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The present investigation focuses on the development of computation-

ally efficient path planning algorithms for autonomous ground vehicles. The

approach selected is based on a heuristic hill climbing local search. The cost

index employed incorporates a traversability cost average, which offers two

primary benefits: 1) the average extends the region of knowledge of the search

algorithm, increasing optimality of the solution; and 2) the avoidance of haz-

ardous regions is added to the decision making process. A binary traversability

map representation is first utilized to analyze the performance of the enhanced

heuristic hill climbing algorithm in comparison to the more traditional tech-

niques. Next, the search algorithm is applied to a multi-valued traversability

Map to test the capabilities of the algorithm over natural terrain. For this pur-

pose, a digital elevation map is automatically processed to obtain multi-valued

traversability values through the definition of a roughness, inclination and step
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index. The complete path planning architecture for natural terrain then con-

sists of a three step approach, computation of the multi-valued traversability

map, implementation of the enhanced heuristic hill climbing search algorithm,

and a path relaxation step. This last step is employed to fine-tune and smooth

the trajectory, eliminating sharp turns caused by the regular characteristics of

the search space.
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Chapter 1

Introduction

1.1 Motivation

In July of 1997, the Sojourner robotic rover, part of the payload of the

Mars Pathfinder spacecraft, was the first vehicle of its kind to explore the sur-

face of Mars. This initial mission was later followed by the Mars Exploration

Rovers (MER), Spirit and Opportunity, each landing on different locations

along the surface of Mars on January 2004. These rovers were specifically

designed to travel farther than their predecessor. By 2009, the MER rovers

had collectively traveled over 21 km, surpassing both the mark left by So-

journer and all designed expectations. Even though the MERs had on-board

autonomous navigation and global path planning software, both the Sojourner

and MER’s were primarily controlled manually by Earth-based operators, and

navigated with pre-planned commands based on visual images.

The computational requirements associated with autonomous path plan-

ning differs greatly relative to those of remote controlled vehicles. Earlier

studies indicate that, in case of MER, remote operation was most efficient in

contrast to autonomous navigation software.2 Manual operation of the rovers

required additional time since terrain hazards had to be identified from im-
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agery first. Subsequently, a series of waypoints were defined by operators for

the rover to follow.

For MER, the 26-minute communication delay introduced by remote

manual operation of the rovers was deemed acceptable and did not hinder

the mission goals in the end. However, if one considers a mobile system ona

body farther away from the Earth, communication time delays may render

remote operation infeasible. For example, Europa has been the subject of much

interest among the scientific community. Due to Europa’s close proximity to

Jupiter, radiation concerns limit the lifetime of a robotic vehicle to less than

two months.3 A rover would have to traverse distances in orders of tens of

kilometers in a short time, more than the MERs have done in years, with a

higher delay than the one present on communications to Mars.

Studies suggest that the Mars Science Lab (MSL), NASA’s next pro-

jected mission to land and operate a rover on Mars, would benefit from im-

provements in autonomous path planning, contact science, and drilling.4 Once

deployed onto the surface of Mars, the MSL rover is expected to travel more

than 10 km,5 for which it will require to look ahead and plan single waypoint

trajectories of up to 50 m. This will require autonomous capabilities that re-

duce communication cycles from Earth if long range traverses are expected.

For these reasons, it is necessary to improve autonomous capabilities on mobile

robots for future planetary exploration missions.
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This can be accomplished, in part, through improved terrain imagery

sensors, enhanced computational capabilities, and overall design of mobile

platforms. Certainly, improvement may be achieved through advanced nav-

igation software that decreases the time and memory resources required by

onboard path planning algorithms. This includes developing the technology

used to image and represent the terrain, as well as the decision making process

used to select safe and distance-efficient paths.

1.2 Research Contributions

Traditional path planning methods usually utilize a terrain map seg-

mented as a regular grid and plan paths to a selected goal while avoiding ob-

stacles. Most of these approaches restrict movement between grid cells strictly

to the nodes in transitions of 90 or 45 degrees. Earlier studies6–8 avoid such

strict demands on the vehicle turning dynamics by introducing arc based move-

ments, spline curves or interpolation. However, these methods add complexity

to an otherwise simple grid search space by introducing a higher number of

calculations for traversal difficulty and decision making

Apart from simple grid search spaces, traditional approaches assign

a binary value to each grid cell representing an obstacle or free space. Ap-

proaches such as these account for obstacle presence, but disregard intrinsic

terrain properties. Other authors assess the traversability characteristics of

the terrain map using multi-valued representations of traversal difficulty for
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each cell, and then use this information to compute a traversal cost func-

tion. In some cases9 the quality of the terrain is represented with a Fuzzy

Traversability Index chosen interactively by the user. Therefore, it requires

a great amount of user input to define the traversability of map segments.

This would deem such a method unfeasible for real-time applications on lo-

cal terrain maps, where on-board sensors may dynamically detect new terrain

features and the path planner require traversability indices to be computed on

real-time.

Other investigations1,6,7,10–12 use methods that compute the traversal

difficulty of map cells automatically. Among these, some authors6,10compute

the traversability of each cell by merging moment statistics and finding best-

fit planes for a small rover-sized region. The plane parameters are used to

compute hazard measures depending on step, roughness, pitch and border

hazards. This method requires initial user analysis on four different parameters

and their “hazard” thresholds. Two earlier studies1,11 use metrics such as pitch

and roll of a plane and terrain roughness to determine the “goodness” of a cell;

however, others11 still categorize the traversability of each cell as “traversable”

or “not traversable”.

Most of the previously cited authors use a version of the A* or D* path

planning search algorithms.13 These types of best-first search algorithms try

all possible extensions of a current path, and are therefore likely to find the

global optimum if given enough time. Their implementation and optimality
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is improved by decreasing map size in order to decrease computational time

and memory for a single goal. This may not be desirable for longer traversal

planning on real-time processing. These algorithms also use a simple cost

function that usually avoids obstacles or hazard areas on a single cell basis,

while prioritizing the optimization of path length.

1.3 Thesis Contribution and Organization

This thesis considers the problem of implementing a path planning al-

gorithm that is capable of adding the avoidance of hazardous areas as a priority

over short distance paths. Two cases are considered: 1) the terrain grid map

is assigned binary valued traversability factors, 2) The terrain grid map is au-

tonomously assigned multi-valued traversability factors. For the second case,

the path planning architecture assumes that a Digital Elevation Map (DEM)

is readily available as a point cloud map from a LIDAR (Light Detection and

Ranging) sensor system; whereas for the first case, the Binary Traversability

Map (BTM) is provided as an input. Therefore, the multi-valued Traversabil-

ity Map (TM) architecture consists of an initial DEM Processing step. This

step will provide the traversability factors required to construct the multi-

valued map.

This effort proposes the following contributions to the path planning

method

1. This work implements a two-step planning process where a preliminary
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path is created over a simple grid search space, and then a path relaxation

step optimizes the location of the path nodes, minimizing abrupt turning

angles and path length. The first step utilizes a simple eight-connected

grid search space that allows movement in transitions of 45 degrees.

Though the type of motion allowed by such a node structure is not

optimal for turning dynamics, it minimizes the number of nodes for

decision making and cost computation of the path planner.

