note that pπ(t) = p0(t), p3π/2(t) = pπ/2(t) etc.
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6.3 Algebraic Reconstruction Technique
(ART)

Discretize line integral

Pi =
N∑
j=1

wijfj i = 1, ...,M total of M line integrals

Weights Wij depends only on geometry and is image independent.

We have a set of linear equations (M equations and N unknowns).

M = N invert W to solve for fj ’s

M > N overdetermined (least squares)

M < N undetermined (solution not unique)

Typically N is approximately (512)2

Iterative solution

Let k be the iteration index

Let fkj , j = 1, ..., N be estimated attenuation after k-th iteration

Let pki =
N∑
j=1

Wijf
k
j be the i-th ray sum based on estimate of attenuation.

Compare to measured ray sums:

eki = pki − pi
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Correct the pixels to yield no error in i-th array sum

fk+1
j = fkj −

Wije
k
i

N∑
l=1

W 2
il

We can show that
N∑
j=1

wijf
k+1
j = pi

Repeat process for each ray i=1,2,...,M. Then repeat as necessary until
procedure converges.

6.4 Fourier Slice Theorem

Pθ(ρ) =
∫
pθ(t)e−j2πρtdt

=
∫ {∫ ∫

f(x, y)δ(x cos θ + y sin θ − t)dxdy
}
e−j2πρtdt

=
∫ ∫

f(x, y)
{∫

δ(x cos θ + y sin θ − t)e−j2πρtdt
}
dxdy

=
∫ ∫

f(x, y)e−j2πρ[x cos θ+y sin θ]dxdy

u = ρ cos θ
v = ρ sin θ
= F (u, v)
= F (ρ cos θ, ρ sin θ)

= F̃ (ρ, θ)

where F̃ (ρ, θ) is the polar coordinate form of the 2-D CSFT.
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Reconstruction methods based on Fourier Slice
Theorem

Direct Fourier Transform

• Interpolate from Polar to Coordinate grid

• Take inverse 2-D DFT

Filter-Backprojection

Start with

f(x, y)−
∫ 2π

0

∫ ∞
0

F̃ (ρ, φ)ej2πρr cos(φ−θ)ρdρdφ

r =
√
x2 + y2

θ = arctan
(
y
x

)
r cos(φ− θ) = cosφr cos θ + sinφr sin θ

f(x, y) =
∫ 2π

0

∫ ∞
0

F̃ (ρ, φ)ej2πρ[x cosφ+y sinφ]ρdρdφ

=
∫ π

0

∫ ∞
0

F̃ (ρ, φ)ej2πρ[x cosφ+y sinφ]ρdρdφ

+
∫ 2π

π

∫ ∞
0

F̃ (ρ, φ)ej2πρ[x cosφ+y sinφ]ρdρdφ
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let φ′ = φ− π φ+ φ′ + π

F̃ (ρ, φ′ + π) =
∫ 2π

0

∫ ∞
0

f̃(r, θ)e−j2π(−ρ) cos(φ′−θ)rdrdθ

= F̃ (−ρ, φ′)

Integral 2 becomes∫ π

0

∫ ∞
0

F̃ (−ρ, φ′)ej2π(−ρ)[x cosφ′+y sinφ′]ρdρdφ′

let ρ′ = −ρ
Integral 2 becomes∫ π

0

∫ ∞
0

F̃ (ρ, φ′ + π)ej2π(ρ)[x cos(φ′+π)+y sin(φ′+π)]ρdρdφ′

cos(φ′ + π) = − cosφ′

sin(φ′ + π) = − sinφ′

F̃ (ρ, φ′ + θ) =
∫ 2π

0

∫ ∞
0

f̃(r, θ)e−j2πρ cos(φ′+π−θ)rdrdθ

Integral 2 becomes∫ π

0

∫ 0

−∞
F̃ (ρ′, φ′)ej2πρ

′[x cosφ′+y sinφ′]|ρ′|dρ′dφ′

f(x, y) =
∫ π

0

∫ 0

−∞
F̃ (ρ, φ)ej2πρ[x cosφ+y sinφ]|ρ|dρdφ

let t = x cosφ+ y sinφ

Steps in Filtered Backprojection

1. CTFT of projection

Pφ(ρ) = F̃ (ρ, φ)

