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The optimal satellite coverage problem traditionally refers to maximizing the 
visibility of targets against an Earth background. In this study, the focus shifts to 
targets against a space background under certain constraints. Specifically, the 
goal of this study is to identify a systematic approach for determining the 
optimal altitude that maximizes sensor visibility of an area of space enclosed 
within an upper and lower target altitude range. It is further assumed that sensor 
visibility below the local horizon is diminished due to atmospheric or 
environmental factors. This environmental constraint is represented 
mathematically by optimizing the area covered above the local horizon but 
within the target altitude shells of interest for a fixed sensor range. In the course 
of this development, geometrical arguments are employed to identify an 
analytical expression for the coverage area. A graphical analysis tool, developed 
for this study, is employed in demonstrating the various geometrical 
arrangements and visualizing the optimal configurations. 

INTRODUCTION 

The goal of this study is the development of a systematic approach to identify the optimal satellite altitude 
needed to maximize the sensor visibility subject to a specific set of constraints. First, the targets of interest 
are assumed to exist above a lower and below an upper target altitude shell. Furthermore, it is assumed that 
the sensor capabilities are diminished by atmospheric and environmental factors. This is mathematically 
represented by constraining the area calculation to exclude the regions below the local horizon. 

Traditionally, optimizing satellite coverage refers to maximizing the visibility of targets against an Earth 
background  [1-2]. This is often referred to as the optimal “Below the Horizon” or “Below the Tangent 
Height” (BTH) coverage problem. Specifically, the optimal BTH coverage problem seeks to identify the 
minimum number of satellites required to achieve continuous coverage and maximize the visible area 
below the local horizon. The local horizon refers to an imaginary line that originates at the satellite and is 
tangent to the surface of the Earth, also referred to as the tangent line (TL). In the present investigation, 
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however, the area of interest pertains to targets visible against a space background  [3-4], termed “Above 
the Horizon” or “Above the Tangent Height” (ATH) coverage. Specifically, this investigation seeks to 
establish analytical means of maximizing the visible ATH coverage given sensor range constraints and a 
series of altitude bands. The approach presented is geometrical in nature. That is, geometrical arguments 
[5] are employed to establish an analytical expression for the coverage area and the optimal satellite 
altitude is identified numerically through a grid search of the solution space.  

From this grid search, the optimal satellite height is easily identified for a given set of constraints. The 
results of the current investigation offer great insight into the evolution of the coverage area as a function of 
these parameters and constraints. The insight gained from these results serves as a stepping stone to more 
complex analyses involving additional constraints. 

Traditional Methods for Optimal Coverage 

As previously stated, the traditional problem of “optimal coverage” refers to maximizing the visibility of 
targets against an Earth background while minimizing the number of satellites in the constellation [2]. 
Identifying the satellite height that leads to maximum BTH coverage depends on the sensor capabilities. 
However, overall, the computation is straightforward. For instance, consider the illustration in Figure 1, 
where θ denotes the coverage angle, R represents the range shell (RS) radius, eR  is the Earth radius, and 

sr  denotes the radial distance from the center of the Earth to the satellite.   

It is evident, from Figure 1, that the ground area covered by a single satellite is maximized when the 
coverage angle is maximized for a given sensor range. While the BTH problem focuses on targets against 
an Earth background, early studies into maximizing the visibility of targets against a space background led 
to investigations on how to maximize the ATH coverage are within a prescribed altitude shell [4]. To 
illustrate this, consider the image in Figure 2.  In this case, tarr  represents the target altitude of interest, and 

tr  denotes the radius of the Tangent Height Shell (THS). The tangent height is an idealized version of the 
extent of the atmosphere, or any environmental elements that might diminish or interfere with the nominal 
visibility of the satellite target detection sensors. Thus, this concept is introduced as a means of 
incorporating these limitations in the present analysis.  
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Figure 1 - BTH Coverage Geometry 
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Figure 2 - ATH Coverage Geometry 

 

For a fixed sensor range, idealized here as a spherical shell, optimizing the ATH coverage implies 
maximizing the volume that exists above the tangent height cone and below the target altitude shell. For 
simplicity, the present analysis is strictly two-dimensional and focuses on coverage area rather than 
coverage volume computations. However, it is understood that – due to the symmetry of the geometrical 
assumptions, the volume of coverage is simply the revolution of the coverage area by 360 degrees.  