2. A heuristic Hill-climbing tree search algorithm is used to minimize a cost

function and determine a path to the goal. Compared to the A* type

search algorithms which try all possible extensions of a current path,

the hill-climbing search produces a local optimum within the limited

amount of time and memory available to perform a search, as is the

case with real-time systems. Moreover, when combined with the average

traversability cost algorithm, the knowledge of the local area is extended

and the optimality of the node selected is enhanced.

3. A single parameter index is used to determine hazardous areas and

traversability factors based on terrain roughness, inclination and step.

This method requires an initial user analysis only on a single parameter

and hazard threshold, and requires no further user input to determine

traversal difficulty of specific areas.

4. The traversability factor is continuous-valued and autonomously com-

puted from the DEM. This approach acknowledges intrinsic terrain prop-
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erties such as slope and roughness

5. The cost function is not directly created by the traversability factor,

rather by a traversability cost average. Decision making is based not on

avoiding a single obstacle, but on preferring hazard-free areas for path

planning.

1.3.1 Organization

This thesis is organized as follows:

• Chapter 2. Background Chapter A brief background on autonomous

vehicles for planetary exploration is included. This chapter includes a

brief knowledge covering from imaging sensors for terrain mapping to

search algorithms and artificial intelligence (AI) applications for plane-

tary exploration rovers.

• Chapter 3. Mapping This chapter explains the definition of the DEM

and the local map. This map, on which the path planning algorithm will

determine a safe traversal, is presented in detail. A brief description of

the Global Map acquisition and interface with the local map is presented

as well.

• Chapter 4. Traversability Map Representation The Traversabil-

ity Map (TM) presented is a representation of the natural terrain that

classifies difficulty of traversal for a mobile robot over areas, or cells, of
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the local map. This chapter presents an algorithm to create the Multi-

Valued Traversability Map given a DEM terrain representation.

• Chapter 5. Path Planning The first step of the trajectory planning

process is explained in detail. The chapter discusses both the search

space and the search algorithm used, along with the cost function used

for optimization.

• Chapter 6. Path Relaxation This chapter presents a path relaxation

algorithm that aims to optimize the path created by the initial path

planning step. The relaxation algorithm fine tunes the location of the

path nodes to minimize cost of the trajectory, as well as to minimize

abrupt heading turns, creating a smooth path.

• Chapter 7. Simulation and Results Simulation parameters and

corresponding results are shown. A BTM is utilized as an input to

clearly demonstrate the improvements relevant to using the local search

algorithm and cost function described. Secondly, results are shown for a

multi-valued TM.

• Chapter 8. Conclusions The results of this research work are sum-

marized. Suggestions are given for future work that may expand and

improve the results here demonstrated.
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Chapter 2

Background

Autonomous robotic systems may refer to autonomous manipulators

for example, or to autonomous mobile robots. Autonomous manipulators, in

the common form of a robotic arm, usually have a detailed knowledge of its

environment and therefore path planning algorithms are based on a known

map and goal. In contrast, autonomous mobile vehicles, in the common form

of a rover with wheel dynamics, discover their environment as they traverse

in search for a goal, which may not be initially fixed. Traditionally, maps

traversed by exploration mobile rovers are referred to as partially known or

dynamic, in the sense that the rover is dynamically imaging new terrain in

previously occluded or out of sight areas as it moves. Therefore, the local map

is constantly being updated and enhanced.

2.0.2 Terrain Perception

Traditionally, mobile rovers use stereo cameras to provide images of the

terrain and create the map of the environment. A local map of the terrain can

be maintained onboard by resampling and processing the range data generated

by stereo vision. The MERs, for example, used this type of technology while
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navigating on the surface of Mars. Stereo vision is an attractive technology

for rover navigation because it is passive; sunlight provides all the energy

needed for daylight operations, requiring only a small amount of power for

environment imaging. One or two cameras can provide a wide enough field

of view, so there is usually no need for moving parts in the system. Earlier

studies10 describe an algorithm to process and optimize stereo vision images

for mobile rover navigation software in seven steps to create a Digital Elevation

Map. A variety of image-processing operations, used to extract 3D information

from camera vision, are available in the published literature.13

In recent years, LIDAR sensors have been proposed as an alternative

imaging system to be used onboard autonomous exploration rovers. Laser

range sensors are used extensively in 3D object recognition, 3D object model-

ing, and a wide variety of computer vision related fields. These sensors offer

high-precision scanning abilities, with either single-flash scan or 360 degree

scanning modes. LIDAR sensors eliminate the disparity problem inherent

in the stereo camera systems by keeping the transmitted and received beams

coaxial; and they can function despite of bad lighting conditions, making them

useful for outdoor navigation.

LIDAR sensors output sets of points given in Polar coordinates,(θ, φ, ρ),

which are easily transformed to (x,y,z) cartesian values. A cloud of points is

created by either a single scan for a 3D flash LIDAR, or by varying the pitch

angle of a LIDAR sensor producing a single horizontal beam. A cloud of
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points is one of the multiple representations that can be produced from the

raw sensors data, other representations include rectangular meshes, quad-tree

representations and triangular grids.1 A cloud point representation is known

as the Digital Elevation Map, where a set of heights, z, corresponds to every

coordinate pair (x,y). Thus, the DEM, useful for local rover navigation, can

be easily obtained from a LIDAR imaging system compared to the multiple

processing steps required for Stereo Camera imaging sensors.

A good perception of the environment is of utmost importance for nav-

igation tasks. To move through the terrain to a selected goal, the rover must

know where obstacles are located in order to avoid them. When traversing

non-flat regions, a rover should be able to determine hazardous terrain that

may cause it to fall or tip over as well as rough terrain that may add noise to

on-board sensors. Therefore, after the terrain has been mapped, it is necessary

to categorize it into traversable or untraversable regions. Terrain classification

may depend on difficulty of traversal of a region as well as the expected preci-

sion and accuracy of the sensor readings. Methods that consider sensor error

in terrain classification commonly enlarge obstacles to add a safe margin for

traversal.

2.0.3 Approaches to Path Planning

Most approaches to path planning abstract the perceived environment

map into a graph search space. The graph is then searched by some technique

to determine a path to a goal.
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Some path planners, for example, use Free Space Methods such as

Voronoi diagrams, where corridors of empty space are defined between obsta-

cles.14 Paths are then allowed to run through these corridors only. Free Space

methods suffer from extreme abstraction in narrow spaces and discard too

much information on the environment.

Other path planners base their search on Vertex graphs, where paths are

allowed through connected vertices if they do not intersect an obstacle. These

methods often cause paths to cut through corners of objects, and similar to

Free Space methods, also throw away information on the environment.

Potential Field approaches represent obstacles and hazardous terrain as

hills with sloping sides such that the rover will stay away from them. The floor

is seemingly tilted towards the goal to create a sink effect, however, regions in

between obstacles will create local minimums in which the path planner can

get stuck.

Regular Grid methods are a more traditional approach in which the

terrain map is discretized as a regular grid of nodes connected to 4 or eight

of its neighbors. Each node holds information on a cell of the map, stating

whether the cell is traversable or not. Simple implementations restrict cells

to be represented as either an obstacle or free space (a Binary Traversability

Representation), and usually this restriction is placed by the method utilized to

process the sensed images. The use of LIDAR sensors instead of stereo camera

vision, producing a detailed representation of the terrain and easily converted

to a DEM, allows for an easier creation of a flexible and multi-valued definition
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of traversal difficulty.

