

DESIGN AND CONTROL OF FORMATIONS NEAR THE LIBRATION POINTS OF THE SUN-EARTH/MOON EPHEMERIS SYSTEM

K.C. Howell and B.G. Marchand Purdue University

Reference Motions

- Natural Formations
 - String of Pearls
 - Others: Identify via Floquet controller (CR3BP)
 - Quasi-Periodic Relative Orbits (2D-Torus)
 - Nearly Periodic Relative Orbits
 - Slowly Expanding Nearly Vertical Orbits
- Non-Natural Formations
 - Fixed Relative Distance and Orientation

+ Stable Manifolds

RLP

Inertial

- Fixed Relative Distance, Free Orientation
- Fixed Relative Distance & Rotation Rate
- Aspherical Configurations (Position & Rates)

Natural Formations

Natural Formations: String of Pearls

$\begin{array}{r} \overset{\bullet}{} \overset{\bullet}{} \overset{\bullet}{} \end{array} \\ \hline \mathsf{Natural Formations:} \\ \mathsf{Quasi-Periodic Relative Orbits} \rightarrow 2-\mathsf{D Torus} \end{array}$

Natural Formations: Nearly Periodic Relative Motion

10 Revolutions = 1,800 days

Evolution of Nearly Vertical Orbits Along the *yz*-Plane

School of Aeronautics and Astronautics

Natural Formations: Slowly Expanding Vertical Orbits

School of Aeronautics and Astronautics

Non-Natural Formations

PURDUE NIVERSITY Nominal Formation Keeping Cost (Configurations Fixed in the RLP Frame) $\Delta V = \int_{0}^{180 \text{ days}} \sqrt{\overline{u}^{\circ}(t) \cdot \overline{u}^{\circ}(t)} dt$

Max./Min. Cost Formations (Configurations Fixed in the RLP Frame)

Formation Keeping Cost Variation Along the SEM L_1 and L_2 Halo Families (Configurations Fixed in the RLP Frame)

Discrete vs. Continuous Control

NIVERSIT

Discrete Control: Linear Targeter

-

Achievable Accuracy via Targeter Scheme

S I R **Continuous Control:** LQR vs. Input Feedback Linearization

LQR for <u>Time-Varying</u> Nominal Motions

 $\dot{\overline{x}}(t) = \begin{bmatrix} \dot{\overline{r}} & \ddot{\overline{r}} \end{bmatrix}^T = \overline{f}(t, \overline{x}(t), \overline{u}(t))$ $\rightarrow \overline{x}(0) = \overline{x}_0$ $\dot{P} = -A^{T}(t)P(t) - P(t)A(t) + P(t)B(t)R^{-1}B^{T}(t)P(t) - Q \rightarrow P(t_{f}) = 0$

Optimal Control Law:

$$\overline{u}(t) = \overbrace{\overline{u}^{\circ}(t)}^{\text{Nominal Control Input}} + \begin{cases} -R^{-1}B^T P(t)(\overline{x}(t) - \overline{x}^{\circ}(t)) \\ \text{Optimal Control, Relative to Nominal, from LQR} \end{cases}$$

Input Feedback Linearization (IFL)

$$\ddot{\overline{r}}(t) = \overline{F}(\overline{r}(t)) + \overline{u}(t) \quad \blacksquare$$

$$\overline{u}(t) = -\overline{F}(\overline{r}(t)) + \overline{\overline{g}(\overline{r}(t), \overline{r}(t))}^{\text{Desired Dynamic Response}}$$

Anihilate Natural Dynamics

School of Aeronautics and Astronautics

 $(t), \overline{r}(t)$

Dynamic Response to Injection Error $\rho = 5000 \text{ km}, \xi = 90^{\circ}, \beta = 0^{\circ}$

 $\delta \overline{x}(0) = [7 \text{ km} -5 \text{ km} 3.5 \text{ km} 1 \text{ mps} -1 \text{ mps} 1 \text{ mps}]^T$

Output Feedback Linearization (Radial Distance Control)

Formation Dynamics

 $\ddot{r} = \Delta \overline{f}(\overline{r}) + \overline{u}(t) \longrightarrow \text{Generalized Relative EOMs}$

 $y = l(\overline{r}) \longrightarrow$ Measured Output

Measured Output Response (Radial Distance)

$$h\left(\overline{r}(t), \frac{\dot{r}}{r}(t)\right) - \overline{u}(t)^{T} \overline{r}(t) = 0$$

Output Feedback Linearization (OFL)

(Radial Distance Control in the Ephemeris Model)

