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Numerical Analysis and Design of Satellite Constellations for
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Supervisor: Belinda G. Marchand

As near-Earth space becomes increasingly crowded with spacecraft and de-

bris, the need for improved space situational awareness has become paramount.

Contemporary ground-based systems are limited in the detection of very small or

dim targets. In contrast, space-based systems, above most atmospheric interference,

can achieve significant improvements in dim target detection by observing targets

against a clutter-free space background, i.e. targets above the horizon (ATH). In

this study, numerical methods for the evaluation of ATH coverage provided by con-

stellations of satellites are developed. Analysis of ATH coverage volume is reduced

to a planar analysis of cross-sectional coverage area in the orbit plane. The cover-

age model performs sequences of boolean operations between polygons representing

cross-sections of satellite sensor coverage regions and regions of interest, returning

the coverage area at the desired multiplicity. This methodology allows investigation

of any coverage multiplicity for planar constellations of any size, and use of arbitrary

vii



sensor profiles and regions of interest. The implementation is applied to several con-

stellation design problems demonstrating the utility of the numerical ATH coverage

model in a constellation design process.
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Chapter 1

Introduction

Traditionally, a primary objective in the design of most satellite constella-

tions has been to maximize sensor or communication coverage of targets on the

surface of the Earth. Notable satellite constellations focused on providing ground

coverage include GPS, TDRSS, Iridium, and Molniya.8 This type of coverage can be

described as ‘below the horizon’ (BTH) coverage,9 as the primary region of interest

lies below the horizon from the perspective of each satellite.

In contrast, ‘above the horizon’ (ATH) coverage10 describes coverage of a

region of interest that lies a specified distance above the horizon from the perspective

of each satellite. ATH and BTH coverage regions are separated by an imaginary

cone that emanates from the satellite and runs tangent to the horizon, enveloping

the Earth. This boundary is referred to in the literature as the tangent height

cone (THC).4 The in-plane cross-section of the THC, referred to in this study as

the tangent height triangle (THT) is shown in Figure 1.1. In general, the THC

and THT both extend to infinity, but the THT is truncated for the purposes of

this study at a sufficient distance from the satellite. ATH coverage is of interest

if, for example, the satellite utilizes a sensor that is unable to observe targets in

the direction of the Earth (due to atmospheric interference, albedo, etc.), or if the

sensor provides enhanced dim target detection against a space background.
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In the current study the ‘horizon’ is defined relative to a prescribed tangent-

height above the Earth’s limb that is used to define the Earth-centered tangent

height shell (THS), as indicated in Figure 1.1. The tangent height is defined as the

closest distance to the Earth’s limb where a satellite’s sensor is still able to observe

objects in space.4 Thus, any part of the sensor’s field of view in the direction of the

THS constitutes a blind spot.

Sensors observing targets against a space background rather than a THS

background can provide greatly improved detection capability of dim objects.9 The

relative darkness of space allows these difficult-to-detect objects to stand out from

their background much more readily. Additionally, constellations designed solely for

ATH coverage can benefit from sensors developed especially for detecting objects

against a space background.

In this chapter, prior research in the literature regarding ATH coverage is

discussed first. Next, the motivation behind the current study is presented, followed

by a brief description of the overall approach used. The fundamental and limiting

assumptions of the approach are then considered followed by a brief summary of the

organization of this thesis.

1.1 Background

ATH constellation design methods in the literature can be divided into two

categories depending on the characterization of the area of interest – single-altitude

and dual-altitude band coverage. Single-altitude band coverage9–12 analysis only

considers the region of interest between the tangent height shell (THS) and the
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upper target altitude shell (UTAS). Dual-altitude band coverage1,4 expands upon

single-altitude band coverage by considering an arbitrary lower target altitude shell

(LTAS) that is above the THS and below the UTAS. These different scenarios lead

to coverage regions of fundamentally different shapes. Several typical single-altitude

and dual-altitude band coverage regions provided by a single satellite are shown in

Figure 1.2.

1.1.1 Single-Altitude Band Coverage

Multiple investigators have published work concerning ATH coverage9–12

within the single-altitude band region of interest. An early analysis by Beste10 con-

siders ATH coverage as a secondary objective to BTH coverage, and does not specif-

ically demarcate between coverage of space above the atmosphere, but still against

an Earth or THS background, and coverage against a space background. Rider9

considers single-altitude band ATH coverage of an equatorially placed constellation

and presents case studies and methods of design for constellations providing contin-

uous global ATH coverage of different coverage multiplicities. In the current study,

the term ‘coverage multiplicity’ refers to the number of satellites that are simulta-

neously covering a particular region. Rider’s solutions guarantee global single or

double ATH coverage multiplicity, with up to sextuple or octuple coverage near the

poles. However, this analysis is performed such that the desired ATH global coverage

multiplicity (i.e. single or double) is specified, and the necessary number of satellites

and their arrangement for a particular orbital configuration are subsequently deter-

mined. As a result, the methods do not consider the actual amount of coverage in

4
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cases where global coverage at the desired multiplicity is not or cannot be achieved.

Rider9 considers the optical design of the necessary sensors in moderate detail but

does not describe any methods to specify a range of sensor effectiveness. As a result,

constellations designed using these methods benefit from coverage in regions that are

very distant from each satellite. In a real case this distance would be constrained,

likely due to limited resolving power or sensitivity of available sensors. The mass

of a sensor or antenna has been described by Gordon12 as increasing proportionally

with the square of the desired effective range. With this in mind, an assumption of

unbounded sensor range is unrealistic. For most applications the optimal constella-

tion configuration will fall somewhere between large constellations of short-ranged

satellites at very low altitude and smaller constellations of long-ranged satellites at

high altitude. This trade-off is one of the fundamental problems that can be inves-

tigated using the numerical methods developed in the current study, by balancing

various constellation parameters to more efficiently provide ATH coverage.

Hanson and Linden11 use a streets of coverage approach to analytically de-

sign constellations providing global double BTH coverage and global single ATH

coverage. Essentially, every point on the surface of the Earth is visible to at least

two satellites and every point in the ATH target region is visible to at least one

satellite. Their work is an extension, including consideration of ATH coverage, of

previous work done by Rider and Adams,13 and Walker.14,15 In their analysis cover-

age is considered (and, as in Rider’s9 work, ensured by design) based upon projection

of coverage onto an imaginary Earth-centered sphere. Due to assumptions of un-

constrained sensor range and satellite altitude, as target altitude increases, target

6



visibility increases as well. Thus, it is reasoned that if the entire surface of the imag-

inary sphere receives at least single-fold coverage, everything above it also receives

single or greater coverage.

Single-altitude band analyses can be considered a subset of the dual-altitude

band coverage problem. The methods presented in the current study are demon-

strated using a dual-altitude band region of interest, but the same methods can be

applied without difficulty to a single-altitude band problem.

1.1.2 Dual-Altitude Band Coverage

An early treatment of dual-altitude band ATH coverage is presented by

Rider1 who expands upon his earlier work on the single-altitude band ATH cov-

erage problem to include a desired lower altitude bound above the tangent height.

The analysis considers various combinations of equatorial and polar orbital planes

using geometric reasoning to obtain solutions. Additionally, Rider considers satellite

sensors with a constrained field of view, or scan angle, denoted by ξ in Figure 1.3a.

An orbit-plane cross-section is shown in Figure 1.3b denoting coverage multiplicities

in each region of the target shell where sensor fields overlap between satellites. By

placing the satellites in appropriate proximity and ensuring a sufficient field of view

and orientation, global ATH coverage can be achieved.

More recent research, published by Marchand and Kobel,4 presents an an-

alytical coverage model to explicitly evaluate orbit-plane ATH coverage area (the

cross-section of the coverage volume) for the dual-altitude band coverage problem.

In their research several important simplifying assumptions are made. Satellite

7
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Figure 1.3: Geometric Design Techniques for Constellations Providing ATH Cover-
age in a Dual-Altitude Band Region of Interest1
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sensors are assumed omni-directional, and their analysis focuses on the coverage

provided by a single satellite in an Earth-centered circular orbit.

The omni-directional sensor assumption allows the analysis to reduce to

a planar problem. By focusing on determining the coverage area in the orbital

plane, instead of the coverage volume, the complexities of the three-dimensional

problem are avoided. The circular orbit assumption ensures the satellite remains at

a constant altitude. When considering only the amount of coverage, rather than at

what location above the Earth it occurs, the problem becomes time-invariant.

The analytical coverage model presented by Marchand and Kobel4 is very

useful in that the calculations are computationally low-cost and contain no im-

precision beyond the underlying simplifying assumptions (aside from round-off and

truncation error in a finite-precision computer implementation). Thus, the resulting

coverage model is well suited for use in design problems solved using numerical op-

timization techniques. In fact, Marchand and Kobel achieve meaningful results in

a reasonable amount of runtime using a simple grid search with automated refine-

ment. Their analysis of the coverage provided by a single satellite is an important

first step and makes the problem far more tractable. However, coverage in a fully

populated constellation inevitably creates regions of overlap with higher multiplici-

ties of coverage than necessary. This means that the coverage provided by a single

satellite does not scale intuitively to the total coverage of an entire constellation of

similarly positioned and equipped satellites.

The primary difference between Marchand and Kobel’s4 result and earlier

ATH coverage analyses1,9–12 is that an actual measure of coverage is being deter-

9



mined. Earlier analyses use methods to design constellations that by their very

nature ensure the desired coverage characteristics. A model to compute the actual

coverage, given a set of parameters, allows for constellation design optimization in

a much different way. Perhaps most importantly, it enables design using a variety

of generalized numerical optimization methods that already exist.

1.2 Research Motivation

The analytical ATH coverage model developed by Marchand and Kobel4

provides a very powerful tool for analyzing their problem of interest. Several of the

assumptions it was formulated upon are reasonable in many cases. For instance,

assumption of omni-directional sensors and circular orbits are a common element in

nearly all previous ATH coverage investigations. However, for the design of entire

constellations, the capability to analyze coverage for only a single satellite is limiting.

Analytical solutions to complex problems can be very time consuming and

labor intensive to produce, assuming one exists at all. Despite their performance

and accuracy advantages, analytical solutions are only valid for the specific cases

they are formulated to analyze. In contrast, the numerical methods outlined in this

thesis enable analysis of a much wider set of problems with fewer constraints. Con-

stellations of many satellites can be analyzed for not only single coverage but any

desired coverage multiplicity as well. The burden of relating problem parameters to

coverage area can be handled by well-proven numerical methods that allow analysis

of interactions between oddly shaped satellite sensor regions and regions of interest.

This frees the analysis from the constraint of omni-directional sensor profiles. El-
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liptical satellite orbits or constellations with satellites distributed in multiple orbits

in the same plane can be analyzed as well, necessitating the introduction of time

or a time-like parameter. However, this incurs a significant computational cost and

is consequently not explored in the current study. The performance and accuracy

penalties associated with a numerical approach to the ATH coverage problem can be

quite severe, even for time-invariant analyses. Thorough characterization of these

penalties is a recurring objective throughout this thesis.

1.3 General Approach

The approach developed in this study extends the planar analysis developed

by Marchand and Kobel.4 The fundamental problem is to determine combined cov-

erage area within the region of interest, at a coverage multiplicity of interest, be-

tween n satellites in a constellation. In this study, the region of interest is the

dual-altitude band shell. First, the boundaries of all satellite sensor regions are dis-

cretized into polygons. The region of interest is discretized similarly. Next, using

several algorithms developed in this study, the satellite sensor regions are processed

via sequences of boolean union and intersection operations using the well-developed

numerical process of polygon clipping.16 These operations yield a combined range

shell polygon that represents the total region of the desired coverage multiplicity

provided by the constellation. This coverage may lie inside or outside (or even in-

side and outside) the region of interest. Finally, a boolean intersection operation

is performed between this combined range shell polygon and the region of interest

polygon. The area enclosed within this final result polygon is computed numeri-
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cally and represents a measure of in-plane ATH coverage at the desired coverage

multiplicity within the region of interest.

1.3.1 Fundamental Assumptions

The current study is concerned with developing numerical techniques to ana-

lyze satellite constellations for ATH coverage. Most of the available methods for the

design of constellations for ATH coverage in the literature1,9–12 are intended to pro-

duce constellations that ensure total coverage by design (with the notable exception

of the work by Marchand and Kobel).4 In contrast, the coverage model developed in

this study numerically determines ATH coverage as a function of the constellation

parameters in similar fashion to Marchand and Kobel’s analytical model.

Keeping in mind that the measure of coverage volume is evaluated by ana-

lyzing the cross-sectional coverage area in the orbital plane, the most fundamental

assumption is that the constellation in question is planar. This is in contrast to

much of the older ATH coverage constellation design techniques that utilize methods

similar to the streets of coverage approach commonly used when designing constel-

lations providing ground coverage.13–15 These works analyze satellites in multiple

planes simultaneously, to obtain constellation designs for global ATH coverage. For

the current study, because all satellites are limited to a single plane, the relevance

of the analysis is limited to ATH coverage within the vicinity of the orbital plane.

Due to the planar nature of the analysis, despite being able to specify more

general sensor profiles, coverage must be analyzed under the assumption that there

is symmetry in the three-dimensional sensor profiles with respect to the orbital

12



plane (i.e. the in-plane cross-sections are somehow representative of the three-

dimensional case). A good example of a non-omni-directional sensor profile that

fits into this context is a conical sensor region extending in-plane from each satellite

in the constellation. The in-plane cross-section is a triangle, and as the in-plane

triangular coverage region grows, so does the conical coverage volume. A similar

example is investigated in Section 4.6. Such a model is interesting in that the

satellite look-angles become additional parameters to the coverage model.

The examples explored in the current study are all time-invariant due to the

assumption of circular orbits. Time-varying cases are excluded from this study, not

because of a fundamental limitation of the methodology that would preclude them,

but because of the impracticality of performing such analyses at present. As is shown

in later sections, the time-invariant problems alone require a significant amount of

computer time to analyze with significant accuracy. To consider a constellation of

satellites distributed in a single elliptical orbit, for instance, the coverage model may

require evaluation at numerous times throughout an orbit period in order to deter-

mine how the ATH coverage evolves. More complex cases, such as constellations

of satellites distributed across multiple orbits in the same plane, may not exhibit

periodic behavior at all. Such an investigation may require the coverage model to be

evaluated throughout a practically unbounded time interval to determine ATH cov-

erage evolution. Thus, time-varying example problems may require several orders of

magnitude more computation time to solve than time-invariant cases. By adhering

to time-invariant examples, the solutions presented in this thesis are obtained in a

reasonable amount of time using the modest computational resources available.

13



1.4 Thesis Organization

Chapter 2 begins by defining the fundamental polygon regions used through-

out this study. Polygon resolution, i.e. the number of vertices on each boundary,

is related to approximation error and preliminary guidelines are established that

suggest necessary polygon resolution to achieve a desired accuracy. Next, the pro-

cess of polygon clipping16 is briefly discussed and several suitable algorithms in the

literature2,17,18 are compared. Finally, the numerical ATH coverage models used to

identify regions of particular coverage multiplicities are developed in set notation.

Analysis is performed upon these set notation expressions to determine the number

of polygon clipping operations necessary for a given model evaluation.

In Chapter 3, the abstract methodology described in Chapter 2 is developed

into working implementations. First, several investigated polygon clipping imple-

mentations are discussed in detail followed by a performance comparison between

them. The fastest clipping implementation, operating natively in C++, is then an-

alyzed in-depth to establish performance guidelines for later studies. The numerical

ATH coverage models are implemented and described in pseudo-code. Finally, an

investigation is presented into the error and performance observed while solving ac-

tual ATH coverage problems. The numerical coverage models are compared to the

analytical model developed by Marchand and Kobel.4

Chapter 4 begins by developing a simple financial model for use in four

parameter optimization-driven example design problems. This financial model is

used as either a constraint or an objective function in each example. In the first

example, the numerical ATH coverage model is used as an objective function, then

14



as a constraint function in Example 2. In the third example, the numerical ATH

coverage model is used as both a constraint and objective function (each analyzing

for regions of different coverage multiplicity). Finally, a constellation of satellites

with an arbitrary sensor profile is analyzed to determine a configuration yielding

maximum single multiplicity coverage subject to a budget constraint.

Results and conclusions of the study are summarized in Chapter 5. Possible

extensions to the full three-dimensional multi-plane case are suggested.

Appendix A presents the rederivation of the analytical coverage model devel-

oped by Marchand and Kobel.4 The resulting implementation of this model is used

throughout this research for verification against the numerical models. Appendix B

contains example plots that are discussed in passing in Chapter 4 but not presented

there for brevity.

15



Chapter 2

Methodology

This chapter discusses the general approach developed in this study to nu-

merically analyze ATH coverage. As discussed in Chapter 1, the first component

of the numerical ATH coverage model is to discretize the sensor cross-sections and

region of interest into polygons. These sensor cross-section and region of interest

polygons are defined by finite sets of vertices approximating the curvilinear bound-

aries of the ‘true’ regions. Following a simple discussion regarding the amount of

inaccuracy introduced by approximating curvilinear shapes with polygons, the ap-

proaches to defining these sensor cross-section and region of interest polygons are

discussed.

Next, polygon clipping, the primary numerical process used to compute ATH

coverage in this study, is discussed in moderate detail, and several algorithms are

investigated. A brief discussion of reported algorithm performance follows.

Finally, the numerical ATH coverage models developed for this study are

presented in detail. For illustrative purposes, the single, double, and triple cov-

erage models are discussed explicitly before generalizing to the arbitrary coverage

multiplicity model. Performance considerations for these coverage models are then

discussed in detail.
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2.1 Region Approximations

Previous work by Marchand and Kobel4 considers the single satellite case

analytically, and as such, the simple regions involved are considered exactly in terms

of their geometric parameters. For generalized numerical analyses, however, this ap-

proach is impractical as the number of parameters becomes intractable. Thus, a nu-

merical process is sought instead, one that identifies the same information regarding

coverage without the need for analytic determination.

2.1.1 Discretization of Non-Linearly Bounded Regions

Almost all interacting regions in this problem (sensor range shells, and alti-

tude shells) feature mostly smooth curvilinear boundaries. As the analysis branches

into more general cases featuring non-omni-directional sensors, it becomes practi-

cally impossible to express the boundaries analytically. It is, however, convenient

to discretize these regions into a finite set of vertices defining their boundaries (i.e.

the standard method for defining polygons). Within this context, various robust

numerical algorithms can be applied to analyze the interactions (overlap) between

different regions using the process broadly referred to as polygon clipping.

2.1.2 Error Analysis

During polygon clipping, contour resolution and polygon corner interactions

are the primary factors contributing to the inaccuracy of region approximation.

Most of the odd small-scale variations in ATH coverage area encountered in later

results are primarily due to corner interactions. The impact upon accuracy of both
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contour resolution and corner interactions is mitigated by increasing the contour

resolution. This is because a finer resolution yields gradual approximating curves,

more accurate to the ‘true’ curvilinear boundary. Nevertheless, this increase in

accuracy is accompanied by a significant performance penalty, as demonstrated later

in this study.

2.1.2.1 Contour Resolution

The ‘resolution’ of a polygon refers to the number of points per contour

(PPC) that define its boundary. Polygons may have multiple contours (i.e. a region

with an interior hole, or a polygon composed of multiple separate regions), thus,

this variable indicates the number of vertices used to define each contour upon

generation of the initial polygon. Figure 2.1 shows an example polygon defined at

9 PPC resolution – all contours, whether defining fill or hole regions, are defined

by 9 vertices each. How polygon resolution more specifically applies to each of the

fundamental polygon shapes is discussed in Section 2.1.3.

In contrast to similar analytical representations, this finite decomposition

introduces error inversely proportional to the resolution of the approximating poly-

gons. Because the altitude shells are always spherical in this study and, initially,

omni-directional sensor profiles are considered, the non-linearly bounded regions

contain contours defined by circular arcs. Thus, analyzing the error introduced in

the discretization of a circle provides a good baseline for judging a suitable polygon

resolution.

Consider, for example, the approximation of a circle using an inscribed
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Figure 2.1: All Contours in Each Polygon Defined by m Vertices Each (m = 9 PPC
Shown)
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Figure 2.2: Approximation of a Circle With an Inscribed Polygon
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hexagon, shown in Figure 2.2. Even more generally, for a polygon with n sides,

finding the relative error in approximation of the area computation for any one of

the n circular sectors is equivalent to finding the relative error in area computation

for the entire circular approximation. Thus, using the notation in Figure 2.2, the

relative error is determined as

Aerr =
Asector −A∆

Asector
. (2.1)

Given that the interior angle of each sector for an n-sided polygon is

θ =
2π

n
, (2.2)

the area of the circular sector is then trivially determined as

Asector =
πr2

n
. (2.3)

Using simple trigonometric arguments,19 the area of the triangular region

(isosceles in general), as a function of the circular radius, r, and the interior angle,

θ, is determined by

A∆ =
1

2
r2 sin θ. (2.4)

Combining these two results, and performing some algebraic simplification yields

Aerr = 1− n

2π
sin

2π

n
, (2.5)

where the domain in n is, of course, limited to positive integers greater than three

(a polygon with only two linear edges has zero area). Plotting the resulting curve

up to 10, 000 PPC, and multiplying by 100% yields the percent relative error in area
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Figure 2.3: Percent Relative Error in Area Calculation of an Inscribed Circular
Polygon Representation vs. Contour Resolution

inherent to the polygon representation of an inscribed circle, shown in Figure 2.3.

This plot supports the selection of 100 PPC in order to achieve a (admittedly arbi-

trary) desired accuracy on the order of 0.1% relative error. This result is supported

again in later results, shown in Section 3.3.2.

2.1.2.2 Polygon Corner Interactions

When regions are approximated as polygons, curvilinear boundaries are re-

placed by a series of line segments, with a corner between each. The sharpness of

the corner depends upon the curvature of the boundary and the resolution of the

approximation. Consider the coverage of three satellites within a dual-altitude band

region of interest, shown in Figures 2.4 and 2.5. Cosmetically, the 100 PPC represen-

tation, shown in Figure 2.4, appears identical to an analytical representation using

true circular arcs. In contrast, the 7 PPC analysis in Figure 2.5 is unacceptably

poor. The key observation in the 7 PPC case is that although the three satellite
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 THS

 LTAS

 UTAS

Figure 2.4: Coverage by Three Satellites Computed at 100 PPC

coverage regions (shaded) should be the same by symmetry, they are clearly not

equal due to the non-symmetric distribution of corners on the altitude shells across

the three coverage areas.

Table 2.1: Area – 7 PPC vs. 100 PPC

Satellite 7 PPC 100 PPC

LL 0.884469 1.03853
Top 0.867410 1.03857
LR 0.833257 1.03853

Total 2.58514 3.11564

In fact, in comparing the computed areas of the shaded polygons, shown in

Table 2.1, the 7 PPC case features a large variation in area across the three coverage

regions subject to different corner interactions, while the 100 PPC case is far more

consistent. Also note that the computed total area in the 7 PPC case differs by

17% from the 100 PPC case, again illustrating the impact of low contour resolution
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Figure 2.5: Coverage by Three Satellites Computed at 7 PPC

mentioned in Section 2.1.2.1.

