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An Onboard Targeting Algorithm with Earth-Return

Applications

Chad Wilson Smith, M.S.E

The University of Texas at Austin, 2008

Supervisor: Belinda Marchand

Over the course of the next decade, NASA plans to send a crew exploration vehicle

(CEV) to the Moon as part of the Constellation program. The development of a

suitable onboard Earth-return targeting algorithm is one of many tasks required

in the execution of this mission. The targeting algorithm envisioned is capable of

targeting a specified Earth entry state, obeys the propulsive limits of the spacecraft,

and remains executable at any point along the return transfer.

A modified differential correction scheme is selected as a candidate for the

targeting algorithm. This process, known as the Two Level Corrector (TLC), acts to

find a feasible solution in the neighborhood of an initial guess. As its name implies,

the TLC process consists of two separate phases. The first phase employs a basic

targeter to achieve position continuity across the transfer, while the second phase

acts to achieve velocity continuity and satisfy any additional constraints.

vii



The goal of this investigation is to augment the theory of the TLC process

to accommodate the requirements of an onboard targeting algorithm for the Earth-

return portion of the upcoming Orion lunar missions, which includes Trans-Earth

Injection (TEI) and trajectory correction maneuvers (TCM’s). The work presented

in this investigation demonstrates the algorithm as a proof of concept. Different

mission constraints are targeted over a series of examples to provide supporting

evidence. In addition, a finite burn formulation is devised and adapted to the TLC

process. Finally, an end-to-end numerical optimization of the transfer is presented

and contrasted against a converged solution from the targeting algorithm.
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Chapter 1

Introduction

On January 14th, 2004 President Bush stood at NASA headquarters in Washington

D.C. and spoke words that had a large and lasting impact on the members of the

space community across the nation.

Today I announce a new plan to explore space and extend a human

presence across our solar system. We will begin the effort quickly, using

existing programs and personnel. We will make steady progress one

mission, one voyage, one landing at a time.

In particular, the new plan for the U.S.-manned space-flight program mentioned

here includes the first flights of a new Crew Exploration Vehicle (CEV), by 2014,

and the return of humans to the Moon before 2020.

1.1 Problem Description

While traveling to the Moon is a task previously accomplished, the latest initiative

poses a different set of objectives and challenges. These upcoming lunar missions
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serve to strengthen the existing knowledge base and technical confidence necessary

to take man beyond the Moon. Rather than providing a quick means of lunar trans-

portation, the CEV incorporates the advantages of modern technology and improves

on the method employed during the Apollo era. It is also explicitly required, for

these upcoming missions, that the CEV have the ability to return safely and au-

tonomously to Earth even in the event that communication is lost with the ground.

This gives way to the necessity of an onboard targeting algorithm.

The factors that influence the design of this guidance algorithm are: limited

knowledge of physical data, limited knowledge of instrumentation errors, limited

data processing capability aboard the spacecraft, and accuracy of the numerical

guidance method itself. These four items represent the sources of guidance error.

Since the first two cannot be improved by the selection of the algorithm, the third

and fourth items are the focus of this study.

The Earth-return guidance algorithm is required to be applicable to two

phases of the return trajectory. The first is referred to as Trans-Earth injection

(TEI). A three-burn TEI sequence as it is currently envisioned [4]: 1) raises the

apoapsis of the lunar parking orbit to allow for a period of up to 48 hours, 2)

adjusts the orbital plane at apoapsis to coincide with the desired entry plan at

Earth, and 3) injects the spacecraft onto an Earth-bound trajectory from periapsis.

An artist’s rendition of this three-burn scenario is illustrated in Figure 1.1 [1]. Of

course, conceptually, the three-burn sequence relies on two-body dynamics and is

therefore only an approximation to the true sequence. An optimal three-burn TEI

sequence, for example, loosely follows this format in the full nonlinear dynamical

model, changing plane and various orbit characteristics with the execution of each

maneuver. Once the TEI sequence is complete, Earth entry targeting ensues. This

2



step is comprised of a series of small trajectory correction maneuvers (TCM’s) that

offset errors due to the execution of TEI or other errors occurring during transit

(i.e. crew movement, jettisons, etc.).

The algorithm itself requires operational efficiency and reliability. Efficiency

is associated with small computation times that are not taxing to the onboard pro-

cessors. This computation constraint removes any potential for loading a numerical

optimizer onboard the shuttle, as even the most well-tuned trajectory optimiza-

tion routine is computationally burdensome to the CEV, “Orion”. Reliability of

the algorithm then implies the ability to find a usable solution consistently in the

application to the Earth-return.

Figure 1.1: Trans-Earth Injection as Currently envisioned [1]

Given the time and mission constraints present on this midcourse guidance
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algorithm, a Two Level Corrector (TLC) is identified as a suitable option for onboard

targeting. This algorithm identifies nearby solutions that satisfy the imposed set

of constraints. The process requires an initial guess, or reference trajectory, and is

sensitive to the quality of this guess.

1.2 Prior Work

Onboard guidance is an area that has been of interest since the beginning of space

flight. In general, the guidance process involves: 1) vehicle state measurement, 2)

computation of control actions necessary to properly adjust position and velocity,

and 3) delivery of suitable adjustment commands to the vehicle’s control system.

The guidance algorithm under consideration for this investigation pertains to the

second of these three components in the guidance process. The goal of this type

of targeting algorithm is to provide onboard trajectory guidance using minimal

computation.

While the work previously completed in the area of midcourse guidance al-

gorithms is extensive, it can be highlighted by a discussion of implicit and explicit

techniques. A classification of these methods has previously been performed by

Slater and Stern [5]. Implicit methods involve a linearized approximation to the

dynamics with respect to some reference trajectory, while explicit methods attempt

to model perturbations using perturbed Keplerian orbits. Traditionally, explicit

methods require more computation but are also more robust because they do not

require a pre-computed reference trajectory. On the other hand, it is assumed that

the guidance routine ultimately serves as a backup and that radio communications

are maintained throughout the midcourse correction. Subsequently, the accuracy of

the implicit method is enhanced with the updated reference trajectories based on

4



ground support data.

Examples of implicit methods include multi-body and two-body linearized

dynamics, each of which rely on a process called differential corrections. A dif-

ferential corrections procedure works to achieve a trajectory that is continuous in

position, given an initial state and a targeted terminal state. The process uses a

linear approximation of the spacecraft’s motion with respect to some reference. The

formulation of the method itself closely resembles a Newton-root finding technique.

Differential corrections is the basis for the implicit guidance algorithm used

during the Apollo missions and is also the basis of the first level of the implicit

TLC process presented in this study. A summary of the Apollo guidance effort is

presented by Battin [2]. This summary indicates that the initial Apollo missions

use a reference trajectory that initiates at the departure state and terminates at the

entry state. When any deviation occurs from this reference, the implicit guidance

technique uses a combination of matrix operations and the position displacement to

determine a velocity correction. This idea is captured in Figure 1.2 [2].

During later developments [2], a different approach is employed that aban-

dons the use of a pre-existing reference trajectory. In place of the pre-determined

reference, the current best estimate of the spacecraft’s state is propagated forward

using numerical integration. Linearizing about this arc, the error in the final state

with respect to the targeted state is used to evaluate the required TCM. The dispar-

ity between the final state and the targeted state is represented by a heading angle,

A, measured with respect to the stars. This is shown Figure 1.3 [2]. Given six mea-

surements of this angle, along with the basic navigation equation, the correction

needed in both the position and velocity can be extrapolated.

The TLC process possesses enhanced targeting capabilities in contrast with

5



Figure 1.2: Early Apollo Guidance Strategy [2]

Figure 1.3: Angle Measurement For Determining Guidance Error [2]
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any of the implicit or explicit guidance methods previously mentioned. Of course,

it is likely that it also requires greater computational overhead. Applied to the TEI

sequence, the single maneuver targeting employed by the Apollo algorithm leads

to increased propulsive costs. Although, the theory is still suitable for TCM’s. As

opposed to the Apollo guidance algorithm, the TLC process is capable of targeting

multiple maneuvers and entry constraints simultaneously. Howell and Pernicka are

the initial founders of the TLC process [6, 7], and Marchand, Howell, and Wilson

later expanded the capability of the algorithm through the addition of constraint

targeting [8, 9].

1.3 Document Organization

This document is composed of eight chapters. The discussion begins with the basic

theoretical foundation and evolves into a detailed discussion of the results.

In Chapter 2, the basic framework for the problem is introduced. Coordinate

frames are defined, the state representation of choice is summarized, and the equa-

tions of motion are derived. The dynamics are governed by the Earth-Moon-Sun

gravity field, and the relative n-body equations of motion are used in the devel-

opment of the mathematical model. A linearized approximation is subsequently

employed to identify the variational equation for the system.

In Chapter 3, The TLC process is discussed in detail. The method for en-

suring position continuity is first described. Subsequently, the discussion evolves

and addresses the process that is used to achieve velocity continuity and provide

for constraint targeting. A sample set of target constraints is presented. This in-

cludes a the velocity continuity constraints, entry constraints, maneuver constraints,

intermediate patch state constraints, and others.
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In Chapter 4, several examples involving the application of the TLC algo-

rithm are presented. First, a methodology for generating a suitable initial guess

generation is summarized. Following this, the detailed series of results illustrates

the effectiveness of the TLC approach.