The orientation of the tangent line (TL) is determined by the satellite altitude. For a given target altitude 
and tangent height, it is possible to geometrically identify the minimum sensor range required for ATH 
coverage to exist, namely 2 1R R− . Similarly, 1 2R R+  represents the sensor range beyond which the 
coverage area reaches a plateau. This is evident from the variation in the shaded areas of Figure 3. Thus, in 
the traditional sense, maximum ATH coverage is achieved when the satellite altitude is selected such that 

1 2R R R= + . In the present study, the goal is to maximize ATH coverage within an altitude band defined by 
a lower altitude shell, lr , and an upper altitude shell, ur . Both of these shells exist above the tangent height 
shell. Thus, the problem is to maximize the area of intersection between the lower target altitude shell 
(LTAS), the upper target altitude shell (UTAS), the tangent line (TL), and the range shell (RS). In this case, 
the determination of the optimal satellite altitude is neither intuitive nor straightforward and requires 
additional consideration of the geometry of coverage. 

SHELL INTERSECTIONS 
The geometry of coverage depends on a number of key intersections defined by the problem parameters: 
satellite altitude, upper and lower target altitudes, tangent height, and sensor range. In the algorithm 
presented here, the calculation of the coverage area is a function of the location of these key intersections.  



4 
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Figure 3 - Optimal ATH Coverage Geometry 

The results of this study reveal that there is no single closed form equation that defines the coverage area. 
At best, a piecewise continuous function may be defined, but there are many special cases to consider that 
affect the calculations. Also, the representation of the coverage area is not unique, as there are multiple 
ways of decomposing the coverage geometry into fundamental components. Figure 4  illustrates a sample 
geometry that depicts one of the possible intersection scenarios. This illustration is useful in establishing 
the basic notation employed in this study. 

The definitions for each of the key intersections possible are summarized in Table 1, and graphically 
illustrated in Figure 4. At most, 14 intersections are possible. The only intersections that are guaranteed to 
exist for all parameters are (T1, T2), (L1A, L2A), (U1A, U2A). The remaining intersections may or may not 
exist depending on the satellite altitude and the size of the RS. For example, (U1B, U2B) exist only if the 
satellite is above the UTAS. Similarly, (L1B, L2B) exist only if the satellite is above the LTAS. Also, (A1, 
A2) and (B1, B2) exist if the RS intersects the LTAS and UTAS, respectively. Naturally, it is possible to 
identify values of the satellite altitude and sensor range for which these intersections do not exist. 

 Table 1 – Description of Shell Intersections 

Intersection Description 

U1A, U2A The southern intersection of the TL with the UTAS 

L1A, L2A The southern intersection of the TL with the LTAS 

L1B, L2B The northern intersection of the TL with the LTAS 

U1B, U2B The northern intersection of the TL with the UTAS 

T1, T2 The intersection of the TL with the RS 

A1, A2 The intersection of the RS with the LTAS 

B1, B2 The intersection of the RS with the UTAS 



5 
 

 
Figure 4 – Shell Intersections 

 
As previously mentioned, the results of this study reveal that a piecewise continuous function may be 
identified to define the coverage area. The resulting composite function is continuous, though not 
necessarily smooth. As revealed by this investigation, the range of altitudes over which the function is 
smooth depends on where the RS intersects the TL and where that intersection (T1, T2) falls relative to the 
intersections of the LTAS and UTAS with the TL. This, in turn, depends on the satellite altitude and the 
size of the RS for a given UTAS, LTAS, and THS. The definitions of these intersections are employed in 
this study to define the coverage area associated with a given satellite altitude. A rotating coordinate system 
is selected for this determination such that the y-axis is the line from the center of the Earth to the satellite, 
and the x-axis is on the plane of the orbit of the satellite and perpendicular to the y-axis, as illustrated in 
Figure 4. As such, the location of the satellite in this rotating coordinate frame is given by ( ) ( ), 0,s s sx y r= . 
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Intersections of RS with UTAS and LTAS 

The intersection of the RS with the UTAS (B1, B2) is easily computed by simultaneously solving the 
mathematical relations that define the UTAS and the RS. At the point where the RS and UTAS intersect, 
the following equations must be satisfied, 

 ( )1 1

22 2
B B sx y r R+ − = ;   

1 1

2 2 2
B B ux y r+ =  (1) 

The solution to this system of equations is given by  

 
( )

1

2 2 2

2
u s

B
s

r r R
y

r

+ −
= ;  

1 1

2 2
B u Bx r y= −  (2) 

 
Of course, the symmetrical nature of the arrangement implies that 

 
2 1B Bx x= − ;  

2 1B By y= . (3) 

A similar result applies for intersections at A1 and A2,  

 
( )

1

2 2 2

2
l s

A
s

r r R
y

r

+ −
= ;  