=
∫
pφ(t)e−j2πρtdt

2. Frequency domain filtering projection data

Qφ(ρ) = |ρ|Pφ(ρ)

3. Take inverse CTFT of filtered projection transform Qφ(ρ)
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qφ(t) =
∫ ∞
−∞

Qφ(ρ)ej2πρtdρ

4. Back-projection

f(x, y) =
∫ π

0

qφ(x cosφ+ y sinφ)dφ

Convolution-backprojection

(Spatial-domain filtered projection-backprojection)
Replace steps 1,2,3 of earlier method by

qφ(t) =
∫
h(t− τ)pφ(τ)dτ

psf does not exist for H(ρ)

Assume that pφ(t) is essentially bandlimited to a highest spatial
frequency B.

Pφ(ρ) = 0, |ρ| > B

HB(ρ) = |ρ|rect
(
ρ

2B

)
hB(t) = 2B2sinc(2Bt)−B2sinc2(Bt)

6.5 Spotlight Mode Synthetic Aperture
Radar

We assume here that height h of plane
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above ground is negligible compared to R

Ground Reflectivity

g(x, y) = |g(x, y)|ei∠g(x,y)circ
(
x
2 ,

y
2

)
where |g(x, y)| is only a fraction of incident radiation scattered back to
aircraft.

ei∠g(x,y) is the air/target interface affecting target surface penetration.

circ
(
x
2 ,

y
2

)
is the illumination area.

Assume g(x, y) does not depend on

1. θ

2. frequency of radar wave

Transmitted Signal

linear FM chirp pulse Re {s(t)} where

s(t) = ei(ωot+αt
2)rect(t/T )

where ω0 is RF carrier

α is FM rate/2

Return signal from differential area at (x0, y0)

r0(t) = A(R0)Re
{
g(x0, y0)s

(
t− 2R0

c

)}
dxdy

where A(R0) is the the propogation attenuation.

g(x0, y0) is the reflectivity.(
2R0
c

)
is the round trip delay.

Return signal from all differential areas at distance R0

from aircraft assuming R >> L

r1(t) =
[∫

r0(t)dv
]
du u = u0

r1(t) = A(R0)
{[∫

g(x0, y0)dv
]
s
(
t− 2R0

c

)
du

}
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Return signal from entire illuminated patch

R >> L, A(R0) ≈ A R0 = R+ u

∴ rθ(t) = Re

{∫
pθ(u)s

(
t− 2(R+ u)

c

)
du

}
After processing at reciever, we have,

Cθ(t) =
A

2
Pθ

[
2
c

(ω0 + 2α(t− τ0))
]

rect
[

(t− t0)
T

]



Chapter 7

Speech Processing

7.1 Applications of Speech Processing

Speech processing applications can be classified as:
• Analysis only

1. Recognition systems

2. Speaker identification

3. Speaker verification

• Synthesis only

1. Automatic reading machine

2. Data retrieval systems

• Analysis followed by Synthesis

1. secure voice communication

2. data compression for transmission

3. storage and retrieval systems

135
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7.2 Introduction to Speech

A model for Speech

Excitation
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• Voiced excitation-periodic air pulses pass through vibrating vocal
chord

• Unvoiced excitation-force air through a constriction in vocal tract
producing turbulence

Vocal tract

By changing the shape of the vocal tract, different voiced sounds are
produced. This implies that the system is time-varying. However,
changes occur slowly over short time intervals and therefore, we can use
an LTI model. Since the vocal tract is a cavity, it resonates when excited.
The resonant frequencies are also known as formants.
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Voice waveform

s(t) = e(t) ∗ v(t)
S(ω) = E(ω)V (ω)
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Spectrograms

How do we do spectral analysis of speech and how do we display the
results?

Short-time Spectral Analysis

Depending on the bandwidth of the filters, we obtain two different types
of spectrogram displays.

