

FORMATIONS NEAR THE LIBRATION POINTS: DESIGN STRATEGIES USING NATURAL AND NON-NATURAL ARCS

K. C. Howell and B. G. Marchand

Aeronautics & Astronautics

Formations Near the Libration Points

EPHEM = Sun + Earth + Moon Motion From Ephemeris w/ SRP CR3BP = Sun + Earth/Moon barycenter Motion Assumed Circular w/o SRP

Control Methodologies Considered in both the CR3BP and EPHEM Models

- Continuous Control
 - Linear Control
 - State Feedback with Control Input Lower Bounds
 - Optimal Control → Linear Quadratic Regulator (LQR)
 - Nonlinear Control
 - Input Feedback Linearization (State Tracking)
 - Output Feedback Linearization (Constraint Tracking)
 - Spherical + Aspherical Formations (i.e. Parabolic, Hyperbolic, etc.)
- Discrete Control
 - Nonlinear Optimal Control
 - Impulsive
 - Constant Thrust Arcs
 - Impulsive Targeter Schemes
 - State and Range+Range Rate
 - Natural Formations → Impulsive Deployment
 - − Hybrid Formations → Blending Natural and Non-Natural Motions

IMPULSIVE FORMATION KEEPING: TARGETER METHODS

State Targeter: Impulsive Control Law Formulation

State Targeter: Radial Distance Error

State Targeter: Achievable Accuracy

State Targeter: Maneuver Schedule

Range + Range Rate Targeter

Range + Range Rate Constraint:

$$\overline{g}_f = \begin{bmatrix} r_f \\ \dot{r}_f \end{bmatrix} = \begin{bmatrix} \left(\overline{r}_f^T \overline{r}_f\right)^{1/2} \\ \overline{r}_f^T \dot{\overline{r}}_f \\ r_f \end{bmatrix}$$

$$d\overline{g} = \begin{bmatrix} \frac{\partial r}{\partial \overline{r}} & \frac{\partial r}{\partial \dot{r}} \\ \frac{\partial \dot{r}}{\partial \overline{r}} & \frac{\partial \dot{r}}{\partial \dot{r}} \end{bmatrix} \xrightarrow{\text{STM}} \overline{\Phi(t, t_0)} \delta \overline{x}_0 = \underline{\Lambda(t)} \Phi(t, t_0) \begin{bmatrix} \delta \overline{r}_0 \\ \delta \overline{v}_0^- + \Delta \overline{V}_0 \end{bmatrix}$$

Comparison of Range and State Targeters

DESIGN OF NON-NATURAL FORMATIONS USING NATURAL SOLUTION ARCS

CR3BP Analysis of Phase Space Eigenstructure Near Halo Orbit

Solution to Variational Eqn. in terms of Floquet Modes:

$$\delta \overline{x}(t) = \sum_{j=1}^{6} \delta \overline{x}_{j}(t) = \sum_{j=1}^{6} c_{j}(t) \underline{\overline{e}_{j}(t)} = E(t)\overline{c}(t)$$
Floquet Modes

Mode 1

→ 1-D Unstable Subspace

Mode 2

→ 1-D Stable Subspace

Modes (3,4) and (5,6)

→ 4-D Center Subspace

Natural Solutions: Periodic Halo Orbits Near Libration Points

Natural Formations: Quasi-Periodic Relative Orbits → 2-D Torus

Floquet Controller (Remove Unstable + 2 Center Modes)

Find $\Delta \overline{V}$ that removes undesired response modes:

$$\sum_{j=1}^{6} \delta \overline{x}_{j} + \begin{bmatrix} 0_{3} \\ I_{3} \end{bmatrix} \Delta \overline{V} = \sum_{\substack{j=2,3,4 \\ \text{or} \\ j=2,5,6}} (1 + \alpha_{j}) \delta \overline{x}_{j}$$