In Chapter 5, the TLC theory is adapted to incorporate finite burns. Histor-

ically, the TLC process relies on impulsive maneuvers to control the characteristics

of the targeting. The addition of finite burns to the TLC process is a new and ex-

citing development resulting from this investigation and more accurately represents

large maneuvers that span over a non-insignificant amount of time. An example is

then presented to supplement the theory.

In Chapter 6, numerical optimization techniques are applied to the Earth-

return as a basis for comparison against the targeting results. The theory of basic

parameter optimization and numerical techniques is presented. The methods dis-

cussed are then applied to identify the optimal three-burn transfers considered in

Chapter 4. These results serve to validate the TLC process and compare the result-

ing suboptimal targeting solutions to the optimal transfer paths.

In Chapter 7, a comparison between the optimal and the targeted solutions

is made. This provides for a true measure of the optimality of the targeting results

achieved in Chapter 4. Close attention is paid to the differences in these results,

and ultimately a greater understanding of the TLC application is achieved.

In Chapter 8, conclusions and future recommendations for study are pre-

sented. Potential improvements are suggested, and analysis of the current work is

performed.
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Chapter 2

Background Information

This chapter develops the background information necessary for constructing the

TLC process. In doing so, the nonlinear equations of motion are first presented,

followed by a linearized approximation to these dynamics. This linearization, sum-

marized in this investigation by the variational equation, provides the basis for the

TLC algorithm.

2.1 Coordinate Frames

In this investigation, the directional axes of the working frame are consistent with

the Earth-Mean Equator of J2000 (EME2000) frame [10]. In this frame, the x-axis is

defined in the direction of the vernal equinox (cross product of the Earth’s spin axis

and the Earth’s angular momentum about the sun) at noon on January 1, 2000, the

z-axis is defined along the Earth’s spin axis, and the y-axis completes the triad. The

origin of the coordinate system is defined by either Earth Centered Inertial (ECI) or

Moon Centered Inertial (MCI). Transformations between the ECI and MCI frames

simply consists of an origin translation.
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To formally define these transformations, let ⊙ denote the Sun, ⊕ the Earth,

and $ the Moon. The position vector from the Earth to the Moon is defined

as R̄⊕→$(t), where the first subscript denotes the origin and the last subscript

denotes the target body. This quantity is extracted from the DE405 ephemeris, and

is subsequently employed in all transformations between ECI and MCI coordinates,

as shown in Equations 2.1 and 2.2. A visual representation of each of these frames

is depicted in Figures 2.1 and 2.2

R̄⊕→s/c(t) = R̄⊕→$(t) + R̄$→s/c(t), (2.1)

R̄$→s/c(t) = −R̄⊕→$(t) + R̄⊕→s/c(t). (2.2)

Figure 2.1: ECI frame
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Figure 2.2: MCI frame

2.2 Dynamical Model

Over the course of an interplanetary mission, a spacecraft is exposed to various

perturbing forces (i.e. imparts an acceleration), including: solar radiation pressure,

drag, central body oblateness effects, third body oblateness effects, gravity, and

magnetic radiation. The extent to which these forces affect the motion of the space-

craft depends on the nature of the mission. The governing dynamics are dictated

by the spacecraft’s environment, which in this case is the Earth-Moon system. Due

to the short transfer times and sole presence within the Earth-Moon gravity field,

gravitational effects are orders of magnitude larger than any other over the course

of the Earth-return transfer leg (terminal point of the algorithm is entry interface).

However, within the Earth-Moon gravity field, the gravitational effects due to the

Sun are largely present, and therefore are considered along with the Earth and the

Moon.

The equations of motion that govern the path of a spacecraft in a gravity
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field of n-bodies are well-documented. A sample formulation is presented in Bate,

Mueller, and White [11]. The goal is to express the equations of motion relative to

the center of the Moon or the Earth. To that end, consider the inverse square law,

Fg = −GMm

R2
. (2.3)

Equation 2.3 contains the scalar form of Newton’s law of gravity, however this

expression may be extended to capture the force in a particular direction,

F̄g = −GMm

R2

R̄

R
. (2.4)

In the presence of n gravitational perturbations are present, the net force acting on

the spacecraft is

F̄g = Gmi

n
∑

j=1

j 6=i

−mj

R2
ji

R̄ji. (2.5)

Subsequently, the spacecraft acceleration due to the net force in Equation 2.5 is

¨̄R = −G
n
∑

j=1

j 6=i

mj

R2
ji

R̄ji. (2.6)

This equation captures ¨̄R in an inertial frame, and R̄ is a vector that originates

at an inertial point, such as the solar system barycenter. In this study, it is most

convenient to represent the equations of motion relative to a moving reference point,

such as the Earth or the Moon. For example, consider two arbitrary gravitating

bodies (labeled as 1 and 2). The inertial accelerations of each body in an n-body

12



gravitational field are determined as

¨̄R1 = −G
n
∑

j=2

mj

R2
j1

R̄j1, (2.7)

¨̄R2 = −G
n
∑

j=1

j 6=2

mj

R2
j2

R̄j2. (2.8)

Thus, the relative acceleration of body 2 with respect to body 1 is given by

¨̄R12 = ¨̄R2 − ¨̄R1. (2.9)

Substituting Equations 2.7 and 2.8 into Equation 2.9 yields the inertial acceleration

of body 2 with respect to body 1,

¨̄R12 = G

n
∑

j=1

j 6=2

−mj

R2
j2

R̄j2 −G

n
∑

j=2

−mj

R2
j1

R̄j1. (2.10)

Equation 2.10 is further simplified by extracting the relative accelerations of bodies

1 and 2 from the summation,

¨̄R12 =









−Gm1

R3
12

R̄12 −G
n
∑

j=1

j 6=2

mj

R2
j2

R̄j2









−



−Gm2

R3
21

R̄21 −G
n
∑

j=2

mj

R2
j1

R̄j1



 . (2.11)

Furthermore, note that R̄12 = −R̄21. Thus, the classical form of the relative n-body

equations of motion is determined as,

¨̄R12 = −G (m1 +m2)

R3
12

R̄12 +
n
∑

j=3

−Gmj

(

R̄j2

R3
j2

− R̄j1

R3
j1

)

. (2.12)

Equation 2.12 suggests that the relative equations of motion associated with the
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ECI and MCI frames are given by Equations 2.13 and 2.14, respectively.

¨̄
R⊕→s/c = −

G (m⊕)

R3
⊕→s/c

R̄⊕→s/c −Gm⊙

 

R̄⊙→s/c

R3
⊙→s/c

−

R̄⊙→⊕

R3
⊙→⊕

!

−Gm$

 

R̄$→s/c

R3
$→s/c

−

R̄$→⊙

R3
$→⊙

!

(2.13)

¨̄
R$→s/c = −

G
`

m$

´

R3
$→s/c

R̄$→s/c −Gm⊙

 

R̄⊙→s/c

R3
⊙→s/c

−

R̄⊙→$

R3
⊙→$

!

−Gm⊕

 

R̄⊕→s/c

R3
⊕→s/c

−

R̄⊕→⊙

R3
⊕→⊙

!

(2.14)

In Equations 2.13 and 2.14, the mass of the spacecraft is assumed to be negligible,

and the positions of the celestial bodies are actively retrieved at each step of the

integration from the DE405 Ephemeris. The DE405 ephemeris provides the position

and velocity of all nine planets, and the Moon, in EME2000 coordinates, the working

frame of choice in this study.

2.3 The Variational Equation

The underlying theory of the TLC targeting algorithm in this investigation relies on

the linearized representation of the state equation,

˙̄X = F
(

X̄
)

. (2.15)

In Equation 2.15, X̄ is a general state vector that defines the three-dimensional

position and velocity information for the spacecraft,

X̄ =







R̄

V̄







6×1

. (2.16)

The time derivative of Equation 2.16,

˙̄X =







V̄

ā







6×1

, (2.17)
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provides three-dimensional velocity and acceleration information for the spacecraft.

A linearized approximation to Equation 2.15 is obtained from a Taylor series

expansion [12] truncated to first-order. In particular, this expansion will be applied

to the displacement of the function from some reference state, X̄∗

F
(

X̄
)

−F
(

X̄∗
)

=
∂F

∂X̄
|∗
(

X̄ − X̄∗
)

+
1

2!

∂2F

∂X̄2
|∗
(

X̄ − X̄∗
)2
...+HigherOrderT erms (2.18)

For notational purposes, the differential of the state relative to the reference is

represented by

dX̄ = X̄ − X̄∗. (2.19)

Substituting Equation 2.19 into Equation 2.18 yields

d ˙̄X =
∂F

∂X̄
|∗dX̄ +

1

2!

∂2F

∂X̄2
dX̄2...+HOT ′s. (2.20)

Note that in Equation 2.20 the differential of the state, dX̄ , does not cancel the

denominator of the partial derivative. The denominator assumes an infinitesimal

change in X̄ where the differential is small but finite [12].

From the expression in Equation 2.20, a linear approximation for the total

deviation of X̄ from X̄∗ is achieved by truncating the Taylor series to include only

the first-order term,

d ˙̄X =
∂F

∂X̄
|∗dX̄. (2.21)

In Equation 2.21, ∂F
∂X̄

is the Jacobian of the system, and represented by A(t) [13].

