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FORMATIONS NEAR THE LIBRATION POINTS: 
DESIGN STRATEGIES 

USING NATURAL AND NON-NATURAL ARCS
K. C. Howell and B. G. Marchand
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Formations Near the Libration Points

Moon
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Chief S/C Path
(Lissajous Orbit)

EPHEM = Sun + Earth + Moon Motion From Ephemeris w/ SRP
CR3BP  = Sun + Earth/Moon barycenter Motion Assumed Circular w/o SRP

Deputy S/C
(Orbit Chief Vehicle)
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Control Methodologies Considered
in both the CR3BP and EPHEM Models

• Continuous Control
– Linear Control

• State Feedback with Control Input Lower Bounds
• Optimal Control → Linear Quadratic Regulator (LQR)

– Nonlinear Control
• Input Feedback Linearization (State Tracking)
• Output Feedback Linearization (Constraint Tracking)

– Spherical + Aspherical Formations (i.e. Parabolic, Hyperbolic, etc.)

• Discrete Control
– Nonlinear Optimal Control

• Impulsive
• Constant Thrust Arcs

– Impulsive Targeter Schemes 
• State and Range+Range Rate

– Natural Formations  Impulsive Deployment
– Hybrid Formations  Blending Natural and Non-Natural Motions
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IMPULSIVE FORMATION KEEPING:
TARGETER METHODS
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State Targeter: 
Impulsive Control Law Formulation

1V∆

2V∆

3V∆

Segment 
of Nominal 
Deputy Path

0vδ −

0vδ +

0V∆

1rδ

2rδ

3rδ

STM

1 1

1 1

k kk k

k kk k k

A Br r
C Dv v V

+ +
− −
+ +

    
=     + ∆    



δ δ
δ δ

( )1
1k k k k k kV B r A r v− −
+∆ = − −δ δ δ

Segment 
of Chief S/C Path

C(t1)

C(t2)

C(t3)

D(t1)

D(t2)

D(t3)



6

State Targeter: 
Radial Distance Error
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State Targeter:
Achievable Accuracy 
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State Targeter: 
Maneuver Schedule
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Range + Range Rate Targeter
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Comparison of Range and State Targeters

Chief S/C at Origin

Deputy S/C Path
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DESIGN OF NON-NATURAL FORMATIONS
USING NATURAL SOLUTION ARCS
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CR3BP Analysis of Phase Space 
Eigenstructure Near Halo Orbit
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Natural Solutions:
Periodic Halo Orbits Near Libration Points
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Natural Formations:
Quasi-Periodic Relative Orbits → 2-D Torus
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ẑ

x̂
ŷ
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Floquet Controller
(Remove Unstable + 2 Center Modes)
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Sample Deployment into Relative Orbits:
1-∆V at Injection

Origin = Chief S/C

Deputy S/C
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Natural Formations:
Nearly Periodic and Drifting Relative Orbits

Chief S/C @ Origin 1800 days
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Expansion of Drifting Vertical Orbit

Origin = Chief S/C

( )0r ( )fr t

18,000 days = 100 Revolutions
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Transitioning Natural Motions 
into Non-Natural Arcs: Targeter Approach

STEP 1: Identify a suitable initial guess

Target  Orbital Drift Control
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Application of Two Level Corrector

( )qTΓ

( )0r t

( )mr t

( ) ( )0mr t r t=
( )qV T∆

STEP 2: Apply 2-level corrector (Howell and Wilson:1996) w/ end-state constraint

STEP 3: Shift converged patch states forward by 1 period
STEP 4: Reconverge Solution
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Drift Controlled Vertical Orbit (6 Revs)

( )
3 5 m/sec 

1 maneuver/year
V∆ = −
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Geometry of Natural Solutions 
in the Ephemeris Model

w/ SRP

Inertial Frame Perspective: 

Rotating Frame Perspective: 
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Transitioning Natural Motions 
into Non-Natural Arcs: IFL Example

(1) Consider 1st Rev Along Orbit #4
as initial guess to simple targeter.

(2) Choose initial state on xz-plane
(3) Target next plane crossing to be ⊥
(4) Use resulting arc as half of the

reference motion.
(5) Numerically mirror solution about

xz-plane and store as nominal.
(6) Use IFL control to enforce a 

closed orbit using stored nominal.

Chief S/C @ Origin
Sphere for Visualization Only
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Hybrid Control:
Natural Motions + Continuous Control

½ Period  Natural Arc
½ Period  IFL Control
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Concluding Remarks
• Precise Formation Keeping → Continuous Control

– Is it possible? 
• Depends on hardware capabilities and nominal motion specified
• Not if thruster On/Off sequences are required & tolerances too high

• Precise Navigation → Natural Formations
– Targeter Methods 

• Natural motions can be forced to follow non-natural paths
• Success depends on non-natural motion specified

– Hybrid Methods (Natural Arcs + Continuous Thrust Arcs)
• May prove beneficial for non-natural inertial formation design.
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BACKUP SLIDES



27

Hybrid Control: Accelerations
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Dynamical Model
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Chief S/C Motion: 
Natural Solutions Near L1 and L2
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Controlled Deputy S/C Motion (Example 1):
Formation Fixed in the Rotating Frame

Chief S/C
Deputy S/C

ŷρ ρ=

C(t1)

C(t2)

C(t3)

C(t4)

D(t1)

D(t2)