Remove Modes 1, 3, and 4:

$$\begin{bmatrix} \overline{\alpha} \\ \Delta \overline{V} \end{bmatrix} = \begin{bmatrix} \delta \overline{x}_{2\overline{r}} & \delta \overline{x}_{5\overline{r}} & \delta \overline{x}_{6\overline{r}} & 0_{3} \\ \delta \overline{x}_{2\overline{v}} & \delta \overline{x}_{5\overline{v}} & \delta \overline{x}_{6\overline{v}} & -I_{3} \end{bmatrix}^{-1} \left(\delta \overline{x}_{1} + \delta \overline{x}_{3} + \delta \overline{x}_{4} \right)$$

Remove Modes 1, 5, and 6:

$$\begin{bmatrix} \overline{\alpha} \\ \Delta \overline{V} \end{bmatrix} = \begin{bmatrix} \delta \overline{x}_{2\overline{r}} & \delta \overline{x}_{3\overline{r}} & \delta \overline{x}_{4\overline{r}} & 0_{3} \\ \delta \overline{x}_{2\overline{v}} & \delta \overline{x}_{3\overline{v}} & \delta \overline{x}_{4\overline{v}} & -I_{3} \end{bmatrix}^{-1} \left(\delta \overline{x}_{1} + \delta \overline{x}_{5} + \delta \overline{x}_{6} \right)$$

Sample Deployment into Relative Orbits: 1-∆V at Injection

Natural Formations: Nearly Periodic and Drifting Relative Orbits

Expansion of Drifting Vertical Orbit

Transitioning Natural Motions into Non-Natural Arcs: Targeter Approach

STEP 1: Identify a suitable initial guess

Target → Orbital Drift Control

Application of Two Level Corrector

STEP 2: Apply 2-level corrector (Howell and Wilson:1996) w/ end-state constraint

STEP 3: Shift converged patch states forward by 1 period

STEP 4: Reconverge Solution

Drift Controlled Vertical Orbit (6 Revs)

Geometry of Natural Solutions in the Ephemeris Model

Rotating Frame Perspective:

Inertial Frame Perspective:

Transitioning Natural Motions into Non-Natural Arcs: IFL Example

- (1) Consider 1st Rev Along Orbit #4 as initial guess to simple targeter.
- (2) Choose initial state on xz-plane
- (3) Target next plane crossing to be \perp
- (4) Use resulting arc as half of the reference motion.
- (5) Numerically mirror solution about xz-plane and store as nominal.
- (6) Use IFL control to enforce a closed orbit using stored nominal.

Hybrid Control: Natural Motions + Continuous Control

½ Period → Natural Arc½ Period → IFL Control

Concluding Remarks

- Precise Formation Keeping → Continuous Control
 - Is it possible?
 - Depends on hardware capabilities and nominal motion specified
 - Not if thruster On/Off sequences are required & tolerances too high
- Precise Navigation → Natural Formations
 - Targeter Methods
 - Natural motions can be forced to follow non-natural paths
 - Success depends on non-natural motion specified
 - Hybrid Methods (Natural Arcs + Continuous Thrust Arcs)
 - May prove beneficial for non-natural inertial formation design.

BACKUP SLIDES

Hybrid Control: Accelerations

Radial Targeter: Control Law Formulation

Range + Range Rate Constraint:

$$\overline{g}_f = \begin{bmatrix} r_f \\ \dot{r}_f \end{bmatrix} = \begin{bmatrix} \left(\overline{r}_f^T \overline{r}_f\right)^{1/2} \\ \frac{\overline{r}_f^T \dot{\overline{r}}_f}{r_f} \end{bmatrix}$$

Desired Range + Range Rate:

$$\overline{g}_f^* = \begin{bmatrix} r_f^* \\ 0 \end{bmatrix}$$

First Order Approximation:

$$d\overline{g} = (\overline{g}_{f}^{*} - \overline{g}_{f}) = \frac{\partial \overline{g}}{\partial \overline{x}} \frac{\partial \overline{x}}{\partial \overline{x}_{0}} \delta \overline{x}_{0} = \begin{bmatrix} \frac{\partial r}{\partial \overline{r}} & \frac{\partial r}{\partial \dot{r}} \\ \frac{\partial \dot{r}}{\partial \overline{r}} & \frac{\partial \dot{r}}{\partial \dot{r}} \end{bmatrix} \underbrace{\Phi(t, t_{0})}^{\text{STM}} \delta \overline{x}_{0} = \Lambda(t) \Phi(t, t_{0}) \delta \overline{x}_{0}$$
State Relationship Matrix

