Discrete Nonlinear Optimal Control of SIC Formations Near the L_{1} and L_{2} Points of the Sun-Earth/Moon System

B. G. Marchand and K. C. Howell
School of Aeronautics and Astronautics
Purdue University
J. T. Betts
Technical Fellow
Mathematics and Engineering Analysis
The Boeing Company

Formations Near the Libration Points

EPHEM = Sun + Earth + Moon Motion From Ephemeris w/ SRP CR3BP = Sun + Earth/Moon barycenter Motion Assumed Circular w/o SRP

Formation Keeping via Nonlinear Optimal Control

- Incorporate nonlinearities into control design process
- Allows for the addition of control and path constraints
- Upper and lower bounds on thrust output
- Specifications on relative path error
- Allow for thruster on-off times while min. the impact on the path
- Min. \# of assumptions \rightarrow better assessment of feasibility

Optimal Control Solution

- Method \#1: Partial Discretization
- Divide Trajectory into Segments and Nodes
- Numerically integrate node states
- Impulsive Control at Nodes (or Constant Thrust Between Nodes)
- Numerically integrated gradients
- Solve Using Subspace Trust Region Method
- Method \#2: Transcription and Nonlinear Programming
- Divide Trajectory Into Segments and Nodes
- Solve using Sparse Optimal Control Software (SOCS)
- Use Hermite-Simpson discretization (others available)
- Jacobian and Hessian computed via Sparse Finite Differencing.
- Estimate cost index to second order
- Use SQP algorithm

Identification of Startup Solution

- Possible Startup Solution Options
- Non-Natural Arcs \rightarrow IFL/OFL Nonlinear Control
- Specify some nominal motion
- Apply IFL/OFL control to achieve desired nominal
- Use results as initial guess to optimal control process with $\bar{u}(t) \neq 0$
- Natural Arcs \rightarrow Floquet Analysis of Chief S/C Linearized Equations
- Deputy dynamics modeled as a perturbation relative to chief path
- Floquet controller applied to establish natural relative formation
- Transition into NL system via 2-level corrector
- Use results as initial guess to optimal control process with $\bar{u}(t)=0$

Method \#1: Optimal Control by Partial Discretization
$\min J=\phi\left(\bar{X}_{N}\right)+\sum_{j=0}^{N-1} L\left(t_{j}, \bar{x}_{j}, \bar{u}_{j}\right)=\phi\left(\bar{x}_{N}\right)+\sum_{j=0}^{N-1} \int_{t_{j}}^{t_{j 1}} \tilde{L}(t, \bar{x}, \bar{u}) d t$
Subject to:

$$
\bar{x}_{j+1}=\bar{F}\left(t_{j}, \bar{x}_{j}, \bar{u}_{j}\right) ; \text { Subject to } \bar{x}(0)=\bar{x}_{0}=\bar{x}_{i}
$$

Equivalent Representation as Augmented Nonlinear System:

$$
\begin{gathered}
\min \tilde{J}=\phi\left(\bar{x}_{N}\right)+x_{n+1}\left(t_{N}\right)=\tilde{\phi}\left(\tilde{x}_{N}\right) \\
\tilde{x}_{j+1}=\left[\begin{array}{c}
\bar{x}_{j+1} \\
x_{n+1}\left(t_{j+1}\right)
\end{array}\right]=\left[\begin{array}{c}
\bar{F}\left(t_{j}, \bar{x}_{j}, \bar{u}_{j}\right) \\
x_{n+1}\left(t_{j}\right)+L\left(t_{j}, \bar{x}_{j}, \bar{u}_{j}\right)
\end{array}\right]=\tilde{F}\left(t_{j}, \tilde{x}_{j}, \bar{u}_{j}\right) ; \\
\text { Subject to } \tilde{x}_{0}=\left[\begin{array}{c}
\bar{x}_{0} \\
0
\end{array}\right]
\end{gathered}
$$

Euler-Lagrange Optimality Conditions (Based on Calculus of Variations)

$$
H_{j}=\tilde{\lambda}_{j+1}^{T} \tilde{F}\left(t_{j}, \bar{x}_{j}, \bar{u}_{j}\right)
$$