Since the Earth-Moon dynamics defined in this study are formulated in the inertial

frame, the Jacobian is expressed by the form,

∂ ˙̄X

∂X̄
=







03×3 I3×3

∂ ¨̄R
∂R̄

03×3






. (2.22)
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In Equation 2.22, the lower-left submatrix is computed directly from Equation 2.13

or 2.14 depending on the desired origin. Equations 2.23 shows the partial derivative

for the ECI frame, and Equation 2.24 summarizes the partial derivative for the MCI

frame.

∂ ¨̄R

∂R̄
= Gm⊙

(

3R̄s/c→⊙R̄
T
s/c→⊙

R5
s/c→⊙

− 1

R3
⊕→⊙

I3×3

)

+Gm$

(

3R̄s/c→$R̄
T
s/c→$

R5
s/c→$

− 1

R3
⊕→$

I3×3

)

(2.23)

and,

∂ ¨̄R

∂R̄
= Gm⊙

(

3R̄s/c→⊙R̄
T
s/c→⊙

R5
s/c→⊙

− 1

R3
$→⊙

I3×3

)

+Gm⊕

(

3R̄s/c→⊕R̄
T
s/c→⊕

R5
s/c→⊕

− 1

R3
$→⊕

I3×3

)

(2.24)

The solution to the first-order differential equation in Equation 2.21 is well known

and depends on the state transition matrix

dX̄t = Φ̃t,t0dX̄t0 . (2.25)

Also, the calculation of the state transition matrix is governed by

˙̃Φ = ÃΦ̃t,t0 . (2.26)

Initially at t=t0, Φ̃t0,t0 = Ĩ, where Ĩ is the N ×N identity matrix, and N represents

the length of X̄.

Of course, the differential of the spacecraft state in Equation 2.25, dX̄ , is

associated with a specific fixed value of t. To allow additional flexibility, it is advan-

tageous to consider Equation 2.25 in the context of a non-contemporaneous varia-

tion. Non-contemporaneous analysis accommodates the time varying nature of the

linearized dynamics in this investigation. Figure 2.3 illustrates a visual representa-

tion of contemporaneous vs. non-contemporaneous and thus details the difference
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between a differential and a variation. This discrepancy between differentials and

variations is outlined in many texts, with one such example given by Weinstock [14]

and another by Hull [3]. The non-contemporaneous form of Equation 2.23 is written

as
(

δX̄(t) + X̄(t)dt
)

= Φ̃
(

δX̄(t0) + ˙̄X(t0)dt
)

. (2.27)

Figure 2.3: Differential vs. Variation [3]

Equation 2.27 is referred to as the variational equation. This variational

equation is the basis of the targeting algorithms described in this investigation.
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Chapter 3

Impulsive Trajectory Targeting

The two-level corrector is the basis for this targeting investigation. This procedure

is an iterative one. The first of the two iterative procedures that constitute the

process satisfies position continuity by making small adjustments to the velocity.

This occurs across all specified nodes, or patch points, along a provided reference

path. The second procedure uses the displacement of positions and times of these

patch points to satisfy the selected set of imposed constraints (including velocity

continuity). For every Level-Two correction that takes place, a series of Level-

One corrections is performed sequentially across all patch states. As a numerical

technique, these may be considered as the major and minor iterations of the routine.

The TLC algorithm [9], is developed in a generalized framework. That is, it

is applicable to any regime that follows the form in Equation 2.15. The focus of this

chapter is the development and description of the ideas that encompass the TLC

process. This discussion begins with the basic concepts of the Level-One process and

evolves into a detailed description of the constraint targeting with the Level-Two

process.
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3.1 Level-One Correction using Impulsive Maneuvers

A Level-One correction is analogous to Lambert’s problem. Lambert’s problem

entails finding the transfer arc in a two-body regime that connects a given initial and

final position vector for a fixed time of flight. Using the two-body approximation, a

simple iterative technique permits a solution to this problem. However, in the Earth-

Moon-Sun gravity field, two-body approximations are inappropriate. Therefore,

rather than a Lambert solver, an iterative method that employs the variational

equation is chosen. To that end, consider Equation 2.27 from time t0 to tf ,







δR̄−
f − V̄ −

f δtf

δV̄ −
f − ā−f δtf






=







Ãtf ,t0 B̃tf ,t0

C̃tf ,t0 D̃tf ,t0













δR̄+
0 − V̄ +

0 δt0

δV̄ +
0 − ā+

0 δt0






. (3.1)

Note that the ‘+’ and ‘-’ superscripts denote the state just after and just before the

patch point. These states are considered to be infinitely close to the patch point.

Also, the submatrices Ãtf ,t0 , B̃tf ,t0 , C̃tf ,t0 , D̃tf ,t0 correspond to the components of

the state transition matrix
∂R̄t0

∂R̄tf

,
∂R̄t0

∂V̄tf

,
∂V̄t0

∂R̄tf

,
∂V̄t0

∂V̄tf

. In a fixed time of flight targeting

problem: t0, R̄0, and tf are fixed. Thus, δR̄0 = δtf = δt0 = 0 and the first vector

expression of Equation 3.1 reduces to

δR̄−
f = B̃tf ,t0δV̄

+
0 . (3.2)

In a linear sense, the velocity correction required to meet the target is

δV̄ +
0 = B̃−1

tf ,t0δR̄
−
f . (3.3)
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In determining the inverse in Equation 3.3, it is important to note that B̃−1
tf ,t0 6=

B̃t0,tf . This identity only holds for the entire state transition matrix, not its sub-

matrices.

Equation 3.3 represents the fundamental component of a standard differential

corrections procedure [11] used to determine the velocity necessary at the departure

point to reach the terminal position. A Level-One correction is then the iterative

application of the linearized approximation in Equation 3.3 to the nonlinear problem.

The solution is successfully identified once the final position is achieved within some

specified tolerance.

As an example, consider initial state X̄0 =

[

16378.145 0 0 0 3.694 0

]

and terminal target position R̄ =

[

−10378.22 0 0

]

, with respect to the ECI

frame. Eight iterations of the Level-One correction achieves the targeted position

within the tolerance of 10−4 km. The required |∆V̄ | is 1329 m/s. The result is illus-

trated in Figure 3.1. This plot shows, however, that the desired terminal position

is nearly achieved after only 2 iterations of the Level-One correction procedure.

3.1.1 Time Dependent Level-One Correction

The traditional Level-One algorithm assumes the final time is a fixed parameter.

However, this need not necessarily be imposed. If tf were not fixed, the first vector

expression of Equation 3.1 is given as

δR̄−
f = B̃tf ,t0δV̄

+
0 + V̄ −

f δtf . (3.4)
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Figure 3.1: Lambert Targeting Example

Equation 3.4 is written in vector form as

δR̄f =

[

B̃tf ,t0 V̄
−
f

]







δV̄ +
0

δttf






. (3.5)

Equation 3.5 represents an under-determined system. That is, δR̄+
0 and δtf repre-

sent four control parameters for three targets. Therefore, there are more unknown

variables than equations and less dependent variables than independent variables.

Given this, an infinite number of solutions exist. A convenient choice for the solu-

tion of Equation 3.5 is the minimum norm solution. The minimum norm method

[15] identifies a solution to

ē = M̃ b̄, (3.6)
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that minimizes b̄,

b̄ = M̃T
(

M̃M̃T
)−1

ē. (3.7)

In the case of a Level-One correction, as that in Equation 3.4, applying a minimum

norm solution identifies the smallest possible δV̄ +
0 and δtf that achieve the desired

δR̄f = 0. This is shown mathematically as







δV̄ +
0

δtf






= M̃T

(

M̃M̃T
)−1

δR̄f . (3.8)

In Equation 3.8, M̃ =

[

B̃t0,tf V̄ −
f

]

, ē =

[

δV̄ +
0 δtf

]T

, and b̄ = δR̄f .

3.2 Level-Two Correction

The Level-One targeting algorithm is a very useful tool and has many applications.

However, the method is ineffective when the number of targets exceeds the number

of control variables. This problem is addressed by the Level-Two process [6]. While

the Level-One process adjusts the velocity at the patch states to satisfy position

continuity, the Level-Two correction applies small adjustments in the positions and

times of the patch states to achieve velocity continuity.

A simple example of three consecutive patch points is employed to aid in

this discussion. Consider applying the Level-One correction process to this three

patch point example where: k-1 denotes the initial point, k represents the interior

point, and k+1 gives terminal point. Applying the Level-One corrections process

to this example results in a set of consecutive arcs such as those illustrated in

Figure 3.2(a). As a consequence of the nature of the Level-One process, a non-

zero maneuver exists at patch points k-1 and k. The Level-Two process is a linear
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iterative process that is capable of searching the neighborhood of Figure 3.2(a) for

a solution that is continuous in velocity. Such a solution is represented in Figure

3.2(b). Mathematically, the goal is to achieve

∆V̄k = 0 = V̄ +

k − V̄ −
k . (3.9)

Given the expression in Equation 3.9, it is easily deduced that

V̄ +
k = V̄ −

k . (3.10)

Subsequently, it follows that the variation in the velocity on either side of k must

Figure 3.2: (a) Level 1 correction (b) Level 2 correction applied over three patch
points
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follow the same relationship,

δV̄ +
k = δV̄ −

k . (3.11)

This implies that,

δ∆V̄k = 0 = δV̄ +

k − δV̄ −
k . (3.12)

Equation 3.12 is equivalent to Equation 3.9. To enforce the velocity continuity con-

straint, it is necessary for Equation 3.12 be written in terms of the desired controls.