Dynamical Model

Generalized Dynamical Model for Each S/C:

$$+ \overline{f}_{srp}^{(P_s)} + \overline{u}(t)$$

Control Input

 $I\frac{\ddot{r}^{P_{2}P_{s}}}{\ddot{r}^{P_{2}P_{s}}}(t) = -\frac{\mu_{P_{2}}}{r^{P_{2}P_{s}}} + \sum_{j=1, j\neq 2, s}^{N} \mu_{P_{j}} \left(\frac{\overline{r}^{P_{s}P_{j}}}{\left(r^{P_{s}P_{j}}\right)^{3}} - \frac{\overline{r}^{P_{2}P_{j}}}{\left(r^{P_{2}P_{j}}\right)^{3}} \right) + \frac{\overline{f}_{srp}^{(P_{s})}}{\uparrow} + \overline{u}(t)$ **Gravity Terms**

Solar Radiation Pressure

Assumptions:

Chief S/C \rightarrow Evolves Along Natural Solution $\therefore \overline{u}_c(t) = \overline{0}$ (Nominal)

Deputy S/C \rightarrow Evolves Along Non-Natural Solution $\therefore \overline{u}_d(t) \neq \overline{0}$

Chief S/C Motion: Natural Solutions Near L₁ and L₂

Controlled Deputy S/C Motion (Example 1): Formation Fixed in the Rotating Frame

Controlled Deputy S/C Motion (Example 2): Formation Fixed in the Inertial Frame

MAXIM: APPLICATIONS OF IFL AND OFL

MAXIM Mission Sequence

MAXIM: THRUSTER ON-OFF SEQUENCE

Free Flyer Configuration

x (km)

y (km)

Radial Error wrt. Hub S/C

Free Flyers UV-Plane Angular Drift (DEG)

Thrust Profile

Thrusters Off Between $t_1 = 1$ day & $t_2 = t_1 + 100,000$ sec.

MAXIM: FORMATION RECONFIGURATION

Target Reconfiguration

Graphical Representation of Reconfiguration for Free Flyers

INITIAL ORIENTATION OF UV-PLANE

FINAL ORIENTATION OF UV-PLANE

Thrust to Reconfigure From $\alpha = 0^{\circ}$ to $\alpha = 90^{\circ}$ with $\delta = 0^{\circ}$

Mission Specifications

- Hold <u>periscope positions</u> to within 15-μm
- Detector pointing accuracy arcminutes
- ∠ Periscope-Detector-Target alignment μas
- Phase 1 → 1 Target /week
- Phase 2 → 1 Target/ 3 weeks

Frequent Reconfigurations

- Hub → inter. comm. port between detector & freeflyers
- Reconfiguration (Formation Slewing) Times:
 - 1 Day for Phase 1
 - 1 Week for Phase 2
- Propulsion
 - Formation Slewing → 0.02 N (Hydrazine)
 - Formation keeping → 0.03 mN (PPTs)

NATURAL FORMATIONS

Natural Formations: String of Pearls

Deployment into Torus (Remove Modes 1, 5, and 6)

$$\overline{r}(0) = \begin{bmatrix} 5 & 00 & 0 \end{bmatrix}$$
 m

$$\dot{r}(0) = \begin{bmatrix} 1 & -1 & 1 \end{bmatrix}$$
 m/sec

Deployment into Natural Orbits (Remove Modes 1, 3, and 4)

$$\overline{r}(0) = \begin{bmatrix} r_0 & 0 & 0 \end{bmatrix} \text{ m}$$

$$\dot{\overline{r}}(0) = \begin{bmatrix} 1 & -1 & 1 \end{bmatrix} \text{ m/sec}$$

