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Often, it is the case that spacecraft mass properties are not completely de-

termined in the course of pre-flight testing. This results in dynamic uncertainty

with regard to attitude controller performance as the spacecraft inertia parameters

cannot be reliably determined. In this study, several control regimes are analyzed for

nanosatellite attitude and angular rate tracking in the presence of arbitrarily large

inertia matrix uncertainty. A tracking controller is formulated using partial feedback

linearization and Lyapunov’s indirect method. In addition, a nonlinear tracking

control law based on Lyapunov’s direct method is developed. Both control algo-

rithms are robust to small inertia perturbations, but the performance subsequently

degrades with large inertia uncertainty. A non-certainty equivalence adaptive con-

troller is presented that maintains consistent performance of the nanosatellite in the

face of inertia uncertainty of arbitrary magnitude. The adaptive control delivers

precise reference attitude and angular rate tracking and is a far better alternative

to non-adaptive controllers that are only mildly robust to inertia uncertainty.
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Chapter 1

Introduction

Traditional satellite design process is entirely focused on a highly customized,

mission-driven objective for the satellite bus. The unique design of a satellite bus

requires exhaustive testing, verification and redesign. However, such an iterative

design procedure is associated with increased costs and lengthy development time-

lines. For example, the time required from mission conception to launch and on orbit

commissioning for a telecommunications satellite typically ranges from 3-6 years1.

Furthermore, inherent in the design process is the technological risk associated with

deploying nonstandard equipment.

Recent interest in minimizing the design to launch time frame for service

and tactical satellites motivates an operationally responsive space paradigm. The

responsive space approach is to employ small satellites that are cost-effective and

can be developed and integrated on a shortened schedule. The small satellites could

effectively be launched on-demand, allowing them to carry out immediate diagnostic

and service missions for larger disabled satellites or to investigate time-sensitive

science phenomena. In addition, a small satellite could serve as a low-cost testbed

for new technology demonstration.

Responsive space advocates transformation from a mission-specific satellite

design process to a generic plug-n-play (PnP) environment2 that supports rapid
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turnaround times from design to launch readiness. PnP implements a modular ap-

proach to satellite bus design and integration using commercial component-ready

modular panels. This approach has been widely utilized in industry and has been

particularly successful with manufacturers of automobiles and personal comput-

ers. Research in PnP design process is being actively funded by industry as well

as government agencies such as Air Force Research Laboratories (AFRL) and Air

Force Office of Scientific Research (AFOSR). Of particular interest is the University

Nanosatellite Program (UNP), a national competition hosted by AFRL that pro-

motes innovative small satellite design that supports responsive space endeavors.

The UNP competition is held at two year cycles, during which participating

Universities develop a nanosatellite that is consistent with the stringent mission re-

quirements set forth by the program3. A nanosatellite refers to an artificial satellite

with mass in the range of 1 kg to 10 kg. The shortened time frame prevents exhaus-

tive dynamic testing of the nanosatellite, which may introduce errors in the system

model due to inertia matrix uncertainty or sensor misalignment4. Furthermore,

actuators such as thrusters and reaction wheels may be subject to constraints on

their operating range. For example, actuators operating at their maximum capacity

are said to be saturated5. Control saturation is an important design consideration

for nanosatellites which often employ miniaturized systems with minimal propulsive

capability.

The University of Texas at Austin is an active participant in the UNP com-

petition. The University has designed a third generation nanosatellite, Texas 2

Step, to demonstrate autonomous rendezvous and close proximity operations un-

2



der severe mass, power and budget constraints3. The baseline mission is to launch

two nanosatellites in a stacked configuration and to perform a scheduled separation.

Once the chaser drifts to within 2− 3 km of the target, it initiates autonomous ren-

dezvous. The chaser nanosatellite is equipped with cold gas thrusters assumed to

have full three axis control. If the chaser is required to track the attitude and angular

velocity of the target for proximity operations, a sophisticated attitude and angular

rate tracking controller is essential in order to provide high precision performance.

The nanosatellite attitude and angular rate tracking control law needs to

deliver excellent performance while staying within the control torque limits. Cold

gas thrusters typically provide thrusting capability on the order of 1 − 2 N, which

may correspond to torque values of 0.2− 0.5 N ·m in each of the three axes. Most

importantly, however, the control system must be able to accommodate uncertainties

in the plant structure as the shortened design time frame limits dynamical testing

prevalent in traditional satellite design.

1.1 Background

The attitude control of rigid spacecraft is a widely studied subject, and

several stabilizing feedback controllers are available in existing literature5–7. Specif-

ically, spacecraft attitude control applications with practical design considerations

such as arbitrarily large inertia matrix uncertainty has been the focus of extensive

research efforts over the years4,7–12. Among these, adaptive control is able to ad-

just to uncertain parameters using an online identification (estimation) mechanism.

Adaptive control is traditionally classified into two categories: indirect adaptive

3



control and direct or model-reference adaptive control. A more recent approach to

designing adaptive controllers is called immersion and invariance (I&I) control10.

Wen and Delgado7 develop several reference attitude and angular velocity

tracking control algorithms. These include a model independent control law, a model

based tracking controller, and an indirect adaptive tracking controller based on the

certainty-equivalence (CE) principle. In CE based adaptive control theory, the con-

troller parameters are computed from plant parameter estimates that are updated

periodically and treated as if they were the true plant parameters13. In Wen and

Delgado7, the control formulations are based on both the error quaternion as well as

error angular velocity feedback. In contrast to this approach, Costic et al.8 presents

a purely error quaternion-based adaptive tracking control formulation for a rigid

spacecraft with inertia uncertainty. The proposed adaptive output feedback control

strategy is independent of angular velocity measurements but is still developed in

the classical CE-based framework.

A vast majority of existing adaptive attitude-control formulations for stabi-

lizing spacecraft attitude tracking dynamics is based upon the classical CE principle.

However, CE based adaptive controllers can suffer from performance degradation if

the underlying reference signal does not satisfy certain persistence of excitation con-

ditions13–15. Seo and Akella11,12 introduce a novel noncertainty-equivalence adap-

tive attitude-tracking control method that overcomes this limitation and delivers

superior performance to the classical CE-based adaptive control scheme. The con-

troller in Seo and Akella is based in the immersion and invariance10 adaptive frame-

work and is able to recover ideal (no parametric uncertainty) system dynamics, a

4



feature that is not available with CE-based control formulations.

The design of nonlinear control systems that account for control saturation

is a subject of extensive research in existing literature. However, theoretical treat-

ment for adaptive spacecraft control in the presence of control saturation limits is

fairly limited. Most adaptive control law solutions with saturation consideration

are addressed in the model reference adaptive control framework. Bŏsković et al.16

considers the design of a globally stable adaptive tracking control algorithm in the

presence of control input saturation and parametric uncertainty. The control algo-

rithm in Bŏsković et al.16 is based on variable structure control design, which ensures

asymptotic convergence of the angular velocity error. In this work, asymptotic con-

vergence of the attitude error is achieved through careful selection of certain design

parameters. An approximate sign function is introduced by Bŏsković et al.16 to

avoid the discontinuous nature of the variable structure approach. However, a theo-

retical proof that guarantees system stability using the smooth saturation function

is not provided. Wallsgrove and Akella17 address the lack of a rigorous theoretical

proof and propose a smooth attitude stabilization control law containing hyperbolic

tangent functions that remains within saturation constraints and guarantee conver-

gence of angular velocity error. In the study by Wallsgrove and Akella17, asymptotic

convergence of the attitude errors is not ensured, although judicious selection of de-

sign parameters may increase the likelihood that the attitude error converges to

zero.

Robinett et al.18 developed a feedback control system that remains stable

under saturation constraints. The saturation control law is obtained by minimizing a

5



performance index, which is essentially the first derivative of the Lyapunov function.

The control law is shown to be effective in numerical simulations, although the

saturation function employed in this formulation has a discontinuous nature near

the saturation boundary. In this thesis, a similar Lyapunov optimal control strategy

is adopted to account for saturation in the non-adaptive control regimes. However,

the discontinuous saturation function proposed in Robinett et al.18 is replaced by

an approximate hyperbolic tangent saturation function that smoothes the transition

from saturated to unsaturated behavior.

Kárason and Annaswamy19 address model reference adaptive control of lin-

ear time-invariant plants in the presence of control saturation by modifying the

error signal to remove the effects of the control deficiency. However, nonlinear

non-autonomous plants are not addressed. In contrast, Tandale et al.20 presents

a heuristic structured adaptive dynamic inversion control subject to control torque

limits. The controller formulation proposed in Tandale et al.20 employs pseudo

control hedging to prevent parameter drift by modifying the reference trajectory.

However, no mathematical proof is provided to determine whether the spacecraft

trajectory converges to the original reference state. Unlike the heuristic approach

of Tandale et al.20, Leonessa et al.21 develops a direct adaptive tracking control

for multivariable nonlinear systems and provides a mathematical proof that asserts

asymptotic stability for the spacecraft. The proposed framework modifies the adap-

tive control signal to the reference system dynamics to ensure asymptotic stability

of error dynamics under actuator amplitude and rate constraints.

6



1.2 Research Motivation

Often, it is the case that spacecraft mass properties are not completely

determined in the course of pre-flight testing. This is especially of concern in a

plug-and-play satellite environment in which the conception to launch time frame is

significantly shorter. Among other things, this results in dynamic uncertainty with

regard to attitude controller performance during operation.

In this study, several control regimes are analyzed for nanosatellite attitude

and angular rate tracking in the presence of arbitrarily large inertia matrix uncer-

tainty. Specifically, the performance of adaptive and non-adaptive control regimes

are examined. Control amplitude constraints are incorporated into the non-adaptive

controller formulations using a commonly employed saturation function.

The tracking controllers are designed using the University of Texas student

nanosatellite, Texas 2 Step, as the experimental platform. The Texas 2 Step mission

is to demonstrate autonomous rendezvous and proximity operations. The spacecraft

is assumed to be equipped with cold-gas thruster actuation system that enables full

three-axis control. The main objective is to enable the nanosatellite to accurately

track a reference trajectory in the presence of arbitrarily large inertia matrix un-

certainty. Physical limitations of the actuation system are only addressed by the

non-adaptive control systems as adaptive control systems typically assume full con-

trol authority.

7



1.3 Thesis Organization

Chapter 2 begins with the rigid body dynamics for a rotating rigid vehicle

in space. A thorough description of the attitude kinematics and rotation equations

of motion is provided. Then, the error dynamics are developed for a spacecraft

that is to track the attitude trajectory of an unactuated (passive) target through

controlled maneuvers. The control objective is stated and additional mathematical

background regarding dynamic system stability is provided to allow the reader to

follow the stability analyses in subsequent chapters.

Chapter 3 provides the basic concepts of tracking control design. A track-

ing controller that is dependent on the model structure is designed using concepts

from feedback linearization and linear control theory. Lyapunov’s indirect method

and Lyapunov’s direct method are introduced for stability analysis. The tracking

controller is modified to account for actuator saturation constraints. Numerical

simulations are provided to demonstrate the performance of the unsaturated and

saturated control design with and without uncertainties in the inertia parameter.

The controller is robust to small inertia perturbations but the performance subse-

quently degrades with large inertia uncertainty.

In Chapter 4, a reference attitude and angular velocity tracking control

law based on Lyapunov’s direct method is presented. First order stable filters are

implemented in aiding the construction of the controller. The resulting control

law is dependent on the model structure and delivers high tracking performance

while preserving the constraints on torque expenses. The performance subsequently

degrades with large uncertainties in the inertia parameters.

8



Chapter 5 begins with a brief introduction to adaptive control. The two

types of classical adaptive control methods, namely direct and indirect adaptive

control, are described with examples. The concept of persistence of excitation and

its important role in parameter estimation is explained with the aid of numerical

simulations. Based on the results of Seo and Akella11, a non-certainty equivalence

adaptive controller is designed to maintain consistent performance of the nanosatel-

lite with arbitrary uncertainty in its inertia parameters.

9



Chapter 2

Mathematical Background

In this chapter, the dynamical model for the spacecraft tracking problem is

developed. Rigid body kinematics are derived using an appropriate set of attitude

coordinates to express the orientation of the spacecraft, while Euler’s rotational

equations of motion are developed starting from the basic concept of rigid body

angular momentum. In addition, a brief overview of the mathematical concepts of

system stability is provided in order to allow the reader to follow the development

of control systems in subsequent chapters.

2.1 Dynamical Model

The dynamical model for the attitude of a rotating rigid body in space de-

scribes the evolution of the vehicle orientation and angular velocities. There are

many commonly accepted attitude representations to describe the orientation of a

rigid body5,22. However, some are prone to geometrical and mathematical singular-

ities at certain rotational displacements5. Singular representations are unsuitable

for onboard spacecraft control systems. An ideal representation is one that allows

a full range of motion without limiting the operational limit of the spacecraft con-

trol system. For this investigation, Euler parameters are selected to represent the

orientation of the body. Euler parameters, also known as quaternions5, provide a

10



nonsingular attitude description and are well suited for spacecraft applications.

The attitude kinematical equations mathematically describe the time evolu-

tion of a rigid body’s orientation in space. These equations are independent of the

external forces acting on the rigid body. The impact of forces and their imparted

moments is addressed in Euler’s rotational equations of motion5,22. The rotational

equations describe the three degree of freedom rotational motion of a body that may

be under the influence of gravitational and other external forces.

2.1.1 Coordinate Reference Frames

Three reference frames are necessary for appropriately modeling the dy-

namics of the spacecraft rendezvous problem: the inertial reference frame, N, the

commanded reference frame, R, and the body-fixed reference frame, B. A general

right-hand set of three mutually orthogonal unit vectors denoted by
{
î1, î2, î3

}
,

where the ˆ symbol denotes a vector of unit magnitude, can be employed as basis

vectors of any coordinate system I. Basis vectors22,23 are linearly independent and

any vector x associated with that coordinate frame can be expressed as a unique

linear combination of î1, î2, and î3 as

x = x1î1 + x2î2 + x3î3. (2.1)

The scalar components are usually collected into a 3× 1 matrix x as

x =

 x1

x2

x3

 , (2.2)

which is also referred to as a “column vector”, or simply a “vector.” Equation (2.2)

is the representation of the vector defined in Equation (2.1) with respect to the basis

11



Figure 2.1: Basis of a coordinate system.22

vectors
{
î1, î2, î3

}
.

Equation (2.1) can also be written as a product of two matrices, one con-

taining the scalar components x1, x2, and x3 and the other containing the basis

vectors. That is,

x =
[
x1 x2 x3

]  î1
î2
î3

 , (2.3)

where the nonstandard 3 × 1 matrix representation of the basis vector set {̂i} is

sometimes referred to as a vectrix5,22 since its elements are unit vectors rather than

scalar quantities.

Using the above approach, each of the reference frames N, R and B can be

uniquely described using a set of three orthogonal unit vectors collected into a 3× 1

column matrix of vectors. That is,

{n̂} ≡

 n̂1

n̂2

n̂3

 {r̂} ≡

 r̂1

r̂2

r̂3

 {b̂} ≡

 b̂1
b̂2
b̂3

 , (2.4)

12



where {n̂}, {r̂} and {b̂} represent the unit vector triads or basis vectors for the

reference frames N, R and B respectively. For the problem at hand, the inertial

reference frame is defined as the Earth-Centered Inertial (ECI) frame. The ECI

frame, N, originates at the center of the Earth and is inertially fixed in space. The

fundamental plane of rotation of the ECI frame is the Earth’s mean equator. The

unit vector n̂1 points in the vernal equinox direction, while n̂3 is aligned with the

mean rotation axis of the Earth. Finally, n̂2 completes the right-handed triad. The

desired attitude is naturally stated in its own reference frame, referred to as the

commanded reference frame, R. It is described with respect to the ECI frame and

may be aligned with the inertial reference frame.

The B frame basis vectors are assumed to be aligned with the principal axes

of the spacecraft (Figure 2.2). This assumption is consistent with the spacecraft

configuration for FASTRAC (Formation Autonomy Spacecraft with Thrust, Relnav,

and Crosslink) which is used as a testbed for the proposed control system. The

inertia tensor, J, that approximates the nanosatellite is given by3,

J =

 0.656 0 0
0 0.656 0
0 0 0.986

 kg·m2. (2.5)

2.1.2 Direction Cosine Matrix

The direction cosine matrix (DCM), C, is a 3× 3 proper orthogonal matrix

(that is, det(C) = 1 and C−1 = CT ) used to map one reference frame to another.

For example, the unit vector triad {b̂} of the body fixed reference frame is mapped

13



Figure 2.2: Body-fixed frame aligned with the principal axes of the nanosatellite.

from the inertial frame {n̂} through

{b̂} = BCN{n̂}. (2.6)

Each entry of BCN is obtained through the projection of the set of {b̂} vectors onto

the {n̂} vectors as

BCN
ij = b̂i · n̂j , (2.7)

where the superscript N, on the right hand side of BCN, indicates the current

reference frame and the superscript B, on the left hand side, indicates the desired

or final reference frame achieved through the coordinate transformation.