$y = l\left(\overline{r}, \dot{\overline{r}}\right)$	Control Law
r	$\overline{u}(t) = \frac{h(\overline{r}, \dot{\overline{r}})}{r} \hat{r}$ Geometric Approach: Radial inputs only
r	$\overline{u}(t) = \left\{ \frac{g\left(\overline{r}, \dot{\overline{r}}\right)}{r} - \frac{\dot{\overline{r}}^{T} \dot{\overline{r}}}{r^{2}} \right\} \overline{r} + \left(\frac{\dot{r}}{r}\right) \dot{\overline{r}} - \Delta \overline{f}(\overline{r})$
r^2	$\overline{u}(t) = \left\{\frac{1}{2}\frac{g(\overline{r}, \dot{\overline{r}})}{r^2} - \frac{\dot{\overline{r}}^T \dot{\overline{r}}}{r^2}\right\}\overline{r} - \Delta \overline{f}(\overline{r})$
$\frac{1}{r}$	$\overline{u}(t) = \left\{-rg\left(\overline{r}, \dot{\overline{r}}\right) - \frac{\dot{\overline{r}}^{T}\dot{\overline{r}}}{r^{2}}\right\}\overline{r} + 3\left(\frac{\dot{r}}{r}\right)\dot{\overline{r}} - \Delta\overline{f}(\overline{r})$

- Critically damped output response achieved in all cases
- Total ΔV can vary significantly for these four controllers

OFL Control of Spherical Formations Radial Dist. + Rotation Rate

Conclusions

- Continuous Control in the Ephemeris Model:
 - Non-Natural Formations
 - LQR/IFL \rightarrow essentially identical responses & control inputs
 - IFL appears to have some advantages over LQR in this case
 - OFL \rightarrow spherical configurations + unnatural rates
 - Low acceleration levels \rightarrow Implementation Issues
- Discrete Control of Non-Natural Formations
 - Targeter Approach
 - Small relative separations \rightarrow Good accuracy
 - Large relative separations \rightarrow Require nearly continuous control
 - Extremely Small ∆V's (10⁻⁵ m/sec)
- Natural Formations
 - Nearly periodic & quasi-periodic formations in the RLP frame
 - Floquet controller: numerically ID solutions + stable manifolds

Backups

School of Aeronautics and Astronautics

Targeter Maneuver Schedule

School of Aeronautics and Astronautics

26

S

ΙΤΥ

E R

v

LQR vs. IFL (CR3BP) Control Accelerations

IFL Response in the Ephemeris Model

OFL Control in the Ephemeris Model

Stability of T-Periodic Orbits

Linear Variational Equation:

 $\delta \overline{x}(t) = \Phi(t,0) \delta \overline{x}(0)$

 $\delta \overline{x}(t) \rightarrow$ measured relative to periodic orbit

Eigenstructure Near Halo Orbit

Floquet Decomposition of $\Phi(t,0)$:

 $\Phi(t,0) = \left\{ P(t)S \right\} e^{Jt} \left\{ P(0)S \right\}^{-1}$

Floquet Modal Matrix:

 $E(t) = P(t)S = \Phi(t,0)E(0)e^{-Jt}$

Solution to Variational Eqn. in terms of Floquet Modes:

$$\delta \overline{x}(t) = \sum_{j=1}^{6} \delta \overline{x}_{j}(t) = \sum_{j=1}^{6} c_{j}(t) \overline{e}_{j}(t) = E(t)\overline{c}$$

PURDUE

Floquet Controller (Remove Unstable + 2 Center Modes)

Find $\Delta \overline{v}$ that removes undesired response modes:

$$\sum_{j=1}^{6} \delta \overline{x}_{j} + \begin{bmatrix} 0_{3} \\ I_{3} \end{bmatrix} \Delta \overline{v} = \sum_{\substack{j=2,3,4 \\ \text{or} \\ j=2,5,6}} \left(1 + \alpha_{j}\right) \delta \overline{x}_{j}$$

Remove Modes 1, 3, and 4:

$$\begin{bmatrix} \overline{\alpha} \\ \Delta \overline{\nu} \end{bmatrix} = \begin{bmatrix} \delta \overline{x}_{2\overline{r}} & \delta \overline{x}_{5\overline{r}} & \delta \overline{x}_{6\overline{r}} & 0_3 \\ \delta \overline{x}_{2\overline{\nu}} & \delta \overline{x}_{5\overline{\nu}} & \delta \overline{x}_{6\overline{\nu}} & -I_3 \end{bmatrix}^{-1} \left(\delta \overline{x}_1 + \delta \overline{x}_3 + \delta \overline{x}_4 \right)$$

Remove Modes 1, 5, and 6:

$$\begin{bmatrix} \overline{\alpha} \\ \Delta \overline{v} \end{bmatrix} = \begin{bmatrix} \delta \overline{x}_{2\overline{r}} & \delta \overline{x}_{3\overline{r}} & \delta \overline{x}_{4\overline{r}} & 0_3 \\ \delta \overline{x}_{2\overline{v}} & \delta \overline{x}_{3\overline{v}} & \delta \overline{x}_{4\overline{v}} & -I_3 \end{bmatrix}^{-1} \left(\delta \overline{x}_1 + \delta \overline{x}_5 + \delta \overline{x}_6 \right)$$

Deployment into Torus (Remove Modes 1, 5, and 6)

Deployment into Natural Orbits (Remove Modes 1, 3, and 4)

V Ε R SITY N **Floquet Control** (Large Formations – Example 1) y (10⁶ km) -2∟ -2 -1 0 x (10⁶ km) 2 1

Floquet Controller Maneuver Schedule (For Example 1)

- 💝

Nearly Periodic Formations (Inertial Perspective)

School of Aeronautics and Astronautics

Nearly Vertical Formations (Inertial Perspective)