Condition \#1: $\tilde{\lambda}_{j}^{T}=\frac{\partial H_{j}}{\partial \tilde{x}_{j}}=\tilde{\lambda}_{j+1}^{T} \frac{\partial \tilde{F}_{j}}{\partial \tilde{x}_{j}} \rightarrow \tilde{\lambda}_{N}^{T}=\left[\frac{\partial \phi\left(\bar{x}_{N}\right)}{\partial \bar{x}_{N}} \quad 1\right]$
Condition \#2: $\overline{0}=\frac{\partial H_{j}}{\partial \bar{u}_{j}}=\tilde{\lambda}_{j+1}^{T} \frac{\partial \tilde{F}_{j}}{\partial \bar{u}_{j}} ; j=0, \ldots, N-1$
Identify $\frac{\partial \tilde{F}_{j}}{\partial \tilde{x}_{j}}$ and $\frac{\partial \tilde{F}_{j}}{\partial \bar{u}_{j}}$ from augmented linear system.

Identification of Gradients From the Augmented Linearized Model

Nonlinear System:

$$
\left[\begin{array}{c}
\dot{\bar{x}} \\
\dot{x}_{n+1}
\end{array}\right]=\left[\begin{array}{c}
\bar{f}(t, \bar{x}, \bar{u}) \\
\tilde{L}(t, \bar{x}, \bar{u})
\end{array}\right] ; \quad\left[\begin{array}{c}
\bar{x}(0) \\
x_{n+1}(0)
\end{array}\right]=\left[\begin{array}{c}
\bar{x}_{0} \\
0
\end{array}\right]
$$

Linear System:

$$
\begin{gathered}
\delta \dot{\tilde{x}}(t)=\tilde{A}(t) \delta \tilde{x}(t)+\tilde{B}(t) \delta \bar{u}(t) \\
\tilde{A}(t)=\left[\begin{array}{cc}
A_{d}(t) & \overline{0} \\
\frac{\partial \tilde{L}}{\partial \bar{x}} & \overline{0}
\end{array}\right]
\end{gathered} \tilde{B}(t)=\left[\begin{array}{c}
0_{3} \\
I_{3} \\
\overline{0}^{T}
\end{array}\right] . ~ \$
$$

PURDUE

Solution to Linearized Equations

$$
\begin{aligned}
& \delta \tilde{x}(t)=\tilde{\Phi}\left(t, t_{0}\right) \delta \tilde{x}_{0}+\int_{t_{0}}^{t} \Phi(t, \tau) \tilde{B}(\tau) \delta \bar{u}(\tau) d \tau \\
& \dot{\tilde{\Phi}}\left(t, t_{0}\right)=\tilde{A}(t) \tilde{\Phi}\left(t, t_{0}\right) ; \quad \tilde{\Phi}\left(t_{0}, t_{0}\right)=I_{7}
\end{aligned}
$$

Relation to Gradients in E-L Optimality Conditions:

$$
\delta \tilde{x}_{j+1}=\underbrace{\tilde{\Phi}\left(t_{j+1}, t_{j}\right)}_{\frac{\partial \tilde{F}}{\partial \tilde{x}_{j}}} \delta \tilde{x}_{j}+\int_{t_{j}}^{t_{j+1}} \Phi\left(t_{j+1}, \tau\right) \tilde{B}(\tau) \delta \bar{u}(\tau) d \tau
$$

Control Gradient for Impulsive Control

$$
\begin{aligned}
& \delta \tilde{x}_{j+1}^{-}=\tilde{\Phi}\left(t_{j+1}, t_{j}\right) \delta \tilde{x}_{j}^{+}+\int_{t_{j}}^{\int_{t+1}} \Phi\left(t_{j+1}, \tau\right) \tilde{B} \tau \delta \bar{u}(\tau) d \tau \\
&=\tilde{\Phi}\left(t_{j+1}, t_{j}\right)\left(\delta \tilde{x}_{j}^{-}+\tilde{B} \Delta \overline{V_{j}}\right) \\
&=\tilde{\Phi}\left(t_{j+1}, t_{j}\right) \delta \tilde{x}_{j}^{-}+\underbrace{\tilde{\Phi}\left(t_{j+1}, t_{j}\right)}_{\frac{\partial \tilde{F}}{\partial \bar{u}_{j}}} \tilde{B} \Delta \bar{V}_{j} \\
& \frac{\partial \tilde{F}}{\partial \bar{u}_{j}}=\Phi\left(t_{j+1}, t_{j}\right) \tilde{B}
\end{aligned}
$$