2.1.3 Basic Regions

Much of the analysis presented in this thesis can be considered in terms

of two fundamental region types – the effective range shell, and the dual-altitude

band shell. For simplicity, initial analyses performed in this investigation assume

omni-directional sensor profiles with no loss of generality.

2.1.3.1 Effective Range Shell, RSE – Omni-Directional Sensor

By assuming an omni-directional sensor profile, the vertices defining the in-

plane cross-section, the effective range shell (RSE , the actual ATH region covered by

the satellite, i.e. the range shell excluding the tangent height triangle (THT) region)

are easily computed based solely on the satellite parameters. This simplification is
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Figure 2.6: Notation for Computing Effective Range Shell (RSE) Vertices for the
Omni-Directional Sensor Case

possible due to the circular boundary of the omni-directional sensor cross-section.

Effective range shells are shown (but not labeled) in Figures 2.4 and 2.5 as dashed

boundaries centered on each satellite. A notated illustration of the effective range

shell is shown in Figure 2.6.

The interior half angle of the THT, γ, is computed as

γ = arcsin
rt
rs
. (2.6)

Given an in-plane longitude (angular displacement of the satellite from the positive

x-axis) of θ, it is then clear that the initial and final angles for the circular portion
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of the boundary are given by

ψi = π − γ + θ, (2.7)

ψf = −π + γ + θ. (2.8)

Consider an approximation of the range shell in terms of an inscribed polygon

with a resolution of m PPC. The determination of these m vertices requires that the

data structure be populated first with a single point at the location of the satellite

at (x, y) = (rs cos θ, rs sin θ), followed by m− 1 equally distributed points along the

circular portion of the boundary in the clockwise direction. The curve is implicitly

closed between the final and initial vertices.

To define all the intermediate points along the circular portion of the bound-

ary, between ψi and ψf , it is useful to define an intermediate value, ψint, as

ψint(j) = ψi +
(j − 2)(ψf − ψi)

m− 2
, (2.9)

where j is an integer monotonically increasing from 2 to m in increments of 1

(with j = 1 referring to the first vertex, defined as (rs cos θ, rs sin θ)). Thus, a

programming loop is used to iterate and produce coordinates for the effective range

shell using the equations

(x1, y1) = (rs cos θ, rs sin θ) j = 1, (2.10)

(xj , yj) = (R cosψint(j) + x1, R sinψint(j) + y1) j = 2, 3, ...,m. (2.11)

2.1.3.2 Effective Range Shell, RSE – Arbitrary Sensor Profile

When analyzing non-omni-directional sensor profiles with a known in-plane

cross-section, the effective range shell, RSE can still be isolated, but at a cost of
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performing a boolean operation on the involved polygons (using polygon clipping,

discussed in 2.2). Referring to Figure 2.7, a polygon is defined representing the

in-plane cross-section of the arbitrary sensor profile, RSarb and the tangent height

triangle, THT. The THT need only extend to a distance from the satellite greater

than the maximum extent of the sensor cross-section. This requirement is imposed

so that after the clip operation, there are no remaining regions of the sensor cross-

section in the direction bounded by the sides of the THT. To obtain the effective

sensor range shell, RSE , the THT is differenced (using a polygon clipping operation)

from RSarb. Because of the non-omni-directional shape, the orientation/attitude

of the sensor cross-section becomes a parameter, and the resulting effective range

shell shape can vary considerably depending on this new parameter, as shown in

Figure 2.8.

Performing this additional clipping operation incurs a performance penalty

over the omni-directional case, where none is required. However, the runtime of such

a clipping operation will be far less than the typical clipping operations performed

in this study. The THT polygon consists of only three vertices, and performance of

the most efficient clipping algorithm considered (developed by Mart́ınez)2 is O((l+

k) log l) for l vertices total, and k intersections. Thus, for a reasonable polygon

resolution, necessitating the addition of three vertices and only two intersection

points (typically), runtime is considerably less than for a clipping operation between

two polygons of like-resolution.
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Figure 2.7: RSarb and THT: THT is Subtracted From RSarb to Form RSE
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Figure 2.8: RSE for RSarb at Different Satellite Attitudes
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2.1.3.3 Dual-Altitude Band Shell

The annulus referred to as the dual-altitude band shell, AS, shown in Fig-

ure 2.9, is centered at the origin (center of the Earth), and has an inner radius of

the lower target radius rl, and an outer radius of the upper target radius ru. In

the implementation used for this thesis, an altitude shell created for some resolution

given by m PPC, contains m vertices on the inner boundary, and m vertices on the

outer boundary.

 
l
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Figure 2.9: Dual-Altitude Band Shell Polygon Region, AS

2.2 Polygon Clipping

As discussed in the preceding material, the planar-case problem of analyz-

ing ATH coverage of satellites with arbitrary sensor profiles (with known in-plane

cross-sections) can be reduced to the numerical problem of boolean operations on

polygons, that can solved using the process of polygon clipping. Thus, in the course
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of implementing these techniques, it is worthwhile to understand not only how they

work, but also which polygon clipping algorithms are the most robust and produce

the best performance for the problem of interest. Many constellation design prob-

lems are well suited to a parameter optimization approach, that, by nature, requires

a large number of model evaluations. As will be shown later, the vast majority

of numerical ATH coverage computation time is consumed by the polygon clipping

process, thus, performance is a primary concern.

2.2.1 Background of Polygon Clipping

Polygon clipping is essentially the act of ‘cutting’ one polygon (the subject

polygon) with another (the clip polygon). By analyzing the interaction of the two

shapes, various Boolean operations are carried out. In the context of the ATH

coverage problem, unions, intersections, and differences are of primary interest.

The origins and continued usage of polygon clipping primarily reside in com-

puter graphics,18 electrical circuit design,16 and the study of geosciences.2 In com-

puter graphics, the primary motivations are to identify and omit off-screen polygons

from the rendering process (thus improving performance), as well as removing seg-

ments of a polygon that should be obscured by other objects (i.e. hidden-surface

rendering of scenes). Circuit designers sometimes use polygon clipping to numeri-

cally verify complex designs, ensuring that no electrical traces are unintentionally

bridged during the design and revision process. In the study of geosciences, geospa-

tial data (i.e. annual polar ice cap formations), is often stored in the form of poly-

gons. Researchers perform various Boolean operations upon these data sets to make
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comparisons or analyze variations over time.

Applications to computer graphics shaped the first polygon clipping algo-

rithms.16 For instance, early algorithms only considered rectangular clip polygons

(i.e. representing the boundary of a computer screen). Over time, algorithms were

developed to handle convex and, eventually, non-convex clip polygons. A convex

polygon is one where any two interior points can be connected by a straight line

without crossing the polygon’s boundary. An example of a convex polygon is a

rectangle, circle, or ellipse, as opposed to a non-convex polygon such as an annulus,

or crescent shape.

A generalized system was first developed by Weiler (1980),20 capable of han-

dling non-convex clip and subject polygons, and polygons with self-intersections.

This algorithm is not commonly used today because of its relative poor computa-

tional performance, and reliance upon a very complex data structure that makes

implementation tedious.18 The next significant improvement was made by Vatti

(1992).17 His algorithm is much more intuitive than Weiler’s, and offers a signifi-

cant performance improvement. Since then, algorithms by Greiner and Hormann

(1998),18 as well as Mart́ınez and Rueda, et al (2009)2 were published, both ex-

hibiting new ways to handle Boolean operations on arbitrary polygons.

Algorithms by Vatti, Greiner, and Mart́ınez are all major milestones, and

are thus the only three discussed in this study. Vatti’s algorithm has attained

widespread usage, and is the basis for several of the freely available clipping libraries

in existence.6,21,22 Greiner and Hormann’s algorithm, while providing improvements

in performance, lacks robustness for reasons discussed in Section 2.2.3.2, and has
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thus not yet gained widespread implementation. The result published by Mart́ınez

is elegant and robust, but it is still new and has not yet gained widespread imple-

mentation. In addition to its robustness, Mart́ınez’ method provides a substantial

(order of magnitude) improvement in performance over Vatti’s algorithm according

to its creator.

2.2.2 Location of Intersections

Any introductory course in computational geometry initially addresses the

problem of counting and locating the intersections among a finite set of randomly

oriented and placed line segments in a plane. This topic proves to be quite in-

structive for the student, as the efficient algorithm that is ultimately explored is

the so-called ‘plane-sweep’ algorithm;16 a type students of computational geometry

frequently encounter, especially in polygon clipping methods. Essentially, a plane-

sweep algorithm considers a geometric data set by ‘sweeping’ through the entire set

in one geometric direction performing various comparisons along the way.

All polygon clipping methods also require knowledge of polygon edge inter-

sections – in general, they form the necessary corners of result polygons where the

subject and clip polygon boundaries intersect. The clipping algorithms presented

by Vatti17 and Mart́ınez2 both specify methods to locate intersection points con-

currently with the clipping process, in a method almost identical to that discussed

here. Greiner’s method18 leaves this important component unspecified and some

other external method must be supplied during implementation. The primary rea-

son for this omission is that Greiner’s method is fundamentally different from the
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other two that are plane-sweep algorithms themselves. Determination of edge in-

tersections must be addressed in order to achieve accurate clipping solutions, as is

demonstrated at the end of this section.

Given a set of two polygons that are to be clipped, defined by a combined

total of l vertices (and consequently, l edges), a simple check-all algorithm may

be implemented that checks every edge against every other edge (including the

possibility for self-intersection of a polygon boundary). The total number of unique

combinations to check, skipping comparisons of edges against themselves, is given

by

l2 − l

2
. (2.12)

However, since (to achieve desired accuracy, as discussed earlier), l is typi-

cally large, the resulting performance of this approach is O(l2).16 This is extremely

inefficient, especially in cases where intersections may be relatively sparse compared

to the number of polygon edges (as is the case for the problems analyzed in this

thesis).

Fortunately, more efficient algorithms have been developed. One that has

achieved widespread usage was put forth by Bentley and Ottmann (1979),23 han-

dling the general problem of locating intersections for l line segments in a plane. The

author demonstrates that for l line segments with k intersections, a lower bound in

performance of O(l log l + k log l) is achievable through this algorithm. In the con-

text of the present research, the number of intersections is quite small, typically less

than 8 for problems involving simple geometries. For typical l values of 100 or more,

this algorithm offers a substantial improvement over the simple check-all case.
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The basic premise of this algorithm is to more intelligently perform inter-

section checks based on what is geometrically feasible. The endpoints of each line

segment are inserted into an ordered data structure (such as a binary search tree),16

ordered in one primary geometric direction, i.e. increasing in x. Each endpoint is

an ‘event,’ and the ‘sweep line’ moves from one event to the next taking advantage

of the sorted order to make one ‘sweep’ across the coordinate plane.

Degenerate cases, such as when endpoints or line segments overlap must be

specifically accounted for during implementation; this is the primary difficulty in

producing a robust implementation, and is by no means a trivial task. Thus, it is

beyond the scope of the current conceptual discussion.23

Associated with the sweep line is another ordered data structure (linked list

or binary search tree) that keeps track of the ‘active’ line segments, i.e. the line

segments that intersect the sweep line at a particular instant. When the sweep line

encounters a left endpoint, a segment pointer is added to the sweep line structure.

These pointers are sorted in order of their segment intersection with the sweep line,

i.e. bottom to top. When the sweep line encounters a right endpoint of one of these

segments, the segment pointer is deleted from the sweep line data structure.

The ordered nature of this sweep line data structure is what enables excellent

savings in computation – only segments that are ‘neighbors’ (i.e. physically adja-

cent) are capable of intersecting (except in certain degenerate cases).23 Thus, the

algorithm only checks these neighbors against one another for intersection, saving a

large number of calculations in all but the worst-case scenario (every line segment

intersecting every other line segment). Two snapshots of this process are shown in
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Figure 2.10: Sweep Line at Mid-Sweep

Figure 2.10.

At the instant shown in Figure 2.10a, the sweep line data structure contains

the ordered elements {D,C,B,A}. Thus, segment C is checked for intersections

with its neighbors, D and B, but not A, or any of the unnamed segments that are

now behind the sweep line. Similarly, segment B is checked for intersections with

neighbors C and A, (this check finds the intersection with A).

After the sweep line passes the intersection between B and A (shown in Fig-

ure 2.10b), the sweep line data structure contains {D,C,A,B}. Now, A is checked

against C (because they are neighbors on the sweep line) and the algorithm lo-

cates the intersection between them. Considering that each line segment is only

checked against several other line segments, it is clear how this algorithm is a great

improvement over the simple check-all algorithm.

While there are newer and slightly faster algorithms than the Bentley and
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Figure 2.11: Example Overlapping Polygons

Ottmann method,23 it is still favored for its simplicity, straightforward implementa-

tion, and efficient memory use.16 It is critical that a clipping implementation utilizes

an efficient subroutine for locating edge intersections – a study by Greiner18 shows

that even with efficient algorithms, up to 80% of CPU time during polygon clipping

operations is spent checking for and locating polygon edge intersections.

All polygon clipping algorithms must, in some way, locate the intersections

between line segments in order to produce a geometrically valid result. It is possible

to implement a poorly conceived clipping method that ignores these intersection

points, and simply determines if each vertex of each input polygon is an interior

or exterior point to the other polygon (i.e. using the concept of a winding number

as discussed by Greiner).18 However, the resulting region will generally be incor-

rect. During a union, for example, the resulting boundary would be incorrectly

determined to only span the vertices that are outside the opposing polygon. This

approach ignores the boundary contribution of the intersection points. For example,

consider the two polygons P1 and P2 shown in Figure 2.11. If the union of P1 and

P2 is performed with this poorly conceived clipping implementation, the resulting
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Figure 2.12: Union, Without Edge Intersection Detection
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Figure 2.13: Union, With Edge Intersection Detection

polygon will not follow the boundary as intended. This case is shown in Figure 2.12.

In actuality, the desired union must incorporate the intersection points, as shown in

Figure 2.13.

2.2.3 Clipping Algorithms

Although there are numerous clipping algorithms in the literature, the three

discussed here are among the few that were conceived to handle arbitrary subject

and clip polygons. The earliest published example, by Weiler,20 is omitted from this
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discussion due to its relative poor performance and difficult implementation.

2.2.3.1 Vatti’s Method (1992)

Vatti’s method17 proceeds along the same lines as the previously discussed

Bentley and Ottmann23 line intersection detection algorithm (although Vatti made

the arbitrary choice of sweeping top to bottom instead of left to right). When

a segment’s terminal endpoint is encountered by the sweep line, Vatti’s clipping

method performs some additional tasks that differentiate it from the simple edge

intersection detection algorithm by Bentley and Ottmann. Because the clipping

process is not only interested in edge intersections, but also in producing a result

polygon, as line segments are removed from the sweep line, they are considered

for inclusion in the result polygon. It is in this way that the result polygon is

sequentially constructed during the sweep.

The algorithm is considered to be robust, once all degeneracies have been

dealt with. However, the original literature is vague on how to handle some, such

as horizontal line segments (parallel to the sweep line).

Given the length of time since introduction, speed, and easy implementa-

tion (relative to Weiler’s algorithm),20 there have been a number of libraries devel-

oped using this algorithm.21,22 Perhaps most notable is, Murta’s General Polygon

Clipping (GPC) library6 which is widely used, and is the clipping library used to

produce most of the results presented in this thesis. The GPC library, while thor-

oughly proven and robust, has the added advantage of being freely available for

non-commercial use.
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2.2.3.2 Greiner’s Method (1998)

In contrast to the plane-sweep method, Greiner and Hormann18 allow an

approach that is quite different in concept, but is arguably more intuitive, and with

a data structure that is simpler to implement. Greiner and Hormann provide an

analogous physical scenario: starting with the subject polygon, imagine a paint-

distributing cart being pushed along the boundary from one vertex to the next. If

the initial vertex lies inside the clip polygon, the flow of paint is turned on. The

flow of paint is toggled off or on every time the cart crosses the boundary of the

clip polygon. A similar process may be repeated, following the boundary of the

clip polygon, and painting the portion of the boundary that lies within the subject

polygon. The resulting painted and unpainted boundaries are then combined to

find the intersection of the polygons (the painted boundaries), or the union of the

polygons (the unpainted boundaries).

Translating the paint-cart example into a method that can be implemented,

Greiner and Hormann define a simple data structure. Due to the sequential nature

of the analysis in this algorithm, the data structure is efficiently implemented as a

doubly linked list,18 rather than the more complex balanced binary search trees16

necessary for other methods.2,17 Each entry in the linked list contains the coordi-

nates of the vertex, and pointers to the next and previous vertices on the boundary.

The entries also contain an entry/exit switch that instructs the imaginary cart-

pusher to turn the flow of paint on or off as needed. This last item is determined

by geometric criteria (the winding number, as defined by Greiner and Hormann)18

and can be stored at the time of edge intersection detection using a method such
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Figure 2.14: Difference Between Polygons A and BWith Two Different Perturbation
Directions on the Collinear Segments2

as that described in Section 2.2.2. Because the algorithm is not of the plane-sweep

type, the clipping process and edge intersection determination cannot be performed

concurrently. Thus, edge intersections must be located prior to commencement of

the clipping process.

One noticeable drawback of the Greiner and Hormann algorithm18 is the

method used to handle the degenerate case of a vertex coincidentally bisecting an-

other line segment. Greiner and Hormann suggest that the vertex location should

be perturbed slightly in some arbitrary direction so that it is no longer on top of the

line segment. This can cause unpredictable results, as illustrated by Mart́ınez2 in

Figure 2.14. Different choices of vertex perturbation direction can lead to drastically

different result polygons. Greiner’s method,18 despite its conceptual simplicity, has

yet to gain widespread implementation. Another result published by Liu, et al,24

proposes several optimizations to Greiner’s original method, but does not address

the questionable vertex perturbation approach to the aforementioned degeneracy.
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 Subdivision

Figure 2.15: Subdivision of Edges of Polygons at Their Intersection Points2

2.2.3.3 Mart́ınez’ Method (2009)

Similar to Vatti’s method,17 Mart́ınez’ method2 utilizes a plane-sweep ap-

proach. One primary difference is the method used to handle edge intersections,

reducing issues of degeneracy. Each time an edge intersection is encountered during

the sweep, the algorithm subdivides each segment creating new segments to replace

the old. This process is illustrated in Figures 2.15 and 2.16. Because line segments

then only intersect at endpoints, this subdivision process allows degeneracies to be

handled in a much more elegant and exact fashion than Greiner and Hormann’s

method18 of vertex perturbation.

The data structure used to organize the edges intersecting the sweep line is

virtually identical to that used by Vatti,17 however it differs slightly in the specifi-

cation of edge intersection testing criteria. This difference, Mart́ınez claims, is the

primary factor behind the algorithm’s improved performance.

2.2.3.4 Clipping Algorithm Performance Comparison

For the simple reason that speed is such a crucial factor in almost all applica-

tions of polygon clipping, virtually every published article describing a new method
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Figure 2.16: Types of Intersections That Lead to a Subdivision2
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includes a section dedicated to computational performance. Unfortunately, these

studies often feature incomplete or sub-optimal implementations of competing algo-

rithms. For instance, both Liu24 and Mart́ınez2 compared their algorithms against

Vatti17 and Greiner.18 However, it appears both studies used a simple check-all al-

gorithm for determining edge intersections when implementing Greiner’s algorithm,

while comparing it against Murta’s GPC library6 as an example of Vatti’s algo-

rithm. As discussed before, Vatti’s algorithm uses a plane-sweep method, and thus

can concurrently use Bentley and Ottmann’s efficient algorithm23 to locate edge

intersections.

As mentioned in Section 2.2.2, Greiner and Hormann’s work18 specifies no

method for intersection determination, and leaves the reader to their own devices.

The possibility of using a simple check-all method is mentioned in passing, but

certainly this approach leaves the Greiner algorithm at a severe disadvantage against

Vatti,17 Liu,24 and Mart́ınez2 – all of which specify methods identical to the Bentley-

Ottmann23 algorithm discussed earlier. It should come as no surprise that the

Greiner algorithm fares poorly in the studies reported by Liu and Mart́ınez.

With the aforementioned caveat in mind; the published results may provide

a valid comparison of their respective algorithms against Vatti’s method,17 but they

do not produce a clear picture of how Greiner’s algorithm18 performs. Despite this,

comparisons of performance of the other algorithms can still be made. For polygons

with large numbers of vertices, Vatti’s algorithm demonstrates its superiority relative

to Liu’s newer algorithm,24 but not Mart́ınez’ algorithm,2 which is an order of

magnitude faster for very large problems. However, Mart́ınez’ algorithm performs
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only marginally faster than Vatti’s algorithm for smaller problems, such as those

considered in this research.

Given the high performance afforded by Mart́ınez’ algorithm,2 combined

with its subdivision method to handle certain degenerate cases, it seems to be the

obvious choice for use in this study. However, at the time of this writing, no thor-

oughly vetted libraries based on Mart́ınez’ method are publicly available. Early

in the research process discussed in this thesis, a substantial amount of time was

dedicated to developing an implementation of Mart́ınez’ algorithm, but it has yet

to become fully robust. A number of degenerate cases must still be addressed, and

the implementation must then undergo extensive testing before it can be applied to

the current research problem. A single oversight or shortcoming in the implementa-

tion could cause a long-running parameter optimization analysis to crash, causing

a loss of intermediate data, or worse, return erroneous data. Despite this, the time

spent was not fruitless – implementation of a polygon clipping algorithm itself is a

very useful exercise in developing intuition for problems involving polygon clipping.

Lacking a higher performance option with the necessary robustness, Murta’s GPC

library6 is utilized for the investigations presented in this thesis.

2.3 Numerical ATH Coverage Models

This section presents numerical ATH coverage models for evaluating amounts

of coverage at various desired coverage multiplicities. Within the framework of

boolean operations, evaluated using polygon clipping, the resulting expressions are

quite intuitive. A problem of particular interest is the ATH coverage provided by
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a constellation populated by n satellites with omni-directional sensors, equally dis-

tributed within a single circular orbit. Analysis of this problem is straightforward

to implement (in large part because it is time-invariant), and is considered for il-

lustrative purposes in this section. It is fundamental to observe that the coverage

models presented here can actually apply to any configuration of satellites subject

to the planar analysis this study is concerned with. Analysis need not be restricted

to omni-directional sensors, or even any uniform or regular relationships between

multiple orbits satellites could be distributed in, only that the orbits lie in the same

plane and satisfy the necessary sensor profile symmetry across the orbital plane to

allow reduction to a planar analysis.