Once a path planning approach has been defined, a search algorithm

finds a solution to a goal as a set of steps over the state space. A search

algorithm can be either uninformed, where states are expanded until a goal is

satisfied, or informed, where there is an evaluation function that uses problem-

specific knowledge to find the solution in a more efficient manner.

The most common search algorithm used for path planning applications

is the A* search algorithm. The A* is a type of informed search algorithm

which uses a “greedy” best-first search and a heuristic cost function. A greedy

best-first search first expands the node with the best evaluation, this commonly

being the one closer to the goal. A function used to estimate the evaluation

cost as the distance to the goal is called a heuristic function.

This estimation is said to be heuristic because h(ηij) = 0 if ηij is the

goal node. In the problem of finding a path for a traversing rover, the heuristic

function is usually designed to be a straight line between the node ηij and the

goal node, giving an estimate of the solution cost. This heuristic cost is also

optimistic because it does not overestimate the cost to reach the goal. Selecting

an optimistic heuristic cost is important for the computational efficiency of

the search method.13 However, this cost is not by itself optimal nor complete,

which is why the A* algorithm adds the “greedy” cost from the start node to

the current node, g(ηij) such that
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f(ηij) = g(ηij) + h(ηij) (2.1)

where f(η) = estimated cost of the cheapest solution through η

Using a heuristic cost in the function evaluation does not guarantee

that the total cost will exhibit monotonicity along the path from the root

node. Therefore, A* uses a modified cost function:

f(η′) = min(f(η)g(η′) + h(η′)) (2.2)

where the node η is the root of the node η′. A* then checks if f(η′) is less than

f(η) to make sure that f decreases along the path from that root. If f never

decreases along the path, traditionally, the A* algorithm uses an incremental

heuristic search to look for an alternate path that minimizes the current f

cost, potentially expanding all nodes with a lower cost.

A* therefore presents a problem: the number of nodes expanded in

search of the goal can have exponential growth. Because it keeps all generated

nodes and their information in memory, A* usually runs out of memory space

before it runs out of time. The A* search is both optimal and complete,

however it may not be practical for implementation on large maps, which

ultimately is required for long range traversals.

Now that the most common types of architectures utilized for path

planning of mobile rovers have been described, the following chapters pro-
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pose an improved architecture that encompasses the imaging method of the

environment, the technique to process the terrain map and assign traversal

difficulty over the search space, and a search algorithm that allows a practical

computation efficiency, altogether returning an adequate path to the goal.
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Chapter 3

Mapping

3.1 Mapping based on 3D sensing

Two representations of the surface with different levels of detail are

introduced. One of them having a wider or global coverage of a given area

with a lower resolution and a second one covering a smaller or local area with

a higher resolution. The low resolution map is defined as a Global Map, while

the higher resolution map will be defined as the Local Map (LM). The path

planner will be executed over the Local Map in order to determine an optimal

trajectory to a goal location. Therefore, the Local Map must have a high

resolution sufficient for safe rover traversal.

3.1.1 Global Map

Satellite imagery can be used to create a global map with a resolution in

the order of meters. This low resolution global map would be concerned with

traversal to a feature of interest, avoiding extended hazardous areas. Mission

operators could determine a single goal on the global map, and a global path

planner can be implemented to create a guideline trajectory, segmented into

waypoints.

16



Thus, orbital imagery is crucial for long-range planning, but cannot

resolve vehicle hazards on the order of centimeters. Since the resolution of the

global map is not detailed enough for safe rover traversal, the map must be

segmented into local regions. The location of the waypoints and size of these

Local Maps may be determined by the sensing range of the on-board terrain

imaging system. Each waypoint would then become endpoints, or local goals,

on the Local Map. Earlier studies1,9 describe a global path planner with a

multi-valued traversability categorization of the terrain.

Segmenting a global map into local maps poses a navigation difficulty

for an autonomous mobile system: matching the local maps to the global map

with minimum positioning errors. Wheel odometry, visual odometry and dead

reckoning are commonly used for rover navigation on a local map, however

an alternative solution must be used to align a rover-based local map to a

satellite-based global map. Carle, Furgale, and Barfoot15 propose matching

3D LIDAR scans to features detected by a 3D orbital elevation map. The

method described can be used to estimate the position of a rover on the LM

with respect to the global map, improving long-range autonomous traverses.

Although the global map is an important element in long-range path planning,

the following sections will focus on the definition and determination of the

Local Map as well as its use by the local path planning algorithm.
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3.1.2 Digital Elevation Map

Data obtained from the surface by a sensor system on board of the

vehicle can be gathered to build a local map in the manner of a Digital Ele-

vation Map. A LIDAR based system, compared to stereo camera systems, is

capable of performing under poor illumination conditions. LIDAR sensors also

eliminate the disparity problem that arises by using stereo camera systems.

The output values obtained from the LIDAR sensor are sets of polar

coordinates formed by the distance, horizontal and vertical angles (ρ, θ, φ) that

define the location of a sensed point. In order to create a 3D point cloud, it is

necessary to transform the polar data into sets of (x,y,z) cartesian coordinates.

A cloud of points is one of the multiple representations that can be produced

from the sensors raw data, other representations include rectangular meshes,

quad-tree representations and triangular grids.1 Depending on the range of

the LIDAR sensor, large areas can be scanned with high detail with a single

scan, however, this can create data clouds of up to 70,000 points or more. The

range can be reduced to cover only up to 20 or 30 meters and less than a 180

degrees, while angle resolution is manipulated to reproduce a fairly accurate

representation of the terrain without unnecessarily increasing the number of

points per scan. Figure 3.1 shows a point cloud representation obtained with

3D LIDAR sensing.
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Figure 3.1: Outdoor location scene taken with a LIDAR sensor1

3.1.3 Local Map

With the LIDAR data obtained, a representation of the topography of

the surface surrounding the mobile rover is defined as a 3D point cloud set of

heights, z, corresponding to a coordinate pair (x,y). These (x,y,z) locations

are assumed to be expressed in the coordinate frame of a local map. This

map representation is commonly known as a Digital Elevation Map (DEM),

previously described.

The local DEM, created with LIDAR data, has a proper resolution to

represent terrain features on a scale appropriate for rover traversal. This map

can be further discretized as a grid, where each cell will be represented as a

node on a grid space with defined boundaries, defined as the Local Map. On a

simple case, when this Local Map is processed, nodes can be specified as free

space or obstacles with corresponding costs for traversal difficulty to be used
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by a path planner. Therefore, this local map becomes the workspace on which

the vehicle will plan a series of steps to the local goal, and on a higher scale

to a global waypoint.

In order to define the Local Map, the measurements of the local DEM

are converted to normalized units (i,j,z), such that i, j ∈ N, by determining

the length of the grid cells:

x = lgrid ∗ i for i = 0, 1, ..., N − 1

y = lgrid ∗ j for j = 0, 1, ...,M − 1
(3.1)

Then, let ηij represent a node of the Local Map, where N and M are the total

number of nodes on the x and y axes, respectively. An example of a DEM and

Local Map representation is given in Figure 3.2, where Rη represents a region

of the Local Map centered on ηij.