14



2.1.3 Euler Parameters

The attitude coordinates can also be stated in terms of Euler’s principal

rotation vector and principal rotation angle. Euler’s principal rotation theorem

states that the orientation of a rigid body can be arbitrarily changed by performing

a single rigid rotation of the body through an angle Φ about an axis ê that is fixed to

the body and stationary in inertial space5,7. The angle Φ is known as the principal

angle and the axis of rotation, ê, known as the principal axis or Euler axis, is an

eigenvector of C corresponding to a unit eigenvalue. Thus the matrix C satisfies5

Cê = ê, (2.8)

where ê ∈ R3 is a unit vector, that is,

êT ê = 1. (2.9)

The Euler axis and rotation angle are non-unique in sign and the sets (ê,Φ) and

(−ê,−Φ) both represent the same orientation. The principal rotation angle Φ cap-

tures the shortest rotation about ê and is non-unique since a rotation of Φ − 2π

produces the same orientation. Given the direction cosine matrix C = [Cij ], the

principal rotation angle, Φ is computed from

cos(Φ) =
1
2

(C11 + C22 + C33 − 1). (2.10)

The principal axis, ê, is given by

ê =

 e1

e2

e3

 =
1

2 sin Φ

 C23 − C32

C31 − C13

C12 − C21

 . (2.11)

15



Note that, for a zero angle rotation (Φ = 0), a mathematical singularity exists in

Equation (2.11). Therefore, the principal rotation vector is not suitable for small

angle rotations or when the reference state is inertially fixed of zero rotation since

the control application would require working close to the singular attitude of Φ = 0.

In order to globally represent the attitude coordinates of the spacecraft with-

out singularities, the minimal four Euler parameter (or the unit quaternion) repre-

sentation is sought. The Euler parameter vector q(t) ∈ R4 is defined in terms of the

Euler rotation angle, Φ, and principal axis, ê, and is written as

q =
[
q0

qv

]
=
[

cos(Φ
2 )

ê sin(Φ
2 )

]
. (2.12)

From Equation (2.9) it follows that q must satisfy the unit norm constraint,

q0
2 + qv

Tqv = 1. (2.13)

The unit norm constraint states that all possible rotational motions of a rigid body

must correspond to a trajectory on the surface of a four-dimensional unit sphere.

Although the unit quaternion is globally non-singular, it is non-unique and given a

certain attitude, −q and q represent the same orientation. The sign ambiguity stems

from the non-uniqueness of the principal rotation elements themselves, and is easily

resolved by choosing a sign on the initial conditions of the quaternion trajectory

and remaining consistent throughout the associated quaternion propagation. The

Euler parameter kinematic differential equation may be expressed in the form

q̇ =
1
2
E(q)ω, (2.14)
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where the 4× 3 matrix E(q) is defined as

E(q) =
[

−qTv
q0I + [qv×]

]
. (2.15)

In Equation (2.15), I is the 3 × 3 identity matrix. Note that Equation (2.14) may

equivalently be expressed as

q̇0 = −1
2
qTv ω,

q̇v =
1
2
q0I + [qv×] .

The direction cosine matrix, BCN(q), can be parameterized in terms of the quater-

nion q5,24, that is,

BCN(q) = (q0
2 − qv

Tqv)I + 2qvqv
T − 2 [qv×] . (2.16)

where [qv×] is the matrix representation of the linear cross-product operation qv×

and is given by the skew-symmetric vector-cross product matrix operator7

[qv×] =

 0 −qv3 qv2
qv3 0 −qv1
−qv2 qv1 0

 . (2.17)

Furthermore, the quaternion kinematic differential equation of Equation (2.14) can

be stated in terms of the direction cosine matrix, BCN(q), as5

d

dt
BCN(q) = −ω × BCN(q). (2.18)

2.1.4 Euler’s Rotational Equations of Motion

Consider the rigid body to be a system of particles pi of mass mi, as illus-

trated in Figure 2.3. The vector Ri represents the position of pi relative to the
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inertial origin O. Now consider the frame B originating at the center of mass, C, of

the rigid body. The rigid body, and hence the frame B, rotates relative to N with

some angular velocity ω. The vector Rc denotes the position vector of C relative

Figure 2.3: Rigid body motion relative to a body-fixed reference frame B originating
at the center of mass.22

to O. Let ri denote the position vector of pi relative to C. The position of pi may

subsequently be expressed as

Ri = Rc + ri. (2.19)

The vector ri, expressed in terms of B frame coordinates, is given by

ri = xib̂1 + yib̂2 + zib̂3. (2.20)

The inertial velocity of pi is thus determined as

N d

dt
Ri =

N d

dt
Rc +

N d

dt
ri, (2.21)
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where the superscript N indicates an inertial derivative. The kinematic transport

theorem implies that

NṘi = NṘc +
B d

dt
ri + ω × ri. (2.22)

The second term in the above expression vanishes since the body in Figure 2.3 is a

rigid vehicle. Thus, the velocity of pi relative to N is

Ṙi = Ṙc + ω × ri. (2.23)

The total angular momentum of the rigid body about C is expressed as

HC =
∑
i

ri ×mi

N d

dt
Ri, (2.24)

which combined with Equation (2.23) can be expanded to

HC =
∑
i

ri ×mi

(
Ṙc + ω × ri

)
. (2.25)

Equation (2.25) can be further rearranged to obtain

HC =
∑
i

miri × Ṙc +
∑
i

ri ×mi (ω × ri) . (2.26)

Since ri is measured from C, it follows that
∑

imiri = 0 by the very definition of

the center of mass. Therefore, the total angular momentum of the rigid body about

its center of mass is

HC =
∑
i

ri ×mi (ω × ri) . (2.27)

If the particles are infinitesimally close to each other, mi → dm = ρdV where dm

denotes the differential mass, ρ is the material density, and dV is the differential
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volume. Equation (2.27) can now be expressed in terms of infinitesimal small mass

elements as

HC =
∫
V
ρri × (ω × ri) dV, (2.28)

where the subscript V denotes a volume integral. The vector ω is expressed in terms

of its components in the B frame as

ω = ωxb̂1 + ωy b̂2 + ωz b̂3. (2.29)

Upon substituting the above expression and Equation (2.20) into the integrand of

Equation (2.28) and evaluating the vector cross products, the angular momentum

is expressed component-wise as

HCx = Jxxωx − Jxyωy − Jxzωz, (2.30a)

HCy = −Jxyωx + Jyyωy − Jyzωz, (2.30b)

HCz = −Jzxωx − Jyzωy + Jzzωz, (2.30c)

where the coefficients Jxx, Jyy, and Jzz are the principal moments of inertia given

by,

Jxx =
∫
V
ρ(y2

i + z2
i ) dV, Jyy =

∫
V
ρ(x2

i + z2
i ) dV, Jzz =

∫
V
ρ(x2

i + y2
i ) dV,

while the coefficients

Jxy = Jyx = −
∫
V
ρ(xiyi) dV, Jxz = Jzx = −

∫
V
ρ(xizi) dV,

Jyz = Jzy = −
∫
V
ρ(yizi) dV,
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are the products of inertia of the body about the b̂1, b̂2 and b̂3 axes. Equations

(2.30a-2.30c) can be written in matrix form as

HC = Jω, (2.31)

where

J =

 Jxx Jxy Jxz
Jxy Jyy Jyz
Jxz Jzy Jzz

 (2.32)

is the positive definite mass-moment of inertia matrix of the rigid body. For a rigid

body, the sum of the external moments about the center of mass of the body equals

the rate of change of the total angular momentum of the body relative to its center

of mass. That is, ∑
MC =

N dHC

dt
. (2.33)

Since, in this study, the only external moment acting on the spacecraft is the control

input, u(t), Equation (2.33) can be expressed as

N
Ḣ = u. (2.34)

Through the kinematic transport theorem, the inertial derivative of the body angular

momentum vector is

N
ḢC = Ḣxb̂1 + Ḣy b̂2 + Ḣz b̂3 + ω ×H. (2.35)

Thus, Equation (2.34) can be written as

u =
B d

dt
(HC) + ω ×HC , (2.36)

where the superscript B indicates the vector rate of change of HC as seen by an ob-

server in the body-fixed reference frame. This term can be expanded by substituting
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Equation (2.31) and carrying out the derivative,

B d

dt
(Hc) =

B d

dt
(J)ω + J

B d

dt
(ω). (2.37)

The first term in Equation (2.37) vanishes if J is constant. In addition, it is straight-

forward to show that

ω̇ =
N d

dt
(ω) =

B d

dt
(ω). (2.38)

Under these conditions, substituting Equation (2.37) and Equation (2.38) into Equa-

tion (2.36) yields

u = Jω̇ + ω × Jω, (2.39)

or, as more commonly stated

Jω̇ = −ω × Jω + u. (2.40)

The above equation is the vector form of Euler’s rotational equation of motion.

2.2 Tracking Error Dynamics

Consider a spacecraft that is to track the attitude trajectory of a passive

target through controlled maneuvers. The spacecraft is required to converge on

to the target’s quaternion attitude description as well as its angular rotation rates

within a specified time period and maintain the convergence for all time thereafter.

A control law that satisfies this convergence specification needs constant measured

updates for the current attitude of the spacecraft and the desired attitude where

the spacecraft should be. The control law aims to drive the attitude and angular

velocity tracking errors to zero by adjusting the control effort based on measured

updates or estimates of the state.
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In order to drive the tracking error to zero, the control law needs a com-

plete dynamical description of the error states. It is assumed that the desired or

commanded attitude trajectory of the spacecraft is prescribed in the commanded

reference frame. Thus, the desired angular velocity, ωr is specified in the reference

frame R and qr denotes the orientation of R with respect to N.

The DCM mapping from unit quaternion to proper orthogonal matrix space

is given as follows

N
q−→ B⇒ {b̂} = BCN(q){n̂}, (2.41)

N
qr−→ R⇒ {r̂} = RCN(qr){n̂}. (2.42)

In the above equations, the symbol above the arrow denotes the quaternion that

parametrizes the DCM to achieve the transformation from the reference frame on

the left to the reference frame on the right of the arrow. Thus, N
q−→ B indicates

that the transformation from N to B is achieved by projecting the set of {n̂} vectors

onto {b̂} through the DCM BCN(q). The DCM BCN(q) is in turn parameterized in

terms of the quaternion vector q that describes the attitude of the rigid body relative

to the inertial reference frame, N. Using this definition for the DCM mapping, the

rotation given by R −→ B is obtained by combining the corresponding rotation

matrices, BCN(q) and RCN(qr), through matrix multiplication as follows

{b̂} = BCN(q)
(

RCN(qr)
)T

︸ ︷︷ ︸
BCR(qe)

{r̂}. (2.43)

The combined rotations can be condensed into a single rotation matrix, BCR(qe),

where qe denotes the error between the actual quaternion (N
q−→ B) and desired
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quaternion (N
qr−→ R) states. The result may be summarized as

R
qe−→ B⇒ {b̂} = BCR(qe){r̂}. (2.44)

The attitude error quaternion is extracted from the rotation matrix, BCR(qe), using

the following inverse transformation relations5,24

qe0 = ±1
2

√
C11 + C22 + C33 + 1, (2.45a)

qe1 =
C23 − C32

4qe0
, (2.45b)

qe2 =
C31 − C13

4qe0
, (2.45c)

qe3 =
C12 − C21

4qe0
, (2.45d)

where C(qe) ≡ [Cij ] is the direction cosine matrix associated with qe. In Equation

(2.45a), it is clear that a mathematical singularity exists whenever qe0 → 0, a con-

figuration that describes any principal rotation angle error of 180 deg5. In order to

avoid the computational inaccuracies engendered by this mathematical singularity,

a computationally robust algorithm developed by Stanley5,25 is used instead. The

four squared quaternion elements are first computed as

q2
e0 =

1
4

(1 + trace [C]) , (2.46a)

q2
e1 =

1
4

(1 + 2C11 − trace [C]) , (2.46b)

q2
e2 =

1
4

(1 + 2C22 − trace [C]) , (2.46c)

q2
e3 =

1
4

(1 + 2C33 − trace [C]) , (2.46d)

where trace [C] = C11 + C22 + C33. The quaternion element qei with the largest

magnitude is selected, and the remaining quaternion elements qej are obtained by
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coupling the selected qei element with the appropriate three of the following six

relations5:

4qe0qe1 = (C23 − C32) , (2.47a)

4qe0qe2 = (C31 − C13) , (2.47b)

4qe0qe3 = (C12 − C21) , (2.47c)

4qe2qe3 = (C23 + C32) , (2.47d)

4qe3qe1 = (C31 + C13) , (2.47e)

4qe1qe2 = (C12 + C21) . (2.47f)

The error quaternion, qe, is also stated as a quaternion multiplicative error

denoted by

q = qr ⊗ qe, (2.48)

or equivalently as,

qe = qr
−1 ⊗ q, (2.49)

where the symbol⊗ denotes quaternion multiplication. Using the rules of quaternion

multiplication24, it can be shown that

qe =


q0r −q1r −q2r −q3r

q1r q0r q3r −q2r

q2r −q3r q0r q1r

q3r q2r −q1r q0r



q0

q1

q2

q3

 , (2.50)

or by transmutation,

qe =


q0 −q1 −q2 −q3

q1 q0 q3 −q2

q2 −q3 q0 q1

q3 q2 −q1 q0



q0r

q1r

q2r

q3r

 . (2.51)
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Notice in both Equation (2.50) and Equation (2.51), the 4 × 4 matrices are each

orthogonal24.

Now consider the angular velocity tracking error,

ωe(t) = ω(t)− BCR(qe)ωr(t). (2.52)

In order to obtain the tracking error dynamics, the time derivative of Equation

(2.43) is taken as shown below

d

dt
BCR(qe) =

[
d

dt
BCN(q)

] [
RCN(qr)

]T
+ BCN(q)

[
d

dt

[
RCN(qr)

]T]
,

= −ω × BCN(q)
[
RCN(qr)

]T
− BCN(q)

[
RCN(qr)

]T
[ωr×]T .

(2.53)

Since [ωr×] is a skew symmetric matrix, it follows that [ωr×]T = −[ωr×]. Thus,

the equation above is further reduced as follows

d

dt
BCR(qe) = −ω × BCN(q)

[
RCN(qr)

]T
+ BCN(q)

[
RCN(qr)

]T
[ωr×],

= −ω × BCR(qe) + BCR(qe)[ωr×].
(2.54)

It is recognized that the expression BCR(qe)[ωr×] consists of a cross product oper-

ation under a three dimensional rigid body rotation12. Thus, for any vector a ∈ R3

we may express the vector cross product as follows

BCR(qe)[ωr×]a = BCR(qe)(ωr × a),

= BCR(qe)ωr × BCR(qe)a.

This identity is used to simplify the expression for d
dt

[
BCR(qe)

]
in Equation (2.54)
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as follows

d

dt

[
BCR(qe)

]
= −ω × BCR(qe) + BCR(qe)[ωr×],

= −ω × BCR(qe) + BCR(qe)ωr × BCR(qe),

= −
[
ω − BCR(qe)ωr

]
× BCR(qe),

= −ωe × BCR(qe).

(2.55)

Equation (2.55) follows the form of Equation (2.18). Thus, we may write the error

quaternion differential equation as

q̇e =
1
2
E(qe)ωe. (2.56)

Differentiating the angular velocity error vector in Equation (2.52) and evaluating

along Equation (2.40) and Equation (2.55) we obtain

ω̇e = ω̇ − d

dt

[
BCR(qe)ωr(t)

]
,

= J−1 (−ω × Jω + u) + ω × BCR(qe)ωr − BCR(qe)ω̇r.
(2.57)

For notational convenience, the expression for the angular velocity error dynamics

is given by premultiplying the above equation through by J. The corresponding

time evolution of the error quaternion follows the form of Equation (2.14). The

notation of the DCM is abbreviated from BCR(qe) to C(qe) implying that the

DCM that is parametrized in terms of the error quaternion is the mapping from the

commanded reference frame to the body frame. Thus, the overall attitude tracking

error dynamics for a rigid body is given by

ω̇e = J−1 (−ω × Jω + u) + ω × BCR(qe)ωr − BCR(qe)ω̇r, (2.58a)

q̇e =
1
2
E(qe)ωe. (2.58b)
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where Equation (2.58b) may equivalently be expressed as

q̇e0 = −1
2
qTev
ωe,

q̇ev
=

1
2
(
qe0I +

[
qev
×
])
ωe.

The seven state vector of the system, denoted by x, is given by

x =
[

qe
ωe

]
. (2.59)

In Equation (2.58a), ω can be expressed entirely in terms of ωe and ωr through

the relation in Equation (2.52). Therefore, the nonlinear dynamics of x are a vector

function f of the vectors qe, ωe, u, that is,

ẋ = f(qe,ωe,u, t), (2.60)

or in terms of the state,

ẋ = f(x,ω,u, t). (2.61)

The dependence of ẋ on time, t, comes directly from the reference signals ωr(t) and

ω̇r(t) which are in general explicit functions of time. For example, ωr(t) may be

described by

ωr(t) =
[

sin t, cos 2t, sin t
]
. (2.62)

The control objective is to track any reference trajectory, [qr(t),ωr(t)], for

all initial conditions, [q(0),ω(0)], assuming full feedback of the signals [q(t),ω(t)]

and uncertainty in inertia parameters. That is, a control torque u(t) needs to be

designed such that

lim
t→∞

x(t) = 0, (2.63)
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while ensuring that the signals ω and q remain bounded at all times. In this way,

a tracking control problem has been converted into a stabilization problem for the

error states7.

2.3 Concepts of Stability

The concept of stability is essential in control design, because unstable dy-

namic behavior can have detrimental effects on the integrity of a mechanical system.

Intuitively, a system can be described as “stable” if it starts in the vicinity of its

operating point and stays there for all time thereafter. If the system deviates from

the operating point no matter how close it starts, then the system is unstable. This

intuitive concept can be quantified using the concepts of Lagrange stability and

Lyapunov stability theory. In this section, a brief overview of stability concepts for

nonlinear systems is introduced in order to motivate the development of the attitude

control laws and their stability proofs.