SPHERICAL FORMATIONS

OFL Controlled Response of Deputy S/C

Radial Distance Tracking

	Control Law
1	$\overline{u}(t) = \frac{H(\overline{r}, \dot{\overline{r}})}{r} \hat{r}$ Geometric Approach: Radial inputs only
2	$\overline{u}\left(t\right) = \left\{\frac{g\left(\overline{r}, \dot{\overline{r}}\right)}{r} - \frac{\dot{\overline{r}}^T \dot{\overline{r}}}{r^2}\right\} \overline{r} + \left(\frac{\dot{r}}{r}\right) \dot{\overline{r}} - \Delta \overline{f}\left(\overline{r}\right)$
3	$\overline{u}(t) = \left\{ \frac{1}{2} \frac{g(\overline{r}, \dot{\overline{r}})}{r^2} - \frac{\dot{\overline{r}}^T \dot{\overline{r}}}{r^2} \right\} \overline{r} - \Delta \overline{f}(\overline{r})$
4	$\overline{u}(t) = \left\{ -rg(\overline{r}, \dot{\overline{r}}) - \frac{\dot{\overline{r}}^T \dot{\overline{r}}}{r^2} \right\} \overline{r} + 3\left(\frac{\dot{r}}{r}\right) \dot{\overline{r}} - \Delta \overline{f}(\overline{r})$

OFL Controlled Response of Deputy S/C

Radial Distance + Rotation Rate Tracking

Impact Commanded Rotation Rate on Cost

ASPHERICAL FORMATIONS

Parameterization of Parabolic Formation

q

Chief S/C (C)

E : inertially fixed focal frame

I : inertially fixed ephemeris frame

$$\overline{r_E}^{CD_i} = \tilde{x}\hat{e}_1 + \tilde{y}\hat{e}_2 + \tilde{z}\hat{e}_3$$

$$\tilde{x} = a_p \sqrt{u_p / h_p} \cos \nu$$

$$\tilde{y} = a_p \sqrt{u_p / h_p} \sin \nu$$

$$\tilde{z} = u_p + q$$

Transform State from Focal to Ephemeris Frame

$$\begin{bmatrix} \overline{r_E}^{CD_i} \\ E \dot{\overline{r_E}}^{CD_i} \end{bmatrix} = \begin{Bmatrix} {}^{I}C^E \end{Bmatrix}^T \begin{bmatrix} \overline{r_I}^{CD_i} \\ I \dot{\overline{r_I}}^{CD_i} \end{bmatrix}$$

Controller Development

Desired Response for u, q, and \dot{v} :

$$g_{u}\left(u_{p},\dot{u}_{p}\right) = \ddot{u}_{p}^{*} - 2\omega_{n}\left(\dot{u}_{p} - \dot{u}_{p}^{*}\right) - \omega_{n}^{2}\left(u_{p} - u_{p}^{*}\right)$$

$$g_{q}\left(u_{p},\dot{u}_{p}\right) = \ddot{q}^{*} - 2\omega_{n}\left(\dot{q} - \dot{q}^{*}\right) - \omega_{n}^{2}\left(q - q^{*}\right)$$

$$g_{v}\left(\dot{v}\right) = \ddot{v}^{*} - k\omega_{n}\left(\dot{v} - \dot{v}^{*}\right)$$

$$\delta\dot{\theta} \rightarrow \text{exponential decay}$$

Solve for Control Law:

$$\begin{bmatrix} \frac{2h}{a^2}\tilde{x} & \frac{2h}{a^2}\tilde{y} & 0 \\ -\frac{2h}{a^2}\tilde{x} & -\frac{2h}{a^2}\tilde{y} & 1 \\ \frac{\tilde{x}}{\left(\tilde{x}^2 + \tilde{y}^2\right)} & -\frac{\tilde{y}}{\left(\tilde{x}^2 + \tilde{y}^2\right)} & 0 \end{bmatrix} \begin{bmatrix} \tilde{u}_x \\ \tilde{u}_y \\ \tilde{u}_z \end{bmatrix} = \begin{bmatrix} g_u(u,\dot{u}) - \frac{2h}{a^2}\left(\dot{\tilde{x}}^2 + \dot{\tilde{y}}^2 + \tilde{x}\Delta\tilde{f}_x + \tilde{y}\Delta\tilde{f}_y\right) \\ g_q(q,\dot{q}) + \frac{2h}{a^2}\left(\dot{\tilde{x}}^2 + \dot{\tilde{y}}^2 + \tilde{x}\Delta\tilde{f}_x + \tilde{y}\Delta\tilde{f}_y\right) - \Delta\tilde{f}_z \\ g_{\dot{v}}(\dot{v}) + 2\frac{\left(\tilde{x}\dot{\tilde{x}} + \tilde{y}\dot{\tilde{y}}\right)\left(\tilde{x}\dot{\tilde{y}} - \tilde{y}\dot{\tilde{x}}\right)}{\left(\tilde{x}^2 + \tilde{y}^2\right)^2} + \frac{\left(\tilde{y}\Delta\tilde{f}_x - \tilde{x}\Delta\tilde{f}_y\right)}{\left(\tilde{x}^2 + \tilde{y}^2\right)} \end{bmatrix}$$