Figure 3.2: DEM and discretized representation of the map1
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In order to determine the size of the grid, one should consider the reso-

lution that will properly represent map features, however a very high resolution

could be unnecessary depending on the size of the rover. Some map represen-

tation methods introduce two steps for transforming the terrain map into a

traversability map. Initially, small grid cells are created to represent terrain

features as obstacles or clear grids. Then, the traversability representation

is built using larger grid cells, where each grid cell is assigned the maximum

traversability value of any region encompassed by that cell. Then, the grid

will be marked untraversable if any part of that cell is an obstacle. However,

this again encompasses the same problem, the definition of an initial and sec-

ondary grid size to properly represent terrain features, without unnecessarily

blocking clear paths.9
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Chapter 4

Traversability Map Representation

The Traversability Map (TM) is a representation of the natural terrain

that classifies difficulty of traversal for a mobile robot over areas, or cells, of

the Local Map (LM). The Traversability Map offers a processed map represen-

tation that can be used by a path planner, given that each cell has a defined

traversability factor. Thus, a cost can be created from this factor and included

in the path planner’s decision making process in order to avoid obstacles and

hazardous regions.

4.1 Binary Traversability Map

The Binary Traversability Map (BTM) is a grid representation of a

terrain map, where each node is determined to be either free or non-traversable.

Each cell in the LM is represented as a node in the map space χMspace , where

(i, j) are the normalized (x, y) map positions described in Chapter 3.

In a Binary Map Representation, every map node ηij belongs to one of

two sets of the map space, χfree and χobs, as given by the following relation:
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χfree = {ηij | (ηij ∈ χMspace)
∧

(ηij 6∈ χobs)}, 0 ≤ i,≤ N − 1, 0 ≤ j,≤M − 1

χobs = {ηij | (ηij ∈ χMspace)
∧

(ηij 6∈ χfree)}, 0 ≤ i, j ≤ N − 1, 0 ≤ j,≤M − 1
(4.1)

Given the previous definition, there is no intersection of the two subsets, such

that χfree
⋂
χobs = ∅.

The traversability factor corresponding to each set is defined as follows:

ft(ηij) =


0 if ηij ∈ χfree

1 if ηij ∈ χobs
(4.2)

Unknown or occluded terrain can be assumed to belong to one of the two

sets, χfree or χobs. The BTM is used by this work primarily for demonstration

purposes, and is therefore defined as a user input.

4.2 Traversability Map Representation for Natural Ter-
rain

The Binary Traversability Map assigns a binary value to each cell,

where a 1 is used to denote an obstacle, and a 0 represents an obstacle-free

cell. This methodology is simple and commonly used, but it disregards in-

trinsic terrain properties. In contrast to the Binary Map Representation, the

Multi-Valued Traversability Map presented next is a continuous valued local

map representation. The aim is to define the characteristics of the natural
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terrain in a way that can be integrated into a path planning logic as costs or

constraints. Therefore, a local path planner can implement these costs into

the decision making process, effectively creating a safe path to traverse. In the

Traversability Map Representation, every map node ηij belongs to one of the

following sets:

χfree = {ηij | (ηij ∈ χMspace)
∧

(ηij 6∈ χobs
∧
ηij 6∈ χtrav)}, 0 ≤ i,≤ N, 0 ≤ j,≤M

χobs = {ηij | (ηij ∈ χMspace)
∧

(ηij 6∈ χfree
∧
ηij 6∈ χtrav)}, 0 ≤ i, j ≤ N, 0 ≤ j,≤M

χtrav = {ηij ∈ χMspace)
∧

(ηij 6∈ χfree
∧
ηij 6∈ χobs)}, 0 ≤ i, j ≤ N, 0 ≤ j,≤M

(4.3)

with corresponding traversability factor given the set to which a node belongs:

ft(ηij) =


0 if ηij ∈ χfree

1 if ηij ∈ χobs
(4.4)

Otherwise

ft(ηij) ∈ (0, 1) if ηij ∈ χtrav (4.5)

4.2.1 Roughness and Inclination Index

The traversability characteristics of the terrain can be assessed using

a roughness, inclination and step index (RIS) to analyze terrain features and

characteristics. The RIS index is in turn used to define a traversability factor

which will serve as a representation of traversal difficulty for the terrain map,

conforming the Traversability Map.
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The terrain RIS index, σeta, of a node ηij with respect to a terrain

region is defined as:

ση =

√
1

n

∑
Rη

[z(Rη)− z(η)]2 (4.6)

where Rη is a region of n nodes centered on ηij, z(Rη) is the altitude of a

node inside the region, and z(η) is the elevation of the node ηij. For an eight-

connected grid space, described in Chapter 4, there are 8 nodes neighboring

ηij. Therefore, for the scope of this work, n = 8, such that the region Rη used

to compute the RIS index is restricted to the eight neighboring nodes. Figure

4.1 shows the RIS index of the center node, shown in red, for three different

cases. Naturally, the index for a planar terrain is zero, and it is higher for a

single obstacle (with z=.5) than that of a slight slope.

The index can be compared to the work presented in previous investi-

gations.1,10 On this work, the RIS index groups three types of terrain charac-

teristics, requiring user analysis only over a single parameter. Moreover, the

index is a simple and easily computed parameter that characterizes a single

cell node, avoiding the loss of detail on the terrain representation, compared

to other methods that utilize parameters to categorize an entire fitted plane

or region.
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(a) ση = 0 (b) ση = 0.5

(c) ση = 0.2598

Figure 4.1: RIS index evaluation

4.2.2 Traversability Factor

After computing the RIS Index, a threshold value, τo, is selected to

detect obstacle nodes, as well as the traversability factor of the remaining

nodes. The obstacle threshold is user-defined, and depends on an analysis on

rover clearance height and pitch hazard. Each cell on the Traversability Map

will have a defined factor.

The Traversability factor is defined as follows:
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ft(ηij) =


1 if σ(eta) > τo, s.t. η ∈ χobs

0 if σ(eta) = 0, s.t. η ∈ χfree

σ(η) ∗ 1
τo

if 0 < σ(eta) < τo, s.t. η ∈ χtrav

(4.7)

Upon determining the factors, cell nodes that surpass the obstacle threshold

will now belong to the obstacle set, χobs. The following section will explain

the consideration taken by the path planner over obstacle cells.
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Chapter 5

Path Planning

Path planning is segmented in two steps. On the first step, a search

algorithm determines a series of node steps to the goal over a grid space, based

on minimizing a cost function. A path-relaxation algorithm is implemented as

a second step to fine tune the location of path nodes. This chapter focuses on

the description of the first path planning step, its methods and implementa-

tion.

5.1 Search Space

Path planning searches consist of two components: the search space and

the search algorithm itself. If concerned with navigation and motion planning,

search spaces typically consist of simple primitives that satisfy certain mobility

requirements. Cell decomposition methods break a continuous space on which

the search algorithm must perform into a finite number of cells, yielding a

discrete search problem. A grid is the simplest cell decomposition search space

commonly implemented. The optimality of the path may depend on the type

of grid motion allowed. Traditionally, motion over the grid space is strictly

allowed between the nodes. A four-connected grid, shown in Figure 5.1, blocks
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diagonal paths even if there is enough space to move through them. Thus, it

may become necessary to reduce the size of the grid in order to allow for more

open paths, increasing the number of nodes in the map.