2.3.1 Single Coverage

A graphical illustration for the derivation of the single coverage model is

shown in Figure 2.17. To begin computing the region of single coverage, n−1 union

operations (Figures 2.17a-2.17i) are performed between the n satellite effective range

shells, RSE to produce a total effective sensor region, RSTE . A final intersection

operation is performed between this total effective sensor region, and the altitude

shell, AS (region of interest), yielding the region of total single coverage within

the region of interest, shown in Figure 2.17l as C1×. This process is written in set

notation as

C1× =

(
n∪
i=1

RSEi

)
∩AS. (2.13)

The set-notation expression for C1× only provides the resulting region of

single ATH coverage that, in this implementation, is a polygon defined by a finite
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set of vertices on its boundaries (the polygon may be composed of multiple disparate

regions). Determination of the enclosed area is then computed from the vertices of

the polygon. The method used in this study proceeds as follows – given a set of m

vertices along a closed contour expressed as (x1, y1), (x2, y2), ..., (xm, ym), the area

enclosed within that contour is determined by the expression25

A =
1

2

(∣∣∣∣ x1 x2
y1 y2

∣∣∣∣+ ∣∣∣∣ x2 x3
y2 y3

∣∣∣∣+ ...+

∣∣∣∣ xm x1
ym y1

∣∣∣∣) . (2.14)

This method is applied for each contour of the resulting polygon C1×, adding areas

inside contours denoting fill regions, and subtracting areas inside contours describing

hole regions.

2.3.2 Double Coverage

Regions of double coverage are determined in similar fashion, but using a

different sequence of Boolean operations. Figure 2.18 shows the process for deter-

mining the region of double coverage. First, individual regions of double overlap

between sensor regions are identified by performing intersection operations between

all unique pairs of sensor regions, as shown in Figures 2.18a-2.18f. A sequence of

union operations then combines all individual regions of double coverage, as shown

in Figures 2.18g-2.18j. Finally, just as in the single coverage case, an intersection is

performed between the total effective sensor region and the altitude shell, to yield

C2× (the region of double coverage within the region of interest), shown in 2.19l.

This process is expressed in set notation as

C2× =

(
n−1∪
i1=1

n∪
i2=i1+1

(
RSEi1

∩RSEi2

))
∩AS. (2.15)
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(a) RSE1

∪
(b) RSE2

=
(c) RSE1 ∪RSE2 = T1

(d) T1

∪
(e) RSE3

=
(f) T1 ∪RSE3 = T2

(g) T4

∪
(h) RSE6

=
(i) T4 ∪RSE6 = RSTE

(j) RSTE

∩
(k) AS

=
(l) RSTE ∩AS = C1×

Figure 2.17: Single Coverage Illustration – 6 Satellite Constellation
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The values of the indices on the
∪

operators are chosen to avoid redundant

or meaningless calculations. For instance, performing RSE1 ∩ RSE2 followed by

RSE2 ∩ RSE1 is a redundancy (they represent the same region – the intersection

operator is commutative). Similarly, considering RSE1 ∩ RSE1 for double coverage

is meaningless – RSE1 cannot cover the same region twice. The enclosed area of

C2× is evaluated using the method given in Equation 2.14.

2.3.3 Triple Coverage

The region of triple coverage is determined in similar fashion to the region

of double coverage. Instead of a single intersection operation between pairs, as in

the double coverage case, two intersection operations are carried out to find the

region of triple coverage between a triplet of satellites. This process is illustrated in

Figure 2.19. Figures 2.19a-2.19f illustrate the determination of one region of triple

coverage. Once regions of triple coverage are determined, they are joined together

by a sequence of union operations, as shown in Figures 2.19g-2.19i, resulting in the

total effective sensor region shown in Figure 2.19j. Finally, as before, an intersection

operation is performed between the total effective sensor region and the altitude

shell, yielding the region of triple coverage within the region of interest, given by

C3× in Figure 2.19l. This region can be expressed in set notation as

C3× =

(
n−2∪
i1=1

n−1∪
i2=i1+1

n∪
i3=i2+1

(
RSEi1

∩RSEi2
∩RSEi3

))
∩AS. (2.16)

As before, the area enclosed by C3× is numerically evaluated using the rela-

tion shown in Equation 2.14.
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(a) RSE1

∩
(b) RSE2

=
(c) RSE1 ∩RSE2 = T1

(d) RSE2

∩
(e) RSE3

=
(f) RSE2 ∩RSE3 = T2

(g) T1

∪
(h) T2

=
(i) T1 ∪ T2 = T3

(j) RSTE

∩
(k) AS

=
(l) RSTE ∩AS = C2×

Figure 2.18: Double Coverage Illustration – 6 Satellite Constellation
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(a) RSE1

∩
(b) RSE2

=
(c) RSE1 ∩RSE2 = T1

(d) T1

∩
(e) RSE3

=
(f) T1 ∩RSE3 = T2

(g) T2

∪
(h) T4

=
(i) T2 ∪ T4 = T5

(j) RSTE

∩
(k) AS

=
(l) RSTE ∩AS = C3×

Figure 2.19: Triple Coverage Illustration – 12 Satellite Constellation
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2.3.4 Arbitrary Coverage Multiplicity

Considering the single, double, and triple coverage models individually allows

for the discovery of a pattern in the set notation expressions. It then becomes clear

(and is easily verified by hand, simply by enumerating all possible unique p-tuplet

sets) that the coverage region of an arbitrary p multiplicity (where p is an integer)

of an n satellite constellation (Cp×) is expressed in set notation as

Cp× =

n−p+1∪
i1=1

n−p+2∪
i2=i1+1

...
n−1∪

ip−1=ip−2+1

n∪
ip=ip−1+1

p∩
j=1

RSEij

 ∩AS. (2.17)

Although it is implied in the equation above, it is necessary to point out that

n ≥ p. This is clear when considering the opposite case by logic alone, regardless of

the equation – for example, it is impossible for a three satellite constellation to yield

quadruple coverage. Note that the expression reduces to the previously discussed

single, double, and triple coverage models for p values of 1, 2, and 3 respectively.

As with the single, double, and triple coverage models, the enclosed area of

Cp× is evaluated using Equation 2.14.

2.3.5 Number of Unique p-tuple Sets

To determine an upper bound on the number of clip operations per cov-

erage model evaluation, it is helpful to count the possible number of intersec-

tion operation terms that result from the total number of finite unions in Equa-

tions 2.13, 2.15, 2.16, and 2.17. Let qp(n) be an integer for the p-multiplicity

case giving the number of unique p-tuple sets among n satellites. The sets must

be ‘unique’ in that there are no duplications by permutation (i.e. for p = 3,
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comparing satellite sensor regions (RSE5 , RSE6 , RSE7) is equivalent to compar-

ing regions (RSE7 , RSE6 , RSE5)), and self comparisons, i.e. attempting to analyze

for triple coverage between a satellite sensor region and itself, as in the cases of

(RSE1 , RSE1 , RSE1) or (RSE1 , RSE1 , RSE3) – each satellite sensor region is only

considered to cover a region once.

Considering single coverage, the unique sets are composed of single satellites

– only one observing satellite is necessary for a region of single coverage. These

single satellite sets are their own single-coverage regions, and require no intersection

operations to determine them. Thus, the total number of unique sets q1(n) is simply

equal to n.

For double coverage, the expression q2(n) is determined quite intuitively if

a suitable analog is constructed. Consider the n satellite case – let the i-th effective

satellite range shell, RSEi , be denoted by its index, i, for brevity. All possible

satellite range shell pairings are arranged into an array as
(1, 1) (1, 2) (1, 3) · · · (1, n)
(2, 1) (2, 2) (2, 3) · · · (2, n)
(3, 1) (3, 2) (3, 3) · · · (3, n)
...

...
...

. . .
...

(n, 1) (n, 2) (n, 3) · · · (n, n)

 . (2.18)

The above array contains n2 elements, however, clearly the n entries on the diagonal

are invalid because they prescribe comparisons searching for double coverage regions

between a satellite and itself (as mentioned before, physically impossible). Omitting
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these n diagonal elements leaves n2 − n elements in the array as
���(1, 1) (1, 2) (1, 3) · · · (1, n)
(2, 1) ���(2, 2) (2, 3) · · · (2, n)
(3, 1) (3, 2) ���(3, 3) · · · (3, n)
...

...
...

. . .
...

(n, 1) (n, 2) (n, 3) · · · ���(n, n)

 . (2.19)

Next, by noting the commutativity of the intersection operations performed on each

pair (i.e. RSE1 ∩RSE2 = RSE2 ∩RSE1), the lower triangular portion of the matrix

can be rewritten as 
���(1, 1) (1, 2) (1, 3) · · · (1, n)
(1, 2) ���(2, 2) (2, 3) · · · (2, n)
(1, 3) (2, 3) ���(3, 3) · · · (3, n)
...

...
...

. . .
...

(1, n) (2, n) (3, n) · · · ���(n, n)

 , (2.20)

which is clearly a symmetric array. Because duplicate entries are omitted, only half

of the remaining entries are necessary, leaving a total of (n2 − n)/2 unique pairs of

satellites, or 
���(1, 1) (1, 2) (1, 3) · · · (1, n)

���(1, 2) ���(2, 2) (2, 3) · · · (2, n)

���(1, 3) ���(2, 3) ���(3, 3) · · · (3, n)
...

...
...

. . .
...

���(1, n) ���(2, n) ���(3, n) · · · ���(n, n)

 . (2.21)

Thus, q2(n) = (n2 − n)/2. While a similar analysis could be performed

for higher coverage multiplicity cases, the method used above to derive q2(n) is no

longer intuitive. This is especially true for coverage multiplicities of p > 3, where

easily imagined spatial arrangements of the possible sets do not exist.

As an alternative to such non-intuitive derivations, a MATLAB script (it-

erating upon the indices defined in Equation 2.17) is used to count the number of
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unique p-tuplets over all values of n (between p and 2p) for each value of p between

3 and 8. It is clear, by intuition gleaned from investigations into the single, double,

and triple coverage cases, that the highest degree term in each qp expression is of

degree p. Thus, a p-degree polynomial curve fit is applied to each data set to de-

termine coefficients. The decimal coefficients are found to correspond (to very high

precision) to the rational number coefficients shown in the following expressions:

q1 = n, (2.22)

q2 =
n2 − n

2
, (2.23)

q3 =
n3 − 3n2 + 2n

6
, (2.24)

q4 =
n4 − 6n3 + 11n2 − 6n

24
, (2.25)

q5 =
n5 − 10n4 + 35n3 − 50n2 + 24n

120
, (2.26)

q6 =
n6 − 15n5 + 85n4 − 225n3 + 274n2 − 120n

720
, (2.27)

q7 =
n7 − 21n6 + 175n5 − 735n4 + 1624n3 − 1764n2 + 720n

5040
, (2.28)

q8 =
n8 − 28n7 + 322n6 − 1960n5 + 6769n4 − 13132n3 + 13068n2 − 5040n

40320
. (2.29)

2.3.6 Number of Clip Operations

Having established the number of unique p-tuple sets for a given coverage

multiplicity in Section 2.3.5, an upper bound on the number of clip operations

required for each function evaluation is then determined. Performing clip operations

consumes the vast majority of computer runtime during a coverage model evaluation,

thus, establishing these bounds is valuable for estimating program runtime.

The single coverage model, stated in Equation 2.13, first requires n − 1
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union operations to join the n satellite range shells, followed by a single intersection

operation with the altitude shell to form C1×, bringing the total number of clip

operations to n – the same as q1(n).

The double coverage case, defined in Equation 2.15, is slightly more complex.

For each of the q2(n) unique pairs of satellites compared, one intersection operation

is performed. The resulting individual regions of all intersection operations are then

joined together in q2(n)−1 union operations, followed by one intersection operation

with the altitude shell to form C2×. Thus, the total number of clip operations is

q2(n) + q2(n)− 1 + 1 = 2q2(n).

Similarly, for the triple coverage case, defined in Equation 2.16, each of

the q3(n) unique triplets requires two intersection operations to fully process. The

resulting q3(n) regions of triple coverage require up to q3(n) − 1 union operations

to form the total triple coverage region. This is then followed by one intersection

operation with the altitude shell to finally form C3×. The total number of clip

operations is then 2q3(n) + q3(n)− 1 + 1 = 3q3(n).

The same principle applies to higher coverage multiplicities as well. For p-

multiplicity coverage, there are qp(n) p-tuplets, that each require p− 1 intersection

operations to fully process. The resulting qp(n) regions of p-multiplicity coverage

require qp(n)− 1 union operations to form the total p-multiplicity coverage region.

Just as before, a final intersection operation is performed with the altitude shell to

produce Cp×. Thus, the total number of clip operations is (p−1)qp(n)+qp(n)−1+1,

which simplifies to

Qp(n) ≡ pqp(n). (2.30)
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While Qp(n) forms an upper bound for the number of clip operations, it will

almost never be reached in a practical coverage model implementation. Consider

the case shown in Figure 2.20, where n = 12 and triple coverage is considered. Note

that the satellites (the icons on top of the shaded arrow-head shaped triple coverage

regions) are numbered position-wise according to the digits on a standard analog

clock for convenience. The total list of unique triplets that must be analyzed to find

all triple coverage regions contains q3(12) = 220 triplets. Thus, a comprehensive

list is omitted for brevity, and instead, a small set of example triplets is shown in

Table 2.2.

Table 2.2: Example Triplets – p = 3, n = 12 (see Fig. 2.20)

Set Exists? Comment

(1, 2, 3) Y –
(1, 2, 8) N RSE1 ∩RSE8 and RSE2 ∩RSE8 DNE
(1, 7, 8) N RSE1 ∩RSE7 and RSE1 ∩RSE8 DNE
(4, 5, 10) N RSE4 ∩RSE10 and RSE5 ∩RSE10 DNE
(6, 9, 12) N no overlap at all
(11, 12, 1) Y –

Because the p range shells in each p-tuplet must be analyzed with p− 1 in-

tersection operations, it is common that an empty region is produced before all p−1

intersection operations have been completed. Once the intermediate region is null,

all future intersection operations involving it will also be null. Thus, the algorithm

can move immediately to processing the next p-tuplet avoiding several unnecessary

clip operations. Additionally, any empty regions resulting from a p-tuplet with no

coverage will be omitted from the union process combining regions of desired cov-

erage multiplicity. A thorough implementation could also be optimized by ensuring
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Figure 2.20: Triple Coverage Illustration
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that future p-tuplets containing sensor regions known to be non-comparable are

skipped altogether, maintaining what amounts to a ‘blacklist’ of satellite pairings.
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Chapter 3

Implementation and Validation

In this chapter the implementation used to numerically evaluate ATH cov-

erage is explored in detail. First, the various polygon clipping implementations

used in this study are discussed. Performance comparisons are presented, revealing

that the C++ implementation using the General Polygon Clipping (GPC) library6

provides the best performance. Next, the implementation of the numerical ATH

coverage models discussed in Section 2.3 is described in pseudo-code, along with a

brief example algorithm carrying out an analysis of ATH coverage at multiple cov-

erage multiplicities. Finally, the coverage model implementations are explored in

detail, characterizing their approximation error and performance.

3.1 Clipping Implementations

Following the derivation and implementation of the analytical ATH coverage

model presented in Appendix A, the next logical step is to develop a numerical im-

plementation, which is readily validated using the analytical coverage model. The

numerical approach used in this study defines the various in-plane regions as poly-

gons for which manipulation algorithms already exist (this is a frequent operation

in computer graphics). The methods used in this approach are discussed exten-

sively in Chapter 2. Preliminary investigations focus on numerically reproducing
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the analytical results obtained by Marchand and Kobel4 and discussed in Section

1.1.2.

3.1.1 General Polygon Clipping Library

The General Polygon Clipping (GPC) library, developed and maintained by

Alan Murta,6 is a robust C implementation of Vatti’s polygon clipping algorithm.17

Vatti’s algorithm is discussed in Section 2.2.3.1. GPC is freely available for non-

commercial purposes, and has achieved widespread use and implementation in both

industry and academia.

For example, the first MATLAB clipping implementation used in this re-

search (developed by Jacquenot),3 described in Section 3.1.3, relies on GPC via a

MATLAB Executable (MEX) interface written by Hölz.7 Additionally, MathWorks’

MATLAB Mapping Toolbox (unavailable for regular use by the investigator) fea-

tures an implementation of GPC via their own MEX gateway in a function named

polybool.5 The robustness and convenient interface of the GPC library has made it a

benchmark for testing new polygon clipping algorithms in computational geometry

publications. Consequently, the present investigation focuses on GPC-based codes

for all polygon clipping implementations.

3.1.2 Mart́ınez Polygon Clipping Algorithm Implementation

In the course of this study, the clipping algorithm developed by Mart́ınez2

(Section 2.2.3.3), is partially implemented in MATLAB by the investigator. As the

algorithm is new, there does not yet exist a freely available implementation with
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proven robustness at the time of this research. Based upon analysis presented by

Mart́ınez, his algorithm should provide as much as an order of magnitude improve-

ment over GPC6 for the polygon resolutions used in this study.

Although this implementation functions correctly for the vast majority of

situations, it still lacks the proper facilities for handling all degenerate cases. De-

generate cases, identified by collinear or nearly collinear line segments and certain

cases of coincident vertices, are difficult to address, and are the primary obstacle to

overcome in developing a robust implementation. It is for this reason that nearly all

computational geometry textbooks fail to address the issue, frequently citing that

it is beyond the scope of the presented material.

Although a fully robust version of the implementation has not yet been

realized, the development process itself has been very instructive in developing in-

tuition and knowledge of how polygon clipping algorithms work. This knowledge

has proved invaluable for troubleshooting while implementing the numerical ATH

coverage models discussed in Section 2.3.4.

Additionally, because the code is written entirely in MATLAB (a C++ port

is planned, pending completion of MATLAB development), its poor performance

illustrates why there are no existing polygon clipping codes that operate natively

in MATLAB. Mart́ınez’ algorithm2 is most readily implemented using an object-

oriented approach. However, because MATLAB interprets code as it runs, as op-

posed to executing pre-compiled binaries, the object-oriented code proves to be

exceptionally slow.

Object creation and destruction alone are found to be a significant perfor-
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mance bottleneck in MATLAB. This is a problem considering that a given clipping

problem with a combined total of n vertices requires at least n line segment ob-

jects, and 2n line segment endpoint objects, that must be created and subsequently

destroyed during each clipping operation. In contrast, this object management bot-

tleneck is not observed while using object-oriented code in C++.

The performance of the MATLAB implementation of the Mart́ınez algorithm

is so poor its analysis is excluded from the comparison of clipping implementation

performance, given in Section 3.1.6. For a 100 PPC polygon resolution, the Mart́ınez

MATLAB implementation solves problems at approximately 5 seconds per function

evaluation – four orders of magnitude longer than the most efficient implementations

shown in Table 3.2. A full 9900 data point comparison analysis, as is used for

the data in Table 3.2, is impractical at higher polygon resolutions due to time

constraints.

Thus, despite expectations of performance improvements in C++, the poor

MATLAB performance of the code was a hindrance to early research efforts. In

addition to this, the lack of support for certain degenerate cases sometimes causes

a long-running analysis to crash. By setting this implementation aside for the time

being, a great deal of progress has been made using GPC-based codes.6

For future studies, completion of the Mart́ınez2 implementation in C++

may yield a significant performance improvement. This should be explored before

attempting to solve larger design problems with long expected solution times.
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3.1.3 Preliminary Implementation – Polygon Intersection code

A MATLAB implementation using Vatti’s algorithm,17 known as Polygon

Intersection 3 by Jacquenot, was obtained from the MathWorks File Exchange.

Jacquenot’s code is essentially a wrapper for a GPC-based6 MATLAB Executable

(MEX) developed by Hölz7 – this code is discussed further in Section 3.1.4. Polygon

Intersection uses a MATLAB cell array of data structures defining polygon contours

for both input and output purposes. The function is capable of identifying regions

of intersection between any number of these polygons.

To verify that the code functions as expected, a simple test case is created

and analyzed – one where the resulting area is easily verified by hand. A rectangular

polygon with a hole, and an L-shaped polygon are defined and supplied to the

Polygon Intersection code. The areas are easily calculated by hand, and exactly

match the program output, preliminarily demonstrating proper code function. This

test case is shown in Figure 3.1 (drawn using Jacquenot’s supplied plotting method).

Constructing an ad hoc numerical ATH coverage model to mimic the output

of the analytical coverage model (documented in Appendix A) is straightforward

as the definition of polygons and the associated operations performed on each are

easily identified. A single polygon represents the effective range shell, as described

in Section 2.1.3.1, and a polygon in the shape of an annulus defines the dual-altitude

band shell, as discussed in Section 2.1.3.3. Vertex coordinates describing these two

polygons at a resolution of 100 PPC are added to the correct input data struc-

ture fields, and the Polygon Intersection code returns a data structure describing

the resulting regions as well as indices describing which polygons overlap in which
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Figure 3.1: Test Case Using Polygon Intersection 3
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Figure 3.2: 1× Coverage Region (Labeled ‘1,2’) Found Using Polygon Intersection 3

regions.

From these indices it is straightforward to determine the region of inter-

section covered by both the effective range shell and altitude shell. The resulting

regions (illustrated using Jacquenot’s3 provided methods) are shown in Figure 3.2.

The coverage region of interest is denoted by the (1, 2) labels, where regions 1 (ef-

fective range shell) and 2 (dual-altitude band shell) overlap.

The associated areas of each region are computed using the polyarea 26 MAT-

LAB function and added as a field to the output data structure. For the situation
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shown in Figure 3.2, the code numerically computes the coverage area to within

the expected deviation (less than 0.1% relative error compared to the analytically

obtained value), as discussed in Section 2.1.2.1.

3.1.4 MATLAB Implementation – GPC via Direct MEX Gateway

Based upon observations made while developing the Mart́ınez2 algorithm

implementation, it was considered likely that any MATLAB data sorting and pro-

cessing involved in the polygon clipping process would be detrimental to perfor-

mance. This supposition turns out to be correct, as will be shown in Section 3.1.6.

By directly interfacing with the MEX gateway, and only performing necessary oper-

ations, a great performance increase is observed relative to both Jacquenot’s Polygon

Intersection code,3 and MathWorks’ own polybool function5 in their Mapping Tool-

box. Both of these implementations access GPC via a MEX interface, but they both

carry out a large amount of data processing tasks on the MATLAB side, introducing

a significant amount of overhead.

The MEX interface used by Jacquenot3 was developed by Hölz,7 and is

available on the MathWorks File Exchange. As for MathWorks’ polybool code,5

inspection of the associated MATLAB m-code makes it quite clear that GPC is in

use via MEX. Presumably, MathWorks is using their own proprietary MEX interface

to GPC; the source code is consequently unavailable to the investigator.

For the most direct implementation of GPC6 from MATLAB, Hölz’ GPC

MEX interface7 is used in the current study. From inspecting the MEX source code

(in C), it is clear that his interface was developed with a minimalist approach, and
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does not introduce any avoidable bottlenecks to performance.