For the three patch state case in Figure 3.2, these include: δR̄k−1, δtk−1, δR̄k,δtk, δR̄k+1,

and δtk+1. The linear approximation in Equation 2.27 is used to achieve this rela-

tion [8, 9]. Applying this variational equation to the second arc in the three patch

point example gives







δR̄k − V̄ +
k δtk

δV̄ +

k − ā+

k δtk






=







Ãk,k+1 B̃k,k+1

C̃k,k+1 D̃k,k+1













δR̄k+1 − V̄ −
k+1

δtk+1

δV̄ −
k+1

− ā−k+1
δtk+1






. (3.13)

Note that the ‘+’ and ‘-’ superscripts do not apply to the position terms, as the

position continuity here is assumed to have already been achieved by the Level-One

process. As an intermediate step in defining δV̄ +

k in terms of the control variables,

the vector δV̄ −
k+1

is determined from the first vector expression of Equation 3.13.

δV̄ −
k+1

= B̃−1

k,k+1
δR̄k − B̃−1

k,k+1
Ãk,k+1δR̄k+1 − B̃−1

k,k+1
V̄ +

k δtk +
(

B̃−1
k,k+1

Ãk,k+1V̄
−
k+1

+ ā−k+1

)

δtk+1 (3.14)

Subsequently, δV̄ +

k is determined from substituting Equation 3.14 into the second
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vector expression of Equation 3.13.

δV̄ +
k =

(

D̃k,k+1B̃
−1
k,k+1

)

δR̄k +
(

ā+
k − D̃k,k+1B̃

−1
k,k+1

V̄ +
k

)

δtk +
(

C̃k,k+1 − D̃k,k+1B̃
−1

k,k+1
Ãk,k+1

)

δR̄k+1 +
(

−C̃k,k+1V̄
−
k+1

+ D̃k,k+1B̃
−1
k,k+1

Ãk,k+1V̄
−
k+1

)

δtk+1. (3.15)

Equation 3.15 represents an important result, as the variation in δV̄ +

k is expressed

in terms of the variations in the positions and times of the current and subsequent

patch point. Similarly, employing the variational equation from k-1 to k yields an

expression for δV̄ −
k ,

δV̄ −
k =

(

C̃k,k−1 − D̃k,k−1B̃
−1
k,k−1

Ãk,k−1

)

δR̄k−1 +
(

−C̃k,k−1V̄
+

k−1
+ D̃k,k−1B̃

−1

k,k−1
Ãk,k−1V̄

+

k−1

)

δtk−1 +
(

D̃k,k−1B̃
−1
k,k−1

)

δR̄k +
(

ā−k − D̃k,k−1B̃
−1
k,k−1

V̄ −
k

)

δtk. (3.16)

Finally, the substitution of Equation 3.15 and Equation 3.16 into Equation 3.12

leads to an expression for the variation in impulsive ∆V̄ at point k in terms of the

desired controls,

δ∆V̄k =

[

M̃Rk−1
M̃tk−1

M̃Rk
M̃tk M̃Rk+1

M̃tk+1

]

































δR̄k−1

δtk−1

δRk

δtk

δR̄k+1

δtk+1

































. (3.17)
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The submatrices in Equation 3.17 are,

M̃Rk−1
=

(

−C̃k,k−1 + D̃k,k−1B̃
−1
k,k−1

Ãk,k−1

)

,

M̃tk−1
=

(

C̃k,k−1V̄
+

k−1
− D̃k,k−1B̃

−1

k,k−1
Ãk,k−1V̄

+

k−1

)

,

M̃Rk
=

(

D̃k,k+1B̃
−1
k,k+1

− D̃k,k−1B̃
−1
k,k−1

)

, (3.18)

M̃tk =
(

ā+

k − D̃k,k+1B̃
−1

k,k+1
V̄ +

k − ā−k + D̃k,k−1B̃
−1

k,k−1
V̄ −

k

)

,

M̃Rk+1
=

(

C̃k,k+1 − D̃k,k+1B̃
−1

k,k+1
Ãk,k+1

)

,

M̃tk+1
=

(

−C̃k,k+1V̄
−
k+1

+ D̃k,k+1B̃
−1
k,k+1

Ãk,k+1V̄
−
k+1

Equation 3.17 contains more controls than constraints and is thus an under-

determined system with an infinite number of solutions. Using the minimum norm

solution given by Equation 3.7 provides the smallest changes in the positions and

times of the three patch points that lead to a zero ∆V̄ at point k.

To gain insight into the application of Equation 3.17, consider the trajectory

illustrated in Figure 3.3. The blue crosses represent the position of a sample set of

Earth centered patch states, where the initial and final points are identical to those

in Figure 3.1. The initial and final states are fixed, but all interior states are allowed

to vary to satisfy velocity continuity over the interior patch points. The expression
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in Equation 3.19 represents the application of Equation 3.17 to this example.
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(3.19)

Note, even though δR̄1, δt1 and δR̄6, δt6 are present on the right hand side of the

equation, their values are set to zero to satisfy the fixed end point constraints. Direct

application of the TLC process indicated by Equation 3.19 achieves the solution in

Figure 3.3 in 4 iterations. After these 4 iterations, the magnitude of the ∆V at the

initial patch point is 192 m/s and all interior maneuvers are successfully driven to

zero. The blue crosses and dotted line represent the initial patch states and the

trajectory, respectfully. Clearly, this startup arc represents a poor initial guess due

to the large velocity discontinuities across interior portion of the trajectory. Still,

the TLC process is able to identify a solution that is continuous in velocity in a

matter of a few iterations.

3.3 Constraints

Thus far, the formulation of the TLC scheme presented only describes how to achieve

a velocity continuity constraint. However, the TLC process is applicable to any con-

straint that can be expressed in terms of the control variables, in this case the vari-

ations in the positions and times of the patch points. Constraints may be imposed
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Figure 3.3: Velocity continuity enforced on a simple example

at the end state (final patch point), the initial state, or any interior point along the

transfer. In this investigation, a constraint at the kth patch point is represented by

the notation, αk.

By definition, a constraint imposed at the kth patch point has an explicit

dependence on the position and time at that patch point. However, the constraint

does not have an explicit dependence on any of the remaining patch states. On

the other hand, it is possible for the constraints to be a function of V̄ +
k or V̄ −

k ,

which implies an implicit dependence (displacement of position and times affects
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the velocity) on the neighboring patch states through the following,

δαk =

(

∂αk

∂V̄ −
k

∂V̄ −
k

∂R̄k−1

)

δR̄k−1 +

(

∂αk

∂V̄ −
k

∂V̄ −
k

∂tk−1

)

δtk−1 +

(

∂αk

∂R̄k
+
∂αk

∂V̄ +

k

∂V̄ +
k

∂tk
+
∂αk

∂V̄ −
k

∂V̄ −
k

∂R̄k

)

δR̄k +

(

∂αk

∂tk
+
∂αk

∂V̄ +

k

∂V̄ +

k

∂tk
+
∂αk

∂V̄ −
k

∂V̄ −
k

∂tk

)

δt̄k +

(

∂αk

∂V̄ +

k

∂V̄ +

k

∂R̄k+1

)

δR̄k+1 +

(

∂αk

∂V̄ +

k

∂V̄ +

k

∂tk+1

)

δtk+1 (3.20)

Equation 3.20 demonstrates the operation of the chain rule [12] in obtaining the

desired implicit dependence on the control variables. The partial derivatives of V̄ +

k

and V̄ −
k in this expression are obtained from 3.15 and 3.16,

∂V̄ −
k

∂R̄k−1

=
(

Ck,k−1 −Dk,k−1B
−1

k,k−1
Ak,k−1

)

, (3.21)

∂V̄ −
k

∂tk−1

=
(

−Ck,k−1V̄
+
k−1

+Dk,k−1B
−1
k,k−1

Ak,k−1V̄
+
k−1

)

δtk−1, (3.22)

∂V̄ −
k

∂R̄k
=

(

Dk,k−1B
−1

k,k−1

)

, (3.23)

∂V̄ −
k

∂tk
=

(

ā−k −Dk,k−1B
−1

k,k−1
V̄ −

k

)

, (3.24)

∂V̄ +
k

∂R̄k
=

(

Dk,k+1B
−1
k,k+1

)

, (3.25)

∂V̄ +
k

∂tk
=

(

ā+

k −Dk,k+1B
−1

k,k+1
V̄ +

k

)

, (3.26)

∂V̄ +

k

∂R̄k+1

=
(

Ck,k+1 −Dk,k+1B
−1

k,k+1
Ak,k+1

)

, (3.27)

∂V̄ +
k

∂tk+1

=
(

−Ck,k+1V̄
−
k+1

+Dk,k+1B
−1
k,k+1

Ak,k+1V̄
−
k+1

)

δtk+1. (3.28)

With the definition of the partials in Equations 3.21 through 3.28, the only partial

derivatives in Equation 3.20 that remain undetermined for a given constraint are
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∂αk

∂R̄k
, ∂αk

∂tk
, ∂αk

∂V̄ −

k

, ∂αk

∂V̄ +
k

. To implement a constraint into the TLC algorithm, the rows

of ē and M̃ in Equation 3.17 are augmented to include the error and the partial

derivatives associated with the constraint. The augmented system is still of the

form,

ē = M̃ b̄. (3.29)

However, expanding this augmented system yields







δ∆V̄k

δαk






=







∂∆V̄k

∂b̄

∂αk

∂b̄













δR̄k

δtk






(3.30)

The second row in Equation 3.30 represents the vector expression in Equation 3.20.