PURDUE

Control Gradient for Constant Thrust Arcs

$$
\delta \tilde{x}_{j+1}=\tilde{\Phi}\left(t_{j+1}, t_{j}\right) \delta \tilde{x}_{j}+[\underbrace{\left[\int_{t_{j}}^{t_{j+1}} \Phi\left(t_{j+1}, \tau\right) \tilde{B}(\tau) d \tau\right.}_{\frac{\partial \tilde{F}}{\partial \bar{u}_{j}}} \delta \bar{u}_{j}
$$

Only $\Phi\left(\tau, t_{j}\right)$ available from numerical integration
Use STM properties to rewrite $\frac{\partial \tilde{F}}{\partial \bar{u}}$ in terms of $\Phi\left(\tau, t_{j}\right)$.

$$
\frac{\partial \tilde{F}}{\partial \bar{u}_{j}}=\Phi\left(t_{j+1}, t_{j}\right)\left[\int_{t_{j}}^{t_{j+1}} \Phi\left(\tau, t_{j}\right)^{-1} \tilde{B}(\tau) d \tau\right]\left[\begin{array}{c}
\dot{\bar{x}} \\
\dot{x}_{n+1} \\
\dot{\Phi}\left(t, t_{j}\right) \\
\dot{\Phi}^{*}\left(t, t_{j}\right)
\end{array}\right]=\left[\begin{array}{c}
\bar{f}(t, \bar{x}, \bar{u}) \\
L(t, \bar{x}, \bar{u}) \\
\tilde{A}(t) \tilde{\Phi}\left(t, t_{j}\right) \\
\tilde{\Phi}\left(t, t_{j}\right)^{-1} \tilde{B}(\tau)
\end{array}\right]
$$

Numerical Solution Process

(1) Input \tilde{x}_{0}, t_{N}, and initial guess for \bar{u}_{i}; $(i=0,1, \ldots, N-1)$
(2) 1-Scalar Equation to Optimize in $3(N-1)$ Control Variables

Use optimizer to identify optimal \bar{u}_{i} given $\frac{\partial H_{i}}{\partial \bar{u}_{i}}$.
During each iteration of the optimizer, the following steps are followed:
(a) Sequence (by numerical integration) \bar{x}_{i} forward and store; $i=1, \ldots, N-1$
(b) Evaluate cost functional, $J=\tilde{\phi}\left(\tilde{x}_{N}\right)$
(c) Evaluate $\tilde{\lambda}_{N}^{T}=\frac{\partial \tilde{\phi}\left(\tilde{x}_{N}\right)}{\partial \tilde{x}_{N}}=\left[\begin{array}{ll}\frac{\partial \phi_{N}}{\partial \bar{x}_{N}} & 1\end{array}\right]$
(d) Sequence $\tilde{\lambda}_{i}$ backward and compute the search direction $\frac{\partial H_{i}}{\partial \bar{u}_{i}} ; i=N-1, \ldots, 1$
(e) J and $\frac{\partial H_{i}}{\partial \bar{u}_{i}}$ used in next update of control input. (Subspace Trust Region Method)

PURDUE

State Corrector vs. Nonlinear Optimal Control: Magnitude of Radial Error

PURDUE

State Corrector vs. Nonlinear Optimal Control: Cost Function

PURDUE

State Corrector vs. Nonlinear Optimal Control: Impulsive Maneuver Differences

PURDUE

Method \#2: Nonlinear Programming

- General Nonlinear Programming (NLP) Problem

$$
J=\min (F(\bar{x})) ; \bar{c}_{L} \leq \bar{c}(\bar{x}) \leq \bar{c}_{U} \quad \text { and } \bar{x}_{L} \leq \bar{x} \leq \bar{x}_{U}
$$

- Sequential Programming Solution \rightarrow Algebraic System
- Approximate Lagrangian to $2^{\text {nd }}$ Order

$$
\begin{array}{l}
L(\bar{x})=F(\bar{x})-\bar{\lambda}^{T} \bar{c}(\bar{x}) \\
\left.L(\bar{x}) \approx \underbrace{\frac{\partial L}{\partial \bar{x}}}_{\text {Jacobian }}\right|_{\text {Matrix }} ^{*} \underbrace{\left(\bar{x}-\bar{x}^{*}\right)}_{\begin{array}{c}
\text { Search } \\
\text { Direction }
\end{array}}+\frac{1}{2}\left(\bar{x}-\bar{x}^{*}\right)^{T} \underbrace{\left[\frac{\partial}{\partial \bar{x}}\left(\frac{\partial L}{\partial \bar{x}}\right)\right]}_{\text {Messian }} \text { Matrix }
\end{array} \underbrace{*}\left(\bar{x}-\bar{x}^{*}\right))
$$