3.1.5 C++ Implementation – Modified GPC

GPC6 is a native C library, and thus, incorporating it into a C++ program

is straightforward. An analysis program running entirely in C/C++ offers superior

performance to even the adequately fast MATLAB GPC/MEX7 implementation

discussed in Section 3.1.4. Compiled C/C++ binaries have more direct access to

computer system resources than programs running on an interpreted platform such

as MATLAB.

In the MATLAB implementation discussed in Section 3.1.4, polygon struc-

ture copy operations are handled on the MATLAB side, where memory allocation

and deallocation are managed automatically. However, C++ does not feature this

type of memory management, and allocation and deallocation must be performed

explicitly (an exception to this is when using many of the built-in C++ derived data

types).

Problems were initially encountered when attempting to copy polygon data

between intermediate states (as is discussed in Section 3.2.2), resulting in memory

leaks.27 These memory leaks were attributed to a failure to deallocate old polygon

data before reallocating space for new data. The presence of this leak was first noted

during a long-running analysis when a nearly linear increase over time in memory

use by the program was observed.

In order to resolve this issue, and maintain adherence to the general struc-

ture of the algorithm developed in the MATLAB implementation, a polygon copy
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method is implemented, where correct deallocation and allocation is performed on

the polygon structure receiving the new data. When this new method is properly

used, memory usage of the program remains bounded over time.

Additionally, a very simple method is developed to initialize empty polygon

structures of the GPC polygon type. This method explicitly initializes polygon

structure fields (that would otherwise be uninitialized) to values that reflect that it

is indeed empty. Without this step, determining if a polygon structure is empty or

not before it is clipped will return erroneous results causing unpredictable program

behavior.

3.1.6 Performance Comparison

Using the ad hoc single coverage model to numerically mimic the published

analytical results by Marchand and Kobel,4 it is desired to compare the performance

of these first numerical implementations against the analytical coverage model,

shown in Appendix A.

The problem parameters, summarized in Table 3.1, are taken directly from

Marchand and Kobel’s published results4 (presented there as ‘Example 1’). The

published example depicts coverage area as a function of varying satellite altitude

while keeping all other parameters fixed, i.e. producing the area of coverage vs.

altitude plot shown in Figure 3.3.

This published example is selected for comparison because it has previously

been used for validating the analytical coverage model implementation shown in Ap-

pendix A. The analytical results are compared against numerically obtained results
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Figure 3.3: Area of Coverage vs. Altitude for a Single Satellite Using the Parameters
in Table 3.1 (Marchand and Kobel’s4 ‘Example 1’)

computed using polygon resolutions of 100, 1000, and 4000 PPC. Polygon resolu-

tions are restricted to this small set simply because several of the implementations

being compared are so slow that more exhaustive studies are prohibitive due to the

limited computer time available.

The platform used for these comparative analyses is a 2.0 GHz Intel Core

2 Duo running the MATLAB 7.10 Student Edition on 32-bit Windows XP. For the

GPC/C++ implementation, the Microsoft Visual C++ 2010 compiler is used with

all compiler optimization settings at their default values.

For each clipping implementation and at each polygon resolution, the entire

regime is analyzed in 1 km increments, which, between hsmin = 100 km and hsmax =

10000 km, results in 9900 data points for each run.

Shortly before completion of the research presented in this thesis, the poly-

bool 5 function from the MATLAB Mapping Toolbox was briefly borrowed in order
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Table 3.1: Parameters for Analytical vs. Numerical Comparison

Parameter Value Description

n = 1 number of satellites
p = 1 coverage multiplicity

Re = 6378.14 km assumed Earth radius
R = 5000 km omni-directional sensor range
ht = 100 km tangent height
hl = 1000 km lower altitude bound
hu = 5000 km upper altitude bound
hsmin = 100 km lower limit on satellite altitude
hsmax = 10000 km upper limit on satellite altitude

to gauge its performance against the other implementations discussed here. The

MATLAB function, as discussed before, relies upon GPC6 via a (proprietary) MEX

interface, and its performance is compared with the other implementations in Ta-

ble 3.2.

Table 3.2: Average Runtimes – Analytical vs. Jacquenot,3 polybool,5 GPC/MEX,6,7

and GPC/C++6 at Varying Polygon Resolutions

Data Set Avg. Runtime (s) Avg. Clip time (ms) Perf. Penalty

MATLAB Analytical 2.5 0.2525 –

Jacquenot 100 PPC 72.0 7.273 28.8×
Jacquenot 1000 PPC 250.7 25.32 100.3×
Jacquenot 4000 PPC 1207.3 121.9 482.9×
polybool 100 PPC 48.8 4.929 19.5×
polybool 1000 PPC 542.1 54.75 216.8×
polybool 4000 PPC 6281.9 634.5 2512.0×
GPC/MEX 100 PPC 11.8 1.192 4.7×
GPC/MEX 1000 PPC 67.2 6.788 26.9×
GPC/MEX 4000 PPC 455.8 46.04 182.3×
GPC/C++ 100 PPC 3.0 0.307 1.2×
GPC/C++ 1000 PPC 44.3 4.478 17.7×
GPC/C++ 4000 PPC 270.2 27.29 108.1×
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As expected, a significant performance penalty is incurred when increasing

polygon resolution for all implementations. The performance of the first code inves-

tigated (Polygon Intersection)3 is so poor that it is immediately ruled out for future

use. As discussed before, the poor performance of this code can be attributed to the

operations being carried out in MATLAB. The direct GPC/MEX6 implementation

uses the exact same MEX interface (by Hölz),7 but displays greater than an order

of magnitude advantage in performance.

Perhaps the most unexpected result of all is the poor performance of poly-

bool,5 the function MathWorks includes in their MATLAB Mapping Toolbox. Also

functioning by a GPC/MEX6 interface, it is clear that either the MATLAB-side

operations create a performance bottleneck, or their proprietary MEX interface is

exceptionally inefficient.

Clearly from the results in Table 3.2, the GPC/C++6 configuration is far

superior to all others investigated. The GPC/C++ numerical implementation nearly

achieves performance parity with the MATLAB analytical implementation for the

100 PPC case. This is quite an impressive result, when compared with the runtimes

achieved using the other implementations shown in Table 3.2. The performance of

the MATLAB GPC/MEX configuration, while not the best, is acceptable in that the

MATLAB implementation is primarily used for development, small-scale analyses,

and generating illustrations.
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3.1.7 GPC/C++ Performance Analysis

Having established that the GPC/C++ clipping implementation offers the

best performance, it is then useful to investigate more closely how its performance

scales with polygon resolution. Consider the ‘typical’ circumstances for a single

satellite coverage case, as illustrated in Figure 3.4. The parameters used are identi-

cal to those given in Table 3.1 with a satellite altitude of hs = 1349 km. The selected

value corresponds to the altitude of maximum single coverage obtained from repro-

ducing the results of Marchand and Kobel.4 This specific set of parameters results in

an amount of polygon overlap frequently encountered in constellation configurations

later in this study, thereby serving as an excellent basis for comparison. Excessive

performance gains due to shortcuts are eliminated as the clipping implementation

uses polygon bounding box data to reduce the time spent in non-comparable regions.

Figure 3.5 shows time per clip operation of the GPC/C++ clipping im-

plementation for the intersection operation required to find single coverage of the

configuration shown in Figure 3.4. This data is produced by performing clip op-

erations continuously for at least 250 milliseconds at each polygon resolution from

10 PPC to 4000 PPC (a microsecond-resolution timing package is used). Polygon

structures are allocated and deallocated before and after each operation to provide

a realistic picture of overall implementation performance. The total time (slightly

more than 250 milliseconds) is divided by the number of clip operations performed

for each polygon resolution. Figure 3.5 shows a nearly linear relationship between

polygon resolution and clip operation time.

An additional observation is that cases with odd-integer polygon resolutions
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Figure 3.4: Satellite Configuration at the Altitude of Maximum Single Coverage,
hs = 1349 km (see Table 3.1, and Marchand and Kobel)4
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Figure 3.5: Time per Clip Operation (GPC/C++ Implementation) vs. PPC for the
Configuration Shown in Figure 3.4
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Figure 3.6: Detail From Figure 3.5 – 3980 to 4000 PPC

exhibit slightly slower performance than cases with even-integer resolutions (this

occurs uniformly across the investigated regime), as shown in Figure 3.6. This

behavior is responsible for the oscillation superimposed on the curve in Figure 3.5.

A plausible cause for this variation could not be identified by the investigator.

Note that at the 1000 PPC data point, Figure 3.5 shows approximately 6.0

milliseconds per clip, whereas Table 3.2 finds 4.478 ms per clip at 1000 PPC. This

discrepancy is a result of increased clipping efficiency for hs values large enough to

cause minimal polygon overlap (or none at all). In these circumstances, the clip

time is substantially lower, and it serves to reduce the average clip time listed in

Table 3.2. A similar argument can be made for the 100 and 4000 PPC data points.

To further investigate this behavior, the same problem (Marchand and Ko-

bel’s ‘Example 1’)4 is solved again, this time analyzing time spent performing clip

operations at different altitudes. Figures 3.7, 3.8, and 3.9 show the average time

spent on each clip operation throughout the variation in satellite altitude (i.e. while
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Figure 3.7: Time per Clip Operation vs. hs – 100 PPC

numerically producing the curve shown in Figure 3.3). Aside from the discontinuous

regions in the curve, clipping operations are carried out in nearly constant time.

It is important to note that the small transient spikes in clip time do not

always appear in the same locations, or with the same frequency during subsequent

runs of the exact same analysis. Because exactly the same calculations are performed

from start to finish between runs, the discrepancy is attributed to system-related

variations caused by programs competing for resources momentarily.

When comparing the results shown in Figures 3.7 through 3.9 with the al-

titude used to produce Figure 3.4 (1349 km), it is clear that the analysis shown in

Figure 3.5 is conducted in the ‘worst case’ regime in terms of performance.

Finally, it is of interest to determine the conditions that precipitate the

discontinuities in Figures 3.7 through 3.9. Altitudes before and after each discon-

tinuity are selected, and their associated single coverage regions are illustrated in

Figure 3.10.
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Figure 3.8: Time per Clip Operation vs. hs – 1000 PPC
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Figure 3.9: Time per Clip Operation vs. hs – 4000 PPC
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(b) hs = 5400 km
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Figure 3.10: Configurations at Altitudes on Either Side of the Discontinuities in
Figures 3.7, 3.8, and 3.9
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Figures 3.10a and 3.10b show that the discontinuity near hs = 5000 km in

Figures 3.7 through 3.9 occurs when the coverage region bifurcates into separate

and symmetric regions. This condition allows each region to be handled separately,

resulting in an increase in performance. Figures 3.10c and 3.10d show the somewhat

obvious situation, where the coverage regions become non-comparable, that is, their

bounding boxes no longer overlap. In the case of an intersection operation, the poly-

gon clipping implementation uses this condition to shortcut the clipping process and

return an empty polygon structure. Alternatively, if the desired operation between

two non-comparable polygons A and B is A∪B, the clipping implementation simply

returns the two polygon structures combined into one, whereas for A−B, A alone

is returned.

3.2 Numerical ATH Coverage Model Implementation

The implementation of the numerical ATH coverage model comprises of three

major parts. First, an array of effective range shells is generated – this allows a high

degree of generality to be maintained in the rest of the code. Second, the region

of total coverage at the desired multiplicity between the effective range shells is

determined (itself a polygon region). Third, and finally, the resulting region of total

coverage at the desired multiplicity is intersected with the region of interest (the

dual-altitude band shell in this case). The area enclosed in this region corresponds

to the in-plane area of ATH coverage at the desired coverage multiplicity.

Although regions of single, double, and triple coverage can be determined

using the arbitrary coverage multiplicity implementation, given in Section 3.2.5,
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they are treated separately as their algorithms are, unlike the arbitrary coverage

case, an intuitive representation of the set notation discussed in Section 2.3.

3.2.1 Effective Range Shell Array, RSE

A common element of all coverage implementations in this section is the

need to begin by generating and storing an (n × 1)-dimensional array of polygon

structures that describe the sensor coverage of each of the n satellites. This array

is denoted by RSE . These polygon regions can be generated in any way, and can

actually describe many different types of processes where the multiple overlap of

polygons is of interest (i.e. not limited simply to the problem of ATH coverage).

One potential example in the field of geosciences is an analysis of polygons

representing polar ice cap coverage of the Earth as recorded at weekly intervals.

An analysis looking for 52× coverage between those 52 polygons would yield the

regions where there is always ice, while an analysis for 26× coverage would reveal

various regions where ice exists at least half of the year (although not necessarily

continuously or contemporaneously with one another).

Once the array of effective range shells is generated, the coverage multiplicity

algorithm described in Section 3.2.5 can compute the area of p× coverage between

the n satellites. Sections 3.2.1.1 and 3.2.1.2 describe effective range shell array

generation techniques for two possible circumstances (of many) that are applicable

to the ATH coverage problem.
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3.2.1.1 Omni-Directional Satellite Sensors, Circular Orbits

A case of particular interest to preliminary studies due to its simplicity and

time-invariant nature is composed of n satellites equally spaced in longitude within

a single circular orbit. This case is further simplified by assuming each satellite

has omni-directional sensors. The sensor regions for each satellite are generated

using the procedure discussed in Section 2.1.3.1. Algorithm 3.1 shows an example

of this effective range shell array generation process. The input arguments are

the tangent height shell (THS) radius, rt, the circular satellite orbit radius, rs,

the omni-directional sensor range, R, the number of satellites, n, and the desired

polygon resolution, m. The notation RSE(i) indicates the i-th polygon structure,

describing the effective range shell of the i-th satellite (out of a total of n) in the

effective range shell array, RSE .

Algorithm 3.1 GenerateRangeShellArray1(rt, rs, R, n,m)

1: for i = 1 to n do
2: θi =

2π(i−1)
n {longitude in orbit of i-th satellite}

3: RSE(i) = GenerateODRangeShell(rt, rs, R, θi,m)
4: end for
5: return RSE {the effective range shell array}

The algorithm GenerateODRangeShell generates an effective range shell

polygon for the omni-directional sensor case. This method is shown in Algorithm 3.2,

and is an implementation of the procedure discussed in Section 2.1.3.1.

3.2.1.2 Arbitrary Sensor Profiles and Satellite Positions

More generally, suppose a constellation is composed of satellites featuring

some arbitrary sensor profile for which the in-plane cross-section is known. The
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Algorithm 3.2 GenerateODRangeShell(rt, rs, R, θ,m)

1: initialize RSE {an empty polygon structure}
2: γ = arcsin (rt/rs)
3: ψi = π − γ + θ
4: ψf = −π + γ + θ
5: (x1, y1) = (rs cos θ, rs sin θ)
6: add (x1, y1) to RSE as the first vertex {centered on satellite}
7: for j = 2 to m do

8: ψj = ψi +
(j−2)(ψf−ψi)

m−2
9: xj = R cosψj + x1

10: yj = R sinψj + y1
11: add (xj , yj) to RSE as the j-th vertex
12: end for
13: return RSE {omni-directional effective range shell for a single satellite}

cross-section is stored in a polygon structure RSarb with the satellite at the origin

of the coordinate frame RSarb is defined within, as shown in Figure 3.11. The three-

dimensional sensor profile is assumed to exhibit symmetry across the orbital-plane,

as discussed in Section 2.1.3.2. Further, assume that the location and attitude

of each satellite in the orbital plane is specified by a set of n (x, y) coordinate

pairs and n angles. These are denoted by n × 2 and n-dimensional vectors rs and

α, respectively. The attitudes and coordinates of each satellite can be defined in

any desired two-dimensional coordinate system (can vary by application). This

parameterization allows satellite positions to be specified by any number of means;

i.e. time-varying analyses can be conducted by numerically integrating equations of

motion, or from solving Kepler’s Equation.28 An outline of this procedure is shown

in Algorithm 3.3. Note that, as discussed in Section 2.1.3.2, an additional clip

operation is necessary to determine the region of the tangent height triangle (THT)

that must be removed from the sensor cross-section to form the effective range shell.
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Figure 3.11: An In-Plane Cross-Section of an Arbitrary Sensor Profile RSarb

Algorithm 3.3 GenerateRangeShellArray2(rs,α, RSarb)

1: n = length of α
2: for i = 1 to n do
3: RSitemp = rs(i) + (RSarb rotated by α(i))
4: initialize THT {a polygon structure defining the tangent height triangle}
5: RSE(i) = RSitemp − THT {using polygon clipping implementation}
6: end for
7: return RSE {the effective range shell array}
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This arbitrary range shell case is investigated in the example problem pre-

sented in Section 4.6, where the in-plane cross-section of an arbitrary sensor profile

is defined by digitization of a hand drawing.

3.2.2 Regions of Single Coverage

The method of determining the region of single coverage is an extension

of the ad hoc code used during preliminary investigation, discussed in Section 3.1.

However, rather than initializing a single effective range shell polygon region, RSE ,

an array of n effective range shell polygons, RSE , is initialized (as discussed in

Section 3.2.1). Once initialized, these polygons are sequentially combined via n− 1

union operations until the union of all effective range shells has been produced. The

resulting polygon region, RSTE , represents the total region of single coverage. In

order to determine the region of single coverage within the area of interest (dual-

altitude band shell, AS), an additional clipping operation is performed, as denoted

by RSTE ∩AS. This last step is discussed separately in Section 3.2.6.

Algorithm 3.4 shows the process by which the total region of single coverage

is determined.

Algorithm 3.4 SingleCoverage(RSE)

1: n = length of RSE
2: initialize RSTE = RSE(1) {the total effective range shell polygon}
3: for i = 2 to n do
4: RSTEtemp = RSTE ∪RSE(i)
5: RSTE = RSTEtemp

6: end for
7: return RSTE {the total effective range shell polygon (1× coverage)}
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Observe (lines 4, 5) that a temporary polygon structure, RSTEtemp is incor-

porated, and the union operation is split into two statements (as opposed to simply

performing RSTE = RSTE ∪RSE(i)). This is performed (in all algorithms) because

efficient polygon clipping implementations perform operations in-place. That is,

polygons are passed-by-reference. Rather than create copies of the polygons for the

clipping implementation to operate upon, only the memory addresses to the existing

polygon structures are passed, and the polygon clipping implementation performs

operations directly upon original copies in memory.

Such an approach minimizes the time and computational resource burden of

allocating and deallocating copies of both input polygons at each function call. As

a consequence of the plane-sweep method in use by the clipping algorithm (Section

2.2), as RSTE and RSE(i) are joined by union, RSTEtemp is constructed simulta-

neously. If RSTEtemp was equivalent to RSTE , the clipping implementation would

produce an erroneous result, or potentially crash entirely because an input polygon

would be changing to reflect the partially constructed output polygon.

3.2.3 Regions of Double Coverage

The method of finding the total region of double coverage arises from an

expansion of the single coverage method, as discussed in Section 3.2.2. An additional

nested loop determines the intersection between members of each of the q2(n) pairs.

Similarly to the single coverage method, q2(n) − 1 union operations combine the

resulting regions of double coverage (discussed in Section 2.3.6). Algorithm 3.5

illustrates the process for determining the total region of double coverage.
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Algorithm 3.5 DoubleCoverage(RSE)

1: n = length of RSE
2: if n < 2 then
3: error, necessary condition: n ≥ 2
4: end if
5: initialize RSTE {an empty polygon structure}
6: for i1 = 1 to n− 1 do
7: for i2 = i1 + 1 to n do
8: RSEi1i2

= RSE(i1) ∩RSE(i2)
9: if RSTE is empty then

10: RSTE = RSEi1i2

11: else if RSEi1i2
is empty then

12: do nothing
13: else
14: RSTEtemp = RSTE ∪RSEi1i2

15: RSTE = RSTEtemp

16: end if
17: end for
18: end for
19: return RSTE {the total effective range shell polygon (2× coverage)}

3.2.4 Regions of Triple Coverage

The method for determining the total region of triple coverage is developed

by expanding the double coverage method, as discussed in Section 3.2.3. An addi-

tional nested loop allows for the computation of the region of triple coverage between

the sensor regions denoted in each of the q3(n) index triplets.

Algorithm 3.6 outlines the procedure of total triple coverage region determi-

nation. Note the addition of a conditional break statement depending upon whether

intermediate region RSi1i2 is found to be empty (line 10). The additional check re-

duces unnecessary clip operations between non-comparable regions (this is discussed

in detail at the end of Section 2.3.6).
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Algorithm 3.6 TripleCoverage(RSE)

1: n = length of RSE
2: if n < 3 then
3: error, necessary condition: n ≥ 3
4: end if
5: initialize RSTE {an empty polygon structure}
6: for i1 = 1 to n− 2 do
7: for i2 = i1 + 1 to n− 1 do
8: for i3 = i2 + 1 to n do
9: RSEi1i2

= RSE(i1) ∩RSE(i2)
10: if RSEi1i2

is empty then
11: break {triple coverage is impossible between (i1, i2, i3)}
12: end if
13: RSEi1i2i3

= RSEi1i2
∩RSE(i3)

14: if RSTE is empty then
15: RSTE = RSEi1i2i3

16: else if RSEi1i2i3
is empty then

17: do nothing
18: else
19: RSTEtemp = RSTE ∪RSEi1i2i3

20: RSTE = RSTEtemp

21: end if
22: end for
23: end for
24: end for
25: return RSTE {the total effective range shell polygon (3× coverage)}

3.2.5 Regions of Arbitrary Coverage Multiplicity

When generalizing the methods of determination of total coverage regions,

the approach used in the single, double, and triple coverage methods is not directly

applicable in an elegant fashion. Experience gained from development of the afore-

mentioned methods leads to a slightly different approach toward implementation for

finding regions of an arbitrary coverage multiplicity.
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Although the algorithm discussed in this section has the advantage of gen-

erality, it is slightly slower in execution than the fixed coverage multiplicity algo-

rithms (single, double, and triple) described in Sections 3.2.2 through 3.2.4. Results

in Section 3.4.1 show that there is typically a 1-2% performance penalty for using

the arbitrary coverage multiplicity coverage model. Thus, in analyses specifically

interested in single, double, or triple coverage, the aforementioned fixed coverage

multiplicity algorithms are favorable.

3.2.5.1 Recursion vs. Iteration

The preceding algorithms for the determination of single, double, and triple

coverage regions feature p nested loops, that iterate upon p integer indices. This

is simple to implement for a known and fixed value of p. Recursion is the most

obvious way (to the investigator) to achieve similar behavior for a p value that is

not necessarily known at runtime. However, for larger values of p, this could add

overhead, and increase runtime. Thus, it is desired to develop a purely iterative

method instead. Rather than varying the indices as loop variables, p-dimensional

vectors of integers, index and ubound are defined as

index =
(
1 2 3 . . . p

)
(initial value only), (3.1)

ubound =
(
n− p+ 1 n− p+ 2 n− p+ 3 . . . n

)
(fixed value). (3.2)

The vector index is updated at every major iteration to reflect the indices of the

set of p satellites being analyzed for p× coverage. The vector ubound reflects the

upper bound on each digit in index (these values are fixed for a given p and n).
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3.2.5.2 Index Generation

Initially, a very literal interpretation of the indices on the finite union oper-

ators, shown in Equation 2.17, was used to generate a comprehensive list of p-tuple

set indices. This list contained qp(n) sets of p-dimensional vectors of integers. This

list of vectors was generated using an intricate structure of loops, saving the values

of each resulting set of indices as it executed. This implementation led to a very

inefficient code, and it was found that the majority of computer runtime for cer-

tain problems was spent simply generating the indices. Additionally, the amount of

memory required to store this data was considerable.