A minimum norm solution of Equation 3.30 identifies the smallest changes in position

and time that meet the desired constraints.

Sections 3.3.1 through 3.3.12 summarize a sample set of constraints that are

applicable to the present study. In each of these sections, the constraint is stated and

the associated partial derivatives are determined. The set of constraints presented

includes results previously identified by Marchand, Howell, and Wilson [8, 9], as well

as some new formulations relevant to the Orion TEI.

3.3.1 Position Vector

The position vector constraint at the kth patch point [8],

αpos = R̄k − R̄k−specified, (3.31)

is applicable at any point along a trajectory, including the end point or any other

patch state. This constraint, along with others position related constraints like:
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altitude, latitude, and longitude can all be targeted via the Level-One process.

However, it is useful to incorporate these as Level-Two constraints in the event that

additional constraints are imposed. The only non-zero partial derivative of Equation

3.31 with respect to the control variables is

∂αpos

∂R̄k
= Ĩ3×3. (3.32)

An example of position constraint targeting is shown in Figure 3.4. The position

Figure 3.4: Targeting Position

constraint is applied at the final patch point. The numerical values used for the

initial and targeted values are

Initial position :

[

−6378.145 0.0 0

]

km,

Targeted position :

[

−11378.145 5000.0 0

]

km. (3.33)
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The TLC process is able to converge on the neighborhood of the desired solution

within two iterations. Five iterations are required to achieve the pre-specified con-

vergence tolerance.

3.3.2 Velocity Vector

The velocity vector constraint [8], much like the position vector constraint, is appli-

cable at any point along the trajectory. In addition, the velocity either before (‘-’)

or after (‘+’) the kth patch point may be targeted by

αv− = V̄ −
k − V̄k−specified, (3.34)

αv+ = V̄ +

k − V̄k−specified. (3.35)

The non-zero partial derivatives associated with Equations 3.34 and 3.35 are listed

below,

∂αv−

∂V̄ −
k

= Ĩ3×3, (3.36)

∂αv+

∂V̄ +

k

= Ĩ3×3. (3.37)

3.3.3 Altitude

The altitude constraint [8] is more specifically a constraint imposed on the radial

distance from the origin. This is merely an alteration of Equation 3.28, where at

the kth patch point,

αalt = |R̄k| −Rspecified. (3.38)
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The partial derivative required for targeting Equation 3.38 is

∂αalt

∂R̄k
=

1

2

(

R̄T
k R̄k

)− 1
2 2R̄T

k Ĩ3×3. (3.39)

Equation 3.39 is simplified to

∂αalt

∂R̄k
=

R̄k

|R̄k|
. (3.40)

Figure 3.5 shows the implementation of an altitude constraint on the terminal patch

state. The initial and targeted altitude values are

Initial altitude : 0 km,

Targeted altitude : 3000 km. (3.41)

The altitude is less restrictive than the position vector constraint in Equation 3.32.

Thus, the TLC is able to identify a solution in the neighborhood of the initial guess

that satisfies the specified target.

3.3.4 Earth Entry Latitude

Mathematically speaking, the geocentric latitude at the kth patch point [8],

αlat =
R̄entry · ẑ
|R̄entry|

− sin(φ)specified, (3.42)

is simply the inverse sine of the projection of the position vector onto the Earth’s

z-axis. To avoid quadrant ambiguity, it is useful to target the sine of the latitude

rather than the latitude itself. The partial derivative associated with Equation 3.42

is,

∂αlat

∂R̄k
=

ẑ

|R̄k|
− R̄k

|R̄k|
sin(φ). (3.43)
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Figure 3.5: Targeting Altitude

3.3.5 Earth Entry Longitude

The calculation of longitude is more involved than the constraints outlined previ-

ously. Because it is defined within the Earth’s body-fixed rotating frame, rather

than an inertial frame, the calculation of the longitude includes both the elapsed

time and the rotation of the Earth. The equation for the longitude [16] at the kth

patch point is

θk = tan−1 R̄k · ŷ
R̄k · x̂ − θg0 − ωe (tk − t0) . (3.44)

However, to avoid quadrant ambiguity, it is advantageous to consider the cosine of

the longitude rather than the longitude itself,

cos(θk) = cos

(

tan−1(
R̄k · ˆ̄y

R̄k · ˆ̄x
) − θg0 − ωe (tk − t0)

)

. (3.45)
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For notational purposes, the right ascension term in Equation 3.45 is expressed as

the angle Θ, shown by

Θk = tan−1(
R̄k · ŷ
R̄k · x̂). (3.46)

A formulation for targeting the right ascension itself is included in the previous

investigation by Marchand, Howell, and Wilson [9]. Using a cosine trigonometric

identity, Equation 3.45 is expressed in the more convenient form,

αlon = cos(Θk)cos(−θg0 − ωe (tk − t0)) −

sin(Θk)sin(−θg0 − ωe (tk − t0)) − cos(θ)specified. (3.47)

Equation 3.47 contains the Greenwich hour angle, θg0, in its computation. An ap-

proximation for θg0 is summarized by Vallado [16]. The computation itself depends

on knowledge of the universal time (UT), in fractions of days from midnight on the

current day. The expressions in Equation 3.48 are sufficient for the calculation of

the Greenwich hour angle, however, additional effort is required to ensure that θg0

is defined between 0 and 2π.

jd0 = jd− UT,

UT1 =
jd0 − 2451545

36525
,

θg0 = 100.4606184 + (36000.77004)UT1 + (0.000387933)UT 2
1 −

(2.583 × 10−8)UT 3
1 . (3.48)

Also note that in Equation 3.47, ∆t is found using

(tk − t0) = (86400)UT. (3.49)
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To evaluate the partial derivatives of Equation 3.47, it is useful to recognize the

geometric properties of the right ascension shown in Figure 3.6. From this image,

Figure 3.6: Right Ascension

the expressions for the cosine and sine of the right ascension in Equation 3.47 are

obtained as:

cos(Θk) =
R̄k · x̂

√

(R̄k · x̂)2 + (R̄k · ŷ)2
, (3.50)

sin(Θk) =
R̄k · ŷ

√

(R̄k · x̂)2 + (R̄k · ŷ)2
. (3.51)

The partial derivatives of the cosine and sine of the right ascension in Equations

3.50 and 3.51 are:

∂cos(Θk)

∂R̄k
=

x̂T

(

√

(

R̄T
k x̂
)2

+
(

R̄T
k ŷ
)2

)

− (x̂T (R̄T
k x̂)+ŷT (R̄T

k ŷ))R̄T
k x̂

q

(R̄T
k x̂)

2
+(R̄T

k ŷ)
2

(

R̄T
k

ˆ̄x
)2

+
(

R̄T
k

ˆ̄y
)2

, (3.52)

∂sin(Θk)

∂R̄k
= −

ŷT

(

√

(

R̄T
k x̂
)2

+
(

R̄T
k ŷ
)2

)

− (x̂T (R̄T
k x̂)+ŷT (R̄T

k ŷ))R̄T
k

ˆ̄y
q

(R̄T
k

ˆ̄x)
2
+(R̄T

k
ˆ̄y)

2

(

R̄T
k x̂
)2

+
(

R̄T
k ŷ
)2

. (3.53)
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Finally, the expressions for the non-zero partial derivatives of Equation 3.47 with

respect to the control variables are given by

∂αlon

∂R̄k
=

∂cos(θk)

∂R̄k
cos(−θg0 − ωe (tk − t0)) −

∂sin(θk)

∂R̄k
sin(−θg0 − ωe (tk − t0)), (3.54)

∂αlon

∂tk
= ωe

R̄T
k x̂

√

R̄T
k x̂

2 + R̄T
k ŷ

2

sin(−θg0 − ωe∆t) +

ωe
R̄T

k ŷ
√

R̄T
k x̂

2 + R̄T
k ŷ

2

cos(−θg0 − ωe∆t). (3.55)

Alternate forms of the longitude constraint in Equation 3.47 are also avail-

able. One such alternative involves targeting the sine of the longitude,

αlonb
= sin(Θk)cos(−θg0 − ωe (tk − t0)) +

cos(Θk)sin(−θg0 − ωe (tk − t0)) − sin(θ)specified, (3.56)

and another simply targets the longitude value directly as

αlonc = θk − θspecified. (3.57)

The partial derivatives associated with Equations 3.56 and 3.57 are

∂αlonb

∂R̄k
=

∂sin(θk)

∂R̄k
cos(−θg0 − ωe (tk − t0)) +

∂cos(θk)

∂R̄k
sin(−θg0 − ωe (tk − t0)), (3.58)
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∂αlonb

∂tk
= ωe

R̄T
k ŷ

√

R̄T
k x̂

2 + R̄T
k ŷ

2

sin(−θg0 − ωe∆t) −

ωe
R̄T

k x̂
√

R̄T
k x̂

2 − R̄T
k ŷ

2

cos(−θg0 − ωe∆t), (3.59)

∂αlonc

∂R̄k
=
ŷT
(

R̄T
k x̂
)

− x̂T
(

R̄T ŷ
)

(

R̄T
k x̂
)2

+
(

R̄T
k ŷ
)2

, (3.60)

∂αlonc

∂tk
= −ωe. (3.61)

Each formulation presents unique advantages and disadvantages. While targeting

trigonometric functions allows distinct advantages in avoiding quadrant ambiguities,

they present their own set of disadvantages as well. For example, the sine function

double values between 0 and π, and the cosine function double values between

−π/2 and π/2. Therefore, the best choice among these formulations depends on

the initial and targeted angles themselves and having a variety of options becomes

advantageous.