- Approximate constraints as linear
- Iterative solution via globalized Newton methods

Dynamic Optimization via Nonlinear Programming

- Divide trajectory into phases (segments)
- Define objective function
- For each phase, define
- Dynamic variables

$$
\begin{aligned}
& \bar{z}^{(k)}=\left[\bar{y}^{(k)}, \bar{u}^{(k)}\right] \\
& \dot{y}^{(k)}=\bar{f}^{(k)}\left[\bar{y}^{(k)}(t), \bar{u}^{(k)}(t), \bar{p}^{(k)}, t\right] \\
& \bar{g}_{l}^{(k)} \leq \bar{g}^{(k)}\left[\bar{y}^{(k)}(t), \bar{u}^{(k)}(t), \bar{p}^{(k)}, t\right] \leq \bar{g}_{u}^{(k)} \\
& \bar{y}_{y}^{(k)} \leq \bar{y}^{(k)}(t) \leq \bar{y}_{u}^{(k)} \\
& \bar{u}_{l}^{(k)} \leq \bar{u}^{(k)}(t) \leq \bar{u}_{u}^{(k)} \\
& \bar{\Psi}_{l} \leq \bar{\Psi} \leq \bar{\Psi}_{u}
\end{aligned}
$$

- State equation
- Nonlinear constraints
- State Vector Limits
- Control Vector Limits
- Phase boundary conditions
- Approximate State Equations by Direct Transcription
- Use SOCS SQP algorithm to solve

Direct Transcription

Example: Hermite-Simpson Discretization

Given an initial guess for $\bar{y}^{(k)}, \bar{u}^{(k)}$ at each node, the defect $\left(\bar{\varsigma}_{k}\right)$ at $k^{\text {th }}$ node:

$$
\bar{\zeta}_{k}=\bar{y}_{k+1}-\bar{y}_{k}-\frac{h_{k}}{6}\left(\bar{f}_{k+1}+4 \bar{f}_{k+1}^{\prime}+\bar{f}_{k}\right)
$$

where
$\bar{f}_{k+1}^{\prime}=\bar{f}\left[\bar{y}_{k+1}^{\prime}, \vec{u}_{k+1}^{\prime}, t_{k}+\frac{h_{k}}{2}\right]$
$\bar{y}_{k+1}^{\prime}=\frac{1}{2}\left(\bar{y}_{k+1}+\bar{y}_{k}\right)+\frac{h_{k}}{8}\left(\bar{f}_{k}-\bar{f}_{k+1}\right)$
$h_{k}=\tau_{k} \Delta t$

- Treat the defects as a constraint, $\varsigma_{k}=0$, imposed on the cost function!
- The partials of the defect equations lead to large sparse matrices.
- Use SOCS (Sparse Optimal Control Software) to ID solution.

Sample Startup Solution:

 Slowly Drifting Vertical Orbit100 Revolutions $=18,000$ days

PURDUE

Example 2: Continuous Optimal Control Goal \rightarrow Periodicity

$$
J=\sum_{k=1}^{N} \int_{t_{i}^{(k)}}^{t_{1}^{(k)}} \bar{u}^{T}(t) \bar{u}(t) d t
$$

Constraints:

$t_{i}^{(k)}=$ fixed, for $k=1, \ldots, 4$
$t_{f}{ }^{(k)}=$ fixed, for $k=1, \ldots, 4$

$$
\begin{aligned}
& 0=\bar{r}\left(t_{i}^{(1)}\right)-\overline{r_{i}} \\
& 0=\bar{u}\left(t_{i}^{(1)}\right) \\
& 0=\bar{z}\left(t_{f}^{(k)}\right)-\bar{z}\left(t_{i}^{(k+1)}\right), \quad k=1, \ldots, 3 \\
& 0=\bar{y}\left(t_{i}^{(1)}\right)-\bar{y}\left(t_{f}^{(4)}\right)
\end{aligned}
$$