• Wideband (short-time)

1. High time resolution-Individual excitation pulses of time
waveform are evident.
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2. Insufficient frequency resolution

• Narrowband (long-time)

1. High frequency resolution-all harmonics of excitation are seen.

2. Temporal pulse repetition is not resolved.

• Wideband Spectogram

1. Filter has 300 Hz bandwidth.

2. Resonances are seen clearly in voiced intervals.

3. Pitch is resolved in time ≈ 0.01 seconds.

4. Unvoiced areas are noise-like.

• Narrowband Spectrogram

1. Filter has 45 Hz bandwidth.

2. Resolve harmonics (about 100 Hz apart) but not temporal
pulse repetition.

Details on Filter Response

H(f) = rect
(
f−fc
W

)
+ rect

(
f+fc
W

)
h(t) = 2W sinc (Wf) cos (2πfct)



7.2. INTRODUCTION TO SPEECH 141

Speech Characteristics

Acoustic Phonetics

• Phonemes-a set of distinctive sounds that characterize spoken
English. Phonemes include vowels, diphthongs,semivowels, and
consonants. Each phoneme is either:

1. Continuant characterized by a fixed vocal tract configuration.
They include vowels, fricatives, and nasals.

2. Non-continuant characterized by a time-varying vocal tract.
They include diphthongs, semivowels, stops and affricates.

Vowels excite vocal tract with quasiperiodic pulses of air caused by
vibration of vocal chords. The area function determines formants.
Examples are given below:

• father-open in front

• (a)-constricted in back tongue

• eve-constricted in front

• (i)-open in back

Formant frequencies

Examples:

• beet (i)

1. low first formant

2. high second formant

3. time waveform shows slow oscillation with superimposed fast
oscillation

4. spectrogram shows formant locations

• loom (u)

1. low first and second formants

2. smooth waveforms

3. spectrogram shows only low frequencies
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7.3 Short-Time Discrete Time Fourier
Transform

Short-Time Fourier Analysis

We have seen the importance of short time Fourier analysis in speech
processing.

• Speech waveform for time-varying characteristics

• During short periods, speech may be modelled as output of an LTI
system. Spectral characteristics provide important clues about
nature of speech.

So far, we have only considered analog systems for short-time Fourier
analysis. Now we look at digital systems to accomplish this purpose. A
fundamental concept here is the notion of windowing the data to look at
only a finite portion.Recall discussion of leakage in calculation of DTFT
of finite length sinusoid. Let us look at a more general case:

• Complete speech signal - s(n) −∞ < n <∞
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• Window - h(n)

• Windowed signal-s̃(n) = h(n)s(n)

In frequency domain(DTFT): S̃(ejw) =
1

2π

∫ π

−π
H(ej(ω−µ))S(ejµ)dµ

Comments on Windows

• For fixed window type:

1. mainlobe width is ≈ 1
N

2. sidelobe amplitude is fixed

• For fixed window length N
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1. Mainlobe width is approximately equal to reciprocal of
sidelobe amplitude.

• Mainlobe width is responsible for blurring.

• Sidelobes cause noisy appearance in spectrum.

We now consider different window types:

Type Mainlobe(rad/sample) sidelobe(db)
Rectangular 4π

N −13
Bartlett 8π

N −27
Hanning 8π

N −32
Hamming 8π

N −43
Blackman 12π

N −58

Filter Bank Interpretation of STDTFT

Now suppose we move the window along as a function of time n:
S̃(ejω, n) =

∑
k

s(k)h(n− k)e−jωk s̃(k, n) = s(k)h(n− k)

What does s̃(k, n) look like? Here k plays the role of time and n is a
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parameter giving us a family of signals.
S̃(ejω, n) is just the DTFT of each member of the family.

Linear filtering interpretation

S̃(ejω, n) =
∑
k

s(n− k)h(k)e−jω(n−k)

= e−jωn
∑
k

s(n− k)h(k)ejωk

Let us look at these operations one by one. Let ω = ω0 (fixed). In the

frequency domain:

S(ejω0 , ejω) = DTFT
{
S̃(ejω0 , n)

}
=
∑
n

S̃(ejω0 , n)e−jωn

Efficient Evaluation of STDTFT

Evaluation of S(ejω, n) =
∑
k

s(k)h(n− k)e−jωk

Let ωr = 2πr
N , r = 0, 1, ..., N − 1

Sr(n) = S(ejω, n)|w=wr

=
∑
k

s(k)h(n− k)e−j
2πkr
N

Now let l = k − n⇒ k = l + n

Srn =
∑
l

s(l + n)h(−l)e−j 2π
N r(l+n)