(a) Four connected grid (b) Eight connected grid

(c) Arc-based primitive

Figure 5.1: Grid Search Space. a) shows the movement in transitions of 90 deg,
whereas b), an eight-connected grid, allows diagonal movement as well. A
simple arc-based motion is shown on c), where movement is allowed from the
node through the arcs.
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An eight-connected grid (each node connected to it’s diagonal, as well as

orthogonal neighbors) eliminates the problem with diagonal paths as motion

is allowed in heading transitions of 45 degrees. Figure 5.1 shows the eight-

connected grid, where a robot located in node (2,2) can move to any of its

eight neighbors.

The eight-connected grid still shows inefficiencies on the trajectory out-

come. Instantaneous changes of direction are usually caused by the use of a

grid search space; thus, it cannot certainly satisfy smoothness and vehicle dy-

namic constraints that require minimizing abrupt heading changes. Improved

methods include modifying the motion over the grid to an arc-based primitive,

which can increase the number of neighboring states that emanate from each

node, as seen in Figure 5.1.

Instead of using a more complex grid, an eight-connected grid is imple-

mented and a path-relaxation step is proposed. The path relaxation algorithm

is an optimization step that fine-tunes the location of the initial path nodes

over a grid space, determined by the first step of path planning, and returns

a smooth trajectory. The algorithm is described on Chapter 6 in detail.

5.2 Search Algorithm

The search algorithm used is an iterative improvement algorithm, a

Heuristic Hill Climbing Search.13 Iterative improvement algorithms often pro-

vide the most practical approach, however, based on a local search, they often
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require enhanced versions for optimality and completeness. Hill Climbing al-

gorithms have all the states of the space laid out on a surface, where the height

of any point corresponds to an evaluation function at that point, as observed

in Figure 5.2. If the algorithm views the evaluation function as a cost instead

of quality, and the intention is to reach a minimum, not a maximum, then it is

said to be of a gradient descent class. For the purpose of this work, an initial,

unmodified surface cost is represented by the Traversability Map.

Figure 5.2: Hill climbing algorithm looks for maxima or minima on a surface
defined by an evaluation function

Traditionally, hill climbing algorithms keep track of only the current

state, and do not look ahead beyond immediate neighbors of that state. The

algorithm does not attempt to exhaustively try every node and path, so no

node list or array is maintained, just the current state. Due to their nature,

traditional Hill climbing algorithms can get stuck on local minima. A heuristic
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repair method is used in this work to avoid this and promote movement toward

a solution. The same heuristic cost described in Chapter 2 is added to the cost

function to attract the sate towards the goal, where

h(ηij) =‖ ηg − ηij ‖ (5.1)

The cost surface is further modified by manipulating the traversability

factors that conform the TM into a traversability cost average, extending the

region of local knowledge directly accounted by the Hill Climbing algorithm,

and further into a complete cost function, C(η), such that η is a vector of

neighboring nodes. At each iteration, the algorithm considers the single ele-

ments of η and accepts the change that improves C(η), such that η is locally

optimal.

5.3 Cost Function

The path planning search algorithm’s decision making is based on se-

lecting a series of trajectory waypoints leading to the goal that minimize a

cost function. The cost is spread from the current location to the neighboring

nodes with the following cost function:

C(ηij) = WLh(ηij) +WobsCobs(ηij) +WvCv(ηij) (5.2)

The optimistic heuristic cost h(ηij) is computed as the distance from

the node ηij to the goal node such that h(ηij) =‖ ηg − ηij ‖. This is called
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an optimistic cost because it assumes the path from the current node to the

goal as a straight line, the minimum cost possible for the given node. If ηij

belongs to an array χv of previously visited nodes, a cost Cv is added in order

to promote the path planner to explore new areas. Moreover, if it is necessary

for the rover to retrace its steps to get out of a dead-end, for example, the

introduction of this cost does not block the previously visited nodes.

Cobs is the Traversability Cost Average value created from incoming

traversability factors (ft) of neighboring nodes taken from the Traversability

Map. Nodes in spacious/high-traversability regions have lower values, nodes

in densely obstacle populated areas have higher values. The inclusion of the

Traversability Cost Average in the cost function allows to choose paths through

open areas as a trade off for short length paths. This cost, as well as the

algorithm to compute it is explained in the next section. The values Wl,

Wobs, and Wv are weight values added to the different costs that form the cost

function. The addition of these weight values can offer the user to manipulate

the decision parameters over the planned trajectory. However, the inclusion

of the Traversability Cost Average in the cost function allows to choose paths

through open areas as a trade off for short length paths.

5.3.1 Traversability Cost Average

The Traversability cost average defines a cost utilizing information from

the TM. Whereas the actual difficulty of traversal for each node is specified

33



by the traversability factor, the hazard of traversing a topological region is

defined by the traversability cost average. For example, a near object or a

node difficult to traverse adds to the cost of the node in question. The nearer

the obstacle, the more cost it adds to the node. This average is quite helpful

when implementing a local search algorithm because it expands the region of

knowledge for the decision making process.16

Consider a small region of a DEM map shown in Figure 5.3(a) and

the cost average representation on Figure 5.3(b). Figure 5.3(b) is represented

as a binary traversability map, where the traversability factors of each node

are either 0 or 1, free space or an obstacle. Each node receives traversability

information from the neighboring nodes, where links are broken if one of them

is an obstacle. Obstacle nodes have no incoming links since it is unnecessary

to obtain their cost average. This happens because nodes marked as obstacles

are blocked; movement to those nodes is not allowed and thus they do not

require a cost average.

Each node adds incoming information from neighboring nodes and cre-

ates a temporary value, and divides it by 21 on 1st iteration, 22 on second,

etc. This value converges to a steady value after a very few iterations. Then,

if greater than zero, the original node value is added to the temporary value.

After this is done, nodes in open areas will have lower values than nodes in

dense areas. In addition, the cost average allows the cost function to have a

trade-off between short path length and lowering the chance of backtracking
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due to an unpredictable obstacle.16 Table 5.1 shows the Traversability Cost

Average algorithm.

The region Rη centered on node ηij must be defined again to compute

the Cost Average, Cobs. This region represents the area of knowledge over

which information relevant to the node is considered. Figure 5.3(b) shows

a region extended two nodes away from the center node. The number of

calculations and therefore processing time increases for a larger Rη. Chapter

7 shows results for a cost average over a region extended 3 nodes away from

the center node.

(a) Map with obstacles (b) Representation of the
Traversability Cost Average

Figure 5.3: Computation of the Traversability Cost Average
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Table 5.1: Traversability Cost Average Algorithm

Input : TraversabilityMap, ηij,

Output : Traversability Cost Average

1 : define Rη

2 : create ctemp(R) = 0
3 : define ct = TMR

4 : for i = 1 : 2
5 : k = 2i

6 : for η ∈ Reta 6∈ χobs
7 : for p = −1 to 1
8 : for q = −1 to 1
9 : ctemp η = ctemp η + ct ηpq
10 : end
11 : end
12 : ctemp = ctemp

k

13 : end
14 : ct = ctemp
15 : end
16 : Cobs = ct(ηij)
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Chapter 6

Path Relaxation

6.1 Relaxation

The path planning search algorithm implemented minimizes computa-

tion requirements by using a local search over a discretized space. However,

the trajectory created by this and other path planning methods traditionally

implemented on grid search spaces, most likely, will not be smooth and require

sharp turns due to the implementation of an eight-connected grid space. Ve-

hicle dynamic constraints may require minimizing abrupt heading changes,8

thus the initial path may not be optimal for real life implementation. Also,

this grid space definition may increase path length unnecessarily because of a

limited motion from node to node. The Path Relaxation step intends to solve

these problems.