3.3.6 Entry Flight Path Angle

The entry flight path angle [9], γ, dictates the steepness of the incoming velocity

vector at Earth entry. A visual representation of this angle is captured in Figure

3.7. Equation 3.62 shows the expression for the flight path angle at patch point k,

αfpa =
R̄T V̄ −

k

RV −
k

− sin(γ)specified. (3.62)

The non-zero partial derivatives associated with Equation 3.62 are:

∂αfpa

∂R̄k
=

(V̄ −
k )T

|R̄k||V̄ −
k | − sin(γ)

R̄T
k

|R̄k|2
, (3.63)
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Figure 3.7: Flight Path Angle

∂αfpa

∂V̄ −
k

=
(R̄k)

T

|R̄k||V̄ −
k | − sin(γ)

V̄ −T

k

|V̄ −
k |2 . (3.64)

An example of the entry flight path angle constraint implemented into the standard

set of example patch states is seen in Figure 3.8. The initial and final values of the

flight path angle for this example are,

Initial f light path angle : 0 degrees

Targeted flight path angle : −6 degrees. (3.65)

Note that since the flight patch angle, γ, is reduced by six degrees, the angle of the

incoming velocity vector is rotated toward the center of the Earth to achieve the

solution.
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Figure 3.8: Targeting the Flight Path Angle

3.3.7 Earth Entry Flight Path Azimuth

The Flight Path azimuth is defined in a local spacecraft, North-East-Down frame.

This frame is defined by the following orthogonal unit vectors:

r̂ =
R̄k

Rk
,

ê =
ẑ × r̂

|ẑ × r̂| ,

n̂ =
R̄k × (ẑ × r̂)

|R̄k × (ẑ × r̂)| . (3.66)

The expression for the constraint itself is given by

αaz =
V̄ −

k · n̂
(V̄ −

k · n̂)2 + (V̄ −
k · ê)2 − cos(Az)specified. (3.67)
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All non-zero partial derivatives associated with the flight path azimuth constraint

in Equation 3.67 are captured by the following:

∂αaz

∂R̄k
=

(V̄ −

k )T ∂n̂
∂R̄k

(

√

(

(V̄ −

k )T ê
)2

+
(

(V̄ −

k )T n̂
)2
)

−
“

((V̄ −

k
)T ê)

“

(V̄ −

k
)T ∂ê

∂R̄k

”

+((V̄ −

k
)T ∂n̂

∂R̄k
)((V̄ −

k
)T n̂)

”

((V̄ −

k
)T n̂)

q

((V̄ −

k
)T ê)

2
+((V̄ −

k
)T ê)

2

(

(V̄ −

k )T ˆ̄e
)2

+
(

(V̄ −

k )T ˆ̄n
)2

(3.68)

∂αaz

∂V̄ −

k

=

n̂T

(

√

(

(V̄ −

k )T ê
)2

+
(

(V̄ −

k )T n̂
)2
)

− (((V̄ −

k
)T ê)êT +((V̄ −

k
)T n̂)n̂T )(V̄ −

k
)T n̂

q

((V̄ −

k
)T ê)

2
+((V̄ −

k
)T ê)

2

(

(V̄ −

k )T ê
)2

+
(

(V̄ −

k )T n̂
)2 . (3.69)

Equations 3.68 and 3.69 contain partial derivatives of the coordinate frames with

respect to the control variables. The first of these partials is expressed by

∂ê

∂R̄k
=

(

X̃z

Rk
− (X̃zR̄k)(X̃zR̄k)

T X̃z

[(X̃zR̄k)T (X̃zR̄k)]
3
2

)

. (3.70)

In Equation 3.70, X̃z represents a cross-product in matrix multiplication form,

X̃z =













0 −1 0

1 0 0

0 0 0













, (3.71)

where for example,

ẑ × R̄k = X̃zR̄k. (3.72)

Before the second of the required coordinate frame partial derivatives is given, it is

useful to identify a vector expression for a triple cross-product,

R̄× (ẑ × r̂) = ẑ(R̄T
k R̄k) − R̄k(R̄

T
k ẑ). (3.73)
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Given the simplification in Equation 3.73, the partial derivative of n̂ with respect

to the position at the kth patch point is

∂n̂

∂R̄k
=

∂

∂R̄k

(

ẑ(R̄T
k R̄k) − R̄k(R̄

T
k ẑ)

[(ẑ(R̄T
k R̄k) − R̄k(R̄

T
k ẑ))

T (ẑ(R̄T
k R̄k) − R̄k(R̄

T
k ẑ))]

1
2

)

. (3.74)

Equation 3.74 reduces to

∂n̂

∂R̄k
=

(

2ẑR̄T
k − (R̄T

k ẑ)Ĩ3×3 − (R̄kẑ
T )
)

(χ)−
1
2 − (χ)−

3
2

(ẑ(R̄T
k R̄k) − R̄k(R̄

T
k ẑ))

T
(

2ẑR̄T
k − (R̄T

k ẑ)Ĩ3×3 − (R̄kẑ
T )
)

(ẑ(R̄T
k R̄k) − R̄k(R̄

T
k ẑ)), (3.75)

where,

χ = [(ẑ(R̄T
k R̄k) − R̄k(R̄

T
k ẑ))

T (ẑ(R̄T
k R̄k) − R̄k(R̄

T
k ẑ))]. (3.76)

An example of cosine azimuth targeting is provided by Figure 3.9, where the initial

and final angles are specified as

Initial Azimuth : 90 degrees,

Targeted Azimuth : 0 degrees. (3.77)

Notice in this figure that in changing the azimuth by 90 degrees, the entire transfer

rotates to satisfy the constraint.

Like the latitude, longitude, and flight path angle constraints, alternate tar-

geting formulations exist. In choosing which to use, the numerical properties of each

trigonometric function are considered. Depending on the imposed target values, one

formulation may perform more efficiently than another. One alternative approach
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Figure 3.9: Targeting the Flight Path Azimuth

to targeting the flight path azimuth involves the sine, rather than the cosine,

αazb
=

V̄ −
k · ê

(V̄ −
k · n̂)2 + (V̄ −

k · ê)2
− sin(Az)specified. (3.78)

Another alternate formulation involves targeting the tangent of the flight path az-

imuth,

αazc =
V̄ −

k · ê
V̄ −

k · n̂ − tan(Az)specified. (3.79)

All non-zero partial derivatives associated Equations 3.78 and 3.79 are captured by

the following:

∂αazb

∂R̄k
=

(V̄ −

k )T ∂ê
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(

√
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k )T ê
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k )T n̂
)2
)

−
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k
)T ê)

“
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k
)T ∂ê
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”
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k
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”
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k
)T ê)

q
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(
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(3.80)
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∂αazc

∂R̄k
=

(

(V̄ −

k )T ∂ê
∂R̄k
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∂αazc

∂V̄ −
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=
êT
(

(V̄ −

k )T n̂
)

− n̂T
(

(V̄ −

k )T ê
)

(

(V̄ −

k )T n̂
)2 . (3.83)

3.3.8 Time

Time constraints may be placed at any patch state along the transfer. It can be

beneficial to constrain the terminal entry time of the transfer, and equally important

to freeze an intermediate patch state for applications discussed in Sections 3.3.11

and 3.3.12. The expression used for constraining the time [8] at the kth patch point

is given by

αtime = tk − tdesired. (3.84)

The only non-zero partial derivative is

∂αt

∂tk
= 1. (3.85)

3.3.9 Constraining Individual Maneuvers

During the design process, it may be beneficial, or even necessary, to allow a maneu-

ver at some point along the transfer. That is, if more constraints exist than controls

for a particular problem, either a maneuver must be allowed or additional patch

states must be added to enable convergence. To allow a maneuver in the TLC pro-

cess, the rows corresponding to the maneuver point’s velocity continuity constraint

are removed. However, by simply removing the velocity continuity constraint, it is

possible for the magnitude of the allowed maneuver to become exceedingly large. If
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it is important for this maneuver to remain below a certain threshold, a constraint

may be placed on the magnitude of the maneuver of the kth patch point by

αdelv =
√

∆V̄ T
k ∆V̄k − ∆V̄desired. (3.86)

The non-zero partial derivatives of Equation 3.86 with respect to the controls are

∂αdelv

∂V̄ +

k

=
V̄ +T

k

|V̄ +

k |
, (3.87)

and

∂αdelv

∂V̄ −
k

= − V̄
−T

k

|V̄ −
k |
. (3.88)

3.3.10 Constraining the Total ∆V̄

While the maneuver magnitude constraint in section 3.3.9 has many applications, the

existence of several maneuvers benefits from the use of a different constraint. Rather

than individually constraining the maneuvers, the entire sum can be constrained by

αdelv =

m
∑

k=1

(
√

∆V̄ T
k ∆V̄k − ∆V̄desired). (3.89)

The partial derivative of Equation 3.89 with respect to the controls are

∂αdelv

∂V̄ +

k

=

m
∑

k=1

(
V̄ +T

k

|V̄ +

k | ), (3.90)

∂αdelv

∂V̄ −
k

= −
m
∑

k=1

(
V̄ −T

k

|V̄ −
k | ). (3.91)

This constraint allows for the reduction of the ∆V total to be less confined. When

the maneuver sum is incorporated for a multiple maneuver transfer, the TLC process
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distributes the maneuver reductions in the most dynamically compliant fashion to

meet the constraints. Of course, like Section 3.3.9, the maneuver sum constraint is

only applicable to interior maneuvers.