= e−j
2π
N rn

∑
l

s(l + n)h(−l)e−j 2π
N
rl

Now let l = mN + k −∞ < m <∞

Sr(n) = e−j
2π
N rn

∑
m

N−1∑
k=0

s(mN + k + n)h(−mN − k)e−j
2π
N r(mN+k)

Let S̃(k, n) =
∑
m s(n+ k +mN)h(−k −mN) k = 0, 1, ..., N − 1
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Sr(n) = e−j
2π
N rn

N−1∑
k=0

s̃(k, n)e−j
2πrk
N What is involved here?

Fix n and repeat the procedure given below for each n.

• Position data sequence under window.

• Multiply by window.

• Cut up into N-length sequences and sum together.

• Take N-point DFT.

• Multiply by complex exponential.

If window length is L,computation is L+ L
N .N +N log2N..

Identity

rk =
r2

2
+
k2

2
− (r − k)2

2

Substitute into:

Sr(n) =
∑
k

s(k)h(n− k)e−j
2πkr
N

=
∑
k

s(k)h(n− k)e−j
πr2
N e−j

πk2
N ej

π(r−k)2

N

gn(k) = s(k)h(n− k)e−j
πk2
N

What is involved?

• Fix n.

• Position data sequence under window.

• Multiply by window and complex exponential.

• Perform convolution.

• Multiply by complex exponential.

Compare with earlier result: S(ejω, n) = e−jωn
∑
k

s(n− k)h(k)ejωk
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Comments on implementation

We need to consider both required computation and nature of hardware
to be used in implementation.

Signal Reconstruction from STDTFT

Filter bank summation method

The STDTFT simply breaks the signal into narrowband blocks and shifts
each block down to baseband. Note that we are in the time domain. Can
we put the signal back together again by simply shifting each block back
to where it was, and then summing?

Sr(n) =
∑
k

s(k)h(n− k)e−j
2πkr
N

=
∑
k

s(n− k)h(k)e−j
2π(n−k)r

N

=

{∑
k

s(n− k)hr(k)

}
e−j

2πnr
N

where hr(k) = h(k)ej
2πkr
N

This is just the unit sample response of a bandpass filter. Define:

yr(n) = ej
2πnr
N Sr(n)

=
∑
n

s(n− k)hr(k)

Now consider the following system between y(n) and s(n).

y(n) =
N−1∑
l=0

yl(n)

Y (ejω) =
N−1∑
l=0

Yl(ejω)

=
N−1∑
l=0

S(ejω)Hl(ejω)

Overall frequency response is:



148 CHAPTER 7. SPEECH PROCESSING

H(ejω) =
N−1∑
l=0

Hl(ejω) Now

Hl(ejω) = H
(
ej(ω−

2πl
N )
)

In order for y(n) = s(n),we must have

N−1∑
l=0

H(ej(ω−
2πl
N )) = 1

What does this imply about h(n)?
Consider

p(n) = N

∞∑
k=−∞

δ(n− kN)

P (ejω) = N

∞∑
k=−∞

e−jωkN = 2π
∞∑

k=−∞

δ(ω − 2πk
N

)

Let h̃(n) = p(n)h(n) rep1[δ(t)] CTFT↔ 1
2comb1[1]∑

k

δ(t− k) CTFT↔
∑
k

δ(f − k)
∑
k

e−j2πfk =
∑
k

δ(f − k)

Let N = 2πf∑
k e
−jωNk =

∑
K

δ(
ωN

2π
− k)

δ(aw − b) =
∣∣ 1
a

∣∣ δ(w − b
a )
∑
K e
−jωNk =

2π
N

∑
δ(ω − 2πk

N
)

N
∑
k

e−jωNk = 2π
∑
k

δ(ω − 2πk
N

) ⇒ H̃(ejω) =
N−1∑
k=0

H(ejω−
2πk
N )

So condition becomes
h̃(n) = s(n)

h(n) =
{

1
N , n = 0
0, n = kN



Chapter 8

Linear Predictive Coding

8.1 Linear Predictive Coding

• Consider DT model of speech production:

• Note:Keep in mind underlying sampling rate fs.