OFL Controlled Parabolic Formation

q = 10 km $\dot{v} = 1 \text{ rev/day}$ $h_p = 500 \text{ m}$

 $a_p = 500 \text{ m}$

Phase I: $u_p = 200 \text{ m}$

Phase II: $\dot{u}_p = 300 \text{ m/1 day}$

Phase III: $u_p = 500 \text{ m}$

OFL Thrust Profile

New Maxim Pathfinder

http://maxim.gsfc.nasa.gov/documents/SPIE-2002/spie2002.ppt

 $\dot{v} = 1 \text{ rev/day}$

 $u_p = 500 \text{ m}$

 $h_p = 1 \text{ km}$

 $a_p = 1 \text{ km}$

Maxim Configuration Example

NONLINEAR OPTIMAL CONTROL

Formulation

$$\min J = \phi(\overline{x}_N) + \sum_{i=0}^{N-1} L(t_i, \overline{x}_i, \overline{u}_i) = \phi(\overline{x}_N) + \sum_{i=0}^{N-1} \int_{t_i}^{t_{i+1}} \tilde{L}(t, \overline{x}, \overline{u}) d$$
Subject to:

$$\overline{x}_{i+1} = \overline{F}(t_i, \overline{x}_i, \overline{u}_i);$$
 Subject to $\overline{x}(0) = \overline{x}_0$

Equivalent Representation as Augmented Nonlinear System:

$$\min \tilde{J} = \phi(\overline{x}_{N}) + x_{n+1}(t_{N}) = \tilde{\phi}(\tilde{x}_{N})$$

$$\tilde{x}_{i+1} = \begin{bmatrix} \overline{x}_{i+1} \\ x_{n+1}(t_{i+1}) \end{bmatrix} = \begin{bmatrix} \overline{F}(t_{i}, \overline{x}_{i}, \overline{u}_{i}) \\ x_{n+1}(t_{i}) + L(t_{i}, \overline{x}_{i}, \overline{u}_{i}) \end{bmatrix} = \tilde{F}(t_{i}, \tilde{x}_{i}, \overline{u}_{i});$$
Subject to $\tilde{x}_{0} = \begin{bmatrix} \overline{x}_{0} \\ 0 \end{bmatrix}$

Euler-Lagrange Optimality Conditions (Based on Calculus of Variations)

$$\left|\boldsymbol{H}_{i}=\widetilde{\lambda}_{i+1}^{T}\widetilde{F}\left(t_{i},\overline{x}_{i},\overline{u}_{i}\right)\right|$$

Condition #1:
$$\tilde{\lambda}_{i}^{T} = \frac{\partial H_{i}}{\partial \tilde{x}_{i}} = \tilde{\lambda}_{i+1}^{T} \frac{\partial \tilde{F}_{i}}{\partial \tilde{x}_{i}} \rightarrow \tilde{\lambda}_{N}^{T} = \begin{bmatrix} \frac{\partial \phi(\overline{x}_{N})}{\partial \overline{x}_{N}} & 1 \end{bmatrix}$$

Condition #2:
$$\overline{0} = \frac{\partial H_i}{\partial \overline{u}_i} = \widetilde{\lambda}_{i+1}^T \frac{\partial \widetilde{F}_i}{\partial \overline{u}_i}; i = 0, ..., N-1$$

Identify
$$\frac{\partial \tilde{F}_i}{\partial \tilde{x}_i}$$
 and $\frac{\partial \tilde{F}_i}{\partial \overline{u}_i}$ from augmented linear system.