3.3.11 Constraining the Departure Velocity

The TLC process requires a maneuver at the first patch state to achieve the position

of the second patch point. However, it is not always desirable to allow this maneuver

to exist, and it can, in fact, be removed by requiring that V̄1
+

match V̄1
−
,

αv0 = V̄ +
1 − V̄ −

1 . (3.92)

Of course, for this constraint to successfully remove the initial maneuver, the position

and time constraints at the first patch point must also be enforced. The partial

derivatives for Equation 3.92 are obtained from Equations 3.26 through 3.28 since

δV̄ −
1 = 0 by definition.

3.3.12 Constraining a Patch State

An alternative for dealing with the initial maneuver dilemma in Section 3.3.11 is to

create an artificial patch point or set of patch points prior to the first patch state. In

doing this, it becomes possible to constrain the first maneuver as an interior patch

point. The points prior to this are then subject to change within the TLC process,

but their final values are not of consequence. Consider the plot in Figure 3.10. The

first patch state in this plot is an artificial one, and the second patch state remains

constant in its location throughout the iteration process. In this particular example,

the maneuver at the constrained patch state is held to a value of zero.

To implement the fixed patch state constraint, the position, time, and V̄ −
k
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are each enforced on the first non-artificial patch state. Equations 3.31, 3.84, and

3.34 are used to accomplish this task.

Figure 3.10: Targeting the Altitude While Holding the Second Patch Point Fixed

47



Chapter 4

Targeting Results

As previously mentioned in the first chapter, the goal of this investigation is to

develop an algorithm that can: target Earth entry constraints, use less than 1.4

km/s of ∆V , target multiple maneuvers via a single execution of the routine, and

converge to a solution with minimal computational time. This chapter shows that

the TLC algorithm satisfies these requirements and succeeds in its application to

the Earth-return targeting problem. Five example cases are presented to illustrate

this.

The cases included in this chapter address the targeting problem represented

by a complete end-to-end Earth-return. A full three-burn Earth-return scenario

represents the most challenging application of the TLC algorithm. While this algo-

rithm faces the challenge of being run at any point along the transfer, from TEI-1

to the final TCM, favorable convergence behavior in the end-to-end case provides

assurance that the algorithm is adequate for any of these.

Consider, for example, the targeting of a midcourse correction maneuver. In

this case, the first patch state in the TLC process is located somewhere between TEI-
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3 and Earth entry, and targeting involves only one or two maneuvers. Furthermore,

in the absence of a major catastrophe, the targeting errors are small and thus the

required TCM’s are on the order of 10’s of m/s or smaller. Naturally, a targeting

task of this caliber is much more trivial than the end-to-end undertaking.

The application of the TLC process to the example cases in this chapter is

completed in two phases: generating the initial set of patch points and applying

the TLC procedure to this initial guess. Section 4.1 describes the generation of the

initial patch states for the Earth-return transfer.

4.1 Initial Guess

Since this algorithm relies on the minimum norm solution, the search for a solution

remains in the realm of the initial reference trajectory. Clearly, this implies that the

initial guess is an important part of the TLC process.

While creating a method for automatically generating the initial guess seems

like a daunting task, simplification is attainable. That is, for this project, each

application of this targeting algorithm involves one task: Earth-return targeting. In

this application, the only variables that changes from one initial guess to another

are the: departure date, arrival date, lunar orbit parameters, selection of active

entry constraints, and particular entry constraint values. Applying simple two-body

mechanics [11, 17, 18, 19] and Chapter 3’s targeting methods, a straight-forward

initial arc generation scheme is constructed.

4.1.1 Burn 1

The method for determining the first maneuver begins with the assumption of a

circular lunar parking orbit. Therefore, only variations in altitude, inclination, and
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ascending node are considered. If a non-circular initial orbit were required for the

mission, this approach could easily be altered. However, without additional knowl-

edge on the requirements for the initial orbit, a low-lunar circular orbit seems a

reasonable choice.

The calculation of the maneuver itself begins by retrieving R̄$→⊕ from the

DE405 ephemeris at the targeted entry time. The departure point on the orbit is

chosen as that which most nearly opposes the direction of this vector from the Moon

to the Earth. This direction is given by

R̄departure = − R̄$→⊕

|R̄$→⊕|
. (4.1)

Once the departure point is chosen, the first maneuver is applied along the direction

of the orbital velocity with a magnitude given by

∆V1 =

√

2

(

− µ

Rτ0 +Rapo
+

µ

Rτ0

)

−
√

µ

Rτ0

. (4.2)

The apoapsis radius in Equation 4.2 is given by,

Rapo =

(

(period)

√
µ

2π

)2
3

−Rτ0 . (4.3)

This maneuver places the spacecraft on an intermediate transfer orbit. The period

of the intermediate orbit is left as an input to the user, but is arbitrarily selected

as 48 hours for generating the results in this investigation. An artist’s rendition of

this maneuver is seen in Figure 4.1.
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Figure 4.1: Rendition of Maneuver 1

4.1.2 Burn 2

The second maneuver occurs at the apoapsis of the intermediate transfer orbit.

The position and velocity at this point are found by numerically integrating the

state after burn 1 for half of the intermediate transfer orbit’s period. This time is

calculated by

period = t1 =
π√
µ

Rτ0 +Rapo

2

3
2

. (4.4)

The maneuver applied at this state does not alter the magnitude of the velocity but

rather rotates it. The vector rotation is performed such that the velocity vector

at the apoapsis is aligned with V̄⊕→$(tf ) (−V̄⊕→$(tf ) if the initial lunar orbit is

retrograde). The period of the intermediate orbit remains unchanged, because the

line of apsides is perpendicular to the Earth’s velocity. This rotation is performed
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to reduce the plane change required by the third maneuver to target the Earth. An

artist’s rendition of this maneuver is seen in Figure 4.2.

Figure 4.2: Rendition of Maneuver 2

4.1.3 Burn 3

The third maneuver is applied after propagating the burn 2 state forward until

the periapsis is reached. For the first two maneuvers, two-body mechanics are

assumed in estimating the magnitude and directions of the maneuvers. For the final

maneuver, however, the targeting method in Chapter 3 is utilized.

First, a Level-One correction process is used to target the altitude, latitude,

and longitude at the Earth. The velocity discontinuity created at the periapsis in this

targeting process yields the third maneuver in the three-burn TEI guess generation.

An artist’s rendition of this maneuver is seen in Figure 4.3, and an actual image of
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a three-burn transfer created with this generation process is shown in Figure 4.4.

Figure 4.3: Rendition of Maneuver 3

Thus far, the initial arc generator described only targets the Earth entry

position constraints. However, the velocity constraints are often important as well,

and the Level-Two correction procedure is a viable method for satisfying these

constraints.

To construct an initial guess that satisfies the position and velocity entry

constraints, the Level-One process for calculating TEI-3 is replaced by a Level-Two.

In doing so, the first step is to select several patch points along the arc generated by

the Level-One procedure. Given these patch states, the Level-Two process described

in Chapter 3 is applied in targeting the desired entry constraints.
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Figure 4.4: Example of Initial Guess Implementation at the Moon, MCI

4.1.4 Application of the Initial Guess Generator

The most useful capability of the initial guess generation tool described in Section

4.1 is its ability to satisfy the end constraints. This allows for the TLC’s startup

arc to be in the vicinity of the solution. Since the formulation of the TLC process

relies on a minimum norm calculation, this proves invaluable in solving the selected

examples in this study. However, care must be taken to recognize the limits of this

initial guess arc formulation.

The primary limitation of this initial guess tool is identified at the first ma-

neuver. That is, the desired direction defined by Equation 4.1 may not necessarily

intersect the initial orbit. Consider the image in Figure 4.5. This departure point

is not collinear with R̄$→⊕. Because of this, a plane change is ultimately required

at TEI-3 to target the Earth and maneuver costs are increased.
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The disparity between the departure point and the Earth-Moon line can

be measured via the Earth-Moon-Spacecraft (EMS) angle depicted in Figure 4.5.

Across a lunar cycle, the EMS angle at the initial maneuver point of the TEI se-

Figure 4.5: EMS Angle Vs. Days from jd=2457000.5

quence increases to a magnitude greater than 20 degrees. The evolution of this EMS

value for the first maneuver is shown by the plot in Figure 4.6. Not surprisingly,

Figure 4.6: EMS Angle Vs. Days from jd=2457000.5

the trend in the sum of the maneuvers computed by the initial guess tool follows
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the same trend across the lunar cycle as seen in Figure 4.7. The optimal transfer

magnitudes are achieved via the methods described in Chapter 6, and are only in-

cluded in this figure to provide as a frame of reference. Using the Julian Date epoch

of 2457000.5 chosen for this investigation, the ∆V variation shown in Figure 4.7 is

not an issue, but this trend should be acknowledged for applications of this guess

generator outside this study.