NTs =
1
f0

N

fs
=

1
f0
⇒ fs = Nf0

• G accounts for variations in amplitude.

• all-pole model: V (z) =
G

1−
P∑
k=1

akz
−k

=
S(z)
E(z)

• model parameters:

– voiced/unvoiced classification

149
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– pitch period N

– gain E

– coefficients ak

• All pole model is well suited to resonant character of vocal tract in
the case of non-nasal sounds.

• Angular locations of poles determines formants.

• Nasal sounds are best modeled with some zeros, but estimation of
coefficients of the model becomes difficult.

• In practice, with enough poles we get good estimate of both nasal
and non-nasal sounds.

• In practice, there are approximately 13-14 poles for speech sampled
at 10 KHz.

• Time Domain Model

s[n] =
p∑
k=1

aks(n− k) +Ge(n)

• Linear Predictor

ŝ(n) =
p∑
k=1

αks(n− k)

• Prediction error

f(n) = s(n)− s̃(n) = s(n)−
p∑
k=1

αks(n− k)

• Pick αk’s, k=1,2,...,p to minimize
∑
n

f2(n).

• Hopefully: αk is an estimate of ak.

• Let A(z) = 1−
p∑
k=1

αkz
−k.

• Consider:

s(n)→ A(z)→ f(n)

• If αk = ak, k = 1, 2, ..., p, then V (z) = G
A(z) .
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• In this case:

e(n)→ V (z)
s(n)→ A(z)

f(n)→

• If model was exact, and if coefficients were estimated correctly, then
f(n) = Ge(n)
⇒ prediction error provides useful information on pitch period.

• In practice, we do not know G or ak.

• We have to estimate these quantities based on s(n) and other
a-priori information.

Estimation of LPC Coefficients

• We will estimate LPC coefficients for each ’frame’ sequentially. A
frame is a windowed speech segment.

• Define short-time quantities:
sn(m) = w(m)s(m+ n)

– Window: w(m) 6= 0 only for 0 ≤ m ≤ N − 1.

– Shift speech segment of interest to origin and window it.

• fn(m) = sn(m)− ŝn(m)

– Note: sn(m) 6= 0 only for 0 ≤ m ≤ N − 1

• ŝn(m) =
p∑
k=1

αksn(m− k)

– Note: ŝn(m) 6= 0 only for 0 ≤ m ≤ N + p− 1.

– Thus: fn(m) 6= 0

• Sum of square errors:

En =
N+p−1∑
m=0

f2
n(m)

• Comments on limits:

• Epochs in prediction error signal:

1. 0 ≤ m ≤ p− 1⇒ ŝn(m) =
p∑
k=1

αksn(m− k) =
m∑
k=1

αksn(m− k)
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– Predicting sn(m) in terms of m¡p past values.

– larger than normal error

2. p ≤ m ≤ N − 1⇒

– sn(m) is predicted in terms of p past values.

3. N ≤ m ≤ N + p− 1⇒

– sn(m) = 0 for m > N − 1⇒ trying to predict φ from p
past values

– larger than normal error

• If we restrict m to the normal range, least square error (LSE)
solution yields Covariance Method.

• Allowing m to vary over all three ranges, LSE approach yields
Autocorrelation Method.

• At this point, we will just point out classic tradeoff between
performance (Covariance method) vs. computational complexity
(Autocorrelation method).

• We will first derive the Covariance method.

– Multi-dimensional unconstrained optimization problem:

Minimize α1, α2, ..., αp.

