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 Th MAXIM t f NASA' Bl k H l I i i tili i t f t i

MAXIM Overview
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 The MAXIM concept for NASA's Black Hole Imager mission utilizes interferometric 
techniques at the short wavelengths of X-rays 

 Very long optical baselines are needed to achieve high-precision angular resolution images
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MAXIM Formation Overview
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y Multiple free-flying spacecraft comprise a sparse aperture providing collecting 
area of ~ 1000cm2.
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 Images are generated through interference patterns gathered from the multiple 
satellites housing the optical elements that form the aperture. 

 The interference patterns or fringes are observed only if the path lengths are 
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 The interference patterns or fringes are observed only if the path lengths are 
controlled to great precision. 

 The challenge is to control this path length in the presence of environmental and 
spacecraft disturbances driving the need for active control systems  
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c spacecraft disturbances driving the need for active control systems. 

We focus on the dynamics and control of formation flight in a full ephemeris 
modeling of the libration orbit to incorporate all gravitational perturbations and 
solar radiation pressure  
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  / solar radiation pressure. 

 Analysis focuses on amount and duration of the control effort versus science 
observation requirements as measured in the formation optics plane 
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MAXIM Formation Assumptions
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MAXIM formation components; 
Hub (1.3 x 2 meters , 331kg) , Freeflyer (periscope) (1.3 x 2 meters,  
304kg) , and the Detector (varying area 1.9 m2 to 5.6 m2 , 619kg) 
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Optics Plane:
•Hub and Freeflyers form a physical configuration perpendicular to 

detector-hub line of sight (LOS) to a target. 
A i  h i l fi i   i  i  d i d 
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from a Fourier transform of the image plane, the UV plane.  
Observation duration is 100,000 secs 
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Controller options: 
•Off during observation and on to realign and maintain the formation
•Continuously on during observations

 I i l  f 450 l i  d 450 i h 
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  /  Inertial target of 450 elevation and 450 azimuth 
 Tolerance of radial distance of a Freeflyer from Hub less than 5 microns
 Detector at 20,000km, six freeflyers at the maximum nominal radial
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• MAXIM L libration orbit is a typical mission 

MAXIM Halo Orbit
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• MAXIM L2 libration orbit is a typical mission 

•Ay = 700,000 km and Az =200,000 km 

• Halo orbit computed with a full Ephemeris model
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 Sun, Earth, Moon point mass

 Solar Radiation Pressure
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•Hub follows Halo orbit 
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20,000 km
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MAXIM Frame Definition
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The MAXIM hub spacecraft is located at the X,Y,Z origin 
and the angles ,  provide the alignment toward the 
target.  
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Direction Cosines for 
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 O i ti ti t k l b l i f th l l f ti fl i

MAXIM Control Strategies
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 Our investigation takes a global view of the large-scale formation flying
problem.

 Previous Research:
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• Near Earth - minimized gravitational perturbation - no close tracking of a
reference solution - or use of non-linear (adaptive) 2-body problems

• Multi-body systems - CRTBP only or controller effectiveness is
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demonstrated relative to the linear dynamics, not the full nonlinear system -
Evolution approximated from the linear dynamics of the integrated lissajous
trajectory
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• Naturally occurring formations derived from center manifold analysis, as
well as a discrete impulsive control approach to maintain a prescribed
formation plane
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 Continuous control approach
Obtain a rough analytical approximation of center manifold motion and
determine how continuous optimal control and exact feedback
li i ti i t f t t th di t t ti k i
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MAXIM Control Strategies
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• Previous work demonstrates the efficiency and cost effectiveness of both 
input feedback linearization (IFL) and output feedback linearization (OFL) 
methods for formation control in the CRTBP

e
r 

 &
 P

u
rd

u
e

 U
n methods for formation control in the CRTBP. 

• A linear quadratic regulator (LQR), derived from optimal control theory, 
yields essentially an identical error response and control acceleration history 
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te as the IFL approach. 

• IFL controller is computationally much less intensive and, by comparison, 
conceptually simple
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• We address the properties of the IFL controller in defining the MAXIM 
formation control
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• Analysis of position deviation of freeflyer or detector wrt Hub

• For a comparison, a discrete stationkeeping control approach is devised to 
f th i t ti f th f ti l t i fi d i ti ll
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MAXIM Discrete Control
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•Accuracy of formation maintenance
•Simple DC can maintain formation
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 1
0 1 0 0v B r A r v      •Discrete LQR yields optimal magnitude

of differential control impulse
•Simple: Target the end state
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Simple  DiscreteOptimal Discrete 
without weights

•Simple: Target the end state
 = STM
 = state perturbation
0 = Impulsive V at beginning
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Optimal Discrete 
with weights

0  Impulsive V at beginning
•Discrete Optimal Control:
(Qm) Weighted quadratic of end 

state error

N
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  / state error
(Q) Weighted quadratic of state 

deviation along path
Si l  h  t t  l  th
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Th  i l ti  i  i  th  l l ( h i l) di t  hil  th  t l 

MAXIM Nominal Motion and Determination of 
Vehicle Position Relative to Optics-Frame 
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1̂
iHDr rdFreeflyer / Detector 