Consider a nonlinear dynamical system described by

ẋ = f(x,u, t); x(t0) = x0, (2.64)

where x ∈ Rn,x(t0) ∈ Rn. The system described by Equation (2.64) is said to be

a non-autonomous system since the system’s state equation depend explicitly on

time. A robotic manipulator is an example of a nonautonomous system as it follows

a prescribed trajectory to transfer loads and has an inertia matrix that varies with

the position of the arm. A system that has no explicit dependence on time is known

as an autonomous system and is written as ẋ = f(x,u).
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The objective of this section is to address theoretical concepts of stability

for a nonlinear system described by Equation (2.64). Standard mathematical ab-

breviation symbols that are used extensively throughout the section are defined

here:

• ∀ “for all”

• =⇒ “implies that”

• ∃ “there exists”

A few simplifying notations are needed in order to proceed.

Definition 2.1. Open Ball Br
5,13,26: Let Br ∈ Rn denote an open spherical region

or a ball defined by ‖x‖ < r for r > 0, a strictly positive and real number.

Definition 2.2. Equilibrium State5,13,26: A state vector xe is said to be an

equilibrium state for a system described by ẋ = f(x,u, t) at time t0 if

f(t,xe) = 0, ∀ t > t0. (2.65)

The simplest form of stability is if the state x(t) remains bounded relative

to the equilibrium state xe. The initial state x(t0) could lie arbitrarily close to the

equilibrium state while x(t) may still deviate from the equilibrium for t > t0. The

only assurance that can be provided is that x(t) will remain within a finite bound, δ,

of the equilibrium state. This notion of boundedness is known as Lagrange stability5.
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Definition 2.3. Lagrange Stability5: The equilibrium state xe is Lagrange stable

(or bounded) if there exists a δ > 0 such that

‖x(t)− xe‖ < δ =⇒ x(t) ∈ Bδ(xe), ∀ t ≥ t0. (2.66)

The statement of stability in Definition 2.3 can be strengthened by making

δ arbitrarily small. Stability in the sense of Lyapunov (or Lyapunov stability) states

that if the initial state is close enough to the equilibrium state, the system is Lya-

punov stable if x(t) remains arbitrarily close to the equilibrium for all time. The

formal definition follows.

Definition 2.4. Lyapunov Stability5,13,26: The equilibrium state xe is Lyapunov

stable (or stable in the sense of Lyapunov) if for any t0 and ε > 0, there exists a

δ(t0, ε) such that

‖x(t0)− xe‖ < δ =⇒ ‖x(t, t0,x0)− xe‖ < ε, ∀ t ≥ t0. (2.67)

The definition states that the equilibrium point is stable if the state trajec-

tory x(t) does not escape a ball of arbitrarily specified radius Bε, and in order for

this to be true, a ball of radius δ(t0, ε) can be found such that if x(t) originates (at

t = t0) within Bδ then x(t) can be guaranteed to stay within Bε thereafter. This

concept is depicted by curve 1 in Figure 2.4 for x ∈ R2 where xe = 0. Thus, stability

is defined in terms of the equilibrium state and not just in terms of the system. If

the dependence of δ on the initial time is removed, that is, δ = δ(ε), then xe is

said to be uniformly stable in the sense of Lyapunov. Uniform stability implies

general stability that is unaffected by the initial time t0.
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Conversely, the system is said to be unstable if there exists at least one ball

Bε, such that for any δ > 0 no matter how small, the system may start anywhere

within the ball Bδ and eventually leave the ball Bε. This concept is depicted by

curve 2 in Figure 2.4. One may think of the vertical down equilibrium position of

a pendulum as stable, while the vertical up equilibrium position is unstable as no

matter how close the pendulum starts close to the vertical up position, it will never

stay there.

Figure 2.4: Stability in the sense of Lyapunov.

Definition 2.4 guarantees that the motion of the state trajectory remains

arbitrarily close to the equilibrium state. However, no guarantees are provided as to

whether the state converges to the equilibrium state. A stronger stability statement

is made when the trajectory asymptotically converges to the equilibrium state such

that ‖x(t, t0,x0)− xe‖ approaches zero as t→∞.

Definition 2.5. Asymptotic Stability5,13,26: The equilibrium state xe is said to

be asymptotically stable if
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1. xe is Lyapunov stable,

2. there exists a δ(t0) such that

‖x(t0)− xe‖ < δ(t0) =⇒ lim
t→∞
‖x(t, t0,x0)− xe‖ = 0, ∀ t ≥ t0. (2.68)

The ball Bδ is called a domain of attraction of the equilibrium state. The

set of all initial conditions x(0) such that ‖x(t, t0,x0)− xe‖ → 0 as t→∞ is called

the domain of attraction.

Definition 2.6. Uniform Asymptotic Stability5,13,26: The equilibrium state xe

is said to be uniformly asymptotically stable if

1. xe is uniformly stable,

2. for every ε > 0 and any initial time t0, there exists δ0 > 0 (independent of t0

and ε and T (ε) > 0 such that

‖x(t0)− xe‖ < δ =⇒ ‖x(t, t0,x0)− xe‖ < ε, ∀ t ≥ t0 + T (ε). (2.69)

The second condition in Definition 2.6 essentially states that by choosing

the initial state, x(0), in a sufficiently small ball at t = t0, the subsequent motion of

x(t) is restricted to lie inside a given cylinder for all t ≥ t0 +T (ε)26. This condition

is depicted in Figure 2.5 for x ∈ R2 and xe = 0.

Asymptotic stability and uniform asymptotic stability guarantee that the

state error approaches zero, but cannot predict the rate of convergence5. In many

engineering applications, it is essential to the system operation to predict how fast
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Figure 2.5: Uniform asymptotic stability of an equilibrium.

the system state error decays to zero. This introduces the concept of exponential

stability.

Definition 2.7. Exponential Stability5,13,26: The equilibrium state xe is said to

be exponentially stable if there exist λ and ε, both strictly positive numbers, such that

‖x(t0)− xe‖ < δ(ε) =⇒ ‖x(t, t0,x0)− xe‖ < εe−λ(t−t0), ∀ t ≥ t0. (2.70)

In other words, if a system is exponentially stable, then the state vector

converges to the equilibrium state at an exponential rate. The constant λ specifies

the rate of exponential convergence. Defining a system as exponentially stable,

allows one to place an explicit bound on the system state at any time13.

Definitions 2.4-2.7 characterize the local behavior of a system near an equi-

librium state. In order to examine the behavior of the system when the initial state

is not in close proximity to the equilibrium state, the concept of global stability is

presented.
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Definition 2.8. Global Stability: The equilibrium state is said to be globally

asymptotically stable if for any initial state x(0) the solution is asymptotically stable.

Similarly, if exponential stability holds for any initial state, then the equilibrium

state is said to be globally exponentially stable. Global stability is also referred to as

stability in the large.

Finally, the concept of boundedness of state solutions is discussed. Suppose

x(t, t0,x0) is the solution to the dynamical system ẋ = f(x,u, t) with initial condi-

tion x(t0) = x0. Then, the solution x(t, t0,x0) is uniform bounded if there exists

a number β ≥ 0, independent of the initial conditions, such that ‖x(t, t0,x0)‖ ≤ β

for all time t ≥ t0. Furthermore, if there exists β > 0 corresponding to any α > 0,

and the state originates within the ball Bα, while the corresponding solution tra-

jectory stays within Bβ for all t ≥ t0 +T (α), then x(t, t0,x0) is said to be uniform

ultimate bounded.

2.4 Vector Norms and Lp Spaces

In this section, the definitions and properties of vector norms and the func-

tion space Lp are presented to allow the reader to follow extensive discussions on

system stability in subsequent chapters. Vector norms provide an analog of the

absolute value of a scalar, and allow arguments for scalar equations to be faithfully

extended to vector equations.

Consider a vector signal, x, restricted to positive real numbers (x : R+ →
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Rn), then the p-vector norm is defined as

‖x‖p =

[
n∑
k=1

|xk|p
]1/p

, (2.71)

where p ∈ [1,∞) is any integer27. The following three vector norms constitute the

most common normed vector spaces:

1. ‖x‖1 =
∑n

k=1 |xk|

2. ‖x‖2 =
[∑n

k=1 |xk|2
] 1

2 =
√

xTx

3. ‖x‖∞ = maxk|xk|

The 2-vector norm is the standard Euclidean norm which defines the intuitive notion

of length of the vector x. All norms are equivalent in that they produce the same

topology in the field of real or complex numbers. That is, for any two vector norms

‖ · ‖α and ‖ · ‖β

c1‖x‖α ≤ ‖x‖β ≤ c2‖x‖α, (2.72)

for some strictly positive numbers c1 and c2 and for all x ∈ Cn.

For vector functions of time, the Lp norm is defined as28

‖x‖p =
(∫ ∞

0
‖x‖p dt

) 1
p

, (2.73)

for p = [1,∞). If the integral in Equation (2.73) exists and is finite, then x is said

to be in the Lp space, that is x ∈ Lp. The L∞ norm is defined as

‖x‖∞ = sup
t≥0
‖x(t)‖, (2.74)
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and x is said to be in L∞ space when ‖x‖∞ exists.

In the definitions above for Lp and L∞ norms, ‖ · ‖ denotes any vector norm

in Rn. If the definitions are applied to a scalar function of time, x(t), then ‖ · ‖ may

simply be replaced by | · |, denoting the absolute value28.

2.5 Summary

A dynamical model for the spacecraft tracking problem is developed. Rigid

body kinematics are derived using an appropriate set of attitude coordinates to

express the orientation of the spacecraft, while Euler’s rotational equations of motion

are developed starting from the basic concept of rigid body angular momentum. A

brief overview of stability concepts, definitions of vector norms, and properties of Lp

function space are also provided to allow the reader to follow discussions of system

stability in subsequent chapters.
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Chapter 3

Linear Control Theory

In the previous chapter, the governing equations for the nanosatellite track-

ing problem were derived. The kinematic differential equations are determined to

be highly coupled and nonlinear. In this chapter, a tracking controller is derived to

stabilize the system for a broad class of trajectories. Linearization methods are im-

plemented to obtain a time-varying linear model of the governing equations. Partial

feedback linearization is employed to cancel known nonlinearities that are indepen-

dent of state variables and the remaining dynamics are linearized using Jacobian

linearization. The linearized dynamics are stabilized using full state feedback control

for certain “slowly time-varying” reference trajectories. The total nonlinear control

law has mixed feedback and feedforward components.

3.1 Tracking Control

In general, a tracking controller, u, may be characterized as the composition

of

u = uff + ufb, (3.1)

where uff and ufb are the feedforward and feedback components, respectively, of the

tracking control system. The feedforward compensator7,13 provides the necessary

inputs to track the prescribed trajectory while canceling the effects of disturbances
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that arise from unknown signals. The feedback action then stabilizes the remaining

tracking error dynamics. Whereas feedback control might be model independent,

feedforward action always requires information about the structure of the plant in

order to provide the necessary anticipative action for accomplishing the tracking

tasks13.

Full-state feedback control assumes that, at any given instant, the measured

updates of all the state signals are available to the control law. The feedback control

law attempts to minimize the error between the current and desired state by pro-

viding a corrective action to adequately adjust the state variables. A proportional

derivative (PD) controller is based on the notion of feedback and consists of two

separate parameters: a proportional value that determines corrective action that is

proportional to the error, and a derivative term that calculates correction that is

proportional to the rate of change of the error.

For the application of spacecraft attitude tracking, the proportional feed-

back action is provided in terms of the quaternion error vector, while the derivative

feedback action is in terms of the angular velocity error vector. PD-type controllers,

with and without feedforward compensation, have been extensively studied for at-

titude control for many years6,7,9,11. A special class of tracking maneuvers known

as setpoint regulation, in which the final desired angular velocity is zero, has also

been extensively studied5. In this case, pure PD control that is model-independent

has been shown to be globally stabilizing and naturally robust to parametric uncer-

tainties and unknown disturbances.

The PD control law in Wen et al.7 is presented as a generalization of the
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setpoint control law to a class of desired trajectories with nonzero final angular

velocity. In this controller, tracking performance is dependent on the availability

of high feedback gains. For fast slewing operation, nonzero transient tracking error

might be incurred if high feedback gains are not possible due to actuator constraints.

Such a scenario is undesirable for spacecraft missions that demand high precision

tracking performance without the availability of high control gains. In such cases,

the model dependent feedforward action becomes critical in delivering zero transient

tracking error.

3.2 Control Design Based on Feedback Linearization

Feedback linearization is a commonly used tool in nonlinear control design.

The basic concept is to algebraically transform the nonlinear model of a system to

an equivalent model of simpler form13. In its simplest form, feedback linearization

is achieved by canceling the nonlinear dynamics of a system and imposing desirable

linear terms that can be handled using linear control techniques. This method can

be applied to nonlinear systems that appear in the controllability companion form13

represented by

x(n) = f(x) + b(x)u, (3.2)

where x =
[
x, ẋ, ...,x(n−1)

]
is the state vector, u is the vector control input, and f

and b are vector functions. The controllability companion form is unique because

only derivatives of the state, and not the control input, appear in Equation (3.2).

For the spacecraft attitude tracking problem, partial feedback linearization

is applied in order to simplify the highly nonlinear dynamics of the tracking error
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equations. The transformed dynamics are then analyzed through linear approxima-

tion by Taylor series expansion.

The tracking error dynamics for spacecraft attitude tracking derived in

Chapter 2 are

Jω̇e = −ω × Jω + u− J
[
C(qe)ω̇r − ωe ×C(qe)ωr

]
, (3.3a)

q̇e =
1
2
E(qe)ωe. (3.3b)

Recall that the current spacecraft trajectory, ω, can be described in terms of ωe

and ωr as

ω = ωe + C(qe)ωr. (3.4)

Substituting Equation (3.4) into Equation (3.3a) yields the expanded form

Jω̇e = −(ωe + C(qe)ωr)× J(ωe + C(qe)ωr)

− J
[
C(qe)ω̇r − ωe ×C(qe)ωr

]
+ u.

(3.5)

Observe that in Equation (3.5), the terms C(qe)ωr × JC(qe)ωr and JC(qe)ω̇r are

not explicitly dependent on the state signal ωe. Based on Equation (3.1), u is

expressed in terms of a feedforward and feedback compensator as

u = ur︸︷︷︸
feedforward

+ ν︸︷︷︸
feedback

. (3.6)

The feedforward compensation is selected to directly cancel known nonlinearities

that are dependent on the plant structure and the reference trajectory but are not

explicitly dependent on the state ωe. This approach amounts to peforming partial

feedback linearization to cancel undesirable nonlinearities in the nonlinear system13.
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The anticipative nonlinear feedforward control ur is given by

ur = C(qe)ωr × J C(qe)ωr + J C(qe)ω̇r. (3.7)

Note that ur is composed of terms that are linearly parameterized in terms of the

plant parameter J. Substituting Equation (3.7) into Equation (3.5) results in term

cancellation. The remaining angular velocity error dynamics are

Jω̇e =− ωe × J (ωe + C(qe)ωr)−C(qe)ωr × Jωe

+ Jωe ×C(qe)ωr + ν.
(3.8)

Note that, every term in Equation (3.8) is dependent on both state signals ωe

and qe. Partial feedback linearization, performed through the control algorithm in

Equation (3.7), allows one to obtain a more manageable form of the system dynamics

by canceling some of the highly nonlinear terms. The stability of the transformed

dynamics of Equation (3.8) is treated in the next section.

3.3 Lyapunov’s Indirect Method

Linear control theory is a well developed subject that has been long preva-

lent in engineering due to its broad applications and powerful tools. In analyzing

nonlinear systems and designing control systems to satisfy specific performance re-

quirements, a common practice is to linearize the system about a nominal or equi-

librium point. The method of linearization permits one to obtain a linear model

that approximates a nonlinear model about the operating point. Subsequently, lin-

ear control methods can be used to stabilize the nonlinear system when the range

of motion is assumed to be within the vicinity of the operating point. However,
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inherent in that assumption is the fact that linear control methods are likely to per-

form well only in the region near the operating point. Further away, linear control

techniques may break down as the system nonlinearities become significant, render-

ing the linear control method ineffective. Thus, for a nonlinear system designed to

operate over a large range of motion, linear control methods may become unstable.

Nevertheless, linearization is a useful tool in the analysis of a nonlinear system, as

it offers the engineer a better understanding of how the system behaves and where

the linear approximation breaks down.

The procedure for obtaining a linear approximation to an autonomous non-

linear system is discussed. The method of linearizing the equations of motion about

a nominal state known as Lyapunov’s indirect method or Jacobian linearization,

is presented. In essence, a linear approximation is obtained through a Taylor Se-

ries expansion. An extension of Lyapunov’s indirect method is also discussed for

non-autonomous systems.

3.3.1 Linearization of Autonomous Systems

Consider a nonlinear autonomous system with inputs x ∈ Rn, outputs u ∈

Rm, and closed loop dynamics described by

ẋ = f(x,u). (3.9)

The first order Taylor series expansion applied to the displacement of f(x,u) from

the nominal trajectories x∗, u∗ is

f(x,u) ∼= f(x∗,u∗) +
∂f(x,u)
∂x

∣∣∣∣∗δx +
∂f(x,u)
∂u

∣∣∣∣∗δu + h.o.t, (3.10)
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where h.o.t denotes higher order terms in x and u. In Equation (3.10), let

A =
∂f
∂x

∣∣∣∣∗ and B =
∂f
∂u

∣∣∣∣∗, (3.11)

where,

∂f
∂x

∣∣∣∣∗ =


∂f1
∂x1

∣∣∗ ∂f1
∂x2

∣∣∗ . . . ∂f1
∂xn

∣∣∗
∂f2
∂x1

∣∣∗ ∂f2
∂x2

∣∣∗ . . . ∂f2
∂xn

∣∣∗
...

