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Problem Statement

• Define algorithm for maximizing coverage of 
space based targets within the bounds of a 
pre-specified altitude band.

• Assumptions:
– No visibility below given altitude (tangent height)No visibility below given altitude (tangent height)

– Focus only on space based targets

– Sensor range pre-defined– Sensor range pre-defined
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BTH Coverage Problemg
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Optimal Satellite Height
f M i ATH Cfor Maximum ATH Coverage
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Maximizing Visibility
ithi B d d Altit d Rwithin a Bounded Altitude Range

• Goal: To maximize the area of intersection 
between the following curves (2D) or surfaces 
(3D)
– UTAS Upper Target Altitude Shell

– LTAS Lower Target Altitude Shellg

– RS Range Shell

– TL Tangent LineTL Tangent Line
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Factors Influencing Area Calculationg

• Satellite Altitude

• Separation of UTAS and LTAS

• Size of RS and where it intersects the TL• Size of RS and where it intersects the TL

• Intersections of TL with UTAS and LTAS
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Step 1: Formulate Conditions 
& Eqns For Curve Intersections
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Step 2: Computing the Coverage Area
as a function of Satellite Altitudeas a function of Satellite Altitude

• Initially, if coverage exists at all, the area of coverage can be 
h h f R2 ( id UTAS) ( b lthought of as  πR2 – (area outside UTAS) – (area below 

LTAS) – (area below TL)
• Each of these three terms depend on the size of the RS and 

h i b h UTAS d h LTASthe separation between the UTAS and the LTAS
• There is no single equation that generally describes the 

coverage area. Thus, all special cases must be identified a 
priori

• The area may be represented as a piecewise continuous 
function, but it is a highly nonlinear function. 

• Identifying the optimal height is best accomplished by 
understanding the geometrical structure of the problem 
and through adequate numerical analysis.
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Step 3: Identify Special Cases 
Depending on Location of Critical IntersectionsDepending on Location of Critical Intersections
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Step 4: Identify Simplest Form of Area Equation 
for each Possible Casefor each Possible Case

• There are multiple ways of formulating the same 
i diffi l h harea equation, some more difficult than others. 

• Divide area calculation into basic shapes
Triangles– Triangles

– Arc segments
– Circular Sectors

• Computation depends only on Cartesian 
coordinates of Primary and Secondary Intersections

• Composite area equation depends only on• Composite area equation depends only on 
elementary components
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Constrained Search Spacep

• Satellite MUST be located:
– Above the THS

– Below no-coverage altitude:
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Intersections of RS with the U/LTAS/
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Intersection of the TL with the LTAS

The equation for the TL that connects the satellite to the THS is given by,

y y−
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Where m denotes the slope of the line,
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The intersection of the TL with the LTAS is identified from the solution to the
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Intersection of the TL with the UTAS

The intersections of the TL with the UTAS are similarly identified through the solution
to the following system of equations
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Intersection of the TL with the RS

The intersection of the TL with the RS is identified from the solution to the following
system of equations
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Sample Area Calculationp
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Geometrical Componentsp
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Triangle Area and Semiperimeterg p

• ∆’s are a large component of the coverage area geometry. 
• Define the area of a ∆ as a function of the semiperimeter, 

“s”, and the sides of the ∆; “a”, “b”, and “c”:

( )

• “s” easily computed from available shell intersections

( ) ,
2

a b c
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+ +
=

• s  easily computed from available shell intersections
• Subsequently, the area of a triangular section is given by:
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Arc Segmentsg
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Area of Intersection 
B t T Ci lBetween Two Circles

Th l t th l ft f thThe example to the left focuses on the
Intersection of the RS with the LTAS.
Note, in each case, the area of 
intersection is given by the sum of g y
the area of two arc segments. However,
that equation can vary by a constant
factor depending on the geometry
of the intersection (4 types)of the intersection (4 types)
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Area of Intersection 
f RS ith L/UTASof RS with L/UTAS
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Composite Triangles: Type 1p g yp
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Composite Triangle: Type 2p g yp
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“Teardrop” Sectionsp
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Summary of Special Casesy p

• Primary cases: • Subcases due to RS Size 
– Rt ≤ Rs < Rl

– Rl ≤ Rs < Ru 2 2bT S U S<

– Ru ≤ Rs < Rs3
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Area Geometry:
S t llit B l UTASSatellite Below UTAS
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Area Geometry:
S t llit Ab UTASSatellite Above UTAS
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Coverage Area Analysis Toolg y
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R = 5000 km, hl = 1000 km, hu = 5000 
k d h 100 kkm, and ht = 100 km.
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hu = 5600 km, hl = 600 km (5000x5000 grid)u l
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Optimal Altitude Spacep p
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Conclusions

• Optimal satellite altitude non-intuitive
• Graphical tools helpful in design process
• Ongoing work

– Multi-objective optimization for constellation design 
with applications to constrained ATH 
coverage problem.

• The results of the current investigation represent 
useful startup solutions for numerical 
optimization processoptimization process. 

• Results also provide physical insight into the 
expected trends. p
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