1 1

2 2
A l Ax r y= −  (4) 

 
2 1A Ax x= − ,

2 1A Ay y= . (5) 

Intersections of the TL with the LTAS 

The tangent line (TL) is defined by the position of the satellite ( ),s sx y , and the point of intersection with 
the tangent height circle. The “coverage angle” associated with this point is defined, in Figure 4, as  

 1cos t
t

s

r
r

θ − ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
. (6) 

Based on this definition, the slope of TL is given by, 

 t s

t s

y y
m

x x
−

=
−

, (7) 

where, 

 sint t tx r θ= ; cos .t t ty r θ=  (8) 
Let ( )1 / 1 /

,
A B A BL Lx y  denote the cartesian coordinates of L1A or L1B. Then, the intersection of the LTAS with 

the TL is given by the solution to the following system of equations, 

 
1 / 1 /

2 2 2
A B A BL L lx y r+ = ;   ( )1 / 1 /A B A BL L s sy m x x y= − +  (9) 

Since 0sx =  and s sy r= , substitution of (7) into (9) leads to 

 ( ) ( )
1 / 1 /

2 2 2 21 2 0
A B A BL s L s lm x mr x r r+ + + − = . (10) 

The above quadratic is applicable to two different points, (A) and (B); thus, there are really a total of two 
quadratic equations. Only one of these equations is guaranteed to have a real set of solutions. The other 
may or may not have a solution, depending on whether or not the satellite is above the LTAS.  
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At a minimum, there are two solutions, ( )1 1,A AL Lx y  and ( )2 2,A AL Lx y , when the satellite is below the LTAS. 
However, there are four solutions ( )1 1,A AL Lx y , ( )2 2,A AL Lx y , ( )1 1,B BL Lx y  and ( )2 2,B BL Lx y , if the satellite is 
above the LTAS. For the right hand side intersections on Figure 4, it is clear that 0m < . Thus, if s lr r<  the 
southern intersection of the tangent line with the LTAS occurs when 

 
( )( )

( )1

2 2 2 2 2

2

2 4 4 1

2 1A

s s s l
L

mr m r m r r
x

m

− + − + −
=

+
. (11) 

If s lr r> , a northern intersection  exists and occurs at a smaller value of the x-coordinate, namely 

 
( ) ( )

( )1

2 2 2 2 2

2

2 4 4 1

2 1B

s s s l
L

mr m r m r r
x

m

− − − + −
=

+
. (12) 

In either case, 
 

1 / 1 /A B A BL L sy mx r= + , (13) 

and 

 
2 / 1 /A B A BL Lx x= − ;  

2 / 1 /A B A BL Ly y= . (14) 

Intersections of the TL with the UTAS 

In the event the RS intersects the UTAS, the coordinates of intersection are easily identified by adapting 
equations  (12) and (13) to the intersections with the UTAS, 

 
( )( )

( )1

2 2 2 2 2

2

2 4 4 1

2 1A

s s s u
U

mr m r m r r
x

m

− + − + −
=

+
, (15) 

 
( )( )

( )1

2 2 2 2 2

2

2 4 4 1

2 1B

s s s u
U

mr m r m r r
x

m

− − − + −
=

+
, (16) 

 
 

1 / 1 /A B A BU U sy mx r= + . (17) 
Once again, symmetry implies that 
 
 

2 / 1 /A B A BU Ux x= − ;  
2 / 1 /A B A BU Uy y= . (18) 

Intersections of the TL with the RS 

The intersections of the TL with the RS are identified as T1 and T2. The cartesian coordinates of T1 and T2 
are determined from the following system of equations, 

 ( )1 1

22 2
T T sx y y R+ − = ;  

1 1T T sy mx y= + . (19) 

The solution to this system of equations is determined as  

 
1 21

T
Rx

m
=

+
;  

1 1T T sy mx r= +  (20) 

for 

 
2 1T Tx x= − ,

2 1T Ty y= . (21) 
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COMPOSITE COVERAGE AREA COMPONENTS 

As previously mentioned, this study reveals that the coverage area cannot be reduced to a simple 
generalized equation. At best, a piecewise continuous function may be defined to assess the effective 
coverage area. The primary reason for this complication is that the definition of the coverage area equation 
changes with the location of the intersection points ( )1 2,T T  relative to the intersection points 

1 / 2 / 1 /, ,A B A B A BU U L , and 2 /A BL . This, in turn, depends on a variety of factors including the satellite altitude, 
the sensor range, the LTAS, the UTAS, and the THS. To establish a systematic way of obtaining a 
piecewise continuous representation, the computation of the coverage area is divided into fundamental 
geometrical elements, mainly triangles, arc segments, and combinations thereof [5]. The effective coverage 
area is then constructed as a composite of these fundamental area elements. This section summarizes the 
coverage area of the fundamental shapes employed in constructing the piecewise continuous coverage area 
function. 