After the grid search has created an initial path, the path relaxation is

an optimization step that fine-tunes the location of each node on the path to

minimize the total cost of the trajectory. Each node’s position is adjusted in

turn using only local information to minimize the cost of the path sections on

either side of that node.

In order to avoid grouping of nodes, each node is allowed to move only
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one unit on a line perpendicular to a vector intersecting the previous and

next trajectory nodes. The cost for node motion depends on distance traveled

(from preceding, through current, to next node) and proximity to obstacles

and terrain features. It would be difficult to solve for the minimum cost

due to node position on a continuous line without knowing an exact relation

between the cost and node position. Therefore, a binary search is used to find

a minimum to within a given tolerance or resolution.14

6.2 Cost Function and Constraints

In order to move the location of each path node ηp = (ip, jp) on the local

map, the slope between the previous and next node, m, is calculated and its

negative reciprocal, mp determined. Now, an optimal location for each node,

ηpi, can be found on the line given by mp, using a binary search to determine

the position on this line with the minimum cost. To initialize this step, the

maximum location on the line, given by ηmax0 = (xmax0, ymax0), is one unit

distance away from the initial node’s location, such that

xmax0 =
√

1
m2
p+1

+ xpi

ymax0 =
√

m2
p

m2
p+1

+ ypi

(6.1)

and

ηmin0 = ηpi (6.2)
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The cost is determined by local information on path length to minimize

the cost of the path sections on either side of that node, as well as proximity to

obstacles and features. If any of the neighboring nodes on the quadrant along

of the line of motion has an obstacle, then the initial node ηpi is not allowed

to move. This is in order to avoid any further proximity to an obstacle. The

cost function is given by

C(ηpi,k) = f(ηpi,k) + g(ηpi,k) +
1

o(ηpi,k)
(6.3)

where

f = ‖ηpi−1 − ηpi,k‖ (6.4)

g = ‖ηpi+1 − ηpi,k‖ (6.5)

o = ‖ηobs − ηpi,k‖ (6.6)

where ηobs is an obstacle node within a region along the quadrant of motion.

The path relaxation step returns the new location of the path’s nodes.

After a node has been moved (relaxed) then the node’s position may no longer

be integer valued. Therefore, the path relaxation returns an array

ηp = (xp, yp), such that xp, yp ∈ R+ (6.7)
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It would be difficult to solve for the minimum cost due to node posi-

tion. Therefore, the binary search is used to find a minimum to within a given

tolerance or resolution. Three iterations of the binary search already allows

for a resolution of 1
8

along the line of node motion, and thus can be used as

a stopping criteria. This fine-tunning binary search does not guarantee the

solution to be an optimal point on the line of motion, but it can at least guar-

antee that each step provides a monotonically decreasing cost for the solution.

A second iteration of path relaxation will further fine-tune the location of the

nodes on the path and may offer a sufficiently optimized solution. Figure 6.1

shows three iterations of a binary search, where ηi = (xi, yi) is the initial loca-

tion of the path node, taken as the initial ηmin = (xmin, ymin) value for node

motion. The path relaxation algorithm is shown in Table 6.1
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Figure 6.1: Binary search example. Binary search steps are shown as blue
points, with the solution after k = 3 marked with an asterisk.

41



Table 6.1: Path Relaxation algorithm

Input : ηp, TM,

Output : Relaxed Path

1 : for j = 1 : 2
2 : while i ≤ path length
3 : Compute : mi → mip

4 : Compute : ηmax0
5 : ηmin0 = ηpi
7 : Calculate fmax0, gmax0, omax0
8 : fmin, gmin, omin → Cmax, Cmin
5 : for k = 1 : 3
6 : Binary Search
9 : if Ckmax > Ckmin

10 : xk+1max = (xkmax + xkmin)/2
11 : yk+1max = (ykmax + ykmin)/2
12 : else if Ckmax < Ckmin
13 : xk+1min = (xkmax + xkmin)/2
14 : yk+1min = (ykmax + ykmin)/2
15 : end if
16 : if Cmaxk > Cmink
17 : ηpi = ηkmin
18 : Compute Cmax k+1

18 : else
19 : ηpi = ηkmax
20 : Compute Cmin k+1

20 : end if
21 : end for
22 : i = i+ 1
23 : end while
24 : j = j + 1
24 : end for
25 : return ηp
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Chapter 7

Results

The Simulation and Results chapter presented consists of two sections.

First, to determine the feasibility of implementing a local search algorithm, a

simulation was constructed to perform the experimentation on a simple Binary

Traversability Map. This simulation takes as an input the Binary Map, and

intends to test the basic concept of implementing a heuristic Hill Climbing

search algorithm with the use of a Traversability Cost Average to extend the

region of local knowledge. The second section demonstrates the feasibility of

the algorithm when implemented on a natural terrain map, where it is impor-

tant to define the difficulty of traversal of the terrain beyond obstacles and

free space with a Multi-Valued Traversability Map. All simulations presented

were performed in MATLAB.

7.1 Simulation Results for a Binary Traversability Map
Representation

This section intends to demonstrate the effects of implementing an

informed local search algorithm with an extended region knowledge and a

heuristic cost over a simple Binary Traversability Map.
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The first examples observed, Figure 7.1(a) and (b) show two paths

created over the same Binary TM with different selected goals and fixed weight

parameters. For both cases, the initial location of the path is positioned on

the lower left corner. Obstacles are denoted by blue dots, and the original

path created by the Heuristic Hill Climbing algorithm is shown in black. Two

path relaxation steps are implemented, the first one shown in green, and the

second step in red. Table 7.1 shows the simulation parameters defined for these

results. We can observe that the original path is sub-optimal with respect to

length, an ill-condition caused by the characteristics of the search space. As

mentioned before, an eight-connected regular grid allows only for transitions of

45 degrees between nodes. The problem becomes present when there is a clear

path in a free space, however the planner cannot create a straight line due

to the characteristics of the search space. Thus, these examples evidence the

practicality of relaxing the initial trajectory. Not only does this accomplish

minimizing the cost of traversal, but now the relaxed path follows a smooth

trajectory without any drastic heading changes.