Search Space:

$$
\begin{gathered}
{\left[\begin{array}{c}
-10,000 \mathrm{~km} \\
-10,000 \mathrm{~km} \\
-10,000 \mathrm{~km} \\
-4 \mathrm{~m} / \mathrm{sec} \\
-4 \mathrm{~m} / \mathrm{sec} \\
-4 \mathrm{~m} / \mathrm{sec}
\end{array}\right] \leq \bar{y}(t) \leq\left[\begin{array}{c}
10,000 \mathrm{~km} \\
10,000 \mathrm{~km} \\
10,000 \mathrm{~km} \\
4 \mathrm{~m} / \mathrm{sec} \\
4 \mathrm{~m} / \mathrm{sec} \\
4 \mathrm{~m} / \mathrm{sec}
\end{array}\right]} \\
{\left[\begin{array}{c}
-4 \mathrm{~m} / \mathrm{s}^{2} \\
-4 \mathrm{~m} / \mathrm{s}^{2} \\
-4 \mathrm{~m} / \mathrm{s}^{2}
\end{array}\right] \leq \bar{u}(t) \leq\left[\begin{array}{c}
4 \mathrm{~m} / \mathrm{s}^{2} \\
4 \mathrm{~m} / \mathrm{s}^{2} \\
4 \mathrm{~m} / \mathrm{s}^{2}
\end{array}\right]}
\end{gathered}
$$

Numerical Issues

- Relative Scaling Problems
- Non-convergence
- All constraints met except for control acceleration continuity
- Source
- Small control accelerations trick the software into convergence
- Solution
- Chief S/C path pre-determined and stored using B-splines
- Internal rescaling of variables
- Use dimensional form of relative equations of motion

EX2: Periodicity Via Continuous Control

—Startup Solution
———Converged Solution

Conclusions

- Direct Transcription Method
- With proper variable scaling, responds well to dynamical sensitivity of n-body problem.
- Accuracy issues overcome through mesh refinement.
- Availability of higher order representations may be useful in reducing mesh refinement iterations. These methods not currently present in SOCS.
- Partial Discretization Method
- Similar optimization scheme in some respects
- No constraints presently included in the formulation
- Solution speed hindered by sequencing
- Accuracy controlled by integrator selection

PURDUE

Backups

Distributed S/C Systems

- Generic formulation \rightarrow Application Independent
- Formation Flight
- Vehicles share and exchange information to accomplish mission
- Central vehicle \rightarrow Chief S/C
- Other vehicles \rightarrow Deputies
- Examples
» Interferometry
» Surface Imaging
» Radar
» Geolocation
- Vehicle Rendezvous \& Docking
- Resources and information may be transferred (application dependent)
- Central "chief" vehicle \rightarrow not necessarily aware of the presence or activities of other spacecraft or "deputies".
- Deputy vehicles \rightarrow perform operations on or in the vicinity of the chief
- Examples:
» Resource transfer (fuel, equipment, etc.) between vehicles
» Unmanned on-orbit servicing of satellites
» Space based threat assessment and handling

Relative Dynamics
(Frame Independent Formulation)
Define the mathematical model that preserves generality for all apps/systems.

Absolute Dynamical Model
Nonlinear System
$\dot{\bar{y}}_{c}=\bar{f}\left(\bar{y}_{c}\right)$
$\dot{\bar{y}}_{d}=\bar{f}\left(\bar{y}_{d}\right)+B \bar{u}(t)$

Linear System

$$
\begin{aligned}
& \delta \dot{\bar{y}}_{c}(t)=A_{c}(t) \delta \bar{y}_{c}(t) \\
& \delta \dot{\bar{y}}_{d}(t)=A_{d}(t) \delta \bar{y}_{d}(t)+B \delta \bar{u}(t)
\end{aligned}
$$

Relative Dynamical Model
Nonlinear System
$\dot{\bar{x}}=\bar{f}\left(\bar{y}_{d}\right)-\bar{f}\left(\bar{y}_{c}\right)+\bar{u}(t)$
$\dot{\bar{x}}=\bar{f}\left(\bar{y}_{c}+\bar{x}\right)-\bar{f}\left(\bar{y}_{c}\right)+\bar{u}(t)$
$\dot{\bar{x}}=\bar{F}\left(\bar{x}, \bar{u}, \bar{y}_{c}\right)$
Linear System

$$
\begin{aligned}
\delta \dot{\bar{x}}(t) & =\frac{\partial \bar{F}}{\partial \bar{x}} \delta \bar{x}(t)+\frac{\partial \bar{F}}{\partial \bar{u}} \delta \bar{u}(t) \\
& =A_{d}(t) \delta \bar{x}(t)+B \delta \bar{u}(t)
\end{aligned}
$$