En =
N−1∑
m=p

f2
n(m)

=
N−1∑
m=p

{sn(m)− ŝn(m)}2

=
N−1∑
m=p

{
sn(m)−

p∑
k=1

αksn(m− k)

}2

– Take partial derivatives with respect to each αi, i = 1, 2, ..., p,
and set each equal to zero.
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Covariance Method

En =
N−1∑
m=p

f2
n(m)

=
N−1∑
m=p

{sn(m)− ŝn(m)}2

=
N−1∑
m=p

{
sn(m)−

p∑
k=1

αksn(m− k)

}2

∂En
∂αl

= 2
N−1∑
m=p

{
sn(m)−

p∑
k=1

αksn(m− k)

}
0− sn(m− l)

= 0

Solving the above equation, we get

N−1∑
m=p

sn(m)sn(m− l) =
N−1∑
m=p

p∑
k=1

αksn(m− k)sn(m− l)

=
p∑
k=1

αk

N−1∑
m=p

sn(m− k)sn(m− l)

l = 1, 2, ..., p

Define:φn(l, k) ≡
N−1∑
m=p

sn(m− k)sn(m− l) = φ(k, l).

⇒ φn(l, φ) =
p∑
k=1

αkφn(l, k) l − 1, 2, ..., p.

There are p equations and p unknowns
It is a symmetric matrix since φn(k, l)φn(l, k).

• To solve for LPC coefficients via covariance method requires
solution of linear system of p equations.

In matrix form
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Φα = φ where Φ is symmetric.

Φ is a p X p matrix.

α is a p X 1 matrix.

φ is a 1 X p matrix.

• This must be solved for each windowed speech segment

• requires O (p3)operations

Autocorrelation Method

• In this case

Minimize α1, α2, ..., αn

En =
N+p−1∑
m=0

f2
n(m)

=
N+p−1∑
m=0

{
sn(m)−

M∑
k=1

αksn(m− k)

}

• Recall previous observation fn(m) 6= 0 only 0 ≤ m ≤ N + p− 1

• Therefore,we may let limits in sum be infinite:

En =
∞∑

m=−∞
f2
n(m)

=
∞∑

m=−∞

{
sn(m) =

p∑
k=1

αksn(m− k)

}2

• Taking derivative wrt αl and equating to zero as before yields:
∞∑

m=−∞
sn(m)sn(m− l)−

p∑
k=1

αk

∞∑
m=−∞

sn(m− k)sn(m− l) = φ l =

1, 2, ..., p

• Define Rn(l) ≡
∞∑

m=−∞
sn(m)sn(m+ l)
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• Note:

Rn(−l) =
∞∑

m=−∞
sn(m)sn(m− l)

Change of variables m′ = m− l⇒ m′|∞−∞

=
∞∑

m′=−∞
sn(m′ + l)sn(m′)

= Rn(l)

• Hence Rn(l) =
p∑
k=1

αkRn(k − l) l = 1, 2, ..., p

∞∑
m=−∞

sn(m− k)sn(m− l) =
∞∑

m′=−∞
sn(m′ + l − k)sn(m′)

=
∞∑

m=−∞
sn(m)sn(m+ l − k)

Only depends on difference, l-k. This is not true for covariance
methods.

• Define p equations in p unknowns.

• Collectively,

• In matrix form, Rnα = rn

R is a p X p matrix

α is a p X 1 matrix

rn is a p X 1 matrix

• Observe properties of Rn:

1. Symmetric about main diagonal equal to its own transpose

2. Constant along any diagonal referred to as Toeplitz

• Thus, the system of equations obtained via the Autocorrelation
method is Toeplitz as well as symmetric.

• Structure may be exploited to efficiently solve for LPC coefficients
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• Note that it can be shown that:

En =
N+p−1∑
m=0

{
sn(m)−

p∑
k=1

αksn(m− k)

}2

= Rn(0)−
p∑
k=1

αkRn(k)

Practical Considerations:

• Accuracy of method covariance method wins!

Computation: Covariance method: O(p3)

Autocorrelation method: O(p2)

• A window with taper is typically employed (once again-Hamming)
to counteract boundary effects with Autocorrelation methods. We
do not need a window for Covariance method.

• Stability: V (z) =
1

1−
p∑
k=1

akz
−k

=
1

A(z)

1. Autocorrelation method: guaranteed roots of A(z) are within unit
circle - stable.

2. Covariance method: possible for roots of A(z) to be outside unit
circle.

3. Autocorrelation method used in practice.

How many poles do we need?