...
. . .

∂fn

∂x1

∣∣∗ ∂fn

∂x2

∣∣∗ ∂fn

∂xn

∣∣∗

 (3.12a)

(3.12b)

∂f
∂u

∣∣∣∣∗ =


∂f1
∂u1

∣∣∗ ∂f1
∂u2

∣∣∗ . . . ∂f1
∂um

∣∣∗
∂f2
∂u1

∣∣∗ ∂f2
∂u2

∣∣∗ . . . ∂f2
∂um

∣∣∗
...

...
. . .

∂fn

∂u1

∣∣∗ ∂fn

∂u2

∣∣∗ ∂fn

∂um

∣∣∗

 . (3.12c)

The matrices A ∈ Rn×n and B ∈ Rn×m denote the constant Jacobian matrices of

f(x,u) with respect to x and u, respectively. Subtracting the nominal solution from

both sides of Equation (3.10), it is clear that

δẋ = f(x,u)− f(x∗,u∗), (3.13)

and

δẋ ∼= Aδx + Bδu. (3.14)

3.3.2 Linearization of Non-Autonomous Systems

The extension of Lyapunov’s indirect method to non-autonomous systems is

provided here. Consider a nonlinear, non-autonomous system characterized by

ẋ = f(x,u, t), (3.15)
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where the vector function f is continuously differentiable with respect to the state

x. Let the time-varying Jacobian matrices A(t) and B(t) be described as before by

Equation (3.11). Then, for any fixed time t (that is, t is regarded as a parameter)13,

a Taylor series expansion of f about the nominal trajectories x∗ and u∗ is given by

δẋ ∼= A(t)δx + B(t)δu + h.o.t, (3.16)

where the higher order terms in x and u can have explicit dependence on time t.

Let the function g1(x, t) contain all higher order terms in x and let g2(u, t) contain

all higher order terms in u. Suppose that

lim
‖x‖→x∗

sup
‖g1(x, t)‖
‖x‖

= 0, ∀ t ≥ 0, (3.17)

and

lim
‖u‖→u∗

sup
‖g2(u, t)‖
‖u‖

= 0, ∀ t ≥ 0, (3.18)

where “sup” indicates the supremum, or the least upper bound, then the non-

autonomous system f is well approximated by A(t)δx + B(t)δu for any time t.

That is,

δẋ ∼= A(t)δx + B(t)δu (3.19)

represents the linearization of the nonlinear non-autonomous system about the nom-

inal states (x∗,u∗).

3.3.3 Stability Analysis Using Lyapunov’s Indirect Method

Lyapunov’s indirect method can be used to determine the precise relationship

between the linearized model and the original nonlinear system if the original system
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is autonomous. For example, consider a closed loop system linearized about the

origin x = 0

ẋ = Ax. (3.20)

When the eigenvalues of the A matrix all have negative real parts, that is Re{λi} <

0, A is called a Hurwitz matrix27. Then, the closed-loop linear system is found to

be strictly stable and the original nonlinear system itself is strictly stable near the

equilibrium or nominal point. Similarly, if any of the eigenvalues lie on the right

half of the complex plane, the linear system is unstable and the original nonlinear

system is also unstable. This type of analysis permits the use of linear control

methods to design a stable controller that locally guarantees the stability of the

original nonlinear system. However, this standard approach does not generally apply

to time-varying systems, and eigenvalue analysis cannot be forwarded in the same

sense as the time-invariant case. For instance, consider the linear time varying

(LTV) system modified from Slotine and Li13

[
ẋ1

ẋ2

]
=
[
−1 e5t

0 −3

] [
x1

x2

]
. (3.21)

At any time, t > to, the eigenvalues of A(t) are constant values −1 and −3. For

a linear time-invariant (LTI) system, if all the eigenvalues have negative real parts,

then the corresponding LTI system is asymptotically stable. However, upon solving

the above system for x1 and x2, one finds that

x2 = x2(0)e−3t, ẋ1 + x1 = x2(0)e2t. (3.22)

Thus, the system is unstable since the second equation is a first-order differential

equation with an unbounded input, that is, x2(0)e2t → ∞ as t → ∞. Thus, the
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stability of a an LTV system cannot be generally inferred from eigenvalue analysis

of the A matrix as it would be in the case of LTI systems.

3.3.4 Stability of Slowly Time-Varying Systems

For a specific class of LTV systems, global asymptotic stability may, however,

show some relation to the eigenvalues of A(t), but it is not the only condition

necessary to assess stability. Additional restrictions must be placed on the variation

of the elements of A(t)13,29. Specifically, A(t) must satisfy the following conditions:

• A(t) is continuously differentiable

• The elements of A(t) and their first time derivatives are uniformly bounded,

that is,

‖A(t)‖ ≤ α, and ‖Ȧ(t)‖ ≤ δ, ∀ t ≥ t0. (3.23)

In addition, if A(t) is Hurwitz in t, such that, for every t > 0 all the eigenvalues of

A(t) have negative real parts,

Re {λk(A(t))} ≤ −σs, ∀ t ≥ t0, k = 1, 2, . . . n, σs > 0, (3.24)

then the system is guaranteed to be asymptotically stable. The value of δ is system

specific and can be prohibitively small for practical applications. The underlying

notion of a slowly time-varying system is that the system responds much faster to

changes in initial conditions than it does to time-varying parameters. Thus, if the

additional smoothness conditions on A(t) are met, for a specific value of δ (to be

determined) the stability of the system can still be analyzed through Lyapunov’s

indirect method.
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3.4 Control Design Based on Lyapunov’s Indirect Method

Consider the remaining angular velocity error dynamics after partial feed-

back linearization as described by Equation (3.8), and the attitude error dynamics

described by Equation (3.3b). In order to linearize the nonlinear, non-autonomous

system, the nominal values of x∗, ν∗ are selected to be at the current trajectory of

the spacecraft; that is, x∗ = x(t) and ν∗ = ν(t). Then, in order to obtain a linear

model, the nonlinear equations are expanded in terms of displacements, δx and δν,

measured relative to the current spacecraft state.

Equation (3.3b) is written in long hand form for each of the four Euler

parameters as

f1 → q̇e0 =
1
2

(−qe1ωe1 − qe2ωe2 − qe3ωe3), (3.25a)

f2 → q̇e1 =
1
2

(qe0ωe1 − qe3ωe2 + qe2ωe3), (3.25b)

f3 → q̇e2 =
1
2

(qe3ωe1 + qe0ωe2 − qe1ωe3), (3.25c)

f4 → q̇e3 =
1
2

(−qe2ωe1 + qe1ωe2 + qe0ωe3). (3.25d)

Differential equations (3.25a)-(3.25d) are designated as equations f1 - f4. Since the

body axes of the Texas 2 Step nanosatellite are assumed to be aligned with the

principal axes, the products of inertia are zero and the rotational error equations

described by Equation (3.3a) simplify to

f5 → ω̇e1 =
J2 − J3

J1
(ωe2ωe3 + ωe2η3 + ωe3η2) + ν1 − ωe3η2 + ωe2η3, (3.26a)

f6 → ω̇e2 =
J3 − J1

J2
(ωe1ωe3 + ωe1η3 + ωe3η1) + ν2 + ωe3η1 − ωe1η3, (3.26b)

f7 → ω̇e3 =
J1 − J2

J3
(ωe1ωe2 + ωe1η2 + ωe2η1) + ν3 − ωe2η1 + ωe1η2, (3.26c)
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where,

η1 = C11ωr1 + C12ωr2 + C13ωr3 ,

η2 = C21ωr1 + C22ωr2 + C23ωr3 ,

η3 = C31ωr1 + C32ωr2 + C33ωr3 .

Differential equations (3.26a)-(3.26c) are designated as dynamical equations f5 -

f7 respectively. The direction cosine matrix, C(qe) ≡ [Cij ], associated with qe,

transforms a quaternion in the commanded reference frame to the body reference

frame. Also, the principal moments of inertia of the spacecraft along the symmetric

b̂1, b̂2, and b̂3 axes are defined as J1, J2, and J3 respectively. Recall from Chapter 2,

that the direction cosine matrix C(qe), parameterized in terms of qe, is expressed

as

C(qe) = (qe0
2 − qev

Tqev
)I + 2qev

qev

T − 2
[
qev
×
]
. (3.27)

Equation (3.27) is written longhand as follows:

C(qe) =


q2
e0 + q2

e1 − q
2
e2 − q

2
e3 2 (qe1qe2 + qe0qe3) 2 (qe1qe3 − qe0qe2)

2 (qe1qe2 − qe0qe3) q2
e0 − q

2
e1 + q2

e2 − q
2
e3 2 (qe2qe3 + qe0qe1)

2 (qe1qe3 + qe0qe2) 2 (qe2qe3 − qe0qe1) q2
e0 − q

2
e1 − q

2
e2 + q2

e3

 .

Let,

f(x,ν) =
[
f1, f2, f3, f4, f5, f6, f7

]T
. (3.28)

The linear approximation of f(x,ν) about (x∗,ν∗) for any fixed time t is given by

δẋ ∼= A(t)δx + Bδν, (3.29)
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where δx =
[
δqe, δωe

]T is the displacement vector of the state x, and A(t) ∈

R7×7 and B ∈ R7×3 are the corresponding Jacobian matrices. The elements of the

time varying matrix A, are computed as follows

A =



0 −1
2ωe1 −1

2ωe2 −1
2ωe3 −1

2qe1 −1
2qe2 −1

2qe3
1
2ωe1 0 1

2ωe3 −1
2ωe2

1
2qe0 −1

2qe3
1
2qe2

1
2ωe2 −1

2ωe3 0 −1
2ωe1

1
2qe3

1
2qe0 −1

2qe1
1
2ωe3

1
2ωe2 −1

2ωe1 0 −1
2qe1 −1

2qe2 −1
2qe3

a51 a52 a53 a54 0 a56 a57

a61 a62 a63 a64 a65 0 a67

a71 a72 a73 a74 a75 a76 0


, (3.30)

where the elements in the top left quadrant of A are the partial derivatives of

f1−f4 with respect to qe and the elements in the top right quadrant are the partial

derivatives of f1 − f4 with respect to ωe. Similarly, the elements in the bottom left

quadrant of A are the partial derivatives of f5 − f7 with respect to qe. These are

computed as follows:

a5i = ωe2
∂η3

∂qej

(
J2 − J3

J1
+ 1
)

+ ωe3
∂η2

∂qej

(
J2 − J3

J1
− 1
)
,

a6i = ωe1
∂η3

∂qej

(
J3 − J1

J2
− 1
)

+ ωe3
∂η1

∂qej

(
J3 − J1

J2
+ 1
)
,

a7i = ωe1
∂η2

∂qej

(
J1 − J2

J3
+ 1
)

+ ωe2
∂η1

∂qej

(
J1 − J2

J3
− 1
)
,

for i = 1, 2, 3, 4 and j = i − 1. In the above equations, the partial derivatives are

defined as

∂η1

∂qe0
= 2 (qe0ωr1 + qe3ωr2 − qe2ωr3) ,

∂η1

∂qe1
= 2 (qe1ωr1 + qe2ωr2 + qe3ωr3) ,

∂η1

∂qe2
= 2 (−qe2ωr1 + qe1ωr2 − qe0ωr3) ,

∂η1

∂qe3
= 2 (−qe3ωr1 + qe0ωr2 + qe1ωr3) ,

∂η2

∂qe0
= 2 (−qe3ωr1 + qe0ωr2 + qe1ωr3) ,

∂η2

∂qe1
= 2 (qe2ωr1 − qe1ωr2 + qe0ωr3) ,
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∂η2

∂qe2
= 2 (qe1ωr1 + qe2ωr2 + qe3ωr3) ,

∂η2

∂qe3
= 2 (−qe0ωr1 − qe3ωr2 + qe2ωr3) ,

∂η3

∂qe0
= 2 (qe2ωr1 − qe1ωr2 + qe0ωr3) ,

∂η3

∂qe1
= 2 (qe3ωr1 + qe2ωr2 − qe1ωr3) ,

∂η3

∂qe2
= 2 (qe0ωr1 + qe3ωr2 − qe2ωr3) ,

∂η3

∂qe3
= 2 (qe1ωr1 + qe2ωr2 + qe3ωr3) .

The bottom right quadrant of A corresponds to partial derivaties of f5 − f7 with

respect to ωe. These are computed as follows:

a56 =
J2 − J3

J1
(ωe3 + η3) + η3, a57 =

J2 − J3

J1
(ωe2 + η2)− η2,

a65 =
J3 − J1

J2
(ωe3 + η3)− η3, a67 =

J3 − J1

J2
(ωe1 + η1) + η1,

a75 =
J1 − J2

J3
(ωe2 + η2) + η2, a76 =

J1 − J2

J3
(ωe1 + η1)− η1.

All the elements of A in Equation (3.30) are evaluated along the reference values

q∗e, ω
∗
e, and ν∗. The entries of B can be compactly written as

B =
[

04×3

J−1

]
. (3.31)

The Jacobian matrices characterizing the linearized system in Equation

(3.29) have been defined. The next objective is to stabilize the linearized dynamics

by using a feedback controller of the PD-form

δν = −kpδqev
− kvδωe, (3.32)

where kp > 0 and kv > 0 are the scalar attitude and angular velocity feedback gains

that are to be determined. The controller in Equation (3.32) can be equivalently

written in terms of a gain matrix K ∈ R3×7 as

δν = −Kδx, (3.33)

51



where,

K =

 0 kp 0 0 kv 0 0
0 0 kp 0 0 kv 0
0 0 0 kp 0 0 kv

 . (3.34)

The linear closed loop system is now stated as

δẋ ∼= A(t)δx−BKδx, (3.35)

or in terms of an augmented matrix Ã(t) = A(t)−BK such that

δẋ ∼= Ã(t)δx. (3.36)

Finally, it remains to find appropriate values for kp and kv so that the linearized

system described by Equation (3.36) is closed-loop stable. Since Equation (3.36) is

a linear time-varying system, the standard approach for analyzing the stability of

linear time-invariant systems does not apply here. However, if the reference angular

velocity is chosen such that Ã(t) satisfies the sufficient conditions in Equation (3.23)

and Equation (3.24), the system is guaranteed global exponential stability. This

entails identifying a value for δ in Equation (3.23) for which the system will remain

stable.

Obtaining the analytical derivative of the matrix Ã(t) is a nontrivial process.

The derivative can be numerically approximated, however, by the finite difference

method23. The forward difference of a function f(t) is typically expressed as

ḟ(t) = lim
∆t→0

f(t+ ∆t)− f(t)
∆t

≈ f(t+ ∆t)− f(t)
∆t

. (3.37)

The approximation requires the selection of some arbitrarily small ∆t to evaluate

Equation (3.37). Errors are inherent in such an approximation since a very large
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∆t might not capture the behavior close to t. However, by choosing an appropriate

size for ∆t, the computational error can be minimized to within a user set tolerance.

Since the time derivative of a matrix is equivalent to the derivative of every element

of the matrix, the above definition can be easily implemented to obtain ˙̃A(t).

The equivalence of norms permits the use of the Frobenius norm in calcu-

lating δ. The Frobenius norm of ˙̃A(t) is given by

‖ ˙̃A(t)‖F =

√
trace

(
˙̃A(t)

T ˙̃A(t)
)
. (3.38)

The Frobenius norm of ˙̃A(t) is calculated for a series of reference trajectories.

Through an empirical process, it is found that δ ≈ 0.72. Therefore, the system

is considered slowly time-varying if

‖ ˙̃A(t)‖ ≤ 0.72. (3.39)

This corresponds to tracking a reference angular velocity, ωr(t), that itself is slowly

time-varying such that the constraint in Equation (3.39) is satisfied.

Since the system satisfies the condition in Equation (3.23)-(3.24) for δ ≈ 0.72,

over this range it is possible to select the controller gains kp and kv to ensures

asymptotic stability for the linearized closed-loop system. The gains kp and kv

are selected such that at each time t, the matrix Ã(t) is Hurwitz and satisfies

condition (3.39). Now, based on Equation (3.32), the linear control that stabilizes

the nonlinear system described by Equation (3.8) and Equation (3.3b) is

ν = −kpqev
− kvωe, (3.40)
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where the gains kp and kv are the same as those calculated for the linear controller in

Equation (3.32). The above controller is suitable for a slowly time-varying reference

angular velocity profile that satisfies the smoothness constrains in Equation (3.39).

Recall that, the total tracking control input is composed of feedforward and

feedback compensators, obtained in Equation (3.7) and Equation (3.40) respectively.

Thus, the net desired nonlinear tracking control is expressed as

u(t) = −kqqev
− kvωe + C(qe)ωr × J C(qe)ωr + J C(qe)ω̇r. (3.41)

In Equation (3.41), u(t), provides the net control effort required to achieve zero

tracking error for a spacecraft tracking a slowly time-varying ωr(t) that satisfies the

condition in Equation (3.39).

Thus far, stability of the closed-loop system has been examined using Lya-

punov indirect method. Using this method, the control system is shown to track

certain slowly-varying reference trajectories that satisfy the smoothness constraints

in Equation (3.39). However, the specified constraints may be relaxed using an al-

ternative analysis approach known as Lyapunov’s direct method. As shown in the

next section, using Lyapunov’s direct method allows one to obtain zero tracking

error for any ωr(t).