Triangle 

The coverage area function depends strongly on the Cartesian coordinates of each of the fundamental 
intersections previously defined. Thus, it is convenient to define the area of a triangle as a function of the 
semiperimeter because this quantity depends only on the lengths of each side of the triangle. The lengths of 
each side of a triangle are easily identified from Cartesian coordinates using the distance between vertices. 
The area of a triangle, Α , in terms of the semiperimeter, is given by 

 ( ) ( )( )( ), ,a b c s s a s b s c= − − −Α , (22) 

where a, b, and c denote the lengths of each side and s is the semiperimeter, 

 
( )

2
a b c

s
+ +

= . (23) 

Arc Segment 

The area of an arc segment, ΣΑ , is given by the difference between the area of a sector of a circle, and the 
area of a triangle as illustrated in Figure 5. The equation for the area of the arc segment illustrated in Figure 
5 is given by 

 ( ) 3

3

21, cos
2 2 2

T u
u T u

SECTOR TRIANGLE

c r
r c r φφΣ = −Α . (24) 
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Figure 5 - Area of Arc Segment 
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In Figure 5, the angle φ is determined as 

 312sin
2

T

u

c
r

φ − ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
, (25) 

Where 
3Tc  denotes the chord of the arc segment, and  

 

3

3

2
2

2 242
cos

2 2

T
u

u T

u u

c
r

r c

r r
φ

⎛ ⎞
− ⎜ ⎟ −⎝ ⎠= = . (26) 

Substitution of (25) and (26) into (24) leads to, 

 ( ) ( )3 3

3 3

2 1 2 2, sin 4
2 4

T T
u T u u T

u

c c
r c r r c

r
−

Σ

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
Α . (27) 

Teardrop Sector 

Traditionally, the area of a circular sector is defined as 

 ( )1

21
1 2 2,R PP Rπ λ=A , (28) 

where  

 

2 2 2

1 2 1 21

1 2

cos
2

P P PS P S

PS P S
λ −

⎛ ⎞− −⎜ ⎟= ⎜ ⎟−⎜ ⎟
⎝ ⎠

 (29) 

denotes the angle interior to the sector, 1 2PP  represents the chord, R  is the radius of curvature, and S  
defines the origin. A geometrical object derived from the concept of a circular sector, is the teardrop pattern 
illustrated in Figure 6. In this case the shaded area is denoted 

2π
A . This type of pattern is useful over a 

certain range of parameters when computing the coverage area. 

 

 
Figure 6 – Area of a Teardrop Pattern 
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The area of a teardrop pattern can be expressed as a sum of two fundamental components; a triangle and an 
arc segment, or its complement. In this case, 

 ( )
( ) ( )
( ) ( )2

2 2
1 2 1 2

1 2
2 2

1 2 1 2

, , , ;   
, ,

, , , ;   

s

s

R PP R r PP R r r
r R PP

R PP R r PP R r r
π

Σ

Σ

⎧ + < +⎪= ⎨
+ ≥ +⎪⎩

A A
A

A A
. (30) 

Composite Triangles 
In the course of devising geometrical arguments to compute the area of coverage, two types of composite 
triangles are often encountered. In this case, a composite triangle refers to a three sided geometrical shape 
whose sides consist of any combination of line segments and spherical arcs.  

Figure 7 illustrates one possible type of composite triangle that is sometimes encountered in the process of 
computing the effective coverage area. In this investigation, this type of composite triangle is denoted by 

1Λ . These will be discussed in more detail in later sections.  

 

T2

L2A

A2  

Figure 7 – Composite Triangle 

 
In the example illustrated in  

Figure 7, the radius of 2 2T L  is lr , and the radius of 2 2B T  is R . The area, 
1Λ

Α , of this composite triangle is 
a function of the areas of 2 2T L , 2 2B T , and the triangle defined by vertices 2B , 2T , and 2L . Since the 
Cartesian coordinates of these vertices are known, we find that, 

 ( ) 22 2 2 22 1 2
2 2 2 2, sin 4

2 4l l l
l

T L T L
r T L r r T L

r
−

Σ

⎛ ⎞ ⎛ ⎞⎜ ⎟= − −⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
Α , (31) 