The nominal motion is in the local (spherical) coordinates while the control 
effort is formulated in the inertial focal frame.  
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Kinematics are 
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MAXIM IFL Controller Development
Control of Equations of Motion (EOM) in 

E h i F W E h (P )
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o EOM for Hub
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Ephemeris Frame Wrt Earth (P2)
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o EOM for Hub

o Controller is selected as type of response as a critical damped

 2 2 2,P H P H P HI I
I I Ir f r r
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o Controller eliminates system dynamics terms yields critical response 
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o Once control determined in optics frame, rotate into inertial frame for 
controller

     I I I U I If f

         i iD DI U
Iu t C u t 
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MAXIM Freeflyer Placement

Freeflyers at a maximum 500 meters from hub evenly spaced 
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Freeflyers at a maximum 500 meters from hub evenly spaced 
in azimuth at 60 degrees
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n Optics Plane View Inertial View
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MAXIM Maintenance – Thrust Profiles
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180 d  IFL i  l

Detector < 7 mN
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n •180 day IFL continuous control

Freeflyer ~ tenths of N
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Th t P fil  ti l 
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  / Thrust Profiles proportional 
to spacecraft mass, e.g. 2:1
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MAXIM Maintenance and Recovery

• Maintenance for 1 day
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y
• Control off during observation of 100,000 seconds
• Increase in radial errors of detector and freeflyer
• Recovery back to original positions in ½ day
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W Wr r 
W Wr r 

Recovery back to original positions in ½ day

 Error growth is not 
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Nominal Radial Vector 
in UVW Coordinates

Actual Radial Vector 
in UVW Coordinates

Nominal Radial Vector 
in UVW Coordinates

Actual Radial Vector 
in UVW Coordinates

linear 

 P k  f 15 k  
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Thrusters off = 100,000 secThrusters off = 100,000 sec

 Peak error of 15 km 
for detector
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 Peak errors range 
from 300mm to 550mm 
for freeflyer
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MAXIM Maintenance and Recovery
Deviation in the Optics Plane During 

Observation With Control Off

n
iv

e
rs

it
y

Observation With Control Off

Detector
Vertical Scale: u:15 km to 0 km

Freeflyer
Vertical Scale: +/ 400 mm
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n v: +/- 5 km

w:+/- 5 km

Vertical Scale: +/- 400 mm
In all 3 components ( u,v,w)
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MAXIM Maintenance and Recovery

Freeflyer Errors As Pointing Errors (Arc-seconds)
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NominalActual NominalActual Azimuthal angle ()
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  

NominalActual
Out-of-plane ()
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p ( )
Maximum ~120
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MAXIM Maintenance, Observation, and Recovery
Three day simulation with maintenance 1 day, 
100 000 sec observation  and ½ days recovery
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100,000 sec observation, and ½ days recovery

Recovery:
Detector required 1N
F fl  i d < 15 N

Maintenance:
Detector required 3e-3 N
F fl  i d < 0 05 N
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n Freeflyers required < 15NFreeflyers required < 0.05N

Detector
R  P fil
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3 mN 3 mN3 mN 3 mN

Recovery Profile
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A B
C
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Freeflyers
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MAXIM Reorientation

i  i d i  i   di i

n
iv

e
rs

it
y

•90 degrees rotation about the z-axis
•Target initially along the inertial x-axis

•x-axis reoriented into y-axis  direction
•Elevation angle set to zero
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Goddard Space Flight Center

MAXIM Reorientation

•7 day Simulation
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•Detector ~ 1.5 N
•Freeflyer ~ 2.5 N
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Thrust Levels Freeflyer Displacement in 
Inertial Frame
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Reconfiguration T im e Increased to
7 days to reduce Detector S /C  Control Thrust
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Reconfiguration T im e Increased to
7 days to reduce Detector S /C  Control Thrust

Vertical Scale +/- 0.5 Km
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Goddard Space Flight Center

•Two Approaches  Discrete and Continuous  Were Investigated for the Control of 

Summary
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•Two Approaches, Discrete and Continuous, Were Investigated for the Control of 
the Maxim Formation. 

•Simple or Optimal Discrete or by Input Feedback Linearization (IFL) Control. 
 Di t  C t l A h  C ti  Ti  I t l Eff t   
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n  Discrete Control Approaches Continuous Time Interval Effort.  

 IFL Continuous Control Combines the Effect of Annihilating the 
Environmental Dynamics While Adding a Specific User-defined Critically 
Damped Response
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•The Total Maintenance Control Effort Requires 
Detector Thrust Level that Ranges From 4 mN to 7 mN 
Freeflyer Thrust Levels of 0.1 N to 0.3 N.  
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•Formation Recovery 
Detector Thrust Less than 1 N 
Freeflyers Less than 15 N 
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Freeflyers Less than 15 N 

•These Efforts Do Not Include Navigation or Maneuver Errors or Navigation 
Measurement Updates. 
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•The Challenge Is Propulsion System Implementation and Required Power Levels
as Current Propulsion Technology Can Meet Minimum Thrust Levels 