7.1.1 Parameter Effects

The previous results have provided a visual introduction of the imple-

mentation of the path planning algorithm over a BTM. The goal now is to

determine the effects of the parameters that must be selected by the user over

a larger map. Figures 7.2 and 7.3 show two different paths created from the

same start node to the same goal, with given inputs and parameters defined
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(a) Map with goal = (18, 18)

(b) Map with goal = (19, 13)

Figure 7.1: Relaxed Path, Binary Traversability Map representation over a
small 20x20 unit region
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Table 7.1: Simulation Parameters
Inputs Weight Parameters
Start: (2,3) Wobs = 5
Goal: WL = 1

Wv = 1
Simulation Parameters
Map Size: 20 x 20
Obstacles: 60
Rη : 7x7 nodes
Path Relaxation: 2 iterations

in Table 7.2. The difference in the paths generated is an effect of selecting

different weight parameters for the Hill Climbing search cost function. Figure

7.2 shows the path created giving WL and Wobs an equal weight. This path

tries to cut cost by shortening the length of the trajectory, finding a path

through obstacle dense areas, and compared to Figure 7.3, it seems to follow

a path closer to a straight line to the j value of the goal node. Figure 7.3

shows the alternate path created by selecting a higher value for Wobs. Here,

the path passes through more open areas, and does not have to backtrack as

in the previous map.

Both Figures show that the relaxed path follows the original path

closely when in dense areas, though it still smooths out sharp turns. Moreover,

the relaxed path on Figure 7.2 discards the backtracking step of the original

path through the bottom left corner of the map.

The previous results demonstrate optimizing effects of weight parame-

46



Table 7.2: Simulation Parameters
Inputs Weight Parameters
Start: (4,4) Wobs

Goal: (45,35) WL

Wv

Simulation Parameters
Map Size: 50 x 50
Obstacles:
Rη : 7x7 nodes
Path Relaxation: 2 iterations

Figure 7.2: Relaxed path, Binary Traversability Map
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Figure 7.3: Relaxed path, Binary Traversability Map with Weight effects

ters and path relaxation over specific examples. In order to analyze the effects

on time and path length for both the original and relaxed path planning, Ta-

bles 7.3-7.5 show a numerical analysis over a series of weight parameters for

a small, medium, and large map. PL1 defines the path length of the original

path created by the hill climbing search algorithm, while PL2 gives the length

of the relaxed path after 2 iterations. The time t1 gives the processing time

for the original path and t2 is the total processing time after including the two

relaxation steps, both given in seconds.

Results shown in these tables are averaged over 100 runs, where the

location of obstacles on the Binary Map are input for each run as random

integers given by a discrete uniform distribution. Results show that for the
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three cases, the original path has a shorter length for a smaller weight ratio

(WL > Wobs). This is to be expected considering that a higher ratio causes

the path to avoid obstacle-dense areas, an attempt that may cause the path

to deviate from a straight line as necessary.

As observed in Figures 7.2 and 7.3, the relaxed path follows the original

path closely in obstacle-dense areas, such that reduction of path length in such

areas may be negligible. Numerical results shown in Tables 7.3-7.5 show that

the percentage decrease in path length is much lower for low weight ratios,

implying again that a higher Wobs avoids dense areas, allowing for more open

space for the path to be relaxed. This in turn results in a higher path length

decrease. Moreover, both t1 and t2 seem relatively unaffected by changes in

the weight ratio.

Table 7.3: Path Length and Time vs. Map Size and Parameter Ratio, Map
Size= 25x25

Map Size = 25x25

Wobs

WL
= 1 Wobs

WL
= 2 Wobs

WL
= 5 Wobs

WL
= 10 Wobs

WL
= 1

5
Wobs

WL
= 1

2

PL1 22.012 22.91 22.508 22.51 21.846 22.294
PL2 21.536 21.588 21.558 21.378 21.404 21.56
t1 0.00342 0.00428 0.00350 0.002925 0.00292 .00316
t2 0.0763 0.07762 0.07775 0.07568 0.07432 .07624

(1− PL2

PL1
) ∗ 100 4.543 5.902 4.221 5.029 2.033 3.2924
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Table 7.4: Path Length and Time vs. Map Size and Parameter Ratio, Map
Size= 50x50

Map Size = 50x50

Wobs

WL
= 1 Wobs

WL
= 2 Wobs

WL
= 5 Wobs

WL
= 10 Wobs

WL
= 1

5
Wobs

WL
= 1

2

PL1 44.16 44.728 44.064 44.228 42.426 43.188
PL2 41.518 41.766 41.934 41.92 41.278 41.288
t1 .00745 0.00836 .0075 .00748 .00752 0.00884
t2 .0807 0.08196 .0817 .08416 .0795 .0827

(1− PL2

PL1
) ∗ 100 5.9828 6.623 4.834 5.22 2.706 4.3994

Table 7.5: Path Length and Time vs. Map Size and Parameter Ratio, Map
Size= 100x100

Map Size = 100x100

Wobs

WL
= 1 Wobs

WL
= 2 Wobs

WL
= 5 Wobs

WL
= 10 Wobs

WL
= 1

5
Wobs

WL
= 1

2

PL1 99.49 98.496 100.74 99.586 97.998 99.06
PL2 96.72 96.712 96.648 97.282 96.486 96.502
t1 0.01564 0.01586 0.01578 0.0163 0.01776 0.01572
t2 0.09034 .0883 0.0908 0.09044 0.0912 .08892

(1− PL2

PL1
) ∗ 100 2.7842 1.8133 4.062 2.314 1.543 2.59
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7.1.2 Numerical Comparison with Traditional A*

A comparison analysis to verify the HCC’s improved efficiency over the

A* algorithm for trajectory planning may be complex as several performance

criteria can be defined. However, the objective of this work is to propose

a local search algorithm that improves the usage of computational resources

while providing a safe path to the goal. The efficiency of the HHC will be

judged by a numerical analysis of its improvement of processing time, and a

few examples will be shown to visually demonstrate effectiveness in comparison

to the traditionally implemented A*.

Figure 7.4 shows the processing time in seconds vs. map size for the

A* algorithm using a binary heap and the Heuristic Hill Climbing search al-

gorithm, with parameters given in Table 7.6. The results of this numerical

comparison show excellent performance of the HHC algorithm regarding pro-

cessing time for local maps of up to 300x300 nodes. The HHC algorithm per-

forms considerably faster for maps where N < 250 throughout the different

weight parameters. Assuming that a LIDAR sensor gives a higher resolution

at a shorter range, it may be desired to limit the size of the local map to ap-

proximately 50 m. Given a reasonable grid length, the size of the Local Map

may not go over 200x200 nodes. Therefore, these results are quite relevant for

the proposed scenario.
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(a) Wobs

WL
= 1 (b) Wobs

WL
= 5

(c) Wobs

WL
= 10

Figure 7.4: Processing time comparison for HHC and A* path planning algo-
rithms
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Table 7.6: Simulation Parameters
Inputs Weight Parameters
Start: (3,N/2) Wobs = 1, 5, 10
Goal: (N-4,N/2) WL = 1

Wv = 1
Simulation Parameters
Map Size: NxN
Obstacles: 2*N
Rη : 7x7 nodes
Path Relaxation: Off

Next, Figures 7.5 and 7.6 show examples of a small sized and medium

sized map, respectively, and the trajectories generated by A* and HHC algo-

rithms. It would be complex to analyze comparative trajectories with respect

to performance criteria such as hazard avoidance or feasibility of the path in

a general manner. These maps offer an analysis only over specific cases, but

are a visual aid to the numerical results previously presented.

Figure 7.5 shows a small sized map, with equal paths generated by

the A* and HHC algorithms. The processing time for the path generated

by the HHC local search algorithm was 10 times faster than that of the A*

algorithm, showing excellent performance and accuracy of the HHC algorithm

for implementation on small maps.