3.5 Lyapunov’s Direct Method

In the previous section, a nonlinear tracking control law is obtained using

partial feedback linearization and Lyapunov’s indirect method. However, since the

linearized dynamics are time-varying, using Lyapunov’s indirect method allows one
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to deduce asymptotic stability for the system only when the spacecraft tracks ωr(t)

that is slowly time-varying. In this section, the slowly time-varying requirement on

ωr(t) is relaxed by examining the stability of the system using Lyapunov’s direct

method. This method is based on the mathematical generalization of the physical

property that if the total energy of a dynamical system is continually dissipated

through the system’s own internal dynamics, or through some external force, then

the system eventually stabilizes to a zero energy equilibrium point. Lyapunov’s

direct method5,13 allows one to deduce the stability of a complex nonlinear system

through the examination of a scalar “energy-like” function.

The energy function for non-autonomous systems, denoted by V (x(t)) where

x is that state of the system, must satisfy certain properties in order to assert

global asymptotic stability of a system. The first property13 stems from physical

considerations. Specifically, since the total energy of a function is always nonzero,

the energy function has the property that it is positive definite, that is, V > 0

∀ t. The second condition13 states that V (x) is monotonically decreasing along the

system trajectory, that is, V̇ < 0. Since V is not explicitly dependent on time5, the

derivative of V can be written as

V̇ =
∂V T

∂x
ẋ =

∂V T

∂x
f(x, t), (3.42)

where the last substitution is valid since x(t) satisfies the dynamical equation ẋ(t) =

f(x, t). In this way, V̇ can be thought of as the directional derivative of V along

the state trajectory x(t). This idea is illustrated in Figure 3.1, where the bowl-

shaped isosurface represents V (x(t)) over the state plane (x1, x2). The projection
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of the state trajectory x(t) on the isosurface is seen to always point down, which

corresponds to a lower and lower values of V .

Figure 3.1: Illustration of a Lyapunov function.

If the conditions V > 0 and V̇ < 0 are satisfied, then the dynamical system

is stable about the origin. In order to prove global stability, a third condition is

required, which states that V (x) must be radially unbounded, that is V (x) → ∞

as x tends to infinity in any direction, that is ‖x‖ → ∞. For an autonomous

system, these conditions are sufficient for concluding global asymptotic stability in

the sense of Lyapunov. For non-autonomous systems, the scalar function must also
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be decrescent; that is, it should always be upper bounded or dominated by a time-

invariant positive definite function, V1(x). This condition is mathematically stated

as

V (x, t) ≤ V1(x) and V (0, t) = 0, ∀ t ≥ 0. (3.43)

If all of the above conditions are satisfied, then V (x, t) is called a Lyapunov function

and the equilibrium point at 0 is globally uniformly asymptotically stable, that is,

x(t)→ 0 as t→∞, (3.44)

for any initial state values.

For a particular candidate Lyapunov function, it is possible that its deriva-

tive may not satisfy all the conditions previously stated. As it often happens, V̇

may only be negative semi -definite, i.e. V̇ ≤ 0, rather than negative definite. If

such a situation occurs in the context of autonomous systems, it is still possible to

prove asymptotic stability by using La Salle’s invariant set theorems13. However

La Salle’s invariant set theorems are not applicable to non-autonomous systems.

Instead, an important mathematical result, known as Barbalat’s Lemma, is invoked

in order to prove asymptotic stability.

Definition 3.1. Uniform Continuity13,28: A function f(t): R → Rn is said to

be uniformly continuous if for any given ε > 0, there exists a δ(ε) ≥ 0 such that,

∀ t, t1 ≥ 0, |t− t1| ≤ δ(ε)⇒ |f(t)− f(t1)| ≤ ε. (3.45)

Asserting uniform continuity of a function by using the above definition

may not always be a convenient approach. A more direct approach is to examine
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the function’s derivative. Specifically, a sufficient condition for a function to be

uniformly continuous is that its function derivative be bounded13.

Lemma 3.1. (due to Barbalat)13,28: Let f(t): R→ Rn be differentiable and have

a finite limit as t→∞. If ḟ(t) is uniformly continuous then ḟ(t)→ 0 as t→∞.

In order to apply Barbalat’s lemma to the analysis of nonautonomous dy-

namics systems, the following immediate corollary is typically used13:

Lemma 3.2. (Lyapunov-Like Lemma)13,28: If a scalar function V = V (x, t) is

such that

1. V (x, t) is lower bounded

2. V̇ (x, t) is negative semi-definite

3. V̇ (x, t) is uniformly continuous in time

then V̇ (x, t)→ 0 as t→ 0.

The first two conditions imply that V (x, t) approaches a finite limit. The

last condition is satisfied if V̈ exists and is finite. The above corollary then follows

from Barbalat’s lemma13. Stability analysis through Barbalat’s lemma is referred

to as Lyapunov-like analysis and the corresponding scalar function V is called a

Lyapunov-like function. It differs from traditional Lyapunov analysis in the V (x, t)

is only required to be lower bounded, instead of positive definite, and V̇ must be

negative or zero as well as uniformly continuous (i.e., V̈ exists and is bounded).

Barbalat’s lemma is a powerful result and is frequently used in proving asymptotic
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stability of non-autonomous dynamic systems through Lyapunov-like analysis. It

can also be formulated with respect to an integral of a function as shown below:

Lemma 3.3. (due to Barbalat)13,28: Let f(t): R→ Rn be a uniformly continuous

scalar or vector valued function. Suppose that limt→∞
∫ t

0f(τ) dτ exists and is finite,

then limt→∞ f(t) = 0.

Furthermore, an immediate and practical corollary to Barbalat’s lemma

stated above is given as follows:

Corollary 3.1. If f(t) is bounded and absolutely integrable, that is f(t) ∈ L∞ ∩Lp

for some integer p ∈ [1,∞), and ḟ ∈ L∞ (bounded), then limt→∞ f(t) = 0.

3.5.1 Stability Analysis using Lyapunov’s Direct Method

Consider the original tracking error dynamics in the expanded form as de-

scribed by Equation (3.5). In the interest of brevity, define φ as

φ = [ωe×]J (ωe + C(qe)ωr) + C(qe)[ωr×]Jωe − J[ωe×]C(qe)ωr, (3.46)

and ψ as

ψ = C(qe)ωr × J C(qe)ωr + J C(qe)ω̇r. (3.47)

Following an analysis approach to that presented in Bernstein et al.9, define a linear

operator L : R3 → R3×6 acting on any vector ρ =
[
ρ1 ρ2 ρ3

]T such that

L(ρ) =

 ρ1 ρ2 ρ3 0 0 0
0 ρ1 0 ρ2 ρ3 0
0 0 ρ1 0 ρ2 ρ3

 . (3.48)
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Furthermore, let θ be defined as 6× 1 vector that contains the six unique entries of

the inertia-matrix,

θ =
[
J11 J12 J13 J22 J23 J33

]
. (3.49)

Then, ψ may be written as

ψ = Wθ, (3.50)

where

W = C(qe)[ωr×]L
(
C(qe)ωr

)
+ L

(
C(qe)ω̇r

)
. (3.51)

Using the definition of φ in Equation (3.46) and ψ in (3.47), the tracking error

dynamics in Equation ((3.5) can be expressed as

Jω̇e = −φ(t) + Wθ + u, (3.52)

and the tracking control obtained in Equation (3.41) can be written as

u = −kqqev
− kvωe + Wθ. (3.53)

Global asymptotic convergence for the control law described by Equation

(3.53) is achieved using the following lower-bounded Lyapunov function candidate

implemented in Wen et al.7

V (ωe,qe) =
1
2
ωe

TJωe + kp
[
qTev

qev
+ (qe0 − 1)2

]
− c qTev

Jωe, (3.54)

where c is a scalar quantity that is chosen to be strictly negative in order to preserve

the positive definiteness of V . Note that in Equation 3.54

kp
[
qTev

qev
+ (qe0 − 1)2

]
= 2kp [1− qe0 ] . (3.55)
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The Lyapunov function candidate can be written as,

V =
1
2
ωe

TJωe + 2kp [1− qe0 ]− c qTev
Jωe. (3.56)

In this equation, the first term corresponds to the total error in kinetic energy as it is

based on the angular velocity error signal. The second term represents the artificial

error potential energy based on the vector part of the error quaternion. The last

term is a product of the error angular velocity and error quaternion signals that is

scaled by a constant c chosen negative so that the Lyapunov function candidate is

positive definite7.

Using the results from Wen et al.7, the derivative of the Lyapunov function,

V along the trajectories of the system is given by

V̇ = ωTe Jω̇e − 2kpq̇e0 − c q̇Tev
Jωe − c qTev

Jω̇e,

= ωTe (−φ+ Wθ + u) + kpqTev
ωe

−
( c

2
(
qe0I + [qev

×]
)
ωe

)T
Jωe − c qTev

(−φ+ Wθ + u) .

(3.57)

Substituting the control law yields

V̇ = ωTe
(
−φ− kpqev

− kvωe
)

+ kpqTev
ωe −

c

2
q0eω

T
e Jωe

− c

2
(qev

× ωe)TJωe − c qTev

(
−φ(t)− kpqev

− kvωe
)
,

= −kvωTe ωe + c kpqTev
qev
− (ωe − c qev

)Tφ+ c kvqTev
ωe

− c

2
qe0ω

T
e Jωe −

c

2
(qev

× ωe)TJωe,

≤ c kp‖qev
‖2 − (kv − γJγd − γJc)‖ω‖2,

(3.58)

where,

γJ , ‖J‖, (3.59)

γd , sup
t≥0
‖C(qe)ωr(t)‖. (3.60)
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If kv satisfies the condition

kv > γJγd, (3.61)

and c is chosen such that

c < 0, (3.62)

then V̇ ≤ 0. As c does not appear in the control law, it can be arbitrarily chosen to

satisfy the condition in Equation (3.62) and for the property V > 0 to hold. With

the above assumptions, it can be shown7 that qev
and ωe are uniformly bounded,

and hence V is uniformly bounded. Furthermore, it can be shown that qev
and ωe

are uniformly continuous7 since q̇ev
and ω̇e are also uniformly bounded (from the

differential equations of motion). Then by using Barbalat’s theorem, it follows that

lim
t→∞

[
qe(t)
ωe(t)

]
= 0. (3.63)

3.5.2 Robustness to Plant Perturbations

In this section, the robustness of the inertia parameters to small perturba-

tions is analyzed. As shown in Wen et al.7, an additional condition can be imposed

to ensure exponential convergence of V to zero. Specifically,

1
2
ωTe (0)Jωe(0) < 2kp(1 + q0(0)). (3.64)

The exponential convergence of V leads to robustness to variations in the inertia

matrix. If the inertia J in the control law is perturbed from its true value, that is,

J = Jtrue + ∆J, (3.65)

the system remains uniformly ultimate bounded7 where the bound is linear in the

size of the normed inertia error.
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3.6 Control Magnitude Constraints

The feedback control law in Equation (3.41) was developed without consid-

eration of control magnitude constraints. Actuation devices such as thrusters and

reaction wheels, are subject to physical limitations and constraints. When the ac-

tuation device is operating at its maximum capacity, it is said to be saturated5.

This section augments the existing tracking control law to incorporate saturation

constraints while ensuring global asymptotic stability.

The problem of control torque saturation can be solved in essentially two dif-

ferent ways. The first is to use conventional gain scheduling and deadband methods

to reduce the feedback gains such that all control torques remain in the unsaturated

range. However, a major practical limitation of this method is that it introduces

discontinuities in the control history, leading to a degraded overall performance of

the feedback control law. An alternate method, known as Lyapunov optimal con-

trol, allows individual control devices to become saturated while others are within

the saturation bounds. The saturated control law is said to be Lyapunov optimal

because it makes the derivative of the Lyapunov function as negative as possible for

periods when at least one control device is saturated5.

The unsaturated control law that stabilizes the erros states is given by

u = −kqqev
− kvωe + C(qe)ωr × J C(qe)ωr + J C(qe)ω̇r. (3.66)
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The derivative of the corresponding Lyapunov function can be expressed as

V̇ = ωTe

(
−φ(t) + Wθ + u + kpqev

− c

2
JωTe

(
q0eI + [qev

×]
))
−

c qTev
(−φ+ Wθ + u)− β

(
1
2
qT0 ωe + qev

× ωe
)T

Jωe

− cqTev
(−φ(t) + Wθ + u) .

(3.67)

Assume that the control authority exerted about the ith body axis has an upper

bound |ui(t)| < umaxi . Under the above assumption, the unsaturated control law u

can be modified to account for saturation with a Lyapunov optimal saturated term

as shown by Robinett et al5,30. The modified control law S(u(t)) for i = 1, 2, 3 is

S(ui) =
{
ui for |ui| ≤ umaxi

umaxi · sgn (ui)] for |ui(t)| > umaxi

. (3.68)

The “sgn” denotes the mathematical signum function that extracts the sign of a

real number and is defined by

sgn (x) =


−1 if x < 0
0 if x = 0
1 if x > 0

. (3.69)

A useful feature of the saturation control logic in Equation (3.68) is that it allows

some elements of the control vector to become saturated while others remain in the

unsaturated range. This feature differs from conventional gain scheduling5 where

the feedback gains are adjusted so that all elements of the control vector operate in

the unsaturated region. Note that if the optimal saturated term umaxi · sgn[ui(t)]

is implemented directly, then the resulting control law would have a bang-bang

characteristic which produces a discontinuity at the origin as shown in Figure (3.2).

Such a discontinuity is highly undesirable as it induces chattering at ui(t) = 05,30.

However, a limitation of the saturation control in Equation (3.68) is that it retains
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Figure 3.2: Direct implementation of the optimal saturated term umaxi · sgn[ui(t)]
results in band-bang characteristics.

a sharp corner when |ui| = umaxi , which leads to non-uniqueness of the control rate

u̇. In order to smooth the transition across the saturation boundary, the hyperbolic

tangent function, tanh, can be implemented to approximate the saturated control

profile20. The range of the tanh function is [−1, 1] on the domain (−∞,∞). As

illustrated in Figure 3.3, the tanh function takes on the values

tanh(x) ≈ −1, ∀ x < −2,

tanh(x) ≈ 1, ∀ x > 2,

with a maximum approximation error of ±0.036 near x = ±2, and has a slope of 1

at the origin20. Using the tanh function, the saturated control law can be expressed

as

S(ui) = umaxi · tanh
(

ui
umaxi

)
, for i = 1, 2, 3, (3.70)

where the scaling factor 1/umaxi is needed to appropriately track the signum func-

tion20.
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Figure 3.3: Using the hyperbolic tangent function to smooth the transition across
saturation boundary.

An inherent assumption for saturated control development is that the prob-

lem must be feasible. In other words, there must be enough control authority to

track the desired trajectory motion. From the Lyapunov function derivative, a suf-

ficient condition to ensure feasibility (and stability) is found to be

max
(
‖φ(t)−Wθ − kpqev

+
c

2
JωTe

(
q0eI + [qev

×]
)
‖, ‖φ−Wθ‖

)
≤ umaxi .

(3.71)

The feasibility constraint may be overly conservative for a higher-dimensional sys-

tems such as the spacecraft tracking problem. It is clear, then, that the condition

is immediately violated if any body axis fails to satisfy the strict equality. As

demonstrated in the numerical simulation in Section 3.7, having umaxi less than the

sufficient feasibility condition may still lead to asymptotically stable closed-loop be-

havior. The stability condition in Equation (3.71) might be locally violated, making
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V̇ > 0 for brief periods of time without affecting overall global stability.

3.7 Design Examples

In this section, various attitude maneuver simulations are presented to demon-

strated the capabilities of the control law developed in Section 3.2-3.6. All simu-

lations were conducted using MATLAB Simulation Software. Runge-Kutta 4(5)

numerical integrator, ODE45, was used to propagate the differential equations with

both the absolute and relative tolerances set to 10−6.

Spacecraft Initial Conditions

The numerical model for the attitude tracking control system is based on

the system parameters of FASTRAC. The inertia matrix, J, that approximates the

nanosatellite is given by,

J =

 0.656 0 0
0 0.656 0
0 0 0.986

 kg·m2. (3.72)

The spacecraft is assumed to be initially at rest. The spacecraft initial conditions

are

q(0) =
[

0.9487, 0.1826, 0.1826, 0.18268,
]T
,

ω(0) =
[

0, 0, 0
]T rad/s.

The thruster actuation system is assumed to be upper bound in each body-axis by

umaxi = 0.5 N ·m for i = 1, 2, 3.
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Simulation Parameters

The reference initial quaternion is

qr(0) =
[

1, 0, 0, 0
]T
. (3.73)

and the reference angular velocity profile is updated at each simulation time. The

controller gains are set to kp = 5 and kv = 8.

Each set of simulations is performed for two types of attitude trajectories:

one that is periodic and has large variations in its angular velocity profile, and

another that contains exponentially decaying terms that attenuate the amount of

variation in the signal. The signal with large variation is referred to as a persistently

exciting (PE) signal, whereas the signal with little variation is referred to as a non-

persistently exciting (non-PE) signal. Generally speaking, a PE signal is one that

produces enough excitation in a system to uniquely identify the system’s parameters.

PE signals will be formally defined in the context of adaptive control in Chapter

5, where their implication in unique system identifiability plays a crucial role in

parameter estimation. For now, the terms “PE” and “non-PE” are simply used to

distinguish between the two angular velocity profiles. The exponentially decaying

reference angular velocity signal is referred to as a non-PE signal for the system.