PURDUE
 Impulsive Radial Optimal Control

$$
\min J=\sum_{j=0}^{N-1} \int_{t_{j}}^{t_{j+1}} \frac{1}{2} q\left(r-r^{\circ}\right)^{2} d t
$$

Radial Optimal Control: Cost Functional

Radial Optimal Control: Maneuver History

Dynamic Optimization Approach

Direct

Find a sequence of points $z_{1}, z_{2}, \ldots, z^{*}$ such that $F\left(z_{1}\right)>F\left(z_{2}\right)>\ldots>F\left(z^{*}\right)$.
This only requires a comparison of the objective function at each point.

Indirect

Identify the root of the necessary condition $F^{\prime}(z)=0$. This requires that the user compute the derivative of the cost index and determine if it meets the specified tolerance.

From an optimal control perspective:
Indirect Optimization \rightarrow Identify the roots of the KKT Conditions (Euler-Lagrange)
Direct Optimization \rightarrow Does NOT require the explicit derivation and construction of the necessary conditions (i.e. the adjoint equations, the control equations, or the transversality conditions) that are required by the Euler-Lagrange equations.

Direct vs. Indirect

- If the optimality conditions are already determined by the ELequations, why not use an indirect method? For the formation keeping problem, this approach has been investigated but is not recommended.
- The partial derivative matrices, in this case, involve a matrix quadrature of a function of the STM. This is computationally intensive of course.
- Requires a good estimate of the constrained trajectory arc to start the optimization process.
- In general, the numerical process is extremely sensitive (ill-conditioned) to the initial guess for the Lagrange multipliers. This problem is even more difficult to deal with in the n-body problem.
- Since, in the n-body problem, an exact solution is not available for the KKT equations, a direct method is better suited for nonlinear optimization in this case.

Direct Methods: Nonlinear Programming

- Parameter Optimization
- Finite dimensional
- Solution \rightarrow Globalized Newton Methods
- Functional Optimization \rightarrow Optimal Control
- Infinite dimensional
- Solution \rightarrow Transcribe into finite dimensional problem
- Represent dynamical system in terms of finite set of variables
- Solve the finite dimensional problem using NLP
- Reduces problem to solving an algebraic system of eqns.
- Assess accuracy of finite dimensional approximation
- If needed, refine grid and repeat first two steps

Purdue

Optimal Control Preliminaries

- Observations
- The cost index depends on point functions and quadrature functions
- Nonlinear point functions can include variables from all phases
- Quadrature functions are evaluated along the length of the phase by augmenting the state vector:

$$
F\left[\bar{y}^{(k)}(t), \bar{u}^{(k)}(t), \bar{p}^{(k)}, t\right]=\left[\begin{array}{l}
\bar{f}\left[\bar{y}^{(k)}(t), \bar{u}^{(k)}(t), \bar{p}^{(k)}, t\right] \\
w\left[\bar{y}^{(k)}(t), \bar{u}^{(k)}(t), \bar{p}^{(k)}, t\right]
\end{array}\right]
$$

- The boundary conditions also depend on variables from all phases
- Each phase is divided into N mesh points for the discretization
- Each interior grid point is assigned a control variable, $\bar{u}^{(k)}\left(t_{j}\right)=\bar{u}_{j}^{(k)}$

PURDUE

Define Optimal Control Problem

For each phase, k, define a vector of dynamic variables, $\bar{z}^{(k)}(t)=\left[\bar{y}^{(k)}(t), \bar{u}^{(k)}(t)\right]$ that includes both the state vector, $\bar{y}^{(k)}(t)$, and the control input vector, $\bar{u}^{(k)}(t)$.

$$
\begin{aligned}
\min (J) & =\Phi\left[\bar{z}_{i}^{(1)}, t_{i}^{(1)}, \bar{z}_{f}^{(1)}, t_{f}^{(1)}, \bar{p}^{(1)}, \ldots, \bar{z}_{i}^{(N)}, t_{i}^{(N)}, \bar{z}_{f}^{(N)}, t_{f}^{(N)}, \bar{p}^{(N)}\right] \\
& +\sum_{j=1}^{N} \int_{t_{i}^{(N)}}^{t_{f^{(j)}}} w^{(j)}\left[\bar{z}^{(j)}(t), t^{(j)}, \bar{p}^{(j)}\right] d t
\end{aligned}
$$