Consider the case of a constellation with n = 25 satellites being analyzed for

p = 8 coverage. Using the expressions from Section 2.3.5, q8(25) = 1, 081, 575 unique

octuple sets, with p = 8 integers in each set. This results in a total of 8, 652, 600

integers for storage. Assuming 16-bit (short) integers are used (this is more than

adequate because each integer lies between 1 and n = 25), the minimum amount of

memory required is 17.3 MB. Allocation, deallocation, and repeated access of this

much memory are unrealistic burdens for a task that may need to be performed

hundreds or thousands of times per second as n or p vary. At a minimum, the

variations may occur at every function call in certain optimization problems.

Instead of this comprehensive index set, describing every index that may

possibly be used, it was decided to transition to an ephemeral set, that consists of

a single vector that is updated iteratively. The index memory storage for the case

of n = 25 and p = 8 is thereby reduced from 17.3 MB to a mere 16 bytes – the

space required to store 8 short integers. Thus, in general, given p 16-bit integers, at
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1 byte per 8 bits, only 2p bytes are required for index storage.

The algorithm used to accomplish this is shown in Algorithm 3.7. The

rightmost integer that has not reached its upper bound is found and incremented

by one. If it was not the rightmost digit, the digits to its right are reset to count

forward from the incremented value. Once one digit has been incremented (and

any neighbors to the right are reset), the current index update is complete, and the

value is returned.

For example, consider the case of a constellation with n = 5 satellites being

analyzed for p = 3 coverage. The vector index takes on an initial value of (1 2 3),

while ubound takes on a fixed value of (3 4 5) (as defined in Equations 3.1 and 3.2).

Table 3.3 shows all values index takes on, along with comments on each increment.

As mentioned at the beginning of Section 3.2.5, performance of the arbitrary

multiplicity algorithm is slightly inferior to the performance of the fixed multiplicity

Algorithm 3.7 IncrementIndex(index, ubound)

1: p = length of index
2: for j = p, p− 1, p− 2, . . . , 1 do
3: if index(j) < ubound(j) then
4: index(j) = index(j) + 1
5: if j < p then
6: {reset digits to the right of the j-th digit}
7: for k = j + 1 to p do
8: index(k) = index(k − 1) + 1
9: end for

10: end if
11: break
12: end if
13: end for
14: return index
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Table 3.3: Index Values for n = 5, p = 3

i1 i2 i3 Comment

3 4 5 ubound

1 2 3 increment i3
1 2 4 increment i3
1 2 5 i3 at upper bound, increment i2, reset i3
1 3 4 increment i3
1 3 5 i3 at upper bound, increment i2, reset i3
1 4 5 i2, i3 at upper bound, increment i1, reset i2, i3
2 3 4 increment i3
2 3 5 i3 at upper bound, increment i2, reset i3
2 4 5 i2, i3 at upper bound, increment i1, reset i2, i3
3 4 5 i1, i2, i3 at upper bound – final index value

algorithms. One of the primary reasons for this is the additional step of incrementing

the index, as opposed to simply iterating upon loop variables. This performance

decrease is not substantial (typically 1-2%), but varies slightly depending on the

number of satellites involved.

3.2.5.3 Total Effective Range Shell, RSTE

Using this new approach, avoiding excessive nested loops, the determination

of regions of arbitrary coverage multiplicity becomes straightforward. Because the

number of different values index may take on is unknown at runtime (for large p, in

particular), a ‘while’ loop is used to iterate through values of index. The final value

of index is arrived upon when the first element is at its upper bound, ubound(1).

For each value of index, the algorithm iterates to perform the p − 1 intersection

operations to find a p-multiplicity region of coverage between the sensor regions

enumerated in the current value of index. Subsequently, each p-multiplicity region
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of coverage from each index value is joined by union to the polygon structure RSTE .

Once all valid values of index have been processed, RSTE represents the total region

of p× coverage between the satellites defined in the RSE array of effective range

shells. Algorithm 3.8 shows how this process is implemented.

3.2.6 Clipping with Altitude Shell and Computing Area

Once a total effective range shell polygon, RSTE , has been produced, the

final operations can be performed to find the actual area of coverage at the desired

coverage multiplicity within the area of interest. First, a polygon in the shape of

an annulus is defined with inner and outer radii corresponding to the lower (LTAS)

and upper target altitude shell (UTAS) radii, rl and ru respectively. This process

is straightforward, and is discussed and illustrated briefly in Section 2.1.3.3. The

resulting procedure is outlined in Algorithm 3.9.

Once AS is produced, a single intersection operation is performed with

RSTE . The area of the resulting region, RSAS can be computed readily using

the method given at the end of Section 2.3.1. Algorithm 3.10 illustrates this brief

process.

3.2.7 Complete Numerical ATH Coverage Model

Combining the algorithms presented in Sections 3.2.1 through 3.2.6, the

ATH coverage for a planar constellation at any desired coverage multiplicity can

be evaluated. Consider a set of example parameters, and the associated procedure,

shown in Algorithm 3.11 (which shows a typical process for the evaluation of ATH
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Algorithm 3.8 ArbitraryCoverage(RSE , p)

1: n = length of RSE
2: if n < p then
3: error, necessary condition: n ≥ p
4: end if
5: initialize RSTE {an empty polygon structure}
6: initialize index, ubound {as in Equations 3.1 and 3.2}
7: initialize SetsRemaining = 1,MakeNextIndex = 1
8: while SetsRemaining == 1 do
9: if index(1) == ubound(1) then

10: SetsRemaining = 0,MakeNextIndex = 0
11: end if
12: initialize T1 = RSE(index(1)) {first sensor region enumerated in index}
13: initialize T2 {an empty polygon structure}
14: for j = 2 to p do
15: if T1 is empty then
16: break {p-multiplicity coverage impossible with index}
17: else
18: T2 = T1 ∩RSE(index(j))
19: T1 = T2
20: end if
21: end for
22: if T1 is NOT empty then
23: if RSTE is NOT empty then
24: RSTEtemp = RSTE ∪ T1
25: RSTE = RSTEtemp

26: else
27: RSTE = T1
28: end if
29: end if
30: if MakeNextIndex == 1 then
31: index = IncrementIndex(index, ubound) {get next index vector}
32: end if
33: end while
34: return RSTE {the total effective range shell polygon (p× coverage)}
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Algorithm 3.9 GenerateAltitudeShell(rl, ru,m)

1: initialize AS {an empty polygon structure}
2: for i = 1 to m do
3: θi =

(i−1)(2π)
m

4: (xinneri , yinneri) = (rl cos θi, rl sin θi)
5: (xouteri , youteri) = (ru cos θi, ru sin θi)
6: add (xinneri , yinneri) to AS as the i-th vertex of the inner contour
7: add (xouteri , youteri) to AS as the i-th vertex of the outer contour
8: end for
9: return AS {dual-band altitude shell polygon structure}

Algorithm 3.10 EvaluateCoverageInAS(rl, ru, RSTE ,m)

1: AS = GenerateAltitudeShell(rl, ru,m)
2: Cp× = RSTE ∩AS {region of p× coverage in AS}
3: return area inside Cp× {see Section 2.3.1 and Equation 2.14}

coverage). The example shown illustrates analysis for single, double, and triple

coverage between satellites with omni-directional sensors equally distributed in a

single circular orbit.

The resulting coverage areas are tabulated in Table 3.4, and the correspond-

ing configuration is illustrated in Figure 3.12. The computed area denoted as ‘single

Algorithm 3.11 Example Problem – Circular Orbit, Equal Spacing in Longitude

1: rt = 6500 km, rl = 7400 km, ru = 11400 km, R = 5000 km, rs = 7000 km
2: n = 10 {number of satellites}
3: m = 100 {polygon resolution, PPC}
4: pmin = 1 {lower multiplicity of interest}
5: pmax = 3 {upper multiplicity of interest}
6: for p = pmin to pmax do
7: RSE = GenerateRangeShellArray1(rt, rs, R, n,m) {eff. range shell array}
8: RSTE = ArbitraryCoverage(RSE , p) {determine total region of p× coverage}
9: Ap = EvaluateCoverageInAS(rl, ru, RSTE ,m)

10: end for
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(at least)’ in Table 3.4 refers to the area that has at least single coverage. This

region is shown in Figure 3.12a. Observe that within the shaded single coverage

region, there are smaller regions where multiple effective range shells (the bound-

aries centered on each satellite) overlap. Similarly, the area denoted by ‘double (at

least)’ in Table 3.4 corresponds to the region of at least double coverage, shown in

Figure 3.12b. Finally, the region of triple coverage (and only triple coverage – the

highest coverage multiplicity in this example) is shown in Figure 3.12c. Combining

these results, Figure 3.12d shows the highest coverage multiplicities present at all

locations for the chosen parameters (these parameters were arbitrarily chosen and

do not produce an optimal configuration in any sense).

Table 3.4: Computed Areas, Example in Algorithm 3.11

Coverage Multiplicity, p Area (km2)

Single (at least) 234.90× 106

Double (at least) 144.72× 106

Triple 7.0810× 106

3.3 Validation and Error Analysis

All clipping implementations used for this research (with the conditional

exception of Jacquenot’s code)3 provide the same answer in terms of determining

regions of polygon overlap and computing their areas. The only variations that occur

are on the order of round-off and truncation error, and are a result of the different

ways that certain intermediate calculations are performed. Thus, the primary source

of error that is cause for concern is the error introduced when discretizing the various

curvilinear boundaries of regions of interest into finite sets of polygon vertices. This
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(d) Highest Coverage Multiplicities at All Locations in AS for Chosen hs

Figure 3.12: Satellite Configuration, Example in Algorithm 3.11
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topic is discussed for the general case of a circle approximated by an inscribed

polygon in Section 2.1.2.1. As is shown in this section, the results presented there

provide an acceptable estimate of relative error, but will differ slightly because some

curvilinear boundaries are concave, rather than purely convex (as is the case for a

circle).

The aforementioned conditional exception in the case of Jacquenot’s Polygon

Intersection code3 occurs only if a non-zero tolerance parameter is specified. The

reason for this is discussed thoroughly in Section 3.3.1.

3.3.1 Polygon Intersection Tolerance Parameter

Jacquenot’s Polygon Intersection 3 code does not only process the polygon

regions before and after interfacing with GPC6 via MEX, it also incorporates an

additional tolerance parameter (let it be denoted by ϵ). The implementation of this

tolerance parameter is (as is often the case) poorly documented. Consider a general

case where there are l polygon regions described in the input data structure. From

inspection of the code, it is determined that the tolerance parameter is implemented

by neglecting regions that are smaller than ϵmaxAi for all i ∈ {1, 2, 3, . . . , l}, i.e. ϵ

multiplied by the area of the largest input polygon region. Two tolerance values are

investigated – 1× 10−6 (default value) and 0. As provided by Jacquenot, the code

does not allow for 0 tolerance, and requires modification to allow for it. There is no

discernible effect upon performance when using either value.

First, consider the case of a numerical analysis using a 100 PPC polygon

resolution. The analytical and numerical results (at either tolerance of 1 × 10−6
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or 0) both produce a cosmetically identical area of coverage vs. altitude curve,

as shown in Figure 3.13. Similar area of coverage vs. altitude curves for 1000

and 4000 PPC analyses (unsurprisingly) also appear cosmetically identical, and are

consequently not reproduced here. Thus, it is more illustrative to discuss the relative

error between the two curves.
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Figure 3.13: Comparison of Analytical and Numerical Coverage Area Curves – 100
PPC

Figure 3.14 shows the percent relative error (relative to the analytically

obtained values) in area computation for the case of 100 PPC with a tolerance of

1× 10−6.

Despite being cosmetically identical in Figure 3.13, Figure 3.14 shows relative

error very slowly increasing as the coverage area vanishes and ‘blowing-up’ abruptly

to 100%. This maximum in relative error corresponds to a condition where the

numerically computed area is zero, while the analytical area is non-zero, i.e. by the
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Figure 3.14: Percent Error Between Analytical and Numerical – 100 PPC, 1× 10−6

Tolerance

relation

Aerr =
|AA −AN|

AA
. (3.3)

where AA, AN, and Aerr represent the analytically computed coverage area, numer-

ically computed coverage area, and the relative error in coverage area computation

respectively.

The reverse case, where the numerically computed area is found to be non-

zero with an analytical area of zero, is not encountered in this investigation. This

is primarily due to the use of polygons inscribed inside convex curvilinear regions

(the majority of the coverage region boundaries turn out to be convex), rather than

polygons encompassing them – thus for any region along the convex boundary of a

polygon, numerically computed enclosed area will be less than the analytical result.

The implementation of the tolerance parameter in Jacquenot’s code3 (briefly

discussed at the beginning of this section) is partly to blame for the extent of the
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regime over which this relative error of 100% can occur. Consider Tables 3.5 and 3.6

– using the default tolerance of 1×10−6, the computed numerical area is determined

to be zero by the i = 9252 data point (Table 3.5), whereas with a zero tolerance, the

numerical area is only found to be zero by the i = 9268 data point (Table 3.6), and

the reported numerical area is more accurate to the analytical area up until that

point (rather than just being rounded to zero).

Table 3.5: Data Excerpt – 100 PPC, 1× 10−6 Tolerance

i h (km) AA (km2) AN (km2) %Aerr

...
...

...
...

...
9250 9349.9 690.3 536.0 22.35
9251 9350.9 623.1 476.9 23.46
9252 9351.9 559.3 0.0 100.00
9253 9352.9 499.0 0.0 100.00
9254 9353.9 442.0 0.0 100.00
9255 9354.9 388.5 0.0 100.00
9256 9355.9 338.5 0.0 100.00
9257 9356.9 291.9 0.0 100.00
9258 9357.9 248.7 0.0 100.00
9259 9358.9 208.9 0.0 100.00
9260 9359.9 172.7 0.0 100.00
9261 9360.9 139.8 0.0 100.00
9262 9361.9 110.4 0.0 100.00
9263 9362.9 84.5 0.0 100.00
9264 9363.9 62.0 0.0 100.00
9265 9364.9 43.0 0.0 100.00
9266 9365.9 27.5 0.0 100.00
9267 9366.9 15.4 0.0 100.00
9268 9367.9 6.8 0.0 100.00
9269 9368.9 1.7 0.0 100.00
9270 9369.9 0.0 0.0 0.00
9271 9370.9 0.0 0.0 0.00
...

...
...

...
...
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Table 3.6: Data Excerpt – 100 PPC, 0 Tolerance

i h (km) AA (km2) AN (km2) %Aerr

...
...

...
...

...
9250 9349.9 690.3 536.0 22.35
9251 9350.9 623.1 476.9 23.46
9252 9351.9 559.3 421.2 24.68
9253 9352.9 499.0 369.0 26.04
9254 9353.9 442.0 320.3 27.54
9255 9354.9 388.5 275.0 29.22
9256 9355.9 338.5 233.1 31.12
9257 9356.9 291.9 194.7 33.28
9258 9357.9 248.7 159.8 35.75
9259 9358.9 208.9 128.3 38.60
9260 9359.9 172.7 100.2 41.94
9261 9360.9 139.8 75.7 45.89
9262 9361.9 110.4 54.5 50.64
9263 9362.9 84.5 36.8 56.42
9264 9363.9 62.0 22.6 63.56
9265 9364.9 43.0 11.8 72.50
9266 9365.9 27.5 4.5 83.56
9267 9366.9 15.4 0.7 95.73
9268 9367.9 6.8 0.0 100.00
9269 9368.9 1.7 0.0 100.00
9270 9369.9 0.0 0.0 0.00
9271 9370.9 0.0 0.0 0.00
...

...
...

...
...

Clearly, the implementation of the tolerance parameter is such that a non-

zero tolerance is detrimental to accuracy within the context of this problem. Thus,

when creating all the remaining data presented in this section, a tolerance of 0 is

used. However, it is clear that even with a zero tolerance (as expected), a significant

amount of relative error can develop as the coverage region vanishes. The absolute

error is still quite small, as can be seen in the data excerpt shown in Table 3.6, but
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it is still instructive to characterize the source.

Consider data point i = 9265 shown in Table 3.6 where there is a 72.5%

discrepancy between the analytical and numerical coverage areas. Figure 3.15 shows

the associated coverage regions at 100 and 4000 PPC polygon resolutions. Note that

the inset diagrams are shown at the same scale. Observe that in the 4000 PPC case

(with 40× as many vertices) the UTAS follows a much more gradual curve, and

thus, the convex boundary of the region of interest region extends further into the

effective range shell, resulting in a larger coverage area.

Although the 4000 PPC case is not exactly representative of the analytical

case, it is a substantial improvement in accuracy, and serves to illustrate the cause

of the increase in relative error as the region of coverage vanishes. Figure 2.3 shows

that for 100 PPC, relative error compared to the analytical case is expected to be

substantially less than 0.1%, while the 4000 PPC case should be well within 0.0001%

relative error.

This demonstrates (and agrees with intuition, and previous discussion in

Section 2.1.2.1) that higher polygon resolutions provide greater accuracy. Percent

relative error plots are shown for 1000 and 4000 PPC in Figures 3.16 and 3.17

respectively. It is, however, deceptive that these two plots do not show any data

points at which relative error becomes 100% as the coverage area vanishes – in fact, if

small enough steps in increasing altitude are taken for any finite polygon resolution,

an altitude can (with few exceptions) be found at which the percent relative error is

100%. It is only by coincidence that this regime falls between data points in altitude

on Figures 3.16 and 3.17.
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Figure 3.15: Coverage Configuration at i = 9265 (see Table 3.6)

One case that could be an exception is the extremely rare condition that

the x-coordinate of the lower corner of the range shell is perfectly matched (to

within machine ε) to the x-coordinate of an upper target altitude shell (UTAS)

vertex. Thus, the region vanishes simultaneously with the analytical case as altitude

increases. The computed areas under such circumstances will still be different, as

the numerical case presents a vanishing quadrilateral coverage region, as opposed to

one with curvilinear boundaries as in the analytical case.
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Figure 3.16: Percent Error Between Analytical and Numerical – 1000 PPC, 0 Tol-
erance
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Figure 3.17: Percent Error Between Analytical and Numerical – 4000 PPC, 0 Tol-
erance

3.3.2 Marchand and Kobel’s ‘Example 1’ – Non-Vanishing Regions

The majority of error analysis in this research is carried out for the single

satellite case, built upon Marchand and Kobel’s4 ‘Example 1.’ Because this is (at the

time of this writing) the only model constructed to analytically compute in-plane
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coverage areas, it is the favored metric for comparison with the numerical ATH

coverage models (re-derivation of this analytical model is presented in Appendix

A).

3.3.2.1 Error in Area Calculation

The case discussed in Section 3.3.1 analyzes relative error over the entire

range of altitude investigated by Marchand and Kobel’s4 ‘Example 1.’ That discus-

sion is primarily centered upon the ‘blow-up’ of relative error as the coverage region

vanishes. However, from the values listed in Table 3.6, it is clear that, while the

relative error becomes large, the absolute error in this region is very small compared

the total area in the vicinity of maximum coverage. Thus, it is useful to analyze the

relative error solely in the vicinity of maximum coverage, and to determine how the

actual amount of error relates to the estimation of error discussed Section 2.1.2.1.

Figures 3.18 through 3.21 show percent relative error in in-plane coverage

area calculation vs. satellite altitude from hs = ht to 5000 km for 10, 100, 1000,

and 4000 PPC respectively.

According to the estimate made in Section 2.1.2.1, a polygon resolution of

100 PPC is expected to exhibit a relative error on the order of 0.1%. Figure 3.19

shows that this estimate is reasonable, particularly in the vicinity of the altitude

of maximum coverage, at hs = 1349 km. However, as satellite altitude increases,

a monotonic rise in relative error is observed regardless of polygon resolution. The

reason for this will become clear in the ensuing discussion.

For polygon resolutions of 100, 1000, and 4000 PPC, shown in Figures 3.19,
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Figure 3.18: Relative Error vs. Satellite Altitude for hs = ht to 5000 km – 10 PPC
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Figure 3.19: Relative Error vs. Satellite Altitude for hs = ht to 5000 km – 100 PPC

3.20, and 3.21, respectively, a noticeable local minimum in percent relative error

exists at approximately hs = 365 km. Plotting this configuration, as shown in

Figure 3.22, reveals that this minimum in relative error results from an interaction

between the convex and concave boundaries of the coverage region.

Figure 3.23 shows an exaggerated case using an exceptionally low polygon

resolution (20 PPC). The upper boundaries of the coverage region are convex, and
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Figure 3.20: Relative Error vs. Satellite Altitude for hs = ht to 5000 km – 1000
PPC
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Figure 3.21: Relative Error vs. Satellite Altitude for hs = ht to 5000 km – 4000
PPC

consequently, the polygon representation along those boundaries is inscribed inside

the true ‘analytical’ curves. As a result, the polygon underestimates the extent of

the true region in that vicinity. In contrast, the lower boundary is concave, and

the polygon edges circumscribes the true boundary, overestimating the extent of

the true region. It is an interesting coincidence that this particular satellite altitude
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Figure 3.22: Configuration at hs = 365 km
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Figure 3.23: Configuration at hs = 365 km – 20 PPC, Detail

(365 km) corresponds to a balance between the overestimation and underestimation

of areas along the concave and convex boundaries respectively.

This behavior is one of the major factors in the monotonic rise in error after

this point in Figures 3.18 through 3.21. Consider a higher altitude (but still within
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Figure 3.24: Configuration at hs = 3000 km

the interval from ht to 5000 km) – i.e. hs = 3000 km. Figure 3.24 illustrates

the configuration. Figure 3.19 shows that hs = 3000 km lies in the vicinity where

relative error increases proportional to satellite altitude.

As satellite altitude increases, the length of the coverage boundary on the

lower target altitude shell (LTAS) decreases, limiting the extent of the only concave

boundary on the sensor region. Additionally, the presence of the missing ‘slice’ due

to the tangent height triangle (THT) removes the bulk of the remaining concave

boundary. This ‘slice’ grows starting at hs = hl = 1000 km, and causes a slight

corner in the curve in Figures 3.20 and 3.21. Thus, the convex boundaries dominate

as a source of error, but in one ‘direction’ only, causing an overall underestimation

of the true coverage region.