Numerical simulations are performed for the following scenarios:

1. Ideal, no saturation and no inertia perturbations

2. Control saturation

3. Control saturation and inertia perturbations
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The first scenario is used as the nominal case for comparison. The simulation period

is 40 seconds for each attitude tracking scenario. For the second scenario, torque

limits are imposed on the control profile, limiting the output to

umaxi = 0.5 N ·m i = 1, 2, 3, (3.74)

and the system is simulated using the saturated control law described in Equation

(3.70). Finally, the inertia J in the control law is perturbed from its true value, that

is,

J = Jtrue + ∆J, (3.75)

and the system is simulated again with torque limits imposed. The performance of

the controller is examined for ∆J = 0.3 Jtrue; that is, a 30% deviation from the

inertia parameters under control torque limits. The control gains and spacecraft

initial conditions are kept the same for all three simulation scenarios.

PE Trajectory

For the first set of simulations, the PE signal is considered, where the refer-

ence angular velocity profile is generated by

ωr = 0.02
[

cos(πt), cos(2πt), cos(3πt)
]T rad/s. (3.76)

The spacecraft initial conditions, reference quaternion and control gains are as stated

previously. Figure 3.4a and Figure 3.4b illustrate the evolution of the error states,

wherein the ideal response is indicated by the blue line, the saturated control re-

sponse by the green line, and the performance of the system with inertia pertur-

bations and torque constraints is indicated by the red line. The color identity is
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consistent for Figures 3.4c - 3.4f. Starting from an initial angular velocity error of

about 2 deg/s the saturated control law is able to drive the errors below 0.0573 deg/s

when there is no disturbance in the plant parameters. As illustrated by Figure 3.4f,

the maximum torque value umaxi = 0.5 does not satisfy the stability condition in

Equation (3.71), thus violating the requirement of V̇ being negative semi-definite

for finite periods of time. There is noticeable performance degradation when the

controller faces uncertainty in the plant inertia parameters. The error states remain

bounded near 0.6 deg/s, indicating that the closed-loop performance is offset by

almost 30% from the case of the saturated control law with no uncertainty. The

settling time for both cases is approximately 5-6 seconds.

70



(a) Norm of the angular velocity error vector ‖ωe‖.

(b) Norm of the quaternion error vector ‖qev
‖.

Figure 3.4
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(c) Norm of the control vector ‖u‖ in N·m

(d) Reference attitude trajectory following of perturbed plant with (30%)
uncertainty in inertia parameters.

Figure 3.4
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(e) Zoomed-in view of Figure 3.2d

(f) Lyapunov function derivative of saturated control system (green)
indicating finite time periods where the stability condition in Equation
(3.71) is violated.

Figure 3.4: Nonlinear tracking control law simulation for a PE reference trajec-
tory. Simulations demonstrate ideal system response (blue), system response with
torque constraints (green), and system response with torque constraints and inertia
perturbations (red).
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Non-PE Trajectory

Next, the system is simulated to track a non-PE reference trajectory that

has an angular velocity profile described by

ωr = 0.1 cos(t)(1− e0.01t2) + (0.08π + 0.006 sin(t))te−0.01t2
[

1, 1, 1,
]T rad/s

(3.77)

The same initial controller and estimator gain values as the non-decaying reference

trajectory are used. As before, the ideal response is indicated by the blue line, the

saturated control response by the green line, and the response of the system with

inertia perturbations and torque constraints is indicated by the red line. Figures 3.5a

and 3.5b show that the error states have slower convergence than the PE-trajectory

tracking case, settling at approximately 12-13 seconds. As before, there is noticeable

performance degradation when there is uncertainty in the inertia parameters. As

illustrated in Figure 3.5c, the initial transient of the control history indicates that

the saturated control operates at the saturation boundary for roughly 0.5 seconds,

beyond which its profile is matched with the ideal case. Figure 3.5d indicates that

the saturated control system is once again operating below the feasibility (stability)

requirement, thereby violating the requirement of V̇ being negative semi-definite.
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(a) Norm of Angular velocity error vector ‖ωe‖

(b) Norm of quaternion error vector ‖qev
‖

Figure 3.5
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(c) Norm of control vector ‖u‖ in N·m

(d) Reference attitude trajectory following of perturbed plant with (30%)
uncertainty in inertia parameters.

Figure 3.5
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(e) Lyapunov function derivative of saturated control system (green) indi-
cating finite time periods where the stability condition in Equation (3.71)
is violated.

Figure 3.5: Nonlinear tracking control law simulation for a non-PE reference trajec-
tory. Simulations demonstrate ideal system response (blue), system response with
torque constraints (green), and system response with torque constraints and inertia
perturbations (red).

3.8 Summary

A nonlinear control law is obtained for spacecraft attitude tracking maneu-

vers using partial feedback linearization and Jacobian linearization concepts from

linear control theory. Stability analysis using Lyapunov’s indirect method is found

to be limiting for the spacecraft error dynamics due to the strong nonlinearities

inherent in the system. The limitations leads to the analysis of the system using

Lyapunov’s direct method and Barbalat’s lemma, which is not restricted to small

motions around equilibrium points. Using this approach, the nonlinear control law
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is found to be globally stabilizing without the previous restrictions on the class of

reference trajectories.

Additional sufficient condition are imposed on the feedback gains to make

the system naturally robust to perturbations in the inertia parameter. Control

torque limitations are taken into consideration. The unsaturated control design is

augmented with a Lyapunov optimal term so that the modified control law con-

tinuously transitions across the saturation boundary. MATLAB simulations are

provided to demonstrate the performance of the unsaturated and saturated con-

trol design with and without perturbations in the inertia parameter. The overall

performance of the saturated controller begins to degrade undesirably when the in-

ertia parameters are perturbed more than 30% from their true values. For a PnP

satellite environment, where arbitrarily large inertia uncertainties are a practical

design consideration, performance degradation of the control law formulation due

to small inertia perturbations is highly undesirable. The results suggest the need

for an adaptive control law formulation that can adjust to uncertain or unknown

parameters and maintain consistent performance of the spacecraft system.
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Chapter 4

Nonlinear Control Design Based on Lyapunov’s Direct
Method

In the previous chapter, a Lyapunov direct method was introduced as a

tool to assess the stability of the nonlinear system to some prespecified model-

dependent stabilizing control. In this chapter, a Lyapunov direct method is applied

in the design of a globally stabilizing controller for the spacecraft tracking error

dynamics. In addition, filter state variables are introduced in aiding the design of

the control system. The filter control design is introduced in this chapter as it will

be implemented in Chapter 5 as well. The resulting control law is dependent on

the model structure and delivers high tracking performance. Torque constraints are

incorporated using a similar construction as shown in Chapter 3.

4.1 Nonlinear Tracking Control Using Filter Variables

Consider the spacecraft tracking error equations of motion derived in Chap-

ter 2 and described by

Jω̇e = −ω × Jω + u− J
[
C(qe)ω̇r − ωe ×C(qe)ωr

]
, (4.1a)

q̇e =
1
2
E(qe)ωe. (4.1b)
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Equation (4.1a) can be rearranged such that

ω̇e = J−1[u− [ω×]Jω − Jφ], (4.2)

where the quantity φ(t) is given by

φ(t) = (C(qe)ω̇r − [ωe×]C(qe)ωr). (4.3)

For the sake of brevity, Equation (4.2) is stated in terms of the vector ν as

ω̇e = J−1ν, (4.4)

where ν is characterized by

ν = u− [ω×]Jω − Jφ. (4.5)

Define the following first order filter variables28

ω̇ef
= −βωef

+ ωe, (4.6)

ν̇f = −βνf + ν, (4.7)

where β is a filter gain that regulates the response of the filter to the state vari-

ables. The initial values of the filter states, ωef
(0) and νf (0) are selected arbitrarily.

Differentiating the filter dynamics in Equation (4.6), and making appropriate sub-

stitutions for ω̇e and ν along Equation (4.4) and Equation (4.7) one obtains

ω̈ef
= −βω̇ef

+ ω̇e,

= −βω̇ef
+ J−1ν,

= −βω̇ef
+ J−1(ν̇f + βνf ).

(4.8)
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The above expression can be further rearranged so that the following perfectly in-

tegrable first order differential equation is established

d

dt
[ω̇ef

− J−1νf ] = −β(ω̇ef
− J−1νf ). (4.9)

The solution to the Equation (4.9) is obtained by separating and integrating both

sides to obtain

ω̇ef
= J−1νf + εe−βt, (4.10)

where the coefficient, ε, of the exponentially decaying term εe−βt is characterized

by the initial conditions of the filtered signals

ε = ω̇ef
(0)− J−1νf (0). (4.11)

Since the initial conditions of the filtered states may be arbitrarily chosen, Equation

(4.10) is simplified by setting ε = 0. Thus,

ω̇ef
= J−1νf (4.12)

represents the transformation of the tracking error dynamics of Equation (4.2) using

the filter state variables in Equation (4.6). The stability characteristics of ωe are

conserved in ωef
in that both signals have an identical construction and converge

to zero as t → ∞. Since the additional terms introduced due to the filtering are

exponentially decaying, they may simply be ignored in the analysis of the system

stability.

Suppose the filtered signal, νf , and its corresponding dynamics are described
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as follows

νf = −J
[
kpqev

+ kvωef

]
, (4.13)

ν̇f = −J
[
kpq̇ev

+ kvω̇ef

]
, (4.14)

where kp and kv are any positive scalars. Substituting Equation (4.13) into the filter

dynamics of Equation (4.10) yields

ω̇ef
= J−1J[−kpqev

− kvωef
] = −kpqev

− kvωef
. (4.15)

The stability of the system in Equation (4.15) can be examined through Lyapunov

direct method. Consider the following strict (radially unbounded and decrescent)

Lyapunov function candidate

V =
1
2
ωTef

ωef
+
[
qTev

qev
+ (qe0 − 1)2

]
. (4.16)

Recall from Chapter 3 that

[
qTev

qev
+ (qe0 − 1)2

]
= 2 [1− qe0 ] ,

which can be substituted into Equation (4.16) to obtain

V =
1
2
ωTef

ωef
+ 2 [1− qe0 ] . (4.17)

Recall from Chapter 2 that

q̇e0 = −1
2
qTev
ω,

which can be used to express the derivative of V as

V̇ = ωTef
ω̇ef

+ qTev
ωe,

= ωTef
ω̇ef

+ qTev

(
ω̇ef

+ βωef

)
.

(4.18)
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Substituting Equation (4.15) into Equation (4.18) results in

V̇ = βqTev
ωef
− kvωTef

ωef
− kpqTev

qev
− (kp + kv)qTev

ωef
. (4.19)

Choosing β = kp + kv allows the above expression to be simplified through term

cancellation, thus yielding

V̇ = −kv‖ωef
‖ − kp‖qev

‖ ≤ 0, (4.20)

which is strictly negative definite. Thus, from Lyapunov analysis it can be shown

that ωef
→ 0 and qev

→ 0 as t → 0. Since ωef
is related to ωe through a stable

first order filter, one may conclude that ωef
→ 0 indicates that ωe → 0.

The dynamics of the original controller u can now be recovered from Equa-

tion (4.5). The control is described by

u = ν + [ω×]Jω − Jφ. (4.21)

Rewriting ν in terms of its filter states as described in Equation (4.7), and perform-

ing the appropriate substitutions for νf and ν̇f in terms of Equation (4.13), the

expression above can be stated as

u = ν̇f + βνf + [ω×]Jω − Jφ,

= −J[kpq̇ev
+ kvω̇ef

]− βJ[kpqev
+ kvωef

] + [ω×]Jω − Jφ,

= −kpJq̇ev
− Jkv(−βωef

+ ωe)− βJ(kpqev

+ kvωef
) + [ω×]Jω − Jφ.

(4.22)

Recognizing once again that q̇ev
= 1

2qe0I +
[
qev
×
]
, and performing term expansion

results in

u =
−kpJ

2
(qT0eI +

[
qev
×
]
)ωe + Jkvβωef

− Jkvωe

− βJkpqev
− Jkvβωef

+ [ω×]Jω − Jφ.
(4.23)
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In the equation above, the second and fifth terms cancel and the control torque is

recovered in terms of the state variables as

u =
−kpJ

2
(qT0eI +

[
qev
×
]
)ωe − Jkvωe − βJkpqev

+ [ω×]Jω + Jφ. (4.24)

The control torque in Equation (4.24) is clearly dependent on the model structure,

that is, the unknown inertia parameters.

4.2 Control Magnitude Constraints

Let the control law derived in Equation (4.24) be denoted as uus, indicating

that it is the unsaturated control law.

uus =
−kpJ

2
(qT0eI +

[
qev
×
]
)ωe − Jkvωe − βJkpqev

+ [ω×]Jω + Jφ. (4.25)

As shown in Chapter 3, the unsaturated control law uus can be modified to account

for saturation using the tanh function. The modified control law u(t) is

S(ui) = umaxi · tanh
(

ui
umaxi

)
, for i = 1, 2, 3. (4.26)

4.3 Design Examples

In this section, attitude maneuver simulations are presented to demonstrated

the capabilities of the control law developed in Section 4.1 and Section 4.2.

Spacecraft Initial Conditions

The numerical model for the attitude tracking control system is based on

the system parameters of FASTRAC. The inertia matrix, J, that approximates the
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nanosatellite is given by,

J =

 0.656 0 0
0 0.656 0
0 0 0.986

 kg·m2. (4.27)

The spacecraft is assumed to be initially at rest. The spacecraft initial conditions

are

q(0) =
[

0.9487, 0.1826, 0.1826, 0.18268
]T
,

ω(0) =
[

0, 0, 0
]T rad/s.

The thruster actuation system is assumed to be upper bound in each body-axis by

umaxi = 0.5 N ·m for i = 1, 2, 3.

Simulation Parameters

The reference initial quaternion is

qr(0) =
[

1, 0, 0, 0
]T
, (4.28)

and the reference angular velocity profile is updated at each simulation time. The

controller gains are set to kp = 5 and kv = 8.

As in the design examples in Chapter 3, each simulation is performed for

two types of trajectories: persistently exciting (PE) and non-persistently exciting

(non-PE). Simulations are obtained for the following scenarios:

1. Ideal, no saturation and no inertia perturbations

2. Control saturation
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3. Control saturation and inertia perturbations

The first scenario is used as the nominal case for comparison. The simulation period

is 40 seconds for each attitude tracking scenario. Next, control saturation limits are

imposed on the control profile, limiting the output to

umaxi = 0.5 N ·m, for i = 1, 2, 3. (4.29)

Finally, the inertia J in the control law is perturbed from its true value, that is,

J = Jtrue + ∆J. (4.30)

The performance of the controller is examined for ∆J = 0.3 Jtrue, that is, 30%

deviation from the inertia parameters, under control torque limits. The control

gains and spacecraft initial conditions are kept the same.

PE Trajectory

For the first set of simulations, a PE trajectory is considered, where the

reference angular velocity profile is generated by

ωr = 0.02
[

cos(πt), cos(2πt), cos(3πt)
]T rad/s. (4.31)

The spacecraft initial conditions, reference quaternion and control gains are as stated

in the previous section.
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(a) Norm of Angular velocity error vector ‖ωe‖

(b) Norm of quaternion error vector ‖qev
‖

Figure 4.1
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(c) Norm of control vector ‖u‖

Figure 4.1: PE reference trajectory simulation for a Lyapunov controller formulation
obtained via filter construction. Simulations demonstrate ideal system response
(blue), system response with torque constraints (green), and system response with
torque constraints and inertia perturbations (red).
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Non-PE Trajectory

Next, the system is simulated to track a non-PE reference trajectory that

has a decaying angular velocity profile described by

ωr = 0.1 cos(t)(1− e0.01t2) + (0.08π + 0.006 sin(t))te−0.01t2
[

1 1 1
]T rad/s.

(4.32)

The same initial controller and estimator gain values as the non-decaying reference

trajectory are used.
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(a) Norm of Angular velocity error vector ‖ωe‖

(b) Norm of quaternion error vector ‖qev
‖

Figure 4.2
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(c) Norm of control vector ‖u‖

Figure 4.2: Non-PE reference trajectory simulation for a Lyapunov controller for-
mulation obtained via filter construction. Simulations demonstrate ideal system
response (blue), system response with torque constraints (green), and system re-
sponse with torque constraints and inertia perturbations (red).

4.4 Summary

A nonlinear model-dependent control law is obtained for spacecraft atti-

tude tracking maneuvers through filter state construction. Global stability of the

controller formulation is rigorously proved through a strict Lyapunov function can-

didate. Control saturation is imposed with the aid of the tanh saturation func-

tion described in Chapter 3. Numerical simulations are provided to demonstrate

the performance of the unsaturated and saturated control design with and with-

out perturbations in the inertia parameter. The error states converge to zero using

the saturated controller solution with a slightly degraded closed-loop performance.
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However, the saturated controller is sensitive to changes in the inertia matrix re-

sulting in degraded closed-loop performance. It is clear that an online adaptation

technique is essential in order to reduce parametric uncertainty and maintain the

accuracy of the controller.
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Chapter 5

Nonlinear Adaptive Control Design

As indicated by the results in Chapter 3 and 4, precise attitude tracking

without the expense of high feedback gains can only be accomplished when the

control law is dependent on the model structure. However, as is often the case,

spacecraft mass properties may not be completely determined in the course of pre-

flight testing. This results in dynamic uncertainty with regard to attitude controller

performance as the inertia parameters cannot be reliably determined. Unless uncer-

tainty in the inertia parameters is minimized with some estimation or adaptation

technique, the controller might become inaccurate or unstable.