Each phase is subject to:
$\dot{\bar{y}}^{(k)}(t)=\bar{f}\left(\bar{z}^{(k)}(t), \bar{p}^{(k)}, t\right) ; \quad t_{i}^{(k)} \leq t \leq t_{f}{ }^{(k)}$
$\bar{g}_{l}^{(k)} \leq \bar{g}^{(k)}\left(\bar{Z}^{(k)}(t), \bar{p}^{(k)}, t\right) \leq \bar{g}_{u}{ }^{(k)}$
$\bar{z}_{l}^{(k)} \leq \bar{z}^{(k)}(t) \leq \bar{z}_{u}^{(k)}$
The phases are linked by boundary conditions of the form:

$$
\bar{\Psi}_{l} \leq \bar{\Psi}\left[\bar{z}_{i}^{(1)}, t_{i}^{(1)}, \bar{z}_{f}^{(1)}, t_{f}^{(1)}, \bar{p}^{(1)}, \ldots, \bar{z}_{i}^{(N)}, t_{i}^{(N)}, \bar{z}_{f}^{(N)}, t_{f}^{(N)}, \bar{p}^{(N)}\right] \leq \Psi_{u}
$$

Optimizer Test

- Identification of a good startup solution for the optimizer is necessary to ensure convergence.
- Determine non-periodic but bounded relative orbits in the linearized system using the Floquet Controller.
- Employ a 2-level differential corrections process to converge the solution in the nonlinear system.
- Transfer this solution as an initial guess to the nonlinear optimal control process.
- Choose mathematical model that is consistent with ephemeris formulation for later transition into the Generator FORMATION tool.
- Impose closed-path constraint as a test case.

Impulsive Optimal Control

 Minimize State Error with End-State Weighting$$
\min J=\frac{1}{2}\left(\bar{x}_{N}-\bar{x}_{N}^{\circ}\right)^{T} W\left(\bar{x}_{N}-\bar{x}_{N}^{\circ}\right)+\sum_{i=0}^{N-1} \int_{t_{j}}^{t_{j+1}} \frac{1}{2}\left(\bar{x}-\bar{x}^{\circ}\right)^{T} Q\left(\bar{x}-\bar{x}^{\circ}\right) d
$$

PURDUE

EX1: Impulsive Optimal Control: Closed Relative Path (Small)

Chief S/C Halo Orbit $\mathrm{A}_{\mathrm{z}}=300,000 \mathrm{~km}$

EX3: Sensitivity of Solution to Initial Guess

$\left|\bar{r}_{0}\right|=8254 \mathrm{~km}$
Goal: Determine $\min (\Delta \mathrm{V})$ for $\bar{r}_{0}=\bar{r}_{f}$

Given a bad initial guess for the optimizer ...

Purdue

Converged Periodic Solution

 (Max. Amplitude 8254 km)
... the numerical process is still able to identify the desired solution

PURDUE

Example \#1: Impulsive Optimal Control to Achieve Closed Path

Cost Index: $\quad \min J=\Delta \bar{V}_{0}^{T} \Delta \bar{V}_{0}$
Dynamical Constraint:
$\dot{\bar{y}}=\bar{f}\left(\bar{y}, \bar{y}_{c}\right)=\left[\begin{array}{c}\dot{\bar{r}} \\ \dot{\bar{V}}\end{array}\right] ; \quad \bar{x}(0)=\left[\begin{array}{c}\bar{r}_{0} \\ \bar{V}_{0}^{-}\end{array}\right]$
Terminal Path Constraint:
$\bar{r}_{0}-\bar{r}_{f}=\overline{0}$
Initial Velocity Constraint:
$\bar{V}_{0}^{-}+\Delta \bar{V}_{0}-\Delta \bar{V}_{0}^{+}=\overline{0}$
Continuity Constraints:
$\bar{y}\left(t_{f}{ }^{(k)}\right)-\bar{y}\left(t_{i}^{(k+1)}\right)=\overline{0}$

PURDUE

EX1: Impulsive Optimal Control: Closed Relative Path (Large)

Chief S/C Halo Orbit $\mathrm{A}_{\mathrm{z}}=300,000 \mathrm{~km}$

Deputy S/C Path

Chief S/C @ Origin

PURDUE
 Discontinuities in Control Acceleration

PURDUE

EX2: Control Acceleration Profile