 ( ) 22 2 2 22 1 2
2 2 2 2, sin 4

2 4

B T B T
R B T R R B T

R
−

Σ

⎛ ⎞ ⎛ ⎞⎜ ⎟= − −⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
Α , (32) 

 ( ) ( )( )( )2 2 2 2 2 2 2 2 2 2 2 2, ,B T B L T L s s B T s B L s T L= − − −Α , (33) 
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Thus, the equation that describes the area of the composite triangle in  

Figure 7 is given by 

 
( ) ( )

( ) ( )
1 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2

, , , , , ,

                                               , ,

l

l

r R B T B L T L B T B L T L

r T L R B T

Λ

Σ Σ

=

− +

Α Α

Α Α
, (34) 

where,  

 ( )2 2 2 2 2 2
1
2

s B T B L T L= + + , (35) 

and 

 ( ) ( )2 2 2 2

2 2

2 2 B T B TB T x x y y= − + − , (36) 

 ( ) ( )2 2 2 2

2 2

2 2 B L B LB L x x y y= − + − , (37) 

 ( ) ( )2 2 2 2

2 2

2 2 T L T LT L x x y y= − + − . (38) 

 

Another type of composite triangle, 2Λ , is illustrated in Figure 8. This type of geometry is typically visible 
when the satellite crosses one of the target altitude shells, LTAS or UTAS. The area of the geometry 
illustrated below is determined as 

 ( ) ( ) ( )2 2 1 2 1 2 1 2 1 1 2, , , , , ,l lr L S L L L S L S L L L S r L LΛ Σ= −Α Α Α . (39) 

 
S

L2B
L2A  

 
Figure 8 - Composite triangle 

Intersection of Two Circles 

Figure 9 illustrates one possible scenario for the area of intersection between the RS and the LTAS, 

RS LTAS∩Α . However, the formulation presented here is also applicable to the area of intersection between 
the RS and the UTAS, RS UTAS∩Α . For the intersection of the RS with the LTAS, 1 lOA r=  and 1SA R= . 
The shaded area Figure 9 is easily determined by computing the area of two arc segments, per the formula 
previously presented. Adapting equation(27) to this particular case yields, 

 ( ) ( ) ( )1 2 1 2 1 2, , , ,RS LTAS l lr R A A r A A R A A∩ Σ Σ= +Α Α Α . (40) 
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Figure 9 - Area of Intersection Between Two Circles 

 

However, this equation is not applicable to all possible types of intersections between the two circular 
shells. The actual value of the coverage area depends on where the two circles intersect, and the location of 
these points relative to S and O. Figure 10 illustrates four possible cases relevant to this investigation that 
must be considered in computing the area of intersection between two circular shells. Figure 10(a) and 
Figure 10(b) illustrate the two possible scenarios for lR r< , while Figure 10(c) and Figure 10(d) 
correspond to lR r≥ . Figure 10(a) is further associated with 2 2

s lr r R> − , while Figure 10(b) is 
associated with 2 2

s lr r R≤ − . Similarly,  Figure 10(c) corresponds to 2 2
s lr R r> − , while Figure 10(d) 

implies 2 2
s lr R r≤ − . Table 2 summarizes the general formula for the determination of the area of 

intersection between two circles, within the scope of the assumptions employed in this investigation. 

CONDITION FOR NO COVERAGE 

In defining the range of altitudes to consider, for a given set of parameters, it is only necessary to identify 
the minimum allowable satellite altitude and the altitude at which the satellite provides no ATH coverage. 
In this study, the minimum allowable altitude is defined as the tangent height. The maximum altitude of 
interest corresponds to the point at which s ur r>  while 1 1BT U=  and 2 2BT U= .  

As observed from Figure 11, no part of the range circle exists within the UTAS and above the TL at or 
above this critical altitude, where the radial distance from the planet origin to the satellite is defined as 

3sr .  
Geometrically, this critical altitude is easily identified as, 

 ( )3

2
2 2 2

s u t tr R r r r= + − + . (41) 
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Figure 10 – Area of Intersection Between RS and LTAS 

 
 

Table 2 – Area of Intersection of Two Circles 

Condition Area of Intersection 

( )

( )

2 2

2 2

   and   

                   or 

  and  

l s l

l s l

r R r r R

r R r R r

> > −

≤ > −

 

( ) ( )1 2 1 2, ,RS LTAS lR A A r A A∩ Σ Σ= +A AΑ                 (42) 

( )2 2  and l s lr R r r R> ≤ −  ( ) ( )2
1 2 1 2, ,RS LTAS lR R A A r A Aπ∩ Σ Σ= − +A AΑ      (43) 