For applications where there is sufficient time for estimation before control,

it might be preferable to perform the estimation off-line, that is, before system oper-

ation. Several estimation techniques exist in the literature including minimum vari-

ance, least squares, batch estimation and sequential batch estimation31. However, if

there is insufficient time for estimation before control as is the case in nanosatellite

reference attitude tracking application, on-line estimation or adaptation is a more

suitable technique.

In this chapter, an adaptive controller is designed to maintain consistent

performance of the nanosatellite with high uncertainty in its inertia parameters. An

adaptive controller is essentially a control law coupled with an online estimator. The
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online estimator updates the inertia values based on measured state signals. The

particular choice of adaptive control is based on the results of Seo and Akella11 which

delivers superior performance compared to conventional adaptive control techniques.

5.1 Introduction to Adaptive Control

Adaptive control adjusts to unknown system parameters by updating its

controller parameters online using measured signals, and does so while maintaining

stability and consistent performance of the system. Conventional adaptive control

can be classified into two main categories. One is the direct adaptive control method,

also known as model reference adaptive control (MRAC). The other is indirect adap-

tive control, or the so-called self-tuning regulator. A third approach to designing

adaptive controllers is called immersion and invariance (I&I) control10.

5.1.1 Direct Adaptive Control

Direct adaptive control, or MRAC, is schematically represented by Figure

5.1. MRAC consists of a single unit composed of the plant, reference model, feedback

control law, and an adaptation law. The unit performs control parameter adaptation

as well as system control simultaneously. The plant has a known dynamic model

with uncertain or unknown parameters. The reference model captures the ideal

response of the adaptive control system, thereby dictating the goal of the adaptation

mechanism. The controller is parameterized in terms of adjustable parameters which

are updated using the adaptation algorithm.

The design process begins with a deterministic control design that delivers
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Figure 5.1: A model reference adaptive control system.12,13

perfect tracking capability. That is, when the plant parameters are assumed to be

exactly known, the controller parameters, φ∗, should produce the ideal response

(identical to the reference model). When the plant parameters are not known, the

adaptation mechanism updates the controller parameters, φ∗, in such a way that

the tracking error asymptotically converges to zero. The controller parameters are

computed from the estimated plant parameters as if they were the true plant param-

eters. Essentially, the structure of the control when parameters are known is used to

construct an equivalent adaptive controller when parameters are unknown by using

their estimated values. This is known as the certainty equivalence principle. Thus,

the adaptation mechanism is driven by the tracking error and is unconcerned with

the plant parameter estimation error. Whether the parameter estimate converges

to its true values and how quickly this occurs depends entirely on the richness of

the reference signal. If the reference signal satisfies suitable persistence of excitation

conditions, that means it has certain variation and does not decay to a constant
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value, then the parameter estimates have better convergence performance.

A simple example is provided here to illustrate the design and analysis of the

MRAC scheme. Consider the following scalar, linear, time-invariant plant modified

from

ẋ(t) = θ∗x(t) + bu(t); x(0) = x0 (5.1)

where u(t) is the control variable scaled by an unknown non-zero constant b, x(t)

is the measured output, and θ∗ is the constant unknown parameter of the plant.

Assume that the sign of b is known. Consider the ideal closed-loop system response

given by the reference model

ẋm(t) = −θmxm(t) + bmum(t), (5.2)

where θm > 0 and bm are chosen to specify the system performance specifications.

The signal um(t) in Equation (5.2) is the bounded reference input, while the reference

model output xm(t) is the ideal output of the control system. The control objective

is to design u(t) so that x(t) asymptotically converges to xm(t). Introduce the

tracking error signal e(t) as

e(t) = x(t)− xm(t). (5.3)

If the plant parameters θ∗ and b are known exactly, the control input u(t) that

stabilizes the system is given by

u(t) = −θ
∗

b
x(t) +

1
b

(−θmx(t) + bmum(t)) . (5.4)

The control input in Equation (5.4) may be written as

u(t) = φ∗1x(t) + φ∗2 (−θmx(t) + bmum(t)) , (5.5)
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where the φ∗1 and φ∗2 are the known controller parameters defined by

φ∗1 = −θ
∗

b
and φ∗2 =

1
b
. (5.6)

If the control parameters are unknown (due to θ∗ and b being unknown), then the

adaptive controller is written in terms of their parameter estimates φ̂1(t) and φ̂2(t).

Similar to the known case, the adaptive controller has the structure

ua(t) = φ̂1(t)x(t) + φ̂2(t) (−θmx(t) + bmum(t)) . (5.7)

The update for the estimates are selected using the gradient estimation law13

˙̂
φ1 = −λ1x(t)sgn(b)e(t), (5.8)

˙̂
φ2 = −λ2 (−θmx(t) + bmum(t)) sgn(b)e(t). (5.9)

where λ1 and λ2 are strictly positive constant adaptation gains. Now, define the

estimation error vectors φ̃1 and φ̃2 as

φ̃1 = φ̂1 − φ∗1, (5.10)

φ̃2 = φ̂2 − φ∗2. (5.11)

Note that since φ∗1 and φ∗2 are constant parameters, ˙̃
φ1 = ˙̂

φ1 and likewise ˙̃
φ2 = ˙̂

φ2. In

order to analyze the stability of the control law described by Equation (5.7), consider

the scalar function in terms of the tracking error signal e(t) and the estimation error

vectors φ̃1 and φ̃2

V =
1
2
e2 +

|b|
2λ1

φ̃2
1 +

|b|
2λ2

φ̃2
2. (5.12)
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Taking the derivative of V along system trajectories and substituting Equation (5.1),

Equation (5.2), and Equation (5.7) yields

V̇ = eė+
|b|
λ1
φ̃1

˙̂
φ1 +

|b|
λ2
φ̃2

˙̂
φ2

= e(ẋ− ẋm) +
|b|
λ1
φ̃1

˙̂
φ1 +

|b|
λ2
φ̃2

˙̂
φ2

= e (θ∗x+ bua + θmxm − bmum) +
|b|
λ1
φ̃1

˙̂
φ1 +

|b|
λ2
φ̃2

˙̂
φ2

= e
(
θ∗x+ b

(
φ̂1x+ φ̂2 (−θmx+ bmum)

)
+ θmxm − bmum

)
+
|b|
λ1
φ̃1

˙̂
φ1 +

|b|
λ2
φ̃2

˙̂
φ2.

(5.13)

By adding and subtracting the terms eb (−φ∗1x− φ∗2(−θmx+ bmum)) to Equation

(5.13) and performing minor algebraic manipulations and term cancellations, one

obtains

V̇ = e
(
−θm(x− xm) + bφ̃1x+ bφ̃2(−θmx+ bmum)

)
+

|b|
λ1
φ̃1

˙̂
φ1 +

|b|
λ2
φ̃2

˙̂
φ2

= e
(
−θme+ bφ̃1x+ bφ̃2(−θmx+ bmum)

)
+
|b|
λ1
φ̃1

˙̂
φ1 +

|b|
λ2
φ̃2

˙̂
φ2.

(5.14)

Substituting Equation (5.8) and Equation (5.9) into Equation (5.14) results in term

cancellations, which yields a negative semi-definite function derivative

V̇ = −θme2. (5.15)

Using Lyapunov-like analysis, one can easily show that since V ≥ 0 and V̇ ≤ 0, then

limt→∞ V (t) = V∞ exists and is finite. Since V̇ ≤ 0 implies that V (t) ≤ V (0), every

signal that comprises V (t) is bounded, that is, e ∈ L∞, φ̃1 ∈ L∞, and φ̃1 ∈ L∞.

In addition, e ∈ L2 ∩ L∞ since
∫∞

0 V (τ) dτ = V∞ − V (0) and ė ∈ L∞ since ẋ and
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ẋm are defined as bounded signals. Then using Barbalat’s lemma in Chapter 3, it

follows that the trajectory error vector e → 0 as t → 0, which implies that x(t)

adequately tracks the reference model trajectory xm(t).

By the application of Barbalat’s lemma to Equation (5.15), it is shown that

the tracking error e(t) approaches zero asymptotically. As for the parameter esti-

mation error φ̃1 and φ̃2, the only guarantee that has been provided so far is that

the signals φ̃1 and φ̃2 are bounded. Naturally, the convergence of parameter esti-

mates to their true values is desired so that, as the system reaches steady-state, its

closed-loop transfer function truly matches that of the reference model27. In or-

der to acheive zero parameter estimation error, the underlying reference trajectory,

um(t), must satisfy an important condition known as persistence of excitation. This

property and its central role in the analysis of system identification and adaptive

control systems is discussed in the next section.

5.1.2 Persistence of Excitation

The features of a reference signal play an important role in parameter con-

vergence. For the plant described by Equation (5.1) tracking the reference model

in Equation (5.2), the estimated signals will converge to their true values, that is

φ̂1 → φ∗1 and φ̂2 → φ∗2, provided that the underlying reference signal um(t) is com-

plex enough to produce rich excitation in the system for high quality estimation

data. The reference signal that is able to uniquely identify the parameters of a sys-

tem is said to be persistently exciting. Specifically, um(t) is said to be persistently
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exciting if there exist positive constants α, and T such that∫ t+T

t
u2
m(τ) dτ ≥ α, ∀ t ≥ 0. (5.16)

The definition of persistence of excitation given in Equation (5.16) can be generalized

for a vector signal um as13

∫ t+T

t
um(τ)uTm(τ) dτ ≥ αI, ∀ t ≥ 0, (5.17)

where I is the 3× 3 identity matrix.

The importance of persistence of excitation in parameter identification is

demonstrated by simulating the model reference adaptive controller in the previous

example. Let a stable first-order plant be described as

ẋ(t) = −2x(t) + 3u(t); x(0) = x0, (5.18)

where the unknown plant parameters are θ∗ = −2 and b = 3. The plant is to be

controlled by the model reference adaptive control derived in the previous section.

The reference model is given by

ẋm(t) = −4xm(t) + 5um(t), (5.19)

where the θm = 4 and bm = 5. The adaptation gains λ1 and λ2 are chosen to be

equal to 4 and 3 respectively. Initial conditions for the plant and reference model

are set to zero, and no a priori knowledge is assumed for the unknown control

parameters (φ̂1(0) = φ̂2(0) = 0).

The system is simulated using two types of signals for the reference input:
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• um(t) = 1. The system response to this signal is illustrated in Figure 5.2. The

tracking error is driven to zero but only one parameter converges to its true

value.

• um(t) = sin (6t). The system response to this signal is illustrated in Figure

5.3. The tracking error and the parameter estimation error for both signals

converges to zero.

(a) (b)

Figure 5.2: Simulation of the model reference adaptive controller with constant
reference input um(t) = 1. Reference trajectory in (a) and ideal parameter values
in (b) are indicated by dashed lines.

It is clear in the above demonstration that the reference input characterized

by the sinusoidal function is the PE signal for this linear time invariant system. The

constant reference input is very simple to track which leads to controller parame-

ters that are non-ideal but fit the input-output relation and consequently drive the

tracking error to zero. In other words, the estimated parameters are not the ideal

values but they get the job done. From these observations, one can conclude that

the constant reference input is a non-PE signal for the system as it does not achieve
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(a) (b)

Figure 5.3: Simulation of the model reference adaptive controller with non-constant
reference input um(t) = sin (6t). Reference trajectory in (a) and ideal parameter
values in (b) are indicated by dashed lines.

unique identification of the estimated parameters.

In general, for a linear system, estimation of m parameters with zero esti-

mation error necessitates at least m/2 sinusoids in the perturbing (reference) signal.

For a nonlinear system this relation does not hold as nonlinearities may naturally

introduce more frequencies into the system that drive the estimates to their true or

ideal values13,14.

5.1.3 Indirect Adaptive Control

An indirect adaptive control system is composed of two loops: an inner loop

that consists of the plant and a feedback controller, and an outer loop that adjusts

the control parameters based on the estimates provided by an online estimation

technique. The operation of an indirect adaptive controller (also known as self-

tuning controller) is illustrated by Figure 5.4.
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Figure 5.4: An indirect adaptive control system.12,13

At each time t, the estimator calculates the plant parameter estimates, θ̂,

by essentially performing a linear fit of past values of the input u and plant output

y. The estimated parameters are fed into the controller, which accepts the esti-

mates as truth and computes the corresponding control torques for that sampled

time. Hence, the certainty equivalence principle is applied in both direct and indi-

rect adaptive control. Certainty equivalence requires that the unknown parameters

appear linearly in the governing equations, that is, the governing equations must

have affine parameterization.

The control torques computed in this way are used to produce new plant

output that is in turn used to update the current parameter estimate. The cycle

repeats itself for each sampled time. In this way, indirect adaptive control differs

from MRAC in that the unknown plant parameter is estimated explicitly rather

than through its implicit relation to controller parameters. As with MRAC, the

convergence of estimation parameters to their true values depends heavily on It is

also possible to adjust the loops so that the updates for the parameter estimates
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occur at a different frequency from the control.

A simple example is shown here to demonstrate construction of an adaptive

control law. Consider the following scalar non-autonomous nonlinear system

ẋ(t) = θ∗f(x, t) + u(t); x(0) = x0, (5.20)

where x(t) ∈ R, f(x, t) is a nonlinear and non-autonomous function, θ∗ is a constant

parameter of the system, and u(t) is the control signal to be determined in terms

of the measured state signal. The control objective is to design u(t) such that the

state x(t) can track a prescribed reference signal r(t) that is assumed to be smooth,

bounded, and have bounded derivatives. Thus, a control input u(t) must be obtained

so that

lim
t→∞

[x(t)− r(t)] = 0, (5.21)

while ensuring that x(t) remains bounded. Define a tracking error signal e(t) as

e(t) = x(t)− r(t). (5.22)

The tracking error dynamics can be written as

ė(t) = ẋ(t)− ṙ(t) = θ∗f(x, t) + u− ṙ(t). (5.23)

To begin with, it is assumed that the plant parameter θ∗ is exactly known. Using

feedback linearization, u(t) is chosen as

u(t) = −θ∗f(x, t) + ṙ(t) + ν, (5.24)

with ν being an ”equivalent input” to be specified, the resulting error dynamics is

linear

ė(t) = ν. (5.25)
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Choosing ν as

ν = −ke(t), (5.26)

with k being a positive scalar constant, the resulting stable closed loop dynamics is

ė(t) = −ke(t). (5.27)

The solution to the above equation is

e(t) = e−kte(0), (5.28)

which implies that e(t)→ 0 as t→∞.

Now, consider the case when the plant parameter θ∗ is unknown. Using

the certainty equivalence principle, the structure of the controller for the known

case is used to synthesize an adaptive control law for the unknown parameters by

implementing an online estimation technique. Let θ̂(t) denote the time-varying

estimate of the unknown parameter θ∗. The corresponding parameter estimation

error θ̃ is given by

θ̃(t) = θ̂(t)− θ∗. (5.29)

The adaptive control is

u(t) = −θ̂f(x, t) + ṙ(t)− ke(t), (5.30)

which results in the closed loop dynamics

e(t) = −(θ̂ − θ∗)f(x, t)− ke(t). (5.31)
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It remains to find an update law for the parameter estimate θ̂(t). Consider

the following radially unbounded, decrescent scalar function

V (e, θ̃) =
1
2
e2 +

1
2
θ̃2. (5.32)

The derivative of the function along system trajectories is

V̇ = eė+ θ̃
˙̂
θ

= −ke2 − θ̃ef(x, t) + θ̃
˙̂
θ

= −ke2 − θ̃(ef(x, t)− ˙̂
θ),

(5.33)

where the substitution ˙̃
θ = ˙̂

θ is valid since θ∗ is assumed to be a constant parameter

in Equation (5.29). If ˙̂
θ is chosen as

˙̂
θ = ef(x, t), (5.34)

then V̇ becomes

V̇ = −ke2, (5.35)

which is negative semi-definite. Then using Lyapunov-like analysis it can be easily

shown that e ∈ L2∩L1 and from the dynamic equation, ẋ is also uniformly bounded.

It follows from Barbalat’s lemma that e(t)→ 0 as t→∞.

Thus, the nonlinear system

ė(t) = ẋ(t)− ṙ(t) = θ∗f(x, t) + u− ṙ(t), (5.36)

with unknown parameter θ∗ is stabilized by the adaptive control law

ua(t) = −θ̂f(x, t) + ṙ(t)− ke(t), (5.37)

˙̂
θ = ef(x, t) (5.38)

wherein k > 0 is any scalar constant.
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5.1.4 Non-Certainty Equivalence Adaptive Control

Adaptive control methods based on the certainty equivalence (CE) principle

have certain limiting factors.

1. The adaptation law does not seek to minimize the plant parameter estimation

error but rather is driven by the tracking error of the system. Parameter

updates stop as soon as tracking errors have converged to zero even if the

plant parameter estimates are not at the true values. Conversely, parameter

update continues even when the parameters have converged to true values,

thereby causing the parameter estimates to drift from truth.

2. Adaptive control system based on the CE principle can never recover the ideal

system dynamics unless the estimated parameters converge to their determin-

istic (no uncertainty) values. However, this can only occur if the reference

signal satisfies suitable persistence of excitation conditions11 that ensure fast

convergence rates for parameter estimates. Practical considerations don’t al-

ways guarantee reference signals that will satisfy PE constraints. Thus, there

is always a residual disturbance in the adaptive control system that might

result in a non-smooth control history profile.