Overall, and especially in the vicinity of maximum coverage, relative error

in area approximation behaves as estimated in Section 2.1.2.1.
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3.3.2.2 Error in Altitude of Maximum Coverage

Marchand and Kobel’s4 ‘Example 1’ does not only use their result to com-

pute coverage areas at various satellite altitudes, but uses it as an objective function

for determining the satellite altitude providing maximum in-plane coverage. Using

the analytical implementation described in Appendix A, the maximum in-plane

coverage area is found to be approximately A = 4.0146 × 107 km2, occurring at a

satellite altitude of hs = 1348.876 km (determined to a resolution in altitude of 0.3

m).

The problem is re-solved using the numerical algorithms described in Section

3.2, using polygon resolutions varying from 10 to 4000 PPC. At each contour reso-

lution, the grid is refined to a resolution of approximately 0.6 m in satellite altitude.

The resulting altitudes of maximum coverage are summarized in Figure 3.25. The

corresponding maximum areas of coverage for each polygon resolution are shown in

Figure 3.26.
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Figure 3.25: Satellite Altitude of Maximum Coverage
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Figure 3.26: Maximum Area of Coverage

As with other discussions in this research regarding error, absolute error at

higher polygon resolutions is quite small, so analyzing the percent relative error

instead is far more useful. Figures 3.27 and 3.28 show the percent relative error in

satellite altitude of maximum coverage, and the actual computed maximum coverage

area.
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Figure 3.27: Relative Error in Satellite Altitude of Maximum Coverage
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Figure 3.28: Relative Error in Maximum Area of Coverage

3.3.3 Marchand and Kobel’s ‘Example 1’ – n-satellites

Generality is one of the primary advantages of numerical analysis of the ATH

coverage problem. No special analytical cases must be rederived when the shapes

and problem parameters change. As long as the desired in-plane coverage regions

can be described and positioned as polygons, amounts of coverage at any coverage

multiplicity can be determined using the numerical algorithms presented in Section

3.2. The case discussed in Section 3.3.2 mimics the analytical results developed by

Marchand and Kobel.4 However, at the time of this writing, any expansion upon

that problem lacks a comparable analytical model for use in validation.

Fortunately, because the problem itself is easy to visualize, and because the

area calculations are performed directly upon polygons that are available for visual

inspection, it is straightforward to at least verify results are not grossly incorrect. For

example, when analyzing for regions of higher coverage, the regions for which area

is being evaluated can be easily illustrated, and the number of satellites and their
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overlapping range shells can be manually counted to ensure the resulting regions

correspond to the desired coverage multiplicity.

The most intuitive expansion to Marchand and Kobel’s work4 is to analyze

the coverage due to n satellites, with omni-directional sensors, equally spaced in

a circular orbit. This problem is time-invariant, just as in Marchand and Kobel’s

work, and its implementation is straightforward. An example algorithm for this

scenario is discussed in Section 3.2.7.

Lacking an analytical reference model for this problem, a very high resolution

numerical model is used instead. Discussion in Section 3.3.2 reveals that for the

single satellite case (using Marchand and Kobel’s parameters),4 relative error in

the relevant range of satellite altitudes is on the order of 0.1% at 100 PPC, and on

the order of 0.0001% at 4000 PPC. This three order of magnitude improvement in

relative error involves a two order of magnitude decrease in performance as a result

of the increase in polygon resolution (see Table 3.2).

Because 100 PPC is selected as an acceptable trade between accuracy and

performance, better characterization of error at this polygon resolution is of interest.

Consider a 12 satellite constellation using the parameters shown in Table 3.7, that,

aside from 11 additional satellites, correspond exactly to the Marchand and Kobel4

parameters in use for the discussion in Section 3.3.2.
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Table 3.7: Parameters for Numerical Comparison of a 12 Satellite Constellation

Parameter Value Description

n = 12 number of satellites
p = 1, 2, 3 coverage multiplicities of interest

Re = 6378.14 km assumed Earth radius
R = 5000 km omni-directional sensor range
ht = 100 km tangent height
hl = 1000 km lower altitude bound
hu = 5000 km upper altitude bound
hsmin = 100 km lower limit on satellite altitude
hsmax = 10000 km upper limit on satellite altitude

Computing the area of coverage at 4000 PPC at p = 1, 2, 3 for satellite

altitudes ranging from hsmin to hsmax (at a resolution of 5 km) yields the plot shown

in Figure 3.29. The ‘single (at least)’ curve corresponds to the area that exhibits

at least single coverage (thus including double and triple coverage regions also).

Similarly, the ‘double (at least)’ curve shows the area with at least double coverage

(which includes regions of triple coverage). The ‘triple’ curve corresponds only to

regions of triple coverage – the chosen problem parameters do not result in quadruple

or higher coverage. To better illustrate this, consider Figure 3.30, that shows the

single, double, and triple coverage regions at hs = 1500 km.
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Figure 3.29: Single (at least), Double (at least), and Triple-Fold Areas of Coverage
for the 12 Satellite Case Computed at 4000 PPC (see Table 3.7)
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Figure 3.30: Coverage Regions for hs = 1500 km
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Figure 3.29 shows a plateau in single (at least) coverage area between the

altitudes of approximately 580 and 2570 km. This corresponds to a total saturation

of the dual-altitude band shell with single coverage. An example of this maximum

single coverage case is shown in Figure 3.30a. A maximum in double (and above)

coverage occurs at 1917 km, while a maximum in triple coverage occurs at 580 km.

These cases are shown in Figures 3.31a and 3.31b respectively.

(a) Maximum in Double (at least) Coverage,
hs = 1917 km

(b) Maximum in Triple Coverage, hs = 580
km

Figure 3.31: Configurations of Maximum Double (at least) and Triple Coverage

At 100 PPC, the curves representing coverage area are cosmetically identical

to the curves describing the 4000 PPC case shown in Figure 3.29, and are thus

not reproduced here. To differentiate between them, the relative error is analyzed

instead. Recall that, as discussed in Section 3.3.1 (while discussing the impact

of the tolerance parameter in Jacquenot’s implementation)3 as the coverage area

vanishes, relative error ‘blows-up.’ The absolute error is small, and it occurs far
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from the vicinity of maximum coverage, and thus this behavior is of passing interest.

Figure 3.32 shows the relative error of the 100 PPC analysis compared to the 4000

PPC analysis (chosen as a reference model). Compare this plot with Figure 3.29:

the sudden rises in relative error correspond to the vanishing of each coverage region

multiplicity, as expected. Near their respective altitudes of maximum coverage, each

multiplicity retains a well-bounded relative error, on the order of 0.1%, as expected.
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Figure 3.32: Relative Error at 100 PPC vs. 4000 PPC for Single, Double, and Triple
Areas of Coverage

Although the 12-satellite example presented in this section demonstrates

that 100 PPC is an acceptable polygon resolution to achieve the (admittedly ar-

bitrary) desired relative error of 0.1% near the maximum coverage altitude, other

problems may not be so well behaved. Each problem should be analyzed to deter-

mine if the chosen polygon resolution provides the desired accuracy. Unfortunately,

this involves performing a time-consuming high-resolution analysis first. Depending

upon the type of the analysis, this may prove to be a waste of time and effort. The

example presented here is a simple analysis involving equal numbers of function eval-
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uations at 100 and 4000 PPC. Clearly, the 4000 PPC analysis is more accurate, and

if an accurate curve, such as in Figure 3.29 is the only desired result, re-computing

the data at a less-accurate resolution is a waste of time. In such a case, the high

resolution model would be used alone, assuming it can be computed in a reasonable

amount of time. The motivation for analyzing the 12-satellite example in this sec-

tion, however, is to demonstrate the amount of error present at 100 PPC (which is

the only reason it is computed at all).

Performing a high-resolution analysis simply for error estimation would be

beneficial in a problem where the low-resolution model is to be used much more

frequently. An example of this would be a problem solved using a parameter opti-

mization code requiring numerical derivatives – this greatly increases the necessary

number of function evaluations, and it would then be advantageous if a lower poly-

gon resolution can still achieve acceptable accuracy.

3.4 Numerical ATH Coverage Model Performance

Previous discussions on performance (Section 3.1.6) are focused specifically

on the underlying clipping implementations. In this section, runtimes of the actual

implemented coverage models (as described in Section 3.2) are compared.

3.4.1 Arbitrary vs. Fixed Coverage Algorithms

As discussed at the beginning of Section 3.2.5, regions of single, double, and

triple coverage can either be computed using the ATH coverage models specifically

tailored to each coverage multiplicity (Sections 3.2.2 through 3.2.4), or using the

118



arbitrary coverage multiplicity model (Section 3.2.5). However, due to the additional

provisions to ensure generality, it is expected that the arbitrary coverage multiplicity

model executes slower than its fixed-multiplicity counterparts.

First, consider re-solving Marchand and Kobel’s4 ‘Example 1’ discussed in

Section 3.1.7. Time per function evaluation is compared between the single coverage

model described in Section 3.2.2 and the arbitrary coverage multiplicity model (an-

alyzing for single coverage) described in Section 3.2.5. Comparisons are performed

using coverage model implementations in C++ using the GPC library, discussed in

Section 3.1.1. The results are shown in Figure 3.33 – clearly the arbitrary coverage

model, as expected, takes slightly longer per function evaluation. Figure 3.33b shows

this runtime increase (relative to the fixed single coverage model) to be typically on

the order of 2-3%.
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(a) Time per Function Evaluation for the Fixed 1× vs. Arbitrary at 1× ATH Coverage Models
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Figure 3.33: Single Satellite Case – Fixed vs. Arbitrary Multiplicity Coverage Mod-
els (Single Coverage)

Next, consider the 12 satellite problem, analyzed for error in Section 3.3.3.

Figure 3.34 shows the performance comparison between fixed and arbitrary mul-

tiplicity coverage models for single coverage. Similarly, the arbitrary multiplicity

coverage model is tested against the fixed double and triple coverage models, with

results shown in Figures 3.35 and 3.36. In all cases, the fixed multiplicity cover-
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age models exhibit slightly superior performance, with the arbitrary multiplicity

coverage model typically running 1-2% slower. The regions of each curve where

runtime gradually rises and falls are due to the increase and decrease of intermedi-

ate polygon size for that particular regime. Discontinuities are due to the analysis

entering regions where the clipping implementation can perform shortcuts, avoiding

unnecessary clipping operations.
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(a) Time per Function Evaluation for the Fixed 1× vs. Arbitrary at 1× Coverage Models
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Figure 3.34: 12 Satellite Case – Fixed vs. Arbitrary Multiplicity Coverage Models
(Single Coverage)
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Figure 3.35: 12 Satellite Case – Fixed vs. Arbitrary Multiplicity Coverage Models
(Double Coverage)

122



0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10

15

20

25

30

35

Satellite Altitude (km)

T
im

e
p
er

F
u
n
ct

io
n

E
va

lu
a
ti
o
n

(m
s)

 

 
Arbitrary at 3×
Fixed 3×

(a) Time per Function Evaluation for the Fixed 3× vs. Arbitrary at 1× Coverage Models
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Figure 3.36: 12 Satellite Case – Fixed vs. Arbitrary Multiplicity Coverage Models
(Triple Coverage)
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Chapter 4

Example Problems

To illustrate the utility of the numerical ATH coverage models, several exam-

ple problems are solved. Prior to this, a simple continuously differentiable financial

model describing constellation deployment cost is developed for use as both an ob-

jective function and a constraint function. Example 1 considers maximization of

single coverage by a constellation subject to a deployment cost constraint. Example

2 explores the reverse case: a minimum acceptable ATH coverage amount is spec-

ified while deployment cost is minimized. Example 3 utilizes the numerical ATH

coverage models as both objective and constraint functions. A minimum amount of

single coverage, and a maximum deployment cost are prescribed, while maximizing

double ATH coverage. Finally, Example 4 illustrates the use of an arbitrary sensor

profile in a constellation design problem, maximizing single ATH coverage subject

to a constraint on deployment cost.

4.1 Simple Financial Model

The design problems described in this chapter involve constraining or mini-

mizing financial cost, while simultaneously maximizing or constraining (respectively)

some amount of coverage at a specified coverage multiplicity. Models estimating

program cost for a satellite or constellation are used throughout government and
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industry (see Wertz).8 These models are highly complex with a staggering amount

of parameters involved. Additionally, these exhaustive models can behave discon-

tinuously in many regions, i.e. when a payload of several satellites becomes too

massive for one launch vehicle, necessitating another.

The objective of the examples in this chapter is not to illustrate these com-

plex cost estimation relations, but to illustrate how the numerical ATH coverage

models described in Chapters 2 and 3 can be used as part of a constellation design

process. Consequently, a much simpler financial model is necessary, one that is con-

tinuous, easily described to the reader, and easily implemented by the investigator.

The model developed here focuses on two parameters as cost drivers behind

constellation deployment – the mass of each spacecraft, and their circular orbit

altitude. As discussed previously, this research focuses on constellations composed

of satellites arranged in a single circular orbit. The time-invariant nature of this set

of problems allows them to be far more tractable using the limited computational

resources available.

4.1.1 Constellation Deployment Cost

According to Gordon,12 the mass of a sensor or antenna can be crudely

described as proportional to the square of its design range. Using this relationship,

spacecraft mass can be approximated by

m = a+ bR2. (4.1)

The parameter a is the base satellite mass (i.e. if no sensor were installed at all),

and b represents the mass/sensor-range coefficient. The total cost of constellation
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deployment is then described by

Γ = n(e+ cm+ dm(h− href)
2). (4.2)

A linear relationship between the number of satellites, n, and deployment cost Γ

is assumed. The parameter e represents a base cost for each launch system, c

represents the additional cost per unit mass to achieve the reference circular orbit

at an altitude of href. The cost of increasing satellite altitude (h) from the reference

altitude is assumed to increase quadratically, thus the coefficient d describes the

cost per unit mass vs. the square of the increase in altitude. This assumption

of quadratic behavior with respect to altitude variation is made to create a more

interesting deployment cost model, i.e. not just quadratic in R, but also in h. In

all analyses presented here, href is considered to be the lower bound on permissible

satellite altitude.

Mass and altitude are the originally intended cost drivers; however, by Equa-

tion 4.1, R is used in place of mass as a model parameter.

4.1.2 Derivatives

Although analytical derivatives for numerically evaluated ATH coverage are

not available, the partial derivatives of the simple financial model defined in Section

4.1.1 are obtained easily. Substituting Equation 4.1 into Equation 4.2 and simplyfing
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yields

Γ = n(e+ c(a+ bR2) + d(a+ bR2)(h− href)
2) (4.3)

= n(e+ ca+ cbR2 + (da+ dbR2)(h− href)
2) (4.4)

= ne+ nca+ ncbR2 + nda(h− href)
2 + ndbR2(h− href)

2. (4.5)

Partial derivatives of Equation 4.5 in R and h are then evaluated, producing

∂Γ

∂R
= 2nb(cR+ 2ndR(h− href)

2), (4.6)

∂Γ

∂h
= 2nd(a+ bR2)(h− href). (4.7)

4.1.3 Parameter Values

The same set of financial model parameters is used in Examples 1 through

3. Example 4 considers a satellite sensor profile of arbitrary shape, where the

mass/sensor-range coefficient is reduced by a factor of four. This assumption is

made because, as will be seen in Section 4.6, the arbitrary region encompassed in

RSarb is much smaller than in an omni-directional case using the same value of R.

The resulting financial costs computed using these parameters are not necessarily

correlated to real world dollars, and are only intended as a means of comparison be-

tween the solutions and problems presented here. They are, however, selected with

the aim of obtaining results on the same order-of-magnitude as a more exhaustive

analysis.8 These parameters are summarized in Table 4.1.
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Table 4.1: Financial Model Parameters (see Equations 4.1, 4.2)

Parameter Value Description

a 500 kg base satellite mass
bOD 6× 10−5 kg/km2 mass/sens-range coefficient (OD sensors)
barb 1.5× 10−5 kg/km2 mass/sens-range coefficient (arb. sensors)
c 1× 10−4 $M/kg cost-per-kg at reference altitude
d 1× 10−9 $M/kg-km2 cost-per-kg vs. squared altitude increase
e 10 $M base launch vehicle cost
href 188 km satellite reference altitude

4.2 Non-Linear Programming

The examples presented in this chapter are simple constellation design prob-

lems, and their solutions are easily obtained by parameter optimization. The prob-

lems are parameterized in terms of a finite set of variables that fully define a unique

state of the system. The solution, or optimal values of these variables create some

optimal condition of the system in whatever sense the investigator defines (by find-

ing the states providing minimal or maximal values of some performance index).

Although the examples in this chapter are simple enough to be analyzed based on

clever plots alone, the same method of parameter optimization can be readily scaled

to more complex problems, for which visualization of the phase space becomes im-

possible.

The parameter optimization code used here is provided in the MATLAB

Optimization Toolbox – fmincon,29 which is a package of several different non-linear

programming (NLP) packages. Loosely defined, NLP is a process by which some

objective function is extremized subject to equality and/or inequality constraints,

all dependent upon a finite set of optimization variables. Additionally, the objective
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function and the constraints could both exhibit nonlinear behavior (NLP can be

considered a superset of linear programming – linear programming can be used only

when the objective and constraint functions are linear). Specifically, the sequential

quadratic programming (SQP) algorithm (see Powell)30 in fmincon is used to obtain

solutions to the example problems in this chapter. The general problem solved by

NLP is as follows:

minimize J = F (xp), (4.8)

subject to ceq(xp) = 0, (4.9)

c(xp) ≤ 0, (4.10)

keeping in mind that maximizing a function is equivalent to minimizing its negative.

4.3 Example 1 – Max. Single Coverage with a Budget Constraint

Consider a constellation, constrained by deployment cost (as defined by the

financial model in Section 4.1) that is desired to provide maximum possible single

coverage within the dual-altitude band area of interest. The parameters describing

the tangent height shell (THS) and the dual-altitude band shell, AS, are shown in

Table 4.2. Using hl and hu at m = 100 PPC, the area inside the altitude shell, AAS ,

is also computed and listed at the end of the table.

It is assumed that the satellites are equally distributed in a single circular

orbit, and possess omni-directional sensors. Under these assumptions, the problem

can be uniquely described by two optimization parameters – satellite sensor range, R,

and satellite altitude, h. This two-dimensional set of variables allows straightforward
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Table 4.2: Example 1 Parameters

Parameter Value Description

RE 6378.14 km assumed Earth radius
ht 100 km tangent height altitude
hl 1000 km lower target altitude
hu 5000 km upper target altitude
m 100 PPC initial polygon resolution

AAS 235,307,769 km2 total area in AS

verification and discussion of results using plots. Thus, the parameter vector is

formed as

xp = [R h]. (4.11)

The performance index (single coverage area) is given by

J = −A1×(R, h, n), (4.12)

with a minus sign introduced so that minimization of J is equivalent to maximization

of A1× (this conforms to standard convention for most NLP codes of minimization

of functions rather than explicit maximization). Analytical derivatives of J are

not available simply because the relationships between A1×, R, and h are purely

numerical in nature.

Three inequality constraints are present – first, the cost must be less than

the deployment budget, Γmax. Second, the sensor range must be non-negative (i.e.

its negative must be less than zero). Finally, the satellite circular orbit altitude must

be above the reference altitude, href. These constraints can be written in vector form
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as

c =

Γ(R, h, n)− Γmax

−R
href − h

 ≤ 0, (4.13)

where the inequality is understood to apply element-wise to the elements of c. An-

alytical derivatives of the inequality constraints are available, and are tested for

each constellation size to establish their validity. However, for this example, fi-

nite difference derivatives lead to convergence in far fewer iterations, and cause an

unnoticeable increase in runtime.

First, a single satellite is considered with a modest deployment budget. For

comparison, a 10 satellite constellation is then analyzed, subject to a 10-fold increase

in deployment budget. A 15 satellite constellation is investigated with a 40% increase

in deployment budget over the 10 satellite case, but the results are omitted from

this chapter for brevity – they are instead presented in Appendix B.1.

4.3.1 Example 1a – 1 Satellite

The single satellite case can be considered a simple extension of the problem

presented by Marchand and Kobel,4 except omni-directional sensor range is now an

optimization parameter, and deployment cost is now considered and constrained.

The deployment budget and initial guess are presented along with the converged

solution providing maximum single coverage subject to the deployment budget in

Table 4.3. Budget overrun is a measure of deployment cost constraint violation at

the converged solution.

The financial model behavior and single coverage area vs. R and h are shown

in Figures 4.1a and 4.1b respectively. Figure 4.1c shows the initial guess and con-
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verged solutions, along with the cost constraint overlaid on the single coverage area

contour. It is clear from this plot that the converged solution corresponds to a con-

strained local maximum in coverage area, as expected. The coverage configurations

for the initial guess and converged solution are illustrated in Figure 4.2.

Table 4.3: Example 1a – Parameters and Solution

Parameter Value Description

n 1 number of satellites
Γmax $25M budget constraint
R0 1000 km initial guess, R
h0 3000 km initial guess, h

Ropt 3849.844 km converged area-optimal R
hopt 1080.735 km converged area-optimal h
A1×opt 26, 473, 840 km2 coverage area at solution

Γopt − Γmax 9.948× 10−9 $M budget overrun
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Figure 4.1: Example 1a – Constraint and Objective Contours
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(a) Initial Guess

(b) Converged Solution

Figure 4.2: Example 1a – Initial Guess and Converged Solution
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4.3.2 Example 1b – 10 Satellites

The 10 satellite case is given a 10 fold increase in budget relative to the

single satellite case discussed in Example 1a. However, the maximum possible single

coverage does necessarily scale to 10 times the single satellite case. The possibility

for overlap of sensor regions (if the budget allows for a sufficient R) means that some

regions will exhibit single coverage redundantly (i.e. double coverage). The initial

guess, budget constraint and converged solution are shown in Table 4.4.

Table 4.4: Example 1b – Parameters and Solution

Parameter Value Description

n 10 number of satellites
Γmax $250M budget constraint
R0 1000 km initial guess, R
h0 3000 km initial guess, h

Ropt 3694.174 km converged area-optimal R
hopt 1360.112 km converged area-optimal h
A1×opt 208, 625, 437 km2 coverage area at solution

Γopt − Γmax 6.314× 10−10 $M budget overrun

As expected, despite a 10 fold increase in budget, the area at the converged

solution (Table 4.4) is not even close to 10 times the single coverage area found in

the single satellite case (Table 4.3). The primary reason for this is clearly illustrated

in Figure 4.4b – note the overlap between the sensor range shells (dashed regions

centered on each satellite) in the converged solution. These regions exhibit redun-

dant single coverage (i.e. double coverage), and are a ‘waste’ of coverage given that

only single coverage is desired in this particular problem.

Figure 4.3 shows that the budget constraint allows coverage approaching
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saturation of the area of interest. In fact, the 208 million km2 of single coverage

at the solution corresponds to approximately 89% of the dual-altitude band shell.