Figure 7.6 shows two alternative paths generated by the algorithms

over a medium sized map. The path on the right seems, at simple sight,

to avoid tighter spaces in certain regions. Both paths equally complete the

selected task, however for safety purposes, the second one can be considered
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(a) A* generated trajectory, t = 0.0261sec (b) HHC generated trajectory, 0.0025

Figure 7.5: Processing time comparison for HHC and A* path planning algo-
rithms

(a) A*-generated trajectory, t = 0.0367 sec (b) HHC-generated trajectory, t = .0.0143

Figure 7.6: Processing time comparison for HHC and A* path planning algo-
rithms
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more efficient. The path generated with the HHC algorithm has a processing

time t = 0.0143 and length PL = 55.006, compared to the time t = 0.0367

and PL = 52.764 generated by A*.

7.2 Simulation Results for a Traversability Map Repre-
sentation of Natural Terrain

Given the previous results and analysis of the implementation the HHC

local search algorithm, this section demonstrates the feasibility of the algo-

rithm when implemented on a natural terrain map, where it is important to

define the difficulty of traversal of the terrain beyond obstacles and free space.

Table 7.7 shows the inputs and parameters defined for this simulation.

The Path Planning architecture for natural terrain creates the Multi-

Valued Traversability Map automatically. It does so by defining the RIS index

for each cell of the local DEM, and determining the Traversability Factor.

Figure 7.7 shows the DEM map used for the simulation. The map is 20X20

meters, and it represents the perceived local map, as explained in Chapter

3. Figures 7.8 and 7.9 show the RIS Index values for the normalized local

map and the Multi-Valued TM, respectively. Given the obstacle threshold, τo,

nodes with a high RIS index are marked as obstacles, as seen in Figure 7.9.

The value of τo is entirely selected by the user, and it depends upon analysis

on the rover’s clearance height and pitch hazard. For example, the obstacles

seen in the DEM map, Figure 7.7, have a height of 0.5 m, and are considered

hazardous obstacles for a small sized rover.
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Figure 7.7: Digital Elevation Map

Figure 7.8: RIS Index
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Figure 7.9: Multi-Valued Traversability Map with Traversability Factors

7.2.1 Parameter effects

The goal now is to determine the effects of the parameters, selected

by the user, over a Multi-Valued Traversability Map. The weights added to

the cost function, WL and Wobs, allow the user to manipulate the decision pa-

rameters for path planning. The inclusion of the Traversability Cost Average

allows to choose paths through open areas as a tradeoff for short path lengths.

The weight given to it determines the importance given to avoidance of haz-

ardous regions, which for the multi-valued case, consist not only of obstacles

but rough terrain and areas with slopes.

Figures 7.10, 7.11, and 7.12 shows a surface projection of the Multi-

Valued Traversability Map, with the initial path and the relaxed path for two

relaxation steps. Nodes marked as obstacles are shown in red. Figure 7.10
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Table 7.7: Simulation Parameters
Inputs Weight Parameters
Start: (7,20) Wobs = 0, 1, 5
Goal: (45,35) WL = 1, 2

Wv = 1
Simulation Parameters
Map Size: NxN
Obstacles:
Rη : 7x7 nodes
Path Relaxation: Off

Figure 7.10: Relaxed Path, Multi-Valued Traversability Map, no Obstacle
Weight

58



shows the trajectory selected with an obstacle weight, Wobs, of 0. Therefore,

the Traversability Cost Average is not taken into account when minimizing

the cost function. The selected path passes through areas of nodes with high

traversal difficulty, prioritizing path length in the search of the goal node.

Figures 7.11 and 7.12 show the effect of the weight parameters on the

path. Choosing equal values forWL andWobs begins to pull the path away from

the hazardous areas and into regions with low hazard values. We can observe

the path curving as the gap between the two weights grows in Figure 7.12,

and finally, Figure 7.13 shows the trajectory created giving a higher priority

to the obstacle cost. Here we see that the trajectory curves to stay within the

low cost areas. The path planner has selected a longer trajectory, but has a

larger clearance from hazardous areas, which is as expected by prioritizing the

Traversability Cost Average.

If the terrain surface can be perceived with high resolution and easily

represented as a DEM, as it has been demonstrated by the use of LIDAR tech-

nology, then these results demonstrate that the Path Planning algorithm pre-

sented can be implemented with confidence over a Multi-Valued Traversability

Map, and moreover, over rough terrain. Figure 7.14 shows the final relaxed

path resulting from the simulation conditions, transformed to position coordi-

nates on the local DEM.
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Figure 7.11: Relaxed Path, Multi-Valued Traversability Map

Figure 7.12: Relaxed Path, Multi-Valued Traversability Map with Weight ef-
fects
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Figure 7.13: Relaxed, Multi-Valued Traversability Map, Wobs effects

Figure 7.14: Relaxed path over DEM
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Chapter 8

Conclusions

This thesis considers the problem of implementing a path planning

algorithm that is capable of adding the avoidance of hazardous areas as a

priority over short distance paths. Two cases are considered: 1) the terrain

grid map is assigned binary valued traversability factors, 2) The terrain grid

map is autonomously assigned multi-valued traversability factors.

Traditional approaches have so far implemented an A* search algo-

rithm, extending a global search through the local map to create a path to the

goal. This approach, though optimal and complete, is impractical for real life

applications due to the exhaustion of every possibility from a node of origin.

The heuristic hill climbing search algorithm, in contrary to the traditional

approach, may in theory produce a suboptimal solution because it extends

a local search, rather than a global one. However, results demonstrate that

the introduction of an extended version of this local search algorithm with a

traversability cost average has an improved optimality.

The extended heuristic hill climbing algorithm, implemented as the

core of the path planning system offers a reduction in processing times for
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maps up to 300x300 nodes, as compared to the traditional A* implementation.

This represents a realistic advance for practical implementation with LIDAR

mapping, where it is desirable to restrict range to optimize resolution. These

results would therefore be quite generous with respect to map size.

Reducing processing time and requirements of the search algorithm

without reducing optimality allows the implementation of other technologies

that enhance autonomous path planning. For example, the development of

an automatic multi-valued traversability matrix that can acknowledge intrin-

sic terrain properties enhances navigation over natural terrain. Similarly, a

path relaxation algorithm that smoothes the planned trajectory complies with

control requirements on heading changes. These developments benefit from a

search algorithm with a lower usage of computation resources, and altogether

increase the autonomy of an exploration vehicle.

The automated processing of the digital elevation map and obtention

of the multi-valued traversability factors, for example, add processing time

and memory usage to the path planning, independent of the search algorithm

implemented. However, results demonstrate that the enhanced hill climbing

algorithm has good performance over the presented multi-valued traversabil-

ity matrix, avoiding hazardous regions rather than only single obstacles. A

more extensive study should be performed for future research to reduce overall

computing requirements of this presented architecture.
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On the other hand the path relaxation algorithm, which is presented as

an independent and easy to implement optimization step that fine tunes the

location of each node of the trajectory, intends to smooth the path without

adding complexity and processing requirements on the search algorithm. Fu-

ture research should compare and numerically investigate the benefits of path

relaxation versus increased search space complexity over computing resources.
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