D(t3)

D(t4)
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X [au]

Y 
[a

u]

Controlled Deputy S/C Motion (Example 2):
Formation Fixed in the Inertial Frame

Ŷρ ρ=Chief S/C
Deputy S/C

C(t1)

C(t2)C(t3)

C(t4)

D(t1)

D(t2)D(t3)

D(t4)
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MAXIM:
APPLICATIONS OF IFL AND OFL
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MAXIM Mission Sequence
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MAXIM:
THRUSTER ON-OFF SEQUENCE
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Free Flyer Configuration

FF2

FF1

FF3

FF4

FF5 FF6

Hub
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Radial Error wrt. Hub S/C

Thrusters off = 100,000 sec

W Wr r− 

Nominal Radial Vector 
in UVW Coordinates

Actual Radial Vector 
in UVW Coordinates
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Free Flyers
UV-Plane Angular Drift (DEG)
ν ν− 

ε ε− 

Nominal
Actual

Nominal
Actual
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Thrust Profile
Thrusters Off Between t1 = 1 day & t2 = t1 + 100,000 sec.

A B
C

( )O 0.05 Nµ ( )O 0.05 Nµ

3 mN≈ 3 mN≈
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MAXIM:
FORMATION RECONFIGURATION
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Target Reconfiguration

X̂

Ẑ
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Detector Target #11ŵ
1̂u

2ŵ

2û

Target #2

1̂v

2v̂

Hub (t1): α = 0°, δ = 0°

Hub (t2): α = 0°, δ = 0°
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Graphical Representation 
of Reconfiguration for Free Flyers

1
ˆˆ ||w X

2ˆ ˆ||w Y

INITIAL ORIENTATION OF UV-PLANE

FINAL ORIENTATION OF UV-PLANE
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Thrust to Reconfigure 
From α = 0o to α = 90o with δ = 0o

1  | ˆˆ | w X
2ˆ ˆTarget:  || w Y

Reconfiguration Time Increased to
7 days to reduce Detector S/C Control Thrust
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Mission Specifications
• Hold periscope positions to within 15-µm
• Detector pointing accuracy – arcminutes
• ∠ Periscope-Detector-Target alignment – µas
• Phase 1  1 Target /week
• Phase 2  1 Target/ 3 weeks
• Hub  inter. comm. port between detector & freeflyers
• Reconfiguration (Formation Slewing) Times:

– 1 Day for Phase 1
– 1 Week for Phase 2

• Propulsion
– Formation Slewing  0.02 N (Hydrazine)
– Formation keeping  0.03 mN (PPTs)

Frequent Reconfigurations
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NATURAL FORMATIONS
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Natural Formations:
String of Pearls
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Deployment into Torus
(Remove Modes 1, 5, and 6)

Origin = Chief S/C

Deputy S/C
( ) [ ]
( ) [ ]
0 5 00 0  m         

0 1 1 1  m/sec

r

r

=

= −
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Deployment into Natural Orbits
(Remove Modes 1, 3, and 4)

Origin = Chief S/C

3 Deputies

( ) [ ]
( ) [ ]

00 0 0  m         

0 1 1 1  m/sec

r r

r

=

= −
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SPHERICAL FORMATIONS



50

OFL Controlled Response of Deputy S/C
Radial Distance Tracking
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OFL Controlled Response of Deputy S/C
Radial Distance + Rotation Rate Tracking

* 5 kmr =

1 rev / 6 hrs1 rev / 1 day

Chief S/C @ Origin (Inside Sphere)
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Impact Commanded Rotation Rate on Cost

1 rev /24 hrs     0.19 mN
1 rev /12 hrs     0.76 mN
1 rev / 6 hrs     6.40 mN
1 rev / 1 hrs 106.50 mN

→
→
→
→

700 kgsm =
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ASPHERICAL FORMATIONS
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Parameterization of Parabolic Formation
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Controller Development
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OFL Controlled Parabolic Formation
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OFL Thrust Profile
700 kgsm =
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New Maxim Pathfinder

Science Phase #2

High Resolution

(100 nas)

20,000 km

1 km

http://maxim.gsfc.nasa.gov/documents/SPIE-2002/spie2002.ppt
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Maxim Configuration Example
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700 kgsm =
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NONLINEAR OPTIMAL CONTROL
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Formulation
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Equivalent Representation as Augmented Nonlinear System:
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Euler-Lagrange Optimality Conditions
(Based on Calculus of Variations)
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Identification of Gradients 
From the Linearized Model
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Solution to Linearized Equations
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Control Gradient for Impulsive Control
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Control Gradient for Constant Thrust Arcs
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Equations to Integrate Numerically
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Numerical Solution Process: Global Approach
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Formulation
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Equivalent Representation as Augmented Nonlinear System:
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Impulsive Optimal Control
Minimize State Error with End-State Weighting
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State Corrector vs. Nonlinear Optimal Control:
Cost Function
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State Corrector vs. Nonlinear Optimal Control:
Impulsive Maneuver Differences
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Impulsive Radial Optimal Control
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Radial Optimal Control:
Maneuver History
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State Corrector vs. Nonlinear Optimal Control:
Cost Function
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RANGE + RANGE RATE TARGETER
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Comparison of Range and State Targeters
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Range Targeter:
Spatial Behavior of Corrected Solution

Chief S/C at Origin

Deputy S/C Path
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