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Formations Near the Libration Points
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Formation Keeping via
Nonlinear Optimal Control

• Incorporate nonlinearities into control design process 
• Allows for the addition of control and path constraints

– Upper and lower bounds on thrust output
– Specifications on relative path error
– Allow for thruster on-off times while min. the impact on the path

• Min. # of assumptions  better assessment of feasibility
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Optimal Control Solution
• Method #1: Partial Discretization

– Divide Trajectory into Segments and Nodes
– Numerically integrate node states 
– Impulsive Control at Nodes (or Constant Thrust Between Nodes)
– Numerically integrated gradients
– Solve Using Subspace Trust Region Method

• Method #2: Transcription and Nonlinear Programming
– Divide Trajectory Into Segments and Nodes
– Solve using Sparse Optimal Control Software (SOCS)

• Use Hermite-Simpson discretization (others available)
• Jacobian and Hessian computed via Sparse Finite Differencing.
• Estimate cost index to second order 
• Use SQP algorithm 
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Identification of Startup Solution
• Possible Startup Solution Options

– Non-Natural Arcs  IFL/OFL Nonlinear Control 
• Specify some nominal motion
• Apply IFL/OFL control to achieve desired nominal
• Use results as initial guess to optimal control process with

– Natural Arcs  Floquet Analysis of Chief S/C Linearized Equations
• Deputy dynamics modeled as a perturbation relative to chief path
• Floquet controller applied to establish natural relative formation
• Transition into NL system via 2-level corrector
• Use results as initial guess to optimal control process with 

( )u t 0≠

( )u t 0=
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Method #1: Optimal Control
by Partial Discretization
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Euler-Lagrange Optimality Conditions
(Based on Calculus of Variations)
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Identification of Gradients 
From the Augmented Linearized Model
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Solution to Linearized Equations
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Control Gradient for Impulsive Control
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Control Gradient for Constant Thrust Arcs
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Numerical Solution Process
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State Corrector vs. Nonlinear Optimal Control:
Magnitude of Radial Error
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State Corrector vs. Nonlinear Optimal Control:
Cost Function
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State Corrector vs. Nonlinear Optimal Control:
Impulsive Maneuver Differences
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Method #2: Nonlinear Programming

• General Nonlinear Programming (NLP) Problem

– Sequential Programming Solution  Algebraic System
• Approximate Lagrangian to 2nd Order

• Approximate constraints as linear
• Iterative solution via globalized Newton methods
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Dynamic Optimization 
via Nonlinear Programming

• Divide trajectory into phases (segments)
• Define objective function
• For each phase, define

– Dynamic variables
– State equation
– Nonlinear constraints
– State Vector Limits
– Control Vector Limits
– Phase boundary conditions

• Approximate State Equations by Direct Transcription
• Use SOCS SQP algorithm to solve
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Direct Transcription
Example: Hermite-Simpson Discretization
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Sample Startup Solution:
Slowly Drifting Vertical Orbit

Origin = Chief S/C

( )0r ( )fr t

100 Revolutions = 18,000 days

y

z



20

Example 2: Continuous Optimal Control
Goal  Periodicity
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Numerical Issues
• Relative Scaling Problems

– Non-convergence
– All constraints met except for control acceleration continuity

• Source
– Small control accelerations trick the software into convergence 

• Solution
– Chief S/C path pre-determined and stored using B-splines
– Internal rescaling of variables
– Use dimensional form of relative equations of motion
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EX2: Periodicity 
Via Continuous Control

Startup Solution
Converged Solution
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Conclusions
• Direct Transcription Method

– With proper variable scaling, responds well to 
dynamical sensitivity of n-body problem.

– Accuracy issues overcome through mesh refinement.
– Availability of higher order representations may be 

useful in reducing mesh refinement iterations. These 
methods not currently present in SOCS.

• Partial Discretization Method
– Similar optimization scheme in some respects
– No constraints presently included in the formulation
– Solution speed hindered by sequencing
– Accuracy controlled by integrator selection
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Backups
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Distributed S/C Systems
• Generic formulation  Application Independent

– Formation Flight
• Vehicles share and exchange information to accomplish mission 

– Central vehicle  Chief S/C
– Other vehicles  Deputies
– Examples

» Interferometry
» Surface Imaging
» Radar
» Geolocation

– Vehicle Rendezvous & Docking
• Resources and information may be transferred (application dependent)

– Central “chief” vehicle  not necessarily aware of the presence or activities of other 
spacecraft or “deputies”.