( )2 2  and l s lr R r R r≤ ≤ −  ( ) ( )2
1 2 1 2, ,RS LTAS l lr r A A R A Aπ∩ Σ Σ= − +A AΑ       (44) 
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Figure 11 – Critical Altitude for no ATH coverage, for s ur r>  

SINGLE SATELLITE ATH COVERAGE AREA 
The table and images below summarize the calculation of the coverage area for all cases of interest. There 
are a total of 18 cases to consider in computing the coverage area, not including specific subcases 
introduced by equations (42)-(44). These are summarized in list form below. The symbol ∅  implies the 
quantity is empty, thus, 1 2A A = ∅  implies that the RS does not intersect the LTAS and 1 2B B = ∅  implies 
the RS does not intersect the UTAS. Note that there is no unique way of representing the coverage area for 
a specific case. Thus, the results presented here represent one possible representation, though care was 
taken in selecting a formulation that would simplify the calculations while allowing for a systematic 
approach to constructing the piecewise continuous coverage area function. 

When the satellite is below the LTAS and above the THS, the function that describes the coverage area can 
be divided into three segments: 2 2 AT S L S< , 2 2 2A AL S T S U S≤ < , and 2 2AU S T S≤ . Even within each 
of these three cases, the calculation of the coverage area needs to be adjusted according to the conditions 
defined in Table 3. Thus, the coverage area function, for t s lr r r≤ < , can take on up to five different forms; 
1(a), 1(b.i), 1(b.ii), 1(c.i), and 1(c.ii). Table 4 and Table 5 illustrate a similar relation for l s ur r r≤ <  and 

3u s sr r r≤ < . Based on the conditions in Table 3 through Table 5 the composite piecewise continuous 
coverage area functions, for each of the three possible altitude ranges, are summarized in Table 6 through 
Table 8. 

Table 3 – Coverage Area Subcases for t s lr r r≤ <  

2 2 AT S L S<  2 2 2A AL S T S U S≤ <  2 2AU S T S≤  

1(a) 
1 (b.i): 1 2A A ≠ ∅  1 (c.i): 1 2A A ≠ ∅  

1 (b.ii): 1 2A A = ∅  1 (c.ii): 1 2A A = ∅  

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x 104

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
x 104

sr

R
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tr
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Table 4 - Coverage Area Subcases for l s ur r r≤ <  

2 2BT S L S<  2 2 2B AL S T S L S≤ <  2 2 2A AL S T S U S≤ <  2 2AU S T S≤  

2(a) 2(b) 
2(c.i): 1 2A A ≠ ∅  2(d.i): 1 2A A ≠ ∅  

2(c.ii) 1 2A A = ∅  2(d.ii): 1 2A A = ∅  

 
 

Table 5 - Coverage Area Subcases for 
3u s sr r r≤ <  

2 2BT S U S<
 

2 2 2B BU S T S L S≤ <
 

2 2 2B AL S T S L S≤ <
 

2 2 2A AL S T S U S≤ <
 

2 2AU S T S≤  

3(a) 3(b) 3(c) 

3(d.i): 1 2A A ≠ ∅  
3(e.i): 

1 2A A ≠ ∅  

3(d.ii): 1 2A A = ∅  
3(e.ii):

1 2A A = ∅  

  

Table 6 – Coverage Area for t s lr r r≤ <  
Case Area 

1(a) UTAS RS LTAS RS∩ ∩−Α = Α Α  

1(b.i) ( )2 2 2 2 2 22 , , , ,UTAS RS LTAS RS l A AR r T L T A A L∩ ∩ Λ− −
1

Α = Α Α Α  

1(b.ii) ( ) ( )2
1 2 1 2, , ,UTAS RS l l A Ar R TT r R L Lπ ππ∩ − −

1 2
Α = Α Α + Α  

1 (c.i) ( ) ( )2 2 2 2 2 2 2 2 2 2 2 22 , , , , 2 , , , ,UTAS RS LTAS RS l A A u A Ar R T L T A A L r R T U T B B U∩ ∩ Λ Λ− − +
1 1

Α = Α Α Α Α  

1 (c.ii) ( ) ( )2 2

2 2
1 2 1 2, , , ,u l u A A l A Ar r r R U U r R L Lπ ππ π− +Α = − Α Α  
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Table 7 – Coverage Area for l s ur r r≤ <  