However, a budget that is significantly larger could extend the cost constraint curve

onto the level plateau in Figure 4.3c, where single coverage is saturated for a variety

of R and h values. The optimization problem then becomes ill-posed, because an

infinite number of solutions exist in the plateau region that result in the same

coverage area, while simultaneously satisfying the budget constraint.
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(a) Initial Guess

(b) Converged Solution

Figure 4.4: Example 1b – Initial Guess and Converged Solution
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4.4 Example 2 – Min. Budget with an Area Constraint

The constellations designed in this example must provide single coverage

to at least 99.9% of the total area enclosed in the dual-altitude band shell. This

value, rather than 100%, is arbitrarily chosen to avoid numerical issues associated

with roundoff and truncation error (however small they may be). The area of the

altitude shell, AAS , is computed using the same polygon resolution as the altitude

shell considered in each problem. The parameters describing the tangent height

shell (THS) and the dual-altitude band shell, AS, are shown in Table 4.5 along with

the computed area inside AS.

Table 4.5: Example 2 Parameters

Parameter Value Description

RE 6378.14 km assumed Earth radius
ht 100 km tangent height altitude
hl 1000 km lower target altitude
hu 5000 km upper target altitude
m 100 PPC initial polygon resolution

AAS 235,307,769 km2 total area in AS

As with Example 1, assume that the satellites are equally distributed in a

single circular orbit, and are equipped with omni-directional sensors. Under these

assumptions, the satellite sensor range, R, and the satellite altitude, h, are sufficient

to fully define a unique state of the system. The two-dimensional set of variables

populates the parameter vector

xp =
[
R h

]
. (4.14)

The performance index that is minimized with respect to xp (deployment
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cost, according to the model developed in Section 4.1) is given by

J = Γ(R, h, n). (4.15)

Additionally, three inequality constraints are present as follows:

c =

Amin −A1×
−R

href − h

 ≤ 0, (4.16)

where the inequality is understood to apply element-wise between vectors c and 0.

While many cases are investigated in this example, only three are presented

here, for brevity. Discussion, however, is not limited only to those three – plots and

solutions for the remaining cases are included in Appendix B.

A three satellite constellation is the smallest constellation that can achieve

the desired coverage amount for the dual-altitude band shell described in Table 4.5.

The coverage constraint requires at least 99.9% single coverage of AS, but Figure 4.5

clearly shows this is impossible with only two satellites. In Figure 4.5a, the satellite

altitude is low enough to bring the tip of the tangent height triangle (THT) below

the lower target altitude shell (LTAS), but the lower target altitude is low enough

that this altitude results in large coverage gaps, as shown at the top and bottom of

AS. The opposite scenario is shown in Figure 4.5b, where the satellite altitude and

range are sufficient to close the gaps at the top and bottom of AS, but result in a

very large coverage gap in the nadir direction of each satellite due to the THT.
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(a) R = 13500 km, h = 1000 km (b) R = 20000 km, h = 7200 km

Figure 4.5: Two Satellites – Total Single Coverage is Impossible (for the Parameters
in Table 4.5)

The three satellite case is analyzed and discussed first – the smallest possi-

ble constellation for the problem parameters chosen. Next, the four satellite case

presents an interesting scenario with multiple local maxima in coverage area. The 10

satellite case is then investigated, which proves to be the largest and most costly in

terms of deployment cost. Finally, constellations consisting of 5 through 9 satellites

are analyzed, and a trend in minimum constellation deployment cost is discussed,

concluding that the lower-cost four satellite configuration is the most cost-efficient

using the financial model developed in Section 4.1.
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4.4.1 Example 2a – 3 Satellites

The parameters and solution to the 3 satellite case are shown in Table 4.6.

Comparing this result to the solution found in Example 1b, in Section 4.3.2, yields

an interesting difference – for a deployment cost of only 235 $M, three satellites

cover far more of AS than 10 satellites (which cost 250 $M to deploy).

Figure 4.6a shows the area constraint (the solution must lie inside or on

the dotted boundary). From inspection of Figure 4.6c, it is clear to see that the

converged solution does correspond to a constrained minimum in deployment cost.

The configuration of the converged solution, shown in Figure 4.7b, illustrates that

the sensor range corresponds to the intersection between neighboring satellite sensor

range shells and the upper target altitude shell (UTAS), as expected by intuition.

Table 4.6: Example 2a – Parameters and Solution

Parameter Value Description

n 3 number of satellites
Amin 0.999AAS area constraint
R0 1000 km initial guess, R
h0 1000 km initial guess, h

Ropt 9889.940 km converged cost-optimal R
hopt 1038.909 km converged cost-optimal h
Γopt 234.893 $M converged cost at solution

A1×opt −Amin −1.095× 10−2 km2 coverage area surplus
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(a) Initial Guess

(b) Converged Solution

Figure 4.7: Example 2a – Initial Guess and Converged Solution
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4.4.2 Example 2b – 4 Satellites

The four satellite case is interesting in that it exhibits two disparate regions

in R and h that both satisfy the area constraint. Using the initial guess shown

in Table 4.7, the optimizer finds a constrained local minimum in deployment cost

with a very large sensor range, and a very high altitude. Because sensor range (and

consequently mass) and satellite altitude are the cost drivers in the financial model

developed in Section 4.1, these large values result in a 3.3 $B budget requirement –

an unacceptable result.

Consider Figure 4.8 – the optimizer traversed the domain to the more distant

constrained local minimum, that is clearly not a global minimum from inspection

of the plots. Figure 4.9b shows that this near-total coverage is achieved when

neighboring satellites fill the coverage gap in the nadir direction of each satellite.

Table 4.7: Example 2b – Parameters and Solution (Case 1)

Parameter Value Description

n 4 number of satellites
Amin 0.999AAS area constraint
R0 1000 km initial guess, R
h0 1000 km initial guess, h

Ropt 16943.198 km converged cost-optimal R
hopt 6184.123 km converged cost-optimal h
Γopt 3297.977 $M converged cost at solution

A1×opt −Amin −9.924× 10−6 km2 coverage area surplus
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Figure 4.8: Example 2b – Constraint and Objective Contours (Case 1)

146



(a) Initial Guess

(b) Converged Solution

Figure 4.9: Example 2b – Initial Guess and Converged Solution (Case 1)

147



The second solution, resulting from an initial guess closer to the desired local

minimum, is far more reasonable, as shown in Table 4.8. Satellite altitude is low,

and sensor range is on par with the 3 satellite case, as expected. The deployment

budget of only 214 $M turns out to be the most cost-efficient constellation analyzed

in this example to deliver near-total single coverage in AS.

Figure 4.10 illustrates that the converged solution is a constrained local min-

imum, as desired (note that the upper bound on sensor range is different from that

in Figure 4.8). Figure 4.11b illustrates again that the optimal sensor range causes

an intersection between neighboring range shells with the upper target altitude shell

(UTAS), as expected.

Table 4.8: Example 2b – Parameters and Solution (Case 2)

Parameter Value Description

n 4 number of satellites
Amin 0.999AAS area constraint
R0 6000 km initial guess, R
h0 500 km initial guess, h

Ropt 7978.556 km converged cost-optimal R
hopt 376.418 km converged cost-optimal h
Γopt 213.391 $M converged cost at solution

A1×opt −Amin 1.167× 10−4 km2 coverage area surplus
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(a) Initial Guess

(b) Converged Solution

Figure 4.11: Example 2b – Initial Guess and Converged Solution (Case 2)
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4.4.3 Example 2c – 10 Satellites

Finally, the largest, and most costly constellation analyzed in this example,

the 10 satellite case also features (not surprisingly) the shortest necessary sensor

range.

As with the previous cases in this example, the optimality of the solution is

clear in Figure 4.12, where it corresponds to a constrained minimum in deployment

cost. Further, as with the previous examples, it is clear from Figure 4.13b that the

sensor range corresponds to an intersection between neighboring range shells with

the upper target altitude shell (UTAS).

Table 4.9: Example 2c – Parameters and Solution

Parameter Value Description

n 10 number of satellites
Amin 0.999AAS area constraint
R0 1000 km initial guess, R
h0 1000 km initial guess, h

Ropt 4680.102 km converged cost-optimal R
hopt 1202.932 km converged cost-optimal h
Γopt 300.108 $M converged cost at solution

A1×opt −Amin 1.461× 10−2 km2 coverage area surplus
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Figure 4.12: Example 2c – Constraint and Objective Contours
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(a) Initial Guess

(b) Converged Solution

Figure 4.13: Example 2c – Initial Guess and Converged Solution
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4.4.4 Cost vs. Constellation Size

As mentioned in Section 4.4.2, the more well-behaved 4 satellite solution

corresponds to the most cost-efficient constellation, while the 10 satellite solution

is the worst (out of constellations analyzed). This result is, of course, relative to

the exceedingly simple financial model presented in Section 4.1. By analyzing the

remaining constellation sizes between 3 and 10 satellites (5 through 9 satellites), a

trend is identified, as shown in Figure 4.14. This result clearly demonstrates the 4

satellite constellation’s superiority in terms of cost efficiency within the context of

this example. Solutions for the 5 through 9 satellite constellations are presented in

Appendix B.2.
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4.5 Example 3 – Coverage as both an Objective and a Constraint

Double coverage area is maximized subject to two constraints – single cov-

erage area must be at least 99.9% of the total area enclosed (as in Example 2), and

deployment cost must not exceed a specified budget. The parameters describing the

tangent height shell (THS) and dual-altitude band shell, AS, are shown in Table

4.10 along with the computed area inside AS.

Table 4.10: Example 3 – Parameters

Parameter Value Description

RE 6378.14 km assumed Earth radius
ht 100 km tangent height altitude
hl 1000 km lower target altitude
hu 5000 km upper target altitude
m 100 PPC initial polygon resolution

AAS 235,307,769 km2 total area in AS

n 18 number of satellites
A1×min 0.999AAS area constraint
Γmax 515 $M deployment cost constraint
R0 1000 km initial guess, R
h0 1000 km initial guess, h

As with the preceding examples, satellites are assumed to be equally dis-

tributed in a single circular orbit, and are equipped with omni-directional sensors.

Under these assumptions the satellite sensor range, R, and the satellite altitude,

h, are sufficient to fully define a unique state of the system, resulting in a two-

dimensional vector of optimization variables denoted by

xp =
[
R h

]
. (4.17)

The performance index that is minimized with respect to xp (double coverage
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area) is given by

J = −A2×(R, h, n), (4.18)

with the negative sign included with the understanding that minimization of −A2×

is equivalent to maximization of A2×.

Four inequality constraints are considered:

c =


Amin −A1×

Γ(R, h, n)− Γmax

−R
href − h

 ≤ 0, (4.19)

where the inequality is understood to apply element-wise between vectors c and 0.

The constraint on deployment cost is necessary to ensure that there is a unique solu-

tion – without this budget, 100% single and 100% double coverage can be achieved

with an infinite number of solutions of suitably large R and h values.

The converged solution, found in 16 SQP iterations, is shown in Table 4.11.

Contours of the phase space are shown in Figure 4.15. The area and cost con-

straints are drawn as light and heavy dotted lines respectively. Recall that the area

constraint corresponds to a minimum acceptable single coverage area, i.e. the so-

lution is bounded to the left by the area constraint in Figure 4.15. Similarly, the

cost constraint dictates the maximum possible deployment cost, i.e. the solution is

bounded to the right by the cost constraint. Thus, the solution must (and does),

exist between these two boundaries. A solution would not exist for a significantly

reduced budget, as the single coverage area constraint would then be impossible to

satisfy (the small feasible region between the constraints would not exist).
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Figure 4.16 shows the initial guess and converged solution coverage configu-

rations. Note that 100% single coverage is achieved in the double coverage-optimal

solution.

Table 4.11: Example 3 – Solution

Parameter Value Description

Ropt 4348.122 km converged area(2×)-optimal R
hopt 1365.850 km converged area(2×)-optimal h
A2×opt 224,057,561 km2 double coverage area at solution

Γopt − Γmax 1.023× 10−12 $M budget overrun
A1×opt −Amin 2.353× 105 km2 single coverage area surplus
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Figure 4.15: Example 3 – Constraint and Objective Contours
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(a) Initial Guess (b) Single Coverage at Converged Solution

(c) Double Coverage at Converged Solution

Figure 4.16: Example 3 – Constraint and Objective Contours

159



4.6 Example 4 – Arbitrary Sensor Profile

This problem illustrates how arbitrary sensor profiles can be used with the

numerical ATH coverage models developed in Section 3.2 to design constellations.

The satellite sensor cross-section considered here is by no means based on any real-

world hardware. Prior to addressing the actual design problem, a brief discussion

is presented that illustrates how the effective satellite range shell, RSE is obtained,

starting from a simple hand-drawn sketch.

4.6.1 Defining the Arbitrary Effective Range Shell

One of the fundamental advantages of the numerical analysis of ATH cov-

erage is that investigations are not restricted simply to the omni-directional sen-

sor case, or any case where an analytical geometric representation of the sensor

cross-section can be derived. Consider the case shown in Figure 4.17. This sketch

represents half of an in-plane sensor cross-section, and was hand-drawn by the in-

vestigator. There are no exact mathematical equations governing the path, making

it ‘arbitrary’ for the purposes of this discussion.

Upon importation of the drawing via digital scanner, it is slightly adjusted

using a graphics program to smooth the boundary and correct the angle at the end

of the curve, making it perpendicular to the x direction (as intended). The result-

ing image is then analyzed using a figure analysis software package,31 producing a

series of (x, y) coordinates describing the half-curve. In MATLAB, the half-curve

is imported, the sharp tip is moved to the origin, and the lower half is generated

by replicating the (x, y) coordinates in reverse, while changing the y coordinates to
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Figure 4.17: Example 4 – A ‘Back of the Envelope’ Arbitrary Sensor Cross-Section

their negative reciprocals. The coordinates are then scaled to produce a teardrop-

shaped sensor cross-section that is of unit length, with a maximum width of 0.6.

The sharp tip is centered on the spacecraft, as shown in Figure 4.18. This curve can

then be scaled to any length, R, simply by multiplying all (x, y) coordinates by R

(prior to any coordinate translation, of course).

Further, an in-plane attitude of the spacecraft (which is now a parameter,

as the sensor is no longer omni-directional), or flight path angle, α can be defined.

This angle is defined relative to the plane that is orthogonal to the satellite position

vector. Traditionally, this plane is referred to as the local horizon. However, in

this study, ‘horizon’ refers to a circular boundary around the Earth, as discussed in

Chapter 1, and the two concepts should not be confused. Flight path angle is shown

in Figure 4.19. Due to the symmetry about the satellite look-axis, denoted by the
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Figure 4.18: Example 4 – Arbitrary Sensor Cross-Section Imported to MATLAB

arrow on the satellite body in Figure 4.19, flight path angle is constrained by

−π
2
≤ α ≤ π

2
. (4.20)

Once scaled, translated, and rotated as necessary, this arbitrarily shaped cross-

section represents the sensor range shell, RSarb.

Although this arbitrary sensor cross-section represents a tear-drop shape,

any shape could have been used, and placed anywhere in relation to the space-

craft. The only caveat is that the sensor region must be assumed to possess some

form of symmetry across the orbit-plane such that ATH coverage measured in-plane

somehow corresponds to ATH coverage in a three-dimensional volumetric sense.

Having defined the arbitrary range shell, RSarb, the region corresponding to

the tangent height triangle (THT) is removed in order to form the arbitrary effective
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Figure 4.19: Example 4 – Arbitrary Sensor Cross-Section Notation

range shell, RSE . As discussed in Section 3.2.1.2, this involves the formation of a

polygon representing the THT, that is used to perform the polygon clipping opera-

tion RS−THT = RSE . The two far-side vertices of the THT can be determined by

simple geometry, and the third vertex is coincident with the satellite. The clipping

operation is illustrated in Figure 4.20, where the THT is represented by the dashed

triangle, and the shaded region represents the effective range shell, RSE . The extent

of the THT need only exceed the maximum extent of RSarb to ensure there are no

leftover regions beyond the THT after the clipping operation. In this example, the

distance to the far side of the THT (along the look-axis) is chosen to be 1.1R.

Possessing the means to generate the arbitrary effective range shells, it is

then straightforward to utilize the numerical ATH coverage models developed in

Section 3.2 to evaluate the coverage they provide.

163



 
E

RS

 
s
r 

t
r THT

 T
H

S

Figure 4.20: Example 4 – Clipping the THT From RSarb to Form RSE

4.6.2 Problem Statement and Solution

The problem solved here can be considered an extension of the problem

addressed in Example 1 – maximization of single ATH coverage subject to a deploy-

ment constraint. First, it is important to note that the financial model parameters

are slightly modified for this example, as shown in Table 4.1, where barb is used.

This parameter is adjusted from bOD to reflect the reduced coverage area relative to

the sensor range, R.

First, the parameter vector is formed, just as in Example 1, but with the

addition of the flight path angle, α (uniform across the constellation):

xp = [R h α]. (4.21)

Next, the objective function is defined as

J = −A1×(R, h, α, n), (4.22)
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which is to be minimized (to maximize single coverage). This problem is subject to

five inequality constraints that are written in vector form as

c =


Γ(R, h, n)− Γmax

−R
href − h
α− π

2
π
2 − α

 ≤ 0. (4.23)

Note that the financial model, described in Section 4.1, does not depend upon flight

path angle, α.

The parameters used in this problem are shown in Table 4.12. The initial

guess is intentionally chosen to be far away in all three dimensions from the expected

(by intuition) solution. Also note that although 100 PPC is the polygon resolution

used for the altitude shell, the arbitrary range shell as generated in MATLAB con-

sists of 110 vertices. This is purely an artifact of the curve generation process, and

an order-of-magnitude similarity with m is considered acceptable.

Table 4.12: Example 4 – Parameters

Parameter Value Description

RE 6378.14 km assumed Earth radius
ht 100 km tangent height altitude
hl 1000 km lower target altitude
hu 5000 km upper target altitude
m 100 PPC initial polygon resolution

n 7 number of satellites
Γmax 250 $M deployment cost constraint
R0 1000 km initial guess, R
h0 4000 km initial guess, h
α0 45◦ initial guess, α
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After 41 SQP iterations, the optimizer converges to the solution shown in

Table 4.13. In order to visualize this three degree-of-freedom problem, contours at

the solution are produced holding one variable fixed, creating a pair of contour plots

for ATH coverage area and deployment cost. Figure 4.21 depicts overall and detail

contours when holding flight path angle constant at the solution. Note that the detail

contour (Figure 4.21b) uses a rescaled color map, and the colors do not correspond

to the colors in the overall contour (Figure 4.21a). These figures illustrate that

coverage area only decreases in any feasible direction in R or h (i.e. not across the

constraint boundary). Similarly, holding h fixed at the solution yields the contours

shown in Figure 4.22. Just as in the case of constant flight path angle, any variation

in R and α in a feasible direction results in a decrease in ATH coverage area. As with

earlier examples constrained by deployment cost, because of the quadratic behavior

of the cost function in both R and h, the solution must fall on or to the left of the

constraint boundary.

While these contour illustrations are by no means sufficient condition to de-

clare optimality of the solution, the SQP optimizer in fmincon does return a flag

indicating that it has found a constrained locally optimal solution. The MATLAB

SQP implementation utilizes a variation of the Karush-Kuhn-Tucker (KKT) condi-

tions32 as one of several criteria to determine optimality. Generally, KKT is only

a necessary condition for optimality. However, for continuously differentiable and

convex objective and constraint functions (as is the case in this problem), KKT also

provides sufficient condition for optimality.33
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Table 4.13: Example 4 – Solution

Parameter Value Description

Ropt 11396.402 km converged area-optimal R
hopt 897.559 km converged area-optimal h
αopt −5.937◦ converged area-optimal α
A1×opt 214,239,724 km2 single coverage area at solution

Γopt − Γmax 0 $M budget overrun
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Figure 4.21: Example 4 – Objective Function (Single Coverage Area, Constant
α = −5.937◦ at Solution)
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Figure 4.22: Example 4 – Objective Function (Single Coverage Area, Constant
h = 897.559 km at Solution)
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Figure 4.23: Example 4 – Constraint Function (Deployment Cost)
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(a) Initial Guess

(b) Converged Solution

Figure 4.24: Example 4 – Initial Guess and Converged Solution
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Chapter 5

Conclusions

In this study numerical ATH coverage algorithms are developed and pre-

sented that allow computation of ATH coverage area for any desired coverage mul-

tiplicity. The approach described involves discretization (into polygons) of in-plane

satellite coverage regions and regions of interest (assumed in this research to be a

dual-altitude band shell bounded above and below by prescribed altitudes). The

interactions between these polygons are analyzed by performing different sequences

of polygon clipping operations, yielding a result polygon that represents the region

exhibiting the desired coverage multiplicity bounded by the region of interest. When

the enclosed area of this result polygon is computed, it provides an effective measure

of in-plane ATH coverage for a given constellation configuration.

The necessary sequences of polygon clipping operations for this analysis are

first developed using set notation with a focus on efficiency by avoiding unneces-

sary polygon clipping operations. These efficient ATH coverage algorithms are then

implemented using several different polygon clipping implementations which are

compared by their performance. The error introduced by approximating curvilin-

ear regions with finite-resolution polygons is extensively analyzed, and relationships

guiding appropriate polygon resolution selection for a desired accuracy are devel-

oped.
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Several example problems are then solved that illustrate how the numerical

ATH coverage algorithms can be incorporated into a satellite constellation design

problem. Cases using both omni-directional and arbitrary sensor profiles are consid-

ered. Using a parameter optimization code, the coverage algorithms are first used

as objective functions to maximize ATH coverage, then as constraints requiring a

target ATH coverage amount be achieved. Simple though they may be, these exam-

ples demonstrate the utility of the numerical ATH coverage algorithms in the design

of constellation configurations for ATH coverage.

It is worth emphasizing the generality this methodology allows in the analysis

of ATH coverage. First, the sensor cross-sections can be of any shape, and can

even be unique to each satellite in a constellation. Secondly, the analysis can be

used in both time-invariant and time-varying analyses – the only two time-varying

parameters necessary are the locations and in-plane attitudes of each spacecraft at

a given time. Lastly, although the current study only considers the dual-altitude

band shell as the region of interest, it is possible to analyze for coverage in regions

of interest that are of any desired planar form. For instance, the region of interest

could be fixed above a certain location on the central body, i.e. to analyze for ATH

coverage specifically above a prescribed geographic region.

5.1 Future Work

The fundamental limitation of the research presented here is that all satel-

lites are assumed to remain in a single plane, and their sensor profiles are assumed

to exhibit some form of symmetry across the orbit-plane. This symmetry is nec-
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essary so that in-plane coverage can be assumed as representative of volumetric

coverage in a three-dimensional sense. Expanding to the three-dimensional problem

explicitly, one possible approach is to analyze the problem as interactions between

various polyhedra representing the coverage regions and regions of interest. How-

ever, the existing numerical methods for the analysis of the intersection between

three-dimensional polyhedra are far less general than in the two-dimensional case

investigated in this study, and typically require that the polyhedra be convex. Such

an approach requires convex decomposition of non-convex polyhedra in order to

perform the necessary operations between them.