1formant.2poles/formant.Fs2 = number of poles

1. Radiation from mouth - 1 pole

2. Glottal pulse shape - 1 pole

3. To compensate for nasals, add some extra poles.

4. For speech sampled at Fs = 10KHz: 13-15 poles

How long should window be?

1. We want vocal tract configuration to be fixed.
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2. We need to include several pitch periods to eliminate effect of
window taper

3. typically: 10-40 ms

Transmission bit rate:

1. Typical LPC Vocoder Parameters:

2. p = 14 coefficients

3. 6 bits/coefficient

4. 84 bits/frame

1 bit ⇒ voiced/unvoiced

6 bits ⇒ pitch (N)

5 bits ⇒ Gain (G)

Total: 96 bits/frame

This works for both 50 frames/sec (4800 bps) and 100 frames/sec
(9600 bps).

5. Recall point of reference: code digitized speech directly

6. Telephone quality fs ≈ 6KHz, number of bits= 7⇒ 42, 000 bps

7. High quality fs ≈ 20KHz, number of bits= 11⇒ 220, 000 bps

Linear Predictive Coding of Speech

Consider model

H(z) =
S(z)
U(z)

=
G

1−
p∑
k=1

akz
−k

all pole model

Model Parameters:

• Voiced/unvoiced classification

• pitch period D

• gain G

• coefficients ak
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Time domain model

In this model, all parameters are assumed to vary slowly with time.

Linear Predictor

ŝ[n] =
p∑
k=1

αks[n− k]

Prediction error

e[n] = s[n]− ŝ[n] = s[n]−
p∑
k=1

αks[n− k]

Let A(z) = 1−
p∑
k=1

αkz
−k

Then we have

s[n]→ A(z)→ e[n]

Note that if αk = ak, k = 1, 2, ..., p, then

H(z) =
G

A(z)

So we have

u[n]→ H(z)
s[n]→ A(z)→ e[n]

If model was exact, and if coefficients were estimated exactly, then
e[n] = Gu[n]. Prediction error provides useful information about the
pitch period. The model contains pitch information.

In practice, we do not know G or ak. We have to estimate these
quantities based on s[n] and other apriori information.

Choose prediction coefficients to minimize mean-squared error.

MMSE-Minimum Mean Square Estimate

• For assumed system model, ak = αk is a solution.

• Based on e[n] = Gu[n], error will be small.

• Computationally efficient- set of linear equations
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Minimize
∑
n

e2[n]

Estimate coefficients for a windowed speech segment

Short-time quantities definition

sn[m] = w[m]s[m+ n] shift speech segment of interest to origin and
window.

w[m] 6= 0 for 0 ≤ m ≤ N − 1

Error : en[m] = sn[m]− s̃n[m]

s̃n[m] =
p∑
k=1

αksn[m− k] linear predictor is not zero until m = N + p

Sum of squared error:
N+p−1∑
m=0

e2
n[m]

Error will be larger near endpoints of en[m] because

• 0 ≤ m < p: predict sn[m] in terms of m¡p past values

• N ≤ m < N + p: sn[m] = 0, trying to predict sn[m] from p past values

Make window attenuate points at ends to keep error down at edges of
s̃n[m]

Covariance Method

En =
N−1∑
m=p

e2
n[m] Better performance

Autocorrelation Method

En =
∞∑

m=−∞
e2
n[m]

=
∑
m

[sn[m]− s̃n[m]]2

=
∑
m

[
sn[m]−

p∑
k=1

αksn[m− k]

]2
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This is less computationally complex

Minimize En

• Differentiate with respect to αl (l-fixed)

∂En
∂αl

=
∑
m

2

[
sn[m]−

p∑
k=1

αksn[m− k]

]
∂

∂αl

[
sn[m]−

p∑
k=1

αksn[m− k]

]

=
∑
m

2

[
sn[m]−

p∑
k=1

αksn[m− k]

]
[−sn[m− l]]

• Set ∂En
∂αl

= 0∑
m

sn[m]sn[m− l]−
p∑
k=1

αk
∑
m

sn[m− k]sn[m− l] = 0 l = 1, 2, ..., p

Properties of R:

• Symmetric

[R]ij = [R]ji
• Constant along any diagonal

[R]ij = [R]i+k,j+k
∴ R is a Toeplitz matrix

To solve for unknown LPC coefficients, invert R.