Case Area 

2(a) ( )1 2,UTAS RS R T Tπ∩ −
1

Α = Α Α  

2(b) ( )1 1 2 2, , ,UTAS RS LTAS RS l B B B Br L S L L L S∩ ∩ Λ−
2

Α = Α Α − Α  

2(c.i) ( ) ( )1 1 2 2 2 2 2 2 2 2, , , , , , ,UTAS RS LTAS RS l B B B B l A Ar L S L L L S r R T L T A A L∩ ∩ Λ Λ−
2 1

Α = Α Α − Α − 2Α  

2(c.ii) ( ) ( ) ( )1 1 2 2 1 2 1 2, , , , , ,UTAS RS LTAS RS l B B B B l A Ar L S L L L S R TT r R L Lπ π∩ ∩ Λ−
2 1 2

Α = Α Α − Α − Α + Α  

2(d.i) ( ) ( )
( )

1 1 2 2 2 2 2 2 2 2

2 2 2 2 2 2

, , , , , , ,

, , , ,

UTAS RS LTAS RS l B B B B l A A

u A A

r L S L L L S r R T L T A A L

r R T U T B B U

∩ ∩ Λ Λ

Λ

−
2 1

1

Α = Α Α − Α − 2Α

Α = Α + 2Α
 

2(d.ii) ( ) ( ) ( )2 2
1 2 1 2 1 1 2 2, , , , , ,u l u A A l A A l B B B Br r r R U U r R L L r L S L L L Sπ ππ π−

2 2 2Λ
Α = − Α + Α − Α  

 

Table 8 - Coverage Area for l s ur r r≤ <  
Case Area 

3(a) Α = 0  

3(b) ( ) ( )1 2 2 1 2 1, , , ,UTAS RS u B B B BR TT r U S U U U Sπ∩ Λ1 2
Α = Α − Α + Α  

3(c) ( ) ( )1 1 2 2 1 1 2 2, , , , , ,UTAS RS l B B B B u B B B Br L S L L L S r U S U U U S∩ Λ Λ2 2
Α = Α − Α + Α  

3(d.i) ( ) ( )
( )

1 1 2 2 1 1 2 2

2 2 2 2 2 2

, , , , , ,

, , , ,

UTAS RS l B B B B u B B B B

l A A

r L S L L L S r U S U U U S

r R T L T A A L

∩ Λ Λ

Λ

2 2

1

Α = Α − Α + Α

Α = Α − 2Α
 

3(d.ii) ( ) ( ) ( )
( )

2
1 1 2 2 1 1 2 2 1 2

1 2

, , , , , , ,

, ,

UTAS RS l l B B B B u B B B B

l A A

r r L S L L L S r U S U U U S R TT

r R L L

π

π

π∩ Λ Λ−
2 2 1

2

Α = Α − Α + Α − Α

Α = Α + Α
 

3(e.i) ( ) ( )
( ) ( )

1 1 2 2 1 1 2 2

2 2 2 2 2 2 2 2 2 2 2 2

, , , , , ,

, , , , , , , ,

UTAS RS LTAS RS l B B B B u B B B B

l A A u A A

r L S L L L S r U S U U U S

r R T L T A A L r R T U T B B U

∩ ∩ Λ Λ

Λ Λ

−
2 2

1 1

Α = Α Α − Α + Α

Α = Α − 2Α + 2Α
 

3(e.ii) ( ) ( ) ( )
( )

2 2
1 2 1 2 1 1 2 2

1 1 2 2

, , , , , , ,

, , ,

u l u A A l A A l B B B B

u B B B B

r r r R U U r R L L r L S L L L S

r U S U U U S

π ππ π Λ

Λ

− − +
2 2 2

2

Α = Α Α − Α

Α = Α + Α
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The coverage area associated with each of these cases is illustrated in Figure 14. To demonstrate how one 
arrives at each of the equations in Table 6 through Table 8, consider case 2(d.i). The coverage area equation 
for case 2(d.i) can be decomposed into several area elements, including , , ,  and UTAS RS LTAS RS∩ ∩ Λ Λ2 1

Α Α Α Α . 
Figure 15 illustrates how the composite total coverage area is constructed from these elements. The 
contents of Table 6 through Table 8 define an objective function to an optimization process that seeks to 
identify the optimal altitude that maximizes the constrained ATH coverage area. An example of this 
process is presented in the next set of examples. 