Identification of Gradients From the Linearized Model

Augmented Nonlinear System:

$$\begin{bmatrix} \dot{\overline{x}} \\ \dot{x}_{n+1} \end{bmatrix} = \begin{bmatrix} \overline{f}(t, \overline{x}, \overline{u}) \\ \widetilde{L}(t, \overline{x}, \overline{u}) \end{bmatrix}; \quad \begin{bmatrix} \overline{x}(0) \\ x_{n+1}(0) \end{bmatrix} = \begin{bmatrix} \overline{x}_0 \\ 0 \end{bmatrix}$$

Augmented Linear System:

$$\delta \dot{\tilde{x}}(t) = \tilde{A}(t) \delta \tilde{x}(t) + \tilde{B}(t) \delta \overline{u}(t)$$

$$ilde{A}(t) = \begin{bmatrix} A(t) & \overline{0} \\ rac{\partial ilde{L}}{\partial \overline{x}} & \overline{0} \end{bmatrix}$$

$$\tilde{B}(t) = \begin{bmatrix} 0_3 \\ I_3 \\ \overline{0}^T \end{bmatrix}$$

Solution to Linearized Equations

$$\delta \tilde{x}(t) = \tilde{\Phi}(t, t_0) \delta \tilde{x}_0 + \int_{t_0}^t \Phi(t, \tau) B(\tau) \delta \overline{u}(\tau) d\tau$$

$$\tilde{\Phi}(t, t_0) = \tilde{A}(t) \tilde{\Phi}(t, t_0); \quad \tilde{\Phi}(t_0, t_0) = I_7$$

Relation to Gradients in E-L Optimality Conditions:

$$\delta \tilde{x}_{i+1} = \underbrace{\tilde{\Phi}(t_{i+1}, t_{i})}_{t_{i}} \delta \tilde{x}_{i} + \int_{t_{i}}^{t_{i+1}} \Phi(t_{i+1}, \tau) B(\tau) \delta \overline{u}(\tau) d\tau$$

$$\frac{\partial \tilde{F}}{\partial \tilde{x}_{i}}$$

Control Gradient for Impulsive Control

$$\begin{split} \delta \tilde{x}_{i+1}^{-} &= \tilde{\Phi} \left(t_{i+1}, t_{i} \right) \delta \tilde{x}_{i}^{+} \\ &= \tilde{\Phi} \left(t_{i+1}, t_{i} \right) \left(\delta \tilde{x}_{i}^{-} + \tilde{B} \Delta \overline{V}_{i} \right) \\ &= \tilde{\Phi} \left(t_{i+1}, t_{i} \right) \delta \tilde{x}_{i}^{-} + \tilde{\Phi} \left(t_{i+1}, t_{i} \right) \tilde{B} \Delta \overline{V}_{i} \\ &\frac{\partial \tilde{F}}{\partial \overline{u}_{i}} \end{split}$$

$$\left| \frac{\partial \tilde{F}}{\partial \overline{u_i}} = \Phi\left(t_{i+1}, t_i\right) \tilde{B} \right|$$

Control Gradient for Constant Thrust Arcs

$$\delta \tilde{x}_{i+1} = \tilde{\Phi}(t_{i+1}, t_i) \delta \tilde{x}_i + \underbrace{\left[\int_{t_i}^{t_{i+1}} \Phi(t_{i+1}, \tau) B(\tau) d\tau\right]}_{\partial \tilde{F}} \delta \overline{u}_i$$

$$\frac{\partial \tilde{F}}{\partial \overline{u}_{i}} = \Phi\left(t_{i+1}, t_{i}\right) \left[\int_{t_{i}}^{t_{i+1}} \Phi\left(\tau, t_{i}\right)^{-1} B\left(\tau\right) d\tau \right]$$