– Deputy vehicles  perform operations on or in the vicinity of the chief
– Examples: 

» Resource transfer (fuel, equipment, etc.) between vehicles
» Unmanned on-orbit servicing of satellites
» Space based threat assessment and handling
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Relative Dynamics
(Frame Independent Formulation)
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Impulsive Radial Optimal Control

( )
11 2

0

1min
2

+−

=

= −∑ ∫ 

j

j

tN

j t

J q r r dt



28

Radial Optimal Control:
Cost Functional
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Radial Optimal Control:
Maneuver History
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compute the derivative of the cost index and determine if it meets the specified
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→
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Direct Optimization  Does NOT require the explicit derivation and construction
of the necessary conditions (i.e. the adjoint equations, the control equations, 
or the transversality conditions) that are required by the Euler-Lagrange equations.

Dynamic Optimization Approach
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Direct vs. Indirect
• If the optimality conditions are already determined by the EL-

equations, why not  use an indirect method? For the formation 
keeping problem, this approach has been investigated but is not 
recommended.
– The partial derivative matrices, in this case, involve a matrix quadrature 

of a function of the STM. This is computationally intensive of course.
– Requires a good estimate of the constrained trajectory arc to start the 

optimization process.
– In general, the numerical process is extremely sensitive (ill-conditioned) 

to the initial guess for the Lagrange multipliers. This problem is even 
more difficult to deal with in the n-body problem.

• Since, in the n-body problem, an exact solution is not available for 
the KKT equations, a direct method is better suited for nonlinear 
optimization in this case.
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Direct Methods: Nonlinear Programming 

• Parameter Optimization
– Finite dimensional
– Solution  Globalized Newton Methods

• Functional Optimization  Optimal Control
– Infinite dimensional
– Solution  Transcribe into finite dimensional problem

• Represent dynamical system in terms of finite set of variables
• Solve the finite dimensional problem using NLP

– Reduces problem to solving an algebraic system of eqns.
• Assess accuracy of finite dimensional approximation
• If needed, refine grid and repeat first two steps
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Optimal Control Preliminaries
• Observations

– The cost index depends on point functions and quadrature functions
– Nonlinear point functions can include variables from all phases
– Quadrature functions are evaluated along the length of the phase by 

augmenting the state vector: 

– The boundary conditions also depend on variables from all phases
– Each phase is divided into N mesh points for the discretization
– Each interior grid point is assigned a control variable, 
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Define Optimal Control Problem
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Optimizer Test
• Identification of a good startup solution for the optimizer 

is necessary to ensure convergence.
– Determine non-periodic but bounded relative orbits in the 

linearized system using the Floquet Controller.
– Employ a 2-level differential corrections process to converge the 

solution in the nonlinear system.
– Transfer this solution as an initial guess to the nonlinear optimal 

control process.
– Choose mathematical model that is consistent with ephemeris 

formulation for later transition into the Generator FORMATION 
tool. 

– Impose closed-path constraint as a test case.
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Impulsive Optimal Control
Minimize State Error with End-State Weighting
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EX1: Impulsive Optimal Control:
Closed Relative Path (Small)

Chief S/C Halo Orbit
Az = 300,000 km

Deputy S/C Relative Orbit
rmax = 82 km
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EX3: Sensitivity of Solution to Initial Guess

0

0

8254 km
Goal: Determine min( V) for f

r
r r

=

∆ =

Given a bad initial guess for the optimizer …
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Chief S/C Halo Orbit
Az = 300,000 km

Deputy S/C Relative Orbit
rmax = 8254 km

Converged Periodic Solution
(Max. Amplitude 8254 km)

… the numerical process is still able to identify the desired solution
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Example #1: Impulsive Optimal Control
to Achieve Closed Path
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Chief S/C Halo Orbit
Az = 300,000 km

Deputy S/C Relative Orbit
rmax = 81057.8 km

EX1: Impulsive Optimal Control:
Closed Relative Path (Large)

2 m/sec

ΔV
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Deputy S/C Path

Chief S/C @ Origin
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80, 81

160, 161

240, 241

320

1

Discontinuities in Control Acceleration
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EX2: Control Acceleration Profile
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