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PURDUE

Formations Near the Libration Points

<
P9

N\ Deputy S/C
 (Orbit Chief Vehicle)

Moon

Chief S/C Path
(Lissajous Orbit)

X (inertial)

EPHEM = Sun + Earth + Moon Motion From Ephemeris w/ SRP
CR3BP = Sun + Earth/Moon barycenter Motion Assumed Circular w/o SRP
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PURDUE

Formation Keeping via
Nonlinear Optimal Control

* Incorporate nonlinearities into control design process

« Allows for the addition of control and path constraints
— Upper and lower bounds on thrust output
— Specifications on relative path error
— Allow for thruster on-off times while min. the impact on the path

e Min. # of assumptions = better assessment of feasibility
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PURDUE

Optimal Control Solution

 Method #1: Partial Discretization
— Divide Trajectory into Segments and Nodes
— Numerically integrate node states
— Impulsive Control at Nodes (or Constant Thrust Between Nodes)
— Numerically integrated gradients
— Solve Using Subspace Trust Region Method

 Method #2: Transcription and Nonlinear Programming
— Divide Trajectory Into Segments and Nodes
— Solve using Sparse Optimal Control Software (SOCS)

Use Hermite-Simpson discretization (others available)

Jacobian and Hessian computed via Sparse Finite Differencing.

Estimate cost index to second order
Use SQP algorithm
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PURDUE

ldentification of Startup Solution

» Possible Startup Solution Options

— Non-Natural Arcs - IFL/OFL Nonlinear Control
» Specify some nominal motion
* Apply IFL/OFL control to achieve desired nominal
» Use results as initial guess to optimal control process with t(t) =0

— Natural Arcs = Floquet Analysis of Chief S/C Linearized Equations
» Deputy dynamics modeled as a perturbation relative to chief path
* Floquet controller applied to establish natural relative formation
e Transition into NL system via 2-level corrector
 Use results as initial guess to optimal control process with t(t)=0
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PURDUE
Method #1: Optimal Control

by Partial Discretization
minJ =¢(%y )+ L(t, %, 0;) = 4(% )+ Jj[(t,Y,U)dt

Subject to:

Equivalent Representation as Augmented Nonlinear System:

min j :¢(YN )+Xn+1 (tN ) :¢Z()~(N)
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PURDUE

Euler-Lagrange Optimality Conditions
(Based on Calculus of Variations)

H, =2],.F(t;.%,,T;)
L - oH. . OF | 0p(X
Condition#1: A; =—>+=4,,,— — A, = #(%) 1
OX; OX; OXy
L _ oH. .. oF
Condition#2: 0=—=~=1;,,—; j=0,...,N-1
ou, ou,
. oF, oF, |
Identify — and —* from augmented linear system.
X, ou,

~
=
=
=
=
==}
=
3
R
-
)
V-4
-
-
-
-
—
=
A



o

PURDUE

|dentification of Gradients
From the Augmented Linearized Model

Nonlinear System:

Linear System:

AW O [0
Al)=] oL S B(t)=| I,
| X o




PURDUE

Solution to Linearized Equations

t

ty

.
~ ~

(D(t’to) = A(t)d)(t’to); d)(to’to) = I,
Relation to Gradients in E-L Optimality Conditions:

+ -CD(t. ,T)B(Z')5U(T)d2’
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PURDUE

Control Gradient for Impulsive Control
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Control Gradient for Constant Thrust Arcs

5751
5Xj+1=®(tj+l,tj)5ij+ d)(tj+1,f)|_5>(r)dr ou,
t |
*
ou

Only ®(z,t; ) available from numerical integration

~

Use STM properties to rewrite Z—E in terms of @ (z.t; ).
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PURDUE

Numerical Solution Process

(1) Input X, t,,, and initial guess for o.; (i=0,1,..., N 1)
(2) 1-Scalar Equation to Optimize in 3( N —1) Control Variables

Use optimizer to identify optimal U; given %
uU.

During each iteration of the optimizer, the following steps are followed:
(a) Sequence (by numerical integration) X. forward and store; 1 =1,...,N -1
(b) Evaluate cost functional, J = ¢ (%, )

(c) Evaluate A7, = 09 (%) _ Ff'“ 1}

Xy OXy

(d) Sequence i, backward and compute the search direction % I=N-1,...,1
U.

(e) J and a—l__l' used in next update of control input. (Subspace Trust Region Method)
ou.
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State Corrector vs. Nonlinear Optimal Control:
Magnitude of Radial Error
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PURDUE

State Corrector vs. Nonlinear Optimal Control:
Cost Function
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State Corrector vs. Nonlinear Optimal Control:
Impulsive Maneuver Differences
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Method #2: Nonlinear Programming

e General Nonlinear Programming (NLP) Problem
J=min(F(X)); ¢ <t(X)<t, and X, <X <X,

— Sequential Programming Solution - Algebraic System
« Approximate Lagrangian to 2"d Order

L(X)=F(X)-1"c(X)

ool 1, aloraN] o
L(x)za—y (x—x )+§(x—x ) {O_Y(G_YH‘ (x—x )
~—V — . )
Jacobian -~
. Hesslan
Matrix .
Search Matrix
Direction