Equations to Integrate Numerically

$$\begin{bmatrix} \dot{\overline{x}} \\ \dot{x}_{n+1} \\ \dot{\tilde{\Phi}}(t,t_i) \\ \dot{\Phi}^*(t,t_i) \end{bmatrix} = \begin{bmatrix} \overline{f}(t,\overline{x},\overline{u}) \\ L(t,\overline{x},\overline{u}) \\ \tilde{A}(t)\tilde{\Phi}(t,t_i) \\ \tilde{\Phi}(t,t_i)^{-1}\tilde{B} \end{bmatrix}$$

Numerical Solution Process: Global Approach

- (1) Input \tilde{x}_0, t_N , and initial guess for \overline{u}_i ; (i = 0, 1, ..., N 1)
- (2) 1-Scalar Equation to Optimize in 3(N-1) Control Variables

Use optimizer to identify optimal \overline{u}_i given $\frac{\partial H_i}{\partial \overline{u}_i}$.

During each iteration of the optimizer, the following steps are followed:

- (a) Sequence \overline{x}_i forward and store; i = 1, ..., N-1
- (b) Evaluate cost functional, $J = \tilde{\phi}(\tilde{x}_N)$
- (c) Evaluate $\tilde{\lambda}_{N}^{T} = \frac{\partial \tilde{\phi}(\tilde{x}_{N})}{\partial \tilde{x}_{N}} = \begin{bmatrix} \frac{\partial \phi_{N}}{\partial \overline{x}_{N}} & 1 \end{bmatrix}$
- (d) Sequence $\tilde{\lambda}_i$ backward and compute $\frac{\partial H_i}{\partial \overline{u}_i}$; i = N-1,...,1
- (e) J and $\frac{\partial H_i}{\partial \overline{u_i}}$ used in next update of control input.

Formulation

$$\min J = \phi(\overline{x}_N) + \sum_{i=0}^{N-1} L(t_i, \overline{x}_i, \overline{u}_i) = \phi(\overline{x}_N) + \sum_{i=0}^{N-1} \int_{t_i}^{t_{i+1}} \tilde{L}(t, \overline{x}, \overline{u}) d$$
Subject to:

$$\overline{x}_{i+1} = \overline{F}(t_i, \overline{x}_i, \overline{u}_i);$$
 Subject to $\overline{x}(0) = \overline{x}_0$

Equivalent Representation as Augmented Nonlinear System:

$$\min \tilde{J} = \phi(\overline{x}_{N}) + x_{n+1}(t_{N}) = \tilde{\phi}(\tilde{x}_{N})$$

$$\tilde{x}_{i+1} = \begin{bmatrix} \overline{x}_{i+1} \\ x_{n+1}(t_{i+1}) \end{bmatrix} = \begin{bmatrix} \overline{F}(t_{i}, \overline{x}_{i}, \overline{u}_{i}) \\ x_{n+1}(t_{i}) + L(t_{i}, \overline{x}_{i}, \overline{u}_{i}) \end{bmatrix} = \tilde{F}(t_{i}, \tilde{x}_{i}, \overline{u}_{i});$$
Subject to $\tilde{x}_{0} = \begin{bmatrix} \overline{x}_{0} \\ 0 \end{bmatrix}$

Impulsive Optimal Control Minimize State Error with End-State Weighting

$$\min J = \frac{1}{2} \left(\overline{x}_N - \overline{x}_N^{\circ} \right)^T W \left(\overline{x}_N - \overline{x}_N^{\circ} \right) + \sum_{i=0}^{N-1} \int_{t_i}^{t_{i+1}} \frac{1}{2} \left(\overline{x} - \overline{x}^{\circ} \right)^T Q \left(\overline{x} - \overline{x}^{\circ} \right) d$$

State Corrector vs. Nonlinear Optimal Control: Cost Function

State Corrector vs. Nonlinear Optimal Control: Impulsive Maneuver Differences

Impulsive Radial Optimal Control

$$\min J = \sum_{i=0}^{N-1} \int_{t_i}^{t_{i+1}} \frac{1}{2} q (r - r^\circ)^2 dt$$

Radial Optimal Control: Maneuver History

State Corrector vs. Nonlinear Optimal Control: Cost Function

RANGE + RANGE RATE TARGETER

Comparison of Range and State Targeters

Range Targeter: Spatial Behavior of Corrected Solution