 

 
Figure 12 - Case 1 Scenarios 

 

 
 

Figure 13 - Case 2 Scenarios 
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Figure 14 - Case 3 Scenarios 

 
Figure 15 - Coverage Area Calculation for Case 2(d.i) 

EXAMPLE 1 

Figure 16(a) depicts the coverage area as a function of satellite altitude for a fixed sensor range. As 
expected, the coverage area is nullified as 

3sr r→ . In this particular example, the maximum coverage area 
is achieved when the satellite altitude is 1353 km, for R = 5000 km, hl = 1000 km, hu = 5000 km, and ht = 
100 km.  The corresponding geometrical configuration is illustrated in Figure 16(b). It is interesting to note 
that, unlike the BTH case, maximizing θ  does not lead to maximum coverage area. Also, unlike the 
traditional ATH case, 1 2R R+  does not offer the maximum coverage area for a fixed altitude band. In fact, 
the results of this study indicate that there is no obvious relation between the coverage angle and the 
maximum coverage area. Thus, the methodology presented here is an important step towards identifying 
optimal constellations for maximum ATH altitude band limited coverage, and also for the future inclusion 
of additional constraints.  
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EXAMPLE 2 

A more complete analysis of the optimal solutions pace is presented in Figure 17 (a-b). These figures depict 
contours of optimal satellite altitude as a function of sensor range and upper target altitude. In this 
particular example, the lower target altitude is held fixed at 600 km to simplify the visualization of the 
optimal altitude trends. Figure 17(b) is of particular interest as it reveals two ridge lines that separate the 
central region of the contours from the exterior regions. Numerical examination of these ridge lines reveals 
that the lower ridge line corresponds to the set of optimal solutions associated with a critical intersection 
between L2a, T2, and A2. By symmetry, at that same altitude, there is also an intersection between L1a, 
T1, and A1. Similarly, the upper ridge line is representative of optimal solutions associated with the critical 
intersection of U2a, T2, and B2.  

It is interesting to note that, in the exterior regions outlined by these ridge lines, the relation between the 
maximum coverage area and the sensor and upper target altitudes, seems relatively linear, unlike that 
observed in the interior region. While the significance of these trends is of interest for future investigations, 
it is not the focus of the present study. Every design problem is linked to a different set of constraints and 
parameters, all of which affect the trends outlined in these Figures. Thus, it would be premature to draw 
any globally definitive conclusions from these results. However, the results presented here do offer a proof 
of concept for the proposed methodology. The algorithm and graphical tools presented are an important 
first step towards the future goals of this study. Specifically, the development of algorithms that can assist 
the designer in identifying the minimum number of satellites and the optimal arrangement required to 
maximize the coverage of targets against a space background over a prespecified altitude and latitude band.  
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Figure 16 – ATH Coverage Area vs. Altitude 
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(a)                                                                     (b) 

Figure 17 - Sample Optimal Height Surface 
 
CONCLUSIONS 
 
The present study focuses on the identification of the optimal satellite altitude necessary to achieve 
maximum ATH coverage over an altitude limited band with atmospheric or environmental visibility 
constraints. Unlike earlier results regarding optimal BTH and ATH coverage, no direct correlation exists 
between the coverage angle and the maximum coverage area. The coverage area, in this case, is a nonlinear 
piecewise continuous function that requires special geometrical considerations. This investigation reveals 
that the key to computing the coverage area in this more complex case lies in the proper identification of 
the mutual intersections between the tangent line with the range shell, the upper target altitude shell, and 
the lower target altitude shell. Many special cases are identified and discussed in this study. The end result 
is a composite nonlinear objective function that relates the bounded ATH coverage area to the satellite 
altitude. Future studies, building on these results, will focus on optimal constellation design and the 
incorporation of other constraints, such as latitude band of interest. 

ACKNOWLEDGEMENTS 

This work was performed at The Aerospace Corporation. The authors would like to thank Bill Adams and 
Tom Lang, of The Aerospace Corporation, for their valuable input during the course of this investigation. 

  
REFERENCES 
 
1. Walker, J.G., “Satellite Constellations”, Journal of the British Interplanetary Society, Vol. 37., PP. 559-

571, 1984. 

2. Lang, T.J., “Optimal Low Earth Orbit Constellations for Continuous Global Coverage,” AAS/AIAA 

Astrodynamics Specialist Conference, Victoria, B.C., Canada, Aug. 16-19, 1993. 

3. Rider, L., “Optimal orbital constellations for global viewing of targets against a space background,” 

Optical Engineering, Vol. 19, No. 2, 1980. 

4. Kobel, C., “LOS, ATH, Same Theta Coverage Geometry,” The Aerospace Corporation, Internal 

Presentation. 5/26/2007. 

5. Fewell, M.P. “Area of Common Overlap of Three Circles,” Maritime Operations Division, Defense 

Science and Technology Organization, Technical Note, DSTO-TN-0722. 