Non-certainty equivalence adaptive control, based on immersion and invari-

ance adaptive control theory10, is a recent formulation by Seo and Akella11 that

overcomes the performance limitations arising from CE-based methods. One of the

main advantages of non-CE adaptive control is that it recovers the deterministic

closed loop system performance without imposing any additional PE constraints on

107



the reference signal. Another novel contribution of this controller is that, unlike

conventional CE-based adaptive methods, once the parameter estimates lock on to

the true parameter values, the adaptation mechanism automatically stops. The non-

CE adaptive controller does not guarantee parameter estimation error convergence;

rather, it ensures that if the parameters happen to coincide with their true values,

they will remain there for the remainder of the system operation.

5.2 Non-CE Adaptive Control Design for Spacecraft Tracking

In previous chapters, reference tracking controllers for a nanosatellite were

developed using Lyapunov stability theory. The tracking controllers showed per-

formance degradation due to small perturbations in the inertia parameters of the

system. In this section, a novel form of adaptive control known as noncertainty

equivalence adaptive control is implemented to handle the unknown inertia parame-

ters by combining an online estimation technique that estimates the unknown values.

Recall the dynamics of the error angular velocity

ω̇e = J−1 (u− [ω×]Jω − Jφ) , (5.39)

where

φ(t) = C(qe)ω̇r − [ωe×]C(qe)ωr. (5.40)

Upon examining Equation (5.41), one recognizes that certain terms in the dynamical

expression have a nonlinear dependence on J. Recall that in the estimation of

unknown plant parameters, the principle of certainty equivalence is applicable only

when the unknown parameters appear linearly in the governing equation. It is
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precisely due to this nonlinear dependence on the unknown inertia parameters that

non-certainty equivalence adaptive control is implemented for the given problem11.

In its current state, Equation (5.41) does not have anintegrable form. There-

fore, some new terms are added and simultaneously subtracted while preserving the

original dynamics of Equation (5.41)11

ω̇e = −kpβqev
− kpq̇ev

− kvωe︸ ︷︷ ︸
subtracted term

+ J−1

u− [ω×]Jω − Jφ+ J
(
kpβqev

+ kpq̇ev
+ kvωe

)︸ ︷︷ ︸
added term

 ,

(5.41)

for any kp, kv > 0 and β = kp + kv. Later, it will be evident that the added terms

make the ω̇e equation perfectly integrable. Note that the newly added term is

linearly parameterized with respect to J.

Next, a regression matrix, W(·) ∈ R3×6 is formed that has the structure,

Wθ∗ = [ω×]Jω + Jφ− J
(
kpβqev

+ kpq̇ev
+ kvωe

)
, (5.42)

where θ∗ is described similarly to Equation (3.49). The entries of W are computed

as

W = −[ω×]L(ω) + L ([ω×]C(qe)ωr −C(qe)ω̇r)

+ L (kvωe + kpq̇e + βkpqe) ,
(5.43)

where L : R3 → R3×6 is the linear operator defined in Section 3.5.1. Equation (5.41)

can now be written in terms of the regression matrix as follows:

ω̇e = −kpβqev
− kpq̇ev

− kvωe + J−1 (u−Wθ∗) . (5.44)
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As shown in Chapter 4, filter construction is used to transform the tracking

error dynamics by filtering the signals ωe and W through stable linear filters having

the following first-order dynamics

ω̇ef
= −βωef

+ ωe, (5.45)

Ẇf = −βWf + W, (5.46)

where Equation (5.45) is a vector quantity whereas Equation (5.46) is a matrix quan-

tity. In addition to the filter signals defined above, a third signal uf is introduced

with similar dynamics

u̇f = −βuf + u. (5.47)

As shown previously in Chapter 4, the transformed dynamics have the same struc-

ture as Equation (5.44). Differentiating both sides of the filter dynamics in Equation

(5.45) and making appropriate substitutions of Equation (5.44) yields

ω̈ef
= −βω̇ef

+ ω̇e,

= −βω̇ef
− kpβqev

− kpq̇ev
− kvωe + J−1 (u−Wθ∗) .

(5.48)

The signals ωe, u, and W are rewritten in terms of their filtered counterparts as

ω̈ef
= −βω̇ef

− kpβqev
− kpq̇ev

− kv
(
ω̇ef

+ βωef

)
+ J−1

(
u̇f + βuf − Ẇfθ

∗ + βWfθ
∗). (5.49)

Upon examining the above expression, note that every term is scaled by the constant

β and is accompanied by its corresponding derivative. The expression is rearranged

so that the derivatives are on the left hand side of the equation. Then, Equation

(5.49) can be written as a perfect differential, that is,

d

dt

[
ω̇ef

+ kpqev
+ kvωef

− J−1uf + J−1Wfθ
∗
]

= −β
(
ω̇ef

+ kpqev
+ kvωef

− J−1uf + J−1Wfθ
∗) . (5.50)

110



The algebraic manipulations performed by adding and subtracting terms earlier in

Equation (5.41) is what allows one to create the perfectly differentiable form of

Equation (5.50). The solution to Equation (5.50) is given by

ω̇ef
+ kpqev

+ kvωef
− J−1 (uf −Wfθ

∗) = εe−βt, (5.51)

where ε encompasses the initial conditions of all integrable terms

ε = ω̇ef
(0) + kpqev

(0) + kvωef
(0)− J−1 (uf (0)−Wf (0)θ∗) . (5.52)

The initial conditions are chosen such that ε = 0. This can be accomplished if

Wf (0) = 0 and

ω̇ef
(0) + kpqev

(0) + kvωef
(0) = 0. (5.53)

The above condition is achieved by adding and subtracting the term kpωef
(0) and

recognizing that β = kp + kv, that is,

ω̇ef
(0) + βωef

(0) + kpqev
(0)− kpωef

(0) = 0. (5.54)

The first two terms in the above equation are recognized as ωe(0) from the filter

dynamics. Thus, Equation (5.54) can be simplified to

ωef
(0) =

ωe(0) + kpqev
(0)

kp
. (5.55)

Thus setting ε = 0, Equation (5.51) is expressed as

ω̇ef
= −kpqev

− kvωef
+ J−1 [uf −Wfθ

∗] . (5.56)

The parameter estimation error, θ̃, is given by

θ̃ = θ̂ − θ∗, (5.57)
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where θ∗ is the unknown constant parameter, that is, the six unique terms of the

positive definite spacecraft inertia matrix, and θ̂ is the estimated parameter. If the

certainty equivalence principle is employed, the corresponding adaptive control law

would be stated as uf = Wf θ̂, where the estimated parameters would be treated

as the true values and an estimation law would be found to continuously update the

parameter estimates14.

However, in this study, the non-certainty equivalence adaptive control ap-

proach is employed. An additional signal, δ(t) ∈ R6, is introduced that estimates

the unknown inertia in conjunction with θ̂. In other words, the online estimates

for the unknown θ∗ vector are now generated by the combined signal θ̂ + δ. The

control law can now be stated as

uf = Wf

(
θ̂ + δ

)
, (5.58)

where δ(t) is chosen as

δ = Wf
Tωef

. (5.59)

Combining Equation (5.56) and Equation (5.58), the dynamical equation for the

filter signal, ωef
is given by

ω̇ef
= −kpqev

− kvωef
+ J−1Wf

(
θ̂ + δ − θ∗

)
. (5.60)

In Equation (5.60), let z = θ̂+ δ−θ∗, which now plays the role of the estimator for

the adaptive control problem as it gives the difference between the estimates, θ̂+δ,
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and the true values, θ∗. The dynamical equation for z is given by

ż = ˙̂
θ + δ̇ − θ̇∗,

= ˙̂
θ + Ẇ

T
f ωef

+ Wf
T ω̇ef

,

= ˙̂
θ + (−βWf + W)T ωef

+ Wf
T
(
−kpqev

− kvωef
+ J−1Wfz

)
.

(5.61)

The parameter estimate update is chosen as a function of all the terms that

are known, that is, terms independent of J in Equation (5.61)

˙̂
θ = (βWf −W)T ωef

+ Wf
T
(
kpqev

+ kvωef

)
. (5.62)

Then, the remaining term in Equation 5.61 is a function of the unknown inertia

matrix, J, and is therefore the update for the estimator, z. That is,

ż = −Wf
TJ−1Wfz. (5.63)

Finally, it remains to extract the actual controller u from the filtered control signal

uf . This can be done simply through the substitution

u = u̇f + βuf , (5.64)

which can be expanded to form

u = −Ẇf

(
θ̂ + δ

)
−Wf

( ˙̂
θ + δ̇

)
+ βuf . (5.65)

The proof for stability properties is obtained through Lyapunov-like analysis.

5.2.1 Stability Analysis

The stability results are obtained from Seo and Akella11. Consider the

following Lyapunov candidate function

V =
1
2
ωTef

ωef
+
[
qTev

qev
+ (q0e − 1)2

]
+
λ

2
zT z, (5.66)
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where λ > 0. The derivative of V is given by

V̇ = ωTef
˙ωef
− 2 ˙q0e + λzT ż,

= ωTef

(
−kpqev

− kvωef
+ J−1Wfz

)
− 2

(
−1

2
qTev
ωe

)
+ λzT

(
−Wf

TJ−1Wfz
)
,

= ωTef

(
−kpqev

− kvωef

)
+ qTev

(
ω̇ef

+ βωef

)
− λzTWf

TJ−1Wfz

+ ωTef
J−1Wfz,

= ωTef

(
−kpqev

− kvωef

)
+ qTev

(
−kpqev

− kvωef
+ J−1Wfz + βωef

)
− λzTWf

TJ−1Wfz + ωTef
J−1Wfz,

= −kp‖qev
‖2 − kv‖ωef

‖2 + (β − kv − kp) qTev
ωef
− λzTWf

TJ−1Wfz

+ qTev
J−1Wfz + ωTef

J−1Wfz,

= −kp‖qev
‖2 − kv‖ωef

‖2 − λ‖J−
1
2 Wfz‖2 + qTev

J−1Wfz

+ ωTef
J−1Wfz.

(5.67)

In the above equation, it can be seen that

zTWf
TJ−1Wfz ≤ −

(
j−1
)

min
‖Wfz‖2, (5.68)

where
(
j−1
)

min
is the minimum eigenvalue of J−1. It can be also be stated as

(
j−1
)

min
=

1
jmax

, (5.69)

where jmax is the maximum eigenvalue of J. Thus,

zTWf
TJ−1Wfz ≤

−1
jmax

‖Wfz‖2. (5.70)
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Similarly,

qTev
J−1Wfz ≤ 1

jmin
‖qev
‖‖Wfz‖, (5.71a)

ωTef
J−1Wfz ≤ 1

jmin
‖ωef

‖‖Wfz‖. (5.71b)

The time derivative of the Lyapunov candidate function can now be expressed as

V̇ ≤ −kp‖qev
‖2 − kv‖ωef

‖2 − λ

jmax
‖Wfz‖2

+
1
jmin
‖qev
‖‖Wfz‖+

1
jmin
‖ωef

‖‖Wfz‖.
(5.72)

Using completion of squares and rearranging terms, Equation 5.72 can be written

as

V̇ ≤ −kp
2
‖qev
‖2 − kv

2
‖ωef

‖2 − λ

2jmax
‖Wfz‖2

−
(

λ

2jmax
− 1

2kpj2
min

+
1

2kvj2
min

)
‖Wfz‖2.

(5.73)

For stability, the coefficient of the last term must satisfy the following condition

λ

2jmax
− 1

2kpj2
min

+
1

2kvj2
min

> 0. (5.74)

Using the above equation, λ must satisfy the condition

λ >
jmax

j2
min

kp + kv
kpkv

> 0. (5.75)

Choosing λ > 0 that satisfies the above condition will lead to ωef
,qev

, z ∈ L∞,qev
∈

L2∩L∞,ωef
∈ L2∩L∞,Wfz ∈ L2∩L∞,

(
q̇ev

, ω̇ef
, ddt (Wfz)

)
∈ L∞, which permit

the following conclusion

lim
t→∞

 qe(t)
ωef

(t)
Wfz(t)

 = 0. (5.76)

115



5.3 Design Examples

The vector form of the unknown FASTRAC inertia parameters is θ∗ =[
0.656, 0, 0, 0.656, 0, 0.986

]T . The initial value of the parameter estimate

is assumed to be at 30% deviation from the true value, that is,

θ̂(0) + δ(0) =
[

0.8528, 0, 0, 0.8528, 0, 1.2818
]T
. (5.77)

The spacecraft initial conditions are

q(0) =
[

0.9487, 0.1826, 0.1826, 0.18268
]T
,

ω(0) =
[

0, 0, 0
]T rad/s,

and the reference initial quaternion is

qr(0) =
[

1, 0, 0, 0
]T
. (5.78)

The reference angular velocity profile is updated at each simulation time. In addi-

tion, the initial filter-states are as follows11

Wf (0) = 0, ωf (0) =
ωe(0) + kpqve

(0)
kp

.

The control gains are chosen to be kv = 0.5, kp = 0.5, and γ = 250. The simulations

are performed for the PE and non-PE reference trajectories of the system. For each

case, the ideal case performance is also plotted. The ideal case is when there is no

uncertainty in the inertia parameters.
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PE Trajectory

First, the PE trajectory is considered, where the reference angular velocity

profile is generated by

ωr = 0.02
[

cos(πt), cos(2πt), cos(3πt)
]T rad/s. (5.79)

The angular velocity and quaternion errors converge to zero, although the conver-

gence is slower than the ideal case. The three inertia estimates converge to their true

values. The control torque norms remain well below the total saturation constraint

of approximately 1 N ·m.
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(a) Norm of Angular velocity error vector ‖ωe‖

(b) Norm of quaternion error vector ‖qev
‖

Figure 5.5
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(c) Norm of control vector ‖u‖

(d) Estimates for principle inertia parameters

Figure 5.5
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(e) Norm of parameter estimation error z

Figure 5.5: Non-CE adaptive control law simulation for a PE reference trajectory.

Non-PE Trajectory

The second set of simulations is performed for a non-PE trajectory with

angular velocity profile given by

ωr = 0.1 cos(t)(1− e0.01t2) + (0.08π + 0.006 sin(t))te−0.01t2
[

1 1 1
]T rad/s.

(5.80)

The same initial controller and estimator gain values as the PE trajectory are used.

Figures 5.6a and 5.6b illustrated the performance of the error states when tracking

the non-PE reference trajectory. The angular velocity and quaternion errors con-

verge to zero and display closed-loop performance on par with the ideal case. As

expected, the three inertia estimates do not converge to their true values as the

underlying reference trajectory does not satisfy the PE conditions. This can be seen

120



in Figures 5.6d and 5.6e. As in the PE case, the control torque norms stay below

the total saturation constraint of approximately 1 N ·m.
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(a) Norm of Angular velocity error vector ‖ωe‖

(b) Norm of quaternion error vector ‖qev
‖

Figure 5.6
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(c) Norm of control vector ‖u‖

(d) Estimates for principle inertia parameters.

Figure 5.6
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(e) Norm of parameter estimation error z

Figure 5.6: Non-CE adaptive control law simulation for a non-PE reference trajec-
tory.

5.4 Summary

A noncertainty-equivalence adaptive control law is employed for spacecraft

attitude tracking maneuvers in the presence of arbitrarily large inertia matrix un-

certainties. Global stability and asymptotic convergence of angular velocity and

quaternion errors to zero is shown using Lyapunov-like analysis. Numerical simula-

tions for a PE reference trajectory demonstrate that the non-CE adaptive controller

delivers fast convergence rates of tracking errors and convergence of parameter es-

timates to their true values. For a non-PE reference trajectory, the tracking errors

converge to zero with fast convergence rate, although the parameter estimation er-

rors do not converge to zero. The noncertainty-equivalence adaptive control delivers
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precise tracking in the presence of inertia matrix uncertainties and is a far better

alternative to non-adaptive controllers with mild robustness to inertia uncertainty.

Control torque limits are not incorporated into the adaptive control regime due

to unpredictable effects on the adaptation mechanism. An adaptation mechanism

that explicitly accounts for control saturation is recommended as a future research

direction.
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Chapter 6

Conclusions

Often, it is the case that spacecraft mass properties are not completely de-

termined in the course of pre-flight testing. Among other things, this results in dy-

namic uncertainty with regard to attitude controller performance in operation. In

this study, several control regimes are analyzed for nanosatellite attitude and angu-

lar rate tracking in the presence of arbitrarily large inertia matrix uncertainty. The

tracking controllers are designed using the University of Texas student nanosatel-

lite, Texas 2 Step, as the experimental platform. The Texas 2 Step mission is to

demonstrate autonomous rendezvous and proximity operations. The spacecraft is

assumed to be equipped with cold-gas thruster actuation system that enables full

three-axis control; that is, unrestricted control of rotation, precession and nutation

motions.

A tracking controller is formulated using partial feedback linearization and

Lyapunov’s indirect method. In addition, a nonlinear tracking control law based

on Lyapunov’s direct method is developed. Control limits are incorporated into the

non-adaptive controller formulations using a hyperbolic tangent saturation function.

Numerical simulations are provided to demonstrate the performance of the unsat-

urated and saturated control design with and without uncertainties in the inertia

parameter. Both control algorithms are robust to small inertia perturbations but
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the performance subsequently degrades with large inertia uncertainty.

An adaptive control approach known as non-certainty equivalence adaptive

control is implemented to maintain consistent performance of the nanosatellite in

the face of inertia uncertainty of arbitrary magnitude. The adaptive control de-

livers high accuracy closed loop system performance and is a far better alterna-

tive to non-adaptive controllers that are only mildly robust to inertia uncertainty.

Control torque limits are not incorporated into the adaptive control regime due

to unpredictable effects on the adaptation mechanism. An adaptation mechanism

that explicitly accounts for control saturation is recommended as a future research

direction.
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