Alternatively, a future extension to this research to address the volumetric

case (requiring additional computational resources) could be to analyze in-plane

ATH coverage within a series of level planes offset perpendicularly from the or-

bital plane. Using this technique, volumetric coverage can be approximated layer-

by-layer, much in the same fashion that some three-dimensional printers generate

prototype objects. This approach could be implemented using the ATH coverage al-

gorithms developed in this study and would only require some method to determine

offset-plane cross-sections of the sensor regions and regions of interest.
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Appendix A

Rederivation of the Analytical ATH Coverage Model

This appendix presents a rederivation of the analytical above the horizon

(ATH) coverage model developed by Marchand and Kobel.4 The motivations for

carrying this out are two-fold: first, it proves to be an invaluable exercise to develop

a familiarity with the overall problem. Secondly, the resulting analytical implemen-

tation is instrumental in verifying the numerical models developed for the current

research problem.

The resulting piecewise-differentiable set of functions developed here differs

slightly in form from that found by the original investigators,4 but is geometrically

equivalent and produces the same results.

A.1 Introduction

Marchand and Kobel4 present a coverage model that, given geometric pa-

rameters of the Earth, regions of interest (dual-altitude band shell), and satellite

position, and sensor capability, returns the ATH coverage area (in a planar analy-

sis). This coverage can then be used as part of a design process to determine sets of

parameters providing the desired amount of ATH coverage. This analysis is subject

to a number of simplifying assumptions. First, the three-dimensional scenario is

reduced to a planar case. This results in no loss of generality when also assum-
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ing omni-directional sensor profiles for the satellite (i.e. spherical, centered on the

satellite). This assumption produces circular in-plane sensor profile cross-sections.

Additionally, only circular satellite orbits are considered – this assumption makes

the amount of coverage time-invariant. Finally, only the coverage provided by a

single satellite is considered.

The result is a piecewise-smooth analytical model that explicitly provides

the coverage area (which correlates to coverage volume, in the three-dimensional

case) for a given set of parameters in the dual-altitude band ATH coverage prob-

lem. As is shown in Section 3.1.6, this analytical model allows very rapid calculation

of coverage area relative to its numerical counterparts. Numerical methods allow

analysis of a much more generalized set of problems at a cost of performance and

accuracy. However, the analytical results are fundamentally important to the re-

search presented in this thesis for validation as well as development of intuition by

the investigator.

A.2 Problem Geometry and Notation

A typical problem configuration is shown in Figure A.1. The state can be

completely defined by five fundamental quantities: The radii of the 4 drawn circles

(described in the proceeding sections), and the distance between S and E, which

denote the locations of the satellite and center of the Earth respectively.
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A.2.1 Tangent Height Shell – THS – Radius rt

The innermost circle centered on the Earth represents the tangent height

shell (THS). This shell, with radius rt, determines the below the horizon (BTH)

region in the direction of the Earth. From a practical standpoint, one can imagine

this as representing the radius of the outer reaches of the Earth’s atmosphere, re-

flecting light or causing other disturbances that negate the function of the satellite’s

on-board sensors.

Practical considerations require that rt be greater than or equal to the radius

of the Earth’s surface.

A.2.2 Lower Target Altitude Shell – LTAS – Radius rl

The lower target altitude shell (LTAS), with radius rl, centered on the Earth,

specifies the lower bound of the altitude band of interest. Any ATH coverage area

resulting below this altitude is of no interest to the investigation.

The LTAS must be larger than the THS and smaller than the UTAS.

A.2.3 Upper Target Altitude Shell – UTAS – Radius ru

The upper target altitude shell (UTAS), with radius ru, centered on the

Earth, denotes the upper altitude bound. The LTAS and UTAS define an annulus-

shaped region of interest, where the investigator seeks to determine the amount

sensor coverage provided by the satellite. The only constraint on the size of the

UTAS is that it must be larger than the LTAS.
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A.2.4 Sensor Range Shell – RS – Radius R

The sensor range shell (RS), with radius R, centered on the satellite, denotes

the range for an omni-directional satellite sensor. The sensor range can be any non-

negative value.

A.2.5 Circular Satellite Orbit – Radius rs

Under the previously discussed assumption that the satellite in question has

a circular orbit, its altitude is constant, and thus the radius of its orbit, rs, is also

constant. In the context of this problem, rs can be taken to be the separation

between the center of the Sensor Range Shell and the centers of any of the other

shells (that are of course concentric with one another).

A.2.6 Tangent Height Cone – THC

The in-plane cross-section of the tangent height cone (THC) is shown in

Figure A.1 as the central triangular region bounded by the straight dashed lines

between points S, U1A , and U2A (although it actually extends to infinity, away from

S). While the THC is not explicitly described as the aforementioned parameters,

rt, rl, ru, rs, and R are, it is a useful concept in the development of the analytical

ATH coverage model. The THC geometry depends upon the satellite orbit radius,

and the radius of the THS. As shown in the figure, the THC represents the BTH

region in the direction of the Earth.
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A.2.7 Shell and Line Intersection Points

The various intersections between the sides of the THC and the 4 funda-

mental shells are shown in Figure A.1. Their nomenclature is consistent with the

work published by Marchand and Kobel,4 in order to simplify comparison between

the two results.

Intersection points calculated in this analysis are determined identically to

the methods clearly outlined by Marchand and Kobel,4 and are thus not reproduced

here. Suffice it to say, the locations of the various intersections of interest are

determined by simple geometry and solving the equations of various pairs of circles

and lines simultaneously.

A.3 Fundamental Area Elements

It is desired to determine the area enclosed in the various complex regions

listed in the described piecewise-smooth ATH coverage model in Section A.4. While

the coverage regions themselves are generally complicated in shape, they are reduced

to the simple addition and subtraction of the areas of various fundamental regions

that can be computed by geometry. This section outlines the different elements,

their slightly modified notation (relative to the published results by Marchand and

Kobel),4 and diagrams to denote the variables referring to each dimension. Note

that the composite triangle of the first kind, AΛ1 , used by Marchand and Kobel is not

used in the current formulation, and is thus omitted from this section. However, the

composite triangle of the second kind AΛ2 is used, and the 2 subscript is maintained

to avoid introducing additional confusion when comparing the two results.
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Figure A.2: Area of Triangular Region – A∆(a, b, c)

All of the area elements described in this section depend upon quantities

taken either directly from the problem parameters (rt, rl, ru, rs, R), or they are easily

obtained after determination of the intersection points described in the literature.4

A.3.1 Triangular Regions – A∆(a, b, c)

Given a potentially scalene triangle with three sides with lengths a, b, and c

as shown in Figure A.2, the semi-perimeter is defined as

s ≡ a+ b+ c

2
, (A.1)

and thus, by Heron’s Formula,34 it can be shown that the area enclosed within the

triangle is given by

A∆(a, b, c) =
√
s(s− a)(s− b)(s− c). (A.2)
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Figure A.3: Area of Circular Segment – AΣ(r, c)

A.3.2 Circular Segments – AΣ(r, c)

The circular segment shown in Figure A.3 is determined (as shown by Marc-

hand and Kobel)4 by the relation

AΣ(r, c) = r2 sin−1[c/2r]− (c/4)
√

4r2 − c2, (A.3)

where r is the radius of the circle, and c is the chord length of the segment.

A.3.3 Circular Sectors – Aπ1(r, c)

The area of a simple sector of a circle with radius r, shown in Figure A.4, is

found by A = (1/2)r2λ, where λ is the interior angle (in radians) of the triangular

portion, opposite the chord, c. Given c and r, λ is determined by trigonometry to

be

λ = 2 sin−1
( c
2r

)
, (A.4)

which can then be used to compute the area;

Aπ1(r, c) = r2 sin−1
( c
2r

)
. (A.5)
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Figure A.4: Area of Circular Sector – Aπ1(r, c)

A.3.4 Composite Teardrop Sectors – Aπ2(r,R, rs)

The area of the region shown in Figure A.5 is determined by the summation

of the area of a triangle, A∆, and a circular segment, AΣ, or it’s complement (i.e.

the rest of the area inside the circle, excluding the circular segment). In order to do

this, the chord length c (distance between the intersection points of the two circles)

is determined.

First, define a coordinate system where the y-axis lies along rs, starting at

the origin O and pointing in the direction of the satellite, S. The x-axis begins at

the origin and points perpendicularly to rs (to the right in Figure A.5), creating a

standard right-handed coordinate system. Given values of radii for the range shell,

the altitude shell, (R and r respectively), and the distance between their centers

(rs), their positions are

yint =
r2 + r2s −R2

2rs
,

xint = ±
√
r2 − y2int,

c = 2|xint|,

(A.6)
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Figure A.5: Area of Composite Teardrop Sector – Aπ2(r,R, rs)

which then make it possible to define

Aπ2(r,R, rs) =

{
A∆(r, c, r) +AΣ(r, c) : R >

√
r2s + r2

A∆(r, c, r) + 2πr2 −AΣ(r, c) : R ≤
√
r2s + r2

, (A.7)

with c defined as above.

A.3.5 Composite Triangle of the Second Kind – AΛ2(r, a, b, c)

The area of the region shown in Figure A.6 is determined by the difference

between a triangle (A∆) and a circular segment (AΣ). With this in mind, it is clear

that

AΛ2(r, a, b, c) = A∆(a, b, c)−AΣ(r, b), (A.8)

where a, b, and c are sides of the initial triangle, and r is the radius of curvature of

the ‘missing’ circular segment on side b.
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Figure A.6: Area of Composite Triangle of the Second Kind – AΛ2(r, a, b, c)

A.3.6 Intersection of Altitude and Range Shells – AAS∩RS(r,R, rs)

The shaded area shown in Figure A.7 is determined as a function of the previ-

ously defined fundamental area elements. It can be shown that generalized determi-

nation of this area is broken down into four major cases.

Case 1a: r > R+ rs or R > r + rs

The first case, referred to as Case 1a, occurs when one shell is completely

encompassed inside the other. This case is checked for first, because computation

of two of the other cases requires determination of the intersection points between

the two shells (that do not exist in this case). This condition can be easily detected,

and the area computed as

AAS∩RS(r,R, rs) =

{
πR2 : r > R+ rs
πr2 : R > r + rs

. (A.9)
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Case 1b: rs ≥ R+ r

The trivial case, 1b, occurs when the range shell and altitude shell are suf-

ficiently far apart that there is no overlap at all, thus the area is

AAS∩RS(r,R, rs) = 0. (A.10)

Case 2: r > R

Assuming the intersection points exist (because they did not in Case 1), the

distance between the two intersection points of the range and altitude shells must

be determined. This distance, c, can be readily calculated by Equation A.6. Case

2 occurs if the range shell has a larger radius, R, than the altitude shell radius, r.

This case is then divided into two sub-cases,

AAS∩RS(r,R, rs) =

{
AΣ(R, c) +AΣ(r, c) : rs >

√
r2 −R2

AΣ(r, c) + πR2 −AΣ(R, c) : rs ≤
√
r2 −R2

. (A.11)

Case 3: r ≤ R

Finally, Case 3 occurs when the altitude shell is larger than the range shell.

As with Case 2, the distance between the two intersection points, c, is computed,

as in Equation A.6. The area is then be computed as

AAS∩RS(r,R, rs) =

{
AΣ(R, c) + πr2 −AΣ(r, c) : rs ≤

√
R2 − r2

AΣ(R, c) +AΣ(r, c) : rs >
√
R2 − r2

. (A.12)
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Figure A.7: Area of Intersection of Altitude and Range Shells – AAS∩RS(r,R, rs)

A.4 Revised ATH Coverage Model

The coverage model presented in this section was constructed independently,

but using the same fundamental area element definitions published by Marchand and

Kobel.4 The resulting equations were then compared to the published results for

verification. In the context of this problem, the expressions governing the coverage

model are not unique, thus the definitions presented here differ slightly from the

published results. As a consequence of these different definitions, the original 18

sub-cases presented in the literature are reduced to the 12 presented here.

The now considered 12 sub-cases are divided into 3 different groups, de-

pending upon whether rs < rl (Case 1), rl ≤ rs < ru (Case 2), or ru ≤ rs (Case

3). Each sub-case description below provides explicit conditions under which each
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piecewise-smooth segment of the ATH coverage model applies.
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A.4.1 Case 1 – rs < rl

A.4.1.1 Case 1a

Conditions:

rs < rl

R < |L1AS|
(A.13)

Area of coverage:

A = AAS∩RS(ru, R, rs)−AAS∩RS(rl, R, rs) (A.14)

Diagram:
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Figure A.8: Variations of Case 1a
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A.4.1.2 Case 1b

Conditions:

rs < rl

|L1AS| ≤ R < |U1AS|
(A.15)

Area of coverage:

A = AAS∩RS(ru, R, rs)−Aπ1(R, |T1T2|)− πr2l +Aπ2(rl, |L1AS|, rs) (A.16)

Diagram:
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Figure A.9: Variations of Case 1b

191



A.4.1.3 Case 1c

Conditions:

rs < rl

|U1AS| < R
(A.17)

Area of coverage:

A = πr2u − πr2l −Aπ2(ru, |U1AS|, rs) +Aπ2(rl, |L1AS|, rs) (A.18)

Diagram:
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Figure A.10: Variations of Case 1c
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A.4.2 Case 2 – rl ≤ rs < ru

A.4.2.1 Case 2a

Conditions:

rl ≤ rs < ru

R < |L1BS|
(A.19)

Area of coverage:

A = AAS∩RS(ru, R, rs)−Aπ1(R, |T1T2|) (A.20)

Diagram:
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Figure A.11: Variations of Case 2a
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A.4.2.2 Case 2b

Conditions:

rl ≤ rs < ru

|L1BS| ≤ R < |L1AS|
(A.21)

Area of coverage:

A = AAS∩RS(ru, R, rs)−AAS∩RS(rl, R, rs)

−AΛ2(rl, |L2BS|, |L1BL2B |, |L1BS|)
(A.22)

Diagram:
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Figure A.12: Case 2b
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A.4.2.3 Case 2c

Conditions:

rl ≤ rs < ru

|L1AS| ≤ R < |U1AS|
(A.23)

Area of coverage:

A = AAS∩RS(ru, R, rs)−Aπ1(R, |T1T2|)− 2AΣ(rl, |L1AL1B |) (A.24)

Diagram:
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Figure A.13: Variations of Case 2c
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A.4.2.4 Case 2d

Conditions:

rl ≤ rs < ru

|U1AS| < R
(A.25)

Area of coverage:

A = πr2u −Aπ2(ru, |U1AS|, rs)− 2AΣ(rl, |L1AL1B |) (A.26)

Diagram:
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Figure A.14: Variations of Case 2d
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A.4.3 Case 3 – ru ≤ rs

A.4.3.1 Case 3a

Conditions:

ru < rs

R < |U1BS|
(A.27)

Area of coverage:

A = 0 (A.28)

Diagram:
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Figure A.15: Case 3a
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A.4.3.2 Case 3b

Conditions:

ru < rs

|U1BS| ≤ R < |L1BS|
(A.29)

Area of coverage:

A = AAS∩RS(ru, R, rs)−Aπ1(R, |T1T2|)

+AΛ2(ru, |U2BS|, |U2BU1B |, |U1BS|)
(A.30)

Diagram:
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Figure A.16: Case 3b
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A.4.3.3 Case 3c

Conditions:

ru < rs

|L1BS| ≤ R < |L1AS|
(A.31)

Area of coverage:

A = AAS∩RS(ru, R, rs)−AAS∩RS(rl, R, rs)

−AΛ2(rl, |L2BS|, |L1BL2B |, |L1BS|)

+AΛ2(ru, |U2BS|, |U1BU2B |, |U1BS|)

(A.32)

Diagram:
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Figure A.17: Case 3c
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A.4.3.4 Case 3d

Conditions:

ru < rs

|L1AS| ≤ R < |U1AS|
(A.33)

Area of coverage:

A = AAS∩RS(ru, R, rs)−Aπ1(R, |T1T2|)

+AΛ2(ru, |U2BS|, |U1BU2B |, |U1BS|)

−2AΣ(rl, |L1AL1B |)

(A.34)

Diagram:
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Figure A.18: Variations of Case 3d
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A.4.3.5 Case 3e

Conditions:

ru < rs

|U1AS| < R
(A.35)

Area of coverage:

A = 2AΣ(ru, |U1AU1B |)− 2AΣ(rl, |L1AL1B |) (A.36)

Diagram:

E

S

B
1

B
2 A

1
A

2

L
1

A

L
2

A

L
1

B

L
2

B

U
1

A

U
2

A

U
1

B

U
2

B

T
1

T
2

E

S

B
1

B
2

L
1

A

L
2

A

L
1

B

L
2

B

U
1

A

U
2

A

U
1

B

U
2

B

T
1

T
2

Figure A.19: Variations of Case 3e
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A.5 Comparison with Published Expressions

Under direct comparison with the results published by Marchand and Ko-

bel,4 there are a number of minor differences between the coverage model sub-case

expressions. In the formulation presented here, several of the published sub-cases

are combined, yielding a smaller set of sub-cases. However, these differences are only

the result of a different representation of the area of coverage, and do not change

the resulting area calculation.

A.6 Implementation

A MATLAB function was developed, based directly on the results presented

in this appendix, and extensive testing and reproduction of published results4

demonstrated correctness. This script proves to be an invaluable validation tool

for the numerical methods developed for this thesis, and is used as a basis for com-

parison in determining the amount of error introduced during numerical analysis of

ATH coverage.
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Appendix B

Additional Example Data

This appendix contains solutions and plots that may be of interest to the

reader, but are omitted from previous chapters for brevity. Aside from some intro-

ductory remarks for each problem, these results are presented without additional

discussion. However, their parameters and figures exactly fit within the context of

the discussion from which they are drawn.

B.1 Chapter 4 – Example 1

The first example in Chapter 4 illustrates maximization of single coverage

subject to a deployment budget constraint. The single and 10 satellite cases are

discussed in Section 4.3, illustrating the impact upon constellation efficiency of re-

dundant coverage (i.e. coverage at higher multiplicity than necessary). The 15

satellite constellation is of note because although it is allocated a deployment bud-

get 40% larger than in the 10 satellite case, it delivers 1.5% less single coverage area.

This hints at the result presented in Section 4.4 that, at least for the financial model

developed in Section 4.1, smaller constellations with more robust sensors are more

financially efficient.

203



B.1.1 Example 1-B1 – 15 Satellites

Table B.1: Example 1-B1 – Parameters and Solution

Parameter Value Description

n 15 number of satellites
Γmax $350M budget constraint
R0 1000 km initial guess, R
h0 3000 km initial guess, h

Ropt 3218.487 km converged area-optimal R
hopt 1562.275 km converged area-optimal h
A1×opt 205, 406, 521 km2 coverage area at solution

Γopt − Γmax 3.669× 10−10 $M budget overrun
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Figure B.1: Example 1-B1 – Constraint and Objective Contours
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(a) Initial Guess

(b) Converged Solution

Figure B.2: Example 1-B1 – Initial Guess and Converged Solution
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B.2 Chapter 4 – Example 2

Example 2 in Chapter 4 explores the minimization of constellation deploy-

ment budget subject to a constraint requiring 99.9% single coverage of the dual-

altitude band area of interest. In Section 4.4.4, 3 through 10 satellite constellations

are analyzed to determine their optimal costs in order to conclude that the 4 satellite

configuration is the most cost-effective according to the financial model developed

in Section 4.1. This section contains the 5 through 9 satellite cases, that are not

explicitly discussed in Chapter 4.

B.2.1 Example 2-B1 – 5 Satellites

Table B.2: Example 2-B1 – Parameters and Solution

Parameter Value Description

n 5 number of satellites
Amin 0.999AAS area constraint
R0 1000 km initial guess, R
h0 1000 km initial guess, h

Ropt 6900.591 km converged cost-optimal R
hopt 592.117 km converged cost-optimal h
Γopt 220.595 $M converged cost at solution

A1×opt −Amin 9.222× 10−4 km2 coverage area surplus
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Figure B.3: Example 2-B1 – Constraint and Objective Contours
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(a) Initial Guess

(b) Converged Solution

Figure B.4: Example 2-B1 – Initial Guess and Converged Solution
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B.2.2 Example 2-B2 – 6 Satellites

Table B.3: Example 2-B2 – Parameters and Solution

Parameter Value Description

n 6 number of satellites
Amin 0.999AAS area constraint
R0 1000 km initial guess, R
h0 1000 km initial guess, h

Ropt 6154.896 km converged cost-optimal R
hopt 786.559 km converged cost-optimal h
Γopt 232.339 $M converged cost at solution

A1×opt −Amin −1.502× 10−3 km2 coverage area surplus
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Figure B.5: Example 2-B2 – Constraint and Objective Contours
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(a) Initial Guess

(b) Converged Solution

Figure B.6: Example 2-B2 – Initial Guess and Converged Solution
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B.2.3 Example 2-B3 – 7 Satellites

Table B.4: Example 2-B3 – Parameters and Solution

Parameter Value Description

n 7 number of satellites
Amin 0.999AAS area constraint
R0 1000 km initial guess, R
h0 1000 km initial guess, h

Ropt 5606.081 km converged cost-optimal R
hopt 958.616 km converged cost-optimal h
Γopt 246.915 $M converged cost at solution

A1×opt −Amin −4.522× 10−4 km2 coverage area surplus
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Figure B.7: Example 2-B3 – Constraint and Objective Contours
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(a) Initial Guess

(b) Converged Solution

Figure B.8: Example 2-B3 – Initial Guess and Converged Solution
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B.2.4 Example 2-B4 – 8 Satellites

Table B.5: Example 2-B4 – Parameters and Solution

Parameter Value Description

n 8 number of satellites
Amin 0.999AAS area constraint
R0 1000 km initial guess, R
h0 1000 km initial guess, h

Ropt 5243.835 km converged cost-optimal R
hopt 1007.459 km converged cost-optimal h
Γopt 263.539 $M converged cost at solution

A1×opt −Amin −6.613× 10−5 km2 coverage area surplus
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Figure B.9: Example 2-B4 – Constraint and Objective Contours
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(a) Initial Guess

(b) Converged Solution

Figure B.10: Example 2-B4 – Initial Guess and Converged Solution
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B.2.5 Example 2-B5 – 9 Satellites

Table B.6: Example 2-B5 – Parameters and Solution

Parameter Value Description

n 9 number of satellites
Amin 0.999AAS area constraint
R0 1000 km initial guess, R
h0 1000 km initial guess, h

Ropt 4993.666 km converged cost-optimal R
hopt 1016.415 km converged cost-optimal h
Γopt 281.988 $M converged cost at solution

A1×opt −Amin −3.296× 10−5 km2 coverage area surplus
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Figure B.11: Example 2-B5 – Constraint and Objective Contours
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(a) Initial Guess

(b) Converged Solution

Figure B.12: Example 2-B5 – Initial Guess and Converged Solution
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