• Direct inversion (Gaussian elimination)⇒ p3 operations

• Fast method which exploits structure of R ⇒ p2 operations
(Levinson-Durbin recursion)

Practical considerations

• Use smoothly tapered window to minimize boundary effect.

• Stability: Poles guaranteed to be inside unit circle using autocorrelation
method.
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• We need one pole per KHz of sampling frequency, plus 3-4 poles due to
source excitation and nasal compensation.

• Include several pitch periods in the window.

e.g. N≈ 400 samples for Fs = 10KHz,P =
1

100Hz

MMSE Example

x̂(t) = a0 + a1r(t)

En =
∫ 1

0

[x̂(t)− x(t)]2 dt =
∫ 1

0

[a0 + a1r(t)− x(t)]2 dt

∂En
∂a0

=
∫ 1

0

2[a0 + a1r(t)− x(t)]dt = 0∫ 1

0

a0dt+
∫ 1

0

a1r(t)−
∫ 1

0

x(t)dt = 0

a0 + 0− 1
2 = 0⇒ a0 =

1
2

∂En
∂a1

=
∫ 1

0

s[a0 + a1r(t)− x(t)]r(t)dt = 0∫ 1

0

a0r(t)dt+
∫ 1

0

a1r
2(t)dt−

∫ 1

0

x(t)r(t)dt = 0

0 + a1 −

[∫ 1
2

0

a1r
2(t)dt−

∫ 1

0

x(t)r(t)dt

]
= 0

a1 −
[(
t− t2

2

)∣∣∣ 1
2

0
+
(
t2

2 − t
)∣∣∣1

1
2

]
= 0

a1 −
1
4

= 0⇒ a1 =
1
4

x̂(t) =
1
2

+
1
4
r(t)
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Chapter 10

Image Credits

Image credits for the Image Reconstruction and Speech Processing
chapters are listed below:

Image Reconstruction

1. First generation CT Scanning System

http://belley.org/ct/ct/objective01/index.htm

2. Fourth generation CT Scanning System

http://belley.org/ct/ct/objective01/index.htm

3. Radon Transform

http://www.cvmt.dk/education/teaching/e07/MED3/IP/CarstenHoilund-
RadonTransform.pdf

http://commons.wikimedia.org/wiki/File:Radontransform.png

4. Algebraic Reconstruction Technique

http://cobweb.ecn.purdue.edu/malcolm/pct/CTICh07.pdf

5. Fourier Slice Theorem

http://www.mssl.ucl.ac.uk/wwwsolar/moses/moses-
web/Pages/fourierbackprojection.htm

6. Synthetic Aperture Radar

http://www.geos.ed.ac.uk/homes/s0094539/Research.html
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Speech Processing

1. A simple model for speech

http://health.tau.ac.il/Communication20Disorders/noam/speech/pitch/13.htm

2. The Human speech production system

http://cnx.org/content/m18086/latest/

3. Waveform for ’Should we chase’

http://www.nowpublishers.com/product.aspx?product=SIGdoi=2000
000001section=xintroduction

4. Waveform for ’erase’

http://cnx.org/content/m18086/latest/

5. Voiced speech segment

http://cnx.org/content/m18086/latest/

6. Unvoiced speech segment

http://cnx.org/content/m18086/latest/

7. Waveform for ’zero’

http://cnx.org/content/m18086/latest/

8. Wideband histogram

http://cnx.org/content/m18086/latest/

9. Narrowband histogram

http://cnx.org/content/m18086/latest/

10. Phonemes

http://cnx.org/content/m18086/latest/

11. Second Formant Frequency versus First Formant Frequency

http://www.aruffo.com/eartraining/research/phase15.htm

12. Formant Frequencies for the vowels

http://cnx.org/content/m18086/latest/

13. Vowel Triangle

http://cnx.org/content/m18086/latest/
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14. DT model for speech

http://www.ind.rwth-aachen.de/en/research/speech-and-audio-
processing/speech-and-audio-coding/principles/
∗ Cover image taken from website
http://www.fmwconcepts.com/imagemagick