« Approximate constraints as linear
* |terative solution via globalized Newton methods




PURDUE

Dynamic Optimization
via Nonlinear Programming

Divide trajectory into phases (segments)
Define objective function
For each phase, define

— Dynamic variables 7" =y®, o

— State equation y" = FOIyY (1), a% (1), %, 1

— Nonlinear constraints g <g¥y™ (), a% (1), s, 1< g,
— State Vector Limits v <y () <y,

— Control Vector Limits g <" (t)<a®

— Phase boundary conditions =~ ¥, <¥ <Y,

Approximate State Equations by Direct Transcription
Use SOCS SQP algorithm to solve
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Direct Transcription
Example: Hermite-Simpson Discretization

Given an initial guess for y a") at each node, the defect (C.) at k™ node:

_ _  _ h -
= Y = Yk _E(fk+1+4fk+1+ fk)

y(t)

where

fk,+1 f|:yk+l’ k+1’tk +_k:|

_, 1, _
Y = E(yk+l + yk)+

h =7 At

* Treat the defects as a constraint, ¢, = 0, imposed on the cost function!
» The partials of the defect equations lead to large sparse matrices.
» Use SOCS (Sparse Optimal Control Software) to ID solution.
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Sample Startup Solution:
Slowly Drifting Vertical Orbit

100 Revolutions = 18,000 days

Origin = Chief S/C
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Example 2: Continuous Optimal Control
Goal = Periodicity

(k

N,
1=2 ]
k=1""

T (0)a(t)de

Constraints: Search Space:
t®) = fixed, fork =1,...,4 710,000 km | 110,000 km
(k) . —10,000 km 10,000 km
tf :flxed, fOI‘ k :1,...,4 _10,000 km ()< 10’000 km
O=T(t(1))—T —4 m/sec ST 4 m/sec
! ! —4 m/sec 4 m/sec
0= U(t-(l) —4 misec | | 4mfsec |
Ozf(tf(k))_f(t_(kﬂ)), k=1..3 —4 m/s? 4 m/s?
| —4m/s® |<T(t)<|4m/s®
0= V(ti(l) ) _ V(tf(4) ) —4 m/s? 4 m/s’
eronauvties 8 Astronautics
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Numerical Issues

* Relative Scaling Problems
— Non-convergence
— All constraints met except for control acceleration continuity
e Source
— Small control accelerations trick the software into convergence

e Solution
— Chief S/C path pre-determined and stored using B-splines
— Internal rescaling of variables
— Use dimensional form of relative equations of motion
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Conclusions

e Direct Transcription Method

— With proper variable scaling, responds well to
dynamical sensitivity of n-body problem.

— Accuracy issues overcome through mesh refinement.

— Avallability of higher order representations may be
useful in reducing mesh refinement iterations. These
methods not currently present in SOCS.

« Partial Discretization Method
— Similar optimization scheme in some respects
— No constraints presently included in the formulation
— Solution speed hindered by sequencing
— Accuracy controlled by integrator selection
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Backups
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Distributed S/C Systems

* Generic formulation = Application Independent
— Formation Flight

* Vehicles share and exchange information to accomplish mission
— Central vehicle - Chief S/C
— Other vehicles - Deputies
— Examples
» Interferometry
» Surface Imaging
» Radar
» Geolocation

— Vehicle Rendezvous & Docking

* Resources and information may be transferred (application dependent)

— Central “chief” vehicle - not necessarily aware of the presence or activities of other
spacecraft or “deputies”.

— Deputy vehicles - perform operations on or in the vicinity of the chief
— Examples:

» Resource transfer (fuel, equipment, etc.) between vehicles

» Unmanned on-orbit servicing of satellites

» Space based threat assessment and handling




PURDUE
Relative Dynamics

(Frame Independent Formulation)

Define the mathematical model that preserves generality for all apps/systems.

Absolute Dynamical Model Relative Dynamical Model
Nonlinear System Nonlinear System
V. = T (V) X=f(¥y)=F(¥:)+T(t)
Yo = f (V) +BU(t) X =1 (¥ +%)=F(%)+u(t)
X=F(X,0,Y,)
Linear System Linear System
5% (1) = A (1) 57 (1) 5Y(t):ﬁ57(t)+i5ﬁ(t)
6, (t) = A ()8, (1) + BoT(t) ox o
= A, (t)oX(t)+Bsu(t)
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Impulsive Radial Optimal Control
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PURDUE

Radial Optimal Control:
Cost Functional
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Radial Optimal Control:
Maneuver History
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Dynamic Optimization Approach

Direct
Find a sequence of points z,,z,,...,2" such that F (z,) > F(z,)>...> F(Z').

This only requires a comparison of the objective function at each point.

Indirect

Identify the root of the necessary condition F’(z) = 0. This requires that the user
compute the derivative of the cost index and determine if it meets the specified
tolerance.

From an optimal control perspective:

Indirect Optimization — ldentify the roots of the KKT Conditions (Euler-Lagrange)
Direct Optimization — Does NOT require the explicit derivation and construction
of the necessary conditions (i.e. the adjoint equations, the control equations,

or the transversality conditions) that are required by the Euler-Lagrange equations.
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Direct vs. Indirect

If the optimality conditions are already determined by the EL-
equations, why not use an indirect method? For the formation
keeping problem, this approach has been investigated but is not
recommended.

— The partial derivative matrices, in this case, involve a matrix quadrature
of a function of the STM. This is computationally intensive of course.

— Requires a good estimate of the constrained trajectory arc to start the
optimization process.

— In general, the numerical process is extremely sensitive (ill-conditioned)
to the initial guess for the Lagrange multipliers. This problem is even
more difficult to deal with in the n-body problem.

Since, in the n-body problem, an exact solution is not available for
the KKT equations, a direct method is better suited for nonlinear
optimization in this case.
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Direct Methods: Nonlinear Programming

e Parameter Optimization
— Finite dimensional
— Solution = Globalized Newton Methods

* Functional Optimization = Optimal Control
— Infinite dimensional

— Solution - Transcribe into finite dimensional problem
* Represent dynamical system in terms of finite set of variables

» Solve the finite dimensional problem using NLP
— Reduces problem to solving an algebraic system of egns.

» Assess accuracy of finite dimensional approximation
 |If needed, refine grid and repeat first two steps




PURDUE

Optimal Control Preliminaries

e Observations
— The cost index depends on point functions and quadrature functions
— Nonlinear point functions can include variables from all phases

— Quadrature functions are evaluated along the length of the phase by
augmenting the state vector:
f[y(k) (t) , U(k) (t), E(k)’tj|

ARAORORATE w70 (1), Pt

— The boundary conditions also depend on variables from all phases
— Each phase is divided into N mesh points for the discretization

— Each interior grid point is assigned a control variable, g (tj ) = Uj(k)




PURDUE
Define Optimal Control Problem

linked by boundary conditions of the form:
\Tll < \P|:7(1),t.(1),7f(1),tf(1)’ E(l) ..... z(N) t-(N),ff(N),tf(N), E(N)i| <P

1 L u
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Optimizer Test

 Identification of a good startup solution for the optimizer
IS necessary to ensure convergence.

Determine non-periodic but bounded relative orbits in the
linearized system using the Floguet Controller.

Employ a 2-level differential corrections process to converge the
solution in the nonlinear system.

Transfer this solution as an initial guess to the nonlinear optimal
control process.

Choose mathematical model that is consistent with ephemeris
formulation for later transition into the Generator FORMATION

tool.
Impose closed-path constraint as a test case.
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Impulsive Optimal Control
Minimize State Error with End-State Weighting

t;
T N-1
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PURDUE
EX1: Impulsive Optimal Control:

Closed Relative Path (Small)
Chief S/C Halo Orbit | Deputy S/C Relative Orbit
A, = 300,000 km lmax — 82 KM

1 100 .
0.0014 misec
.05 50
E —
u:r; o g Q @
; 4.5 ” -5
1 : -100 :
-1 ] -100 ] 100
x (10° krmy o k)
1 100 :
05 - 50
E —
g o O | B
: 4.5 . " -0
5 - 100 -
-1 o -100 o 100
y (107 k) y (k)
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EX3: Sensitivity of Solution to Initial Guess

&0 .
7| =8254 km
mf D\, | Goal: Determine min(AV) for T, =T,
>
R 0 &0
x (107 k)
= - 50
£ 3
&0 . &0 .
-50 0 50 5 0 50
x (10° km) v (10% k)

Given a bad initial guess for the optimizer ...
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Converged Periodic Solution
(Max. Amplitude 8254 km)

Chief S/C Halo Orbit Deputy S/C Relative Orbit
A, = 300,000 km r . = 8254 km
1 10 .
01045 misec
0.5 R
= =
@ ot W 1]
~ 0.5} = 5
4 : -0 -
- 0 -0 0 10
x (10° k) % (10° k)
1 10
__ 0.5 - I
£ £
= o © ] o, O
M ns ] N
4 : -0 :
-1 0 -0 0 10
v (10° k) v (102 ki

.. the numerical process is still able to identify the deswed solution
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Example #1: Impulsive Optimal Control
to Achieve Closed Path

Cost Index: minJ = AV, AV,

Dynamical Constraint:

v=f‘<v,vc>=m 0| ¢ |

Terminal Path Constraint:
L-T =0

Initial Velocity Constraint:
V" + AV, AV =0
Continuity Constraints:

7(1)- () -0
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EX1: Impulsive Optimal Control:
Closed Relative Path (Large)

Chief S/C Halo Orbit

A, = 300,000 km

v (10° km)

z (10° km)

1

Deputy S/C Relative Orbit

v (10° km)

z (10° km)

Nax — 81057.8 km

max

100

2 m/secl
ﬂ Q
100 :
2100 0 100
x (10% km)
100 __
AV
0
100 :
2100 0 100
v (10% km)
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Discontinuities in Control Acceleration
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EX2: Control Acceleration Profile
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