Figure 4.7: Maneuver Sum vs. Days from jd=2457000.5

4.1.5 Patch Point Selection

Beyond the generation of the initial guess itself, the placement of the patch points is

a matter of concern. Since a Level-One correction is executed between patch points,

the computational time increases with an increasing number of patch states, making

their selection important.

There are some simple guidelines that are generally followed when selecting
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these patch points from the startup arc. First, the patch points are chosen far enough

apart. In doing this the computation time of the TLC process is not lengthy, and

the number of patch states is not so excessive that the general shape of the transfer

is constrained. On the other hand, care is also taken to include enough patch points

to adequately represent the startup trajectory. The distribution is not necessarily

evenly spaced in time, and dynamically sensitive regions require a level of different

distributions of the patch states. Finally, the maneuvers along the initial guess arc

are always included in the patch point set to provide an adequate representation of

the initial guess arc to the TLC process.

An example of patch point selection is seen in Figure 4.8. The patch points

selected (red crosses) here are chosen from the MCI frame, because it is more intu-

itive to identify the TEI sequence within this frame. Once these states are captured,

they are transformed into the ECI frame in preparation for the TLC process.

Figure 4.8: Patch Point Selection
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4.2 Numerical Integration

The differential equations given by Equations 2.13, 2.14, and 2.26, represent the

differential equations that must be solved, in both the initial guess generation and

the TLC solution process. However, since these differential equations do not admit

an exact solution, a numerical approximation to their solution is pursued instead.

This requires the use of numerical integration. The integrator chosen for this study

is based on an explicit Runge-Kutta 4-5 formula, using the Dormand-Prince pair

[20].

4.3 Interpreting the Results

Using the TLC process and the initial guess generator described in Section 4.1, sev-

eral example cases are generated. The results include a graphical representation of

both the initial guess and the converged solution. Aside from the plots, additional

information is included such as: entry state information, ∆V values, and an indi-

cation of the computational time. These are captured in Tables 4.1 through 4.3.

In discussing the computation time, however, it is important to note that because

this work is completed in MATLAB, the computation times are unnecessarily large.

Ultimately being transferred to C code, these computation times are inflated by

at least an order of magnitude. Convergence of the TLC process is identified by

a vector that contains the set of constraint errors. When the magnitude of this

vector is reduced below 1e-4, convergence is achieved. Within the initial guess pro-

cedure, however, the convergence threshold is defined by 1e-3 within the Level-Two

component.

For consistency, the initial epoch and the lunar orbit parameters are held
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constant across each of these five cases as

t0 = 2014 − 12 − 9 : 00 s,

a = 100 km,

ecc = 0 o, (4.5)

inc = 135 o,

Ω = 0 km/s,

ω = 0 o.

To further enhance the level of comparison among the examples, the entry targets

are also held fixed as

R = 6500.065 km,

φ = −19.2041 o, (4.6)

θ = 134.5456 o,

γ = −6.03 o,

Az = 13.996 o.

4.4 TLC Results: Five Example Cases

An ideal return involves using a minimum amount of propellant and successfully

targeting of a pre-specified: altitude, latitude, longitude, flight path angle, and

flight path azimuth at entry interface. However, in the event that failures occur

onboard, including the loss of ground communication, the minimum requirement is

that the CEV return safely to Earth within the available means (origin of the 1.4
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km/s ∆V budget constraint).

The first example case presented here demonstrates the TLC’s ability to

target the altitude, latitude, longitude, and flight path angle constraints at entry

interface. In addition, a constraint is imposed on the maneuver sum magnitude,

arbitrarily set to 0.9 km/s.

The plot of the initial guess for this first case is seen in Figure 4.9. This arc

is generated using the process described in Section 4.1. However, because so many

features of the entry state are being constrained in this case, the Level-Two portion

of the initial guess generation is difficult to converge. To allow more freedom in the

convergence process, an additional maneuver is added in the initial guess process

after TEI-3. This maneuver acts to increase the number of controls in the targeting

process, and prevents TEI-3 from becoming unnecessarily large. In addition to this

change, an artificial patch point is added prior to the periapsis, shifting TEI-3 to

an interior patch point of the Level-Two process and allowing a maneuver sum

constraint to be imposed. This 4-maneuver initial guess in Figure 4.9 meets the

altitude, latitude, longitude, and flight path angle constraints, and requires only

1.16 km/s in total ∆V .

Applying the TLC process to a 4-burn initial guess arc naturally lends to a

4-burn solution. However, it is advantageous to reduce this to a 3-burn transfer.

After omitting the patch point associated with the fourth maneuver and enforcing

the altitude, latitude, longitude, flight path angle, and maneuver sum constraints

in the TLC process , the solution in Figure 4.10 is obtained. Tables 4.1 through 4.3

indicate that only 10 iterations and 244.5 seconds of computation time are required

to target this transfer. Combining this computation time with that required to

construct the initial guess yields a total computational effort of six minutes and 19
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Figure 4.9: Case 1: Initial Guess (MCI)

seconds.

As opposed to the solution in Figure 4.10, the simpler approach to targeting

the altitude, latitude, longitude, and flight path angle involves applying the TLC

process directly to the guess in Figure 4.9 without omitting the fourth maneuver or

imposing a maneuver sum constraint. This is the basis of the second case considered

in this investigation. As expected, the result is a 4-burn transfer with a larger

maneuver sum than the first case. A plot of the transfer is shown in Figure 4.11.

Note that in comparing this result against case 1 in Table 4.1, the maneuver sum

is increased by 328 m/s and the computation is decreased by 114.6 seconds. This

captures the trade that exists between maneuver magnitude and TLC computation

time. In imposing an additional constraint on the maneuver sum, such as in case

1, the total ∆V is reduced, but computation time is necessarily sacrificed. Still, in
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Figure 4.10: Case 1: Converged Solution (ECI)

both case 1 and case 2, all imposed constraints are satisfied and the 1.4 km/s ∆V

budget constraint is met.

Cases 1 and 2 represent viable targeting strategies, targeting nearly every

component of the entry state. It is important to note that the most essential of

these constraints is the entry flight path angle, due to the limiting nature of entry

heating constraints. Given this, a more basic set of requirements can be imposed

by the autonomous onboard targeting algorithm and still provide for a safe entry in

the event of communication loss. Imposing the altitude and flight path angle as the

lone targeting requirements certainly admits variability in the landing site obtained

at Earth, however it also provides the most essential features of a fail-safe return

strategy. This is the basis for case 3 in this investigation.

Because the flight path angle is a component of the velocity vector, it is rec-

ommended that the Level-Two portion of the initial guess process again be imposed.

This allows for all the entry constraints to once again be satisfied at the onset of
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Figure 4.11: Case 2: Converged Solution (ECI)

the TLC process. The initial guess created for case 3 is shown in Figure 4.12. It

satisfies the altitude and flight path angle constraints, requires only 4 iterations of

the Level-Two process, and involves a mere ∆V of 1.21 km/s.

Selecting a set of patch states from Figure 4.12 and applying the TLC process

yields the converged solution seen in Figure 4.13. The 124 seconds required for the

initial guess and TLC computation is 140.4 seconds less than case 2. This is an

expected result, as fewer entry constraints provide a simpler targeting task for the

TLC process. This is representative of a trade that exists between the number of

imposed constraints and the required computation time of the TLC process.

Note that no effort is made to reduce the total maneuver magnitude in Figure

4.13. While the sum of maneuvers for this case can be reduced by imposing a

constraint, such as in case 1, it is significant to note that it is well below the 1.4

km/s budget without one. This is permitted by the initial guess generation process.

The sole purpose of the process outlined in Section 4.1 is to provide the TLC with
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Figure 4.12: Case 3: Initial Guess (MCI)

Figure 4.13: Case 3: Converged Solution (ECI)
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an arc in the vicinity of a feasible and propulsively viable solution.

An alternate initial guess for targeting the altitude and flight path angle

constraints is shown by the plot in Figure 4.14. This plot is also generated using

the process described in Section 4.1, only without the inclusion of the Level-Two

portion of the initial guess. In doing this, the entry flight path angle is not satisfied

by the startup arc. The Level-One process (Chapter 3) only has the ability to target

altitude, latitude, and longitude at a pre-specified entry time. However, the benefit

in removing the Level-Two portion of the initial guess is that a mere 14.3 seconds

of computation time are required to generate guess arc.

Figure 4.14: Case 4: Initial Guess (MCI)

Applying the TLC process to the initial guess in Figure 4.14 achieves the

converged transfer seen in Figure 4.15. Unfortunately, the TLC computation time

is 279.8 seconds greater than the value in case 3. A great deal of this computational

effort is dedicated to satisfying the maneuver sum constraint that is imposed to
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keep the total ∆V at or below 1.25 km/s. Unconstrained, the magnitude of the

maneuvers becomes greater than 3 km/s in this example. For this particular case,

the computational time saved in the initial guess procedure is more than undone

by the loss in the TLC time required. As shown in case 3, this extraneous amount

of computation time is preventable by providing a guess that satisfies the entry

constraints. This case demonstrates the benefit of an initial guess that meets the

entry requirements.

Figure 4.15: Case 4: Converged Solution (ECI)

Thus far, an example has not been considered that attempts to constrain the

entire entry state in Equation 4.6. This is the basis for the final case in this section,

where only the speed is not constrained, which is naturally about 11 km/s. It is

advantageous in this case to once again: add an additional patch point, allow an

extra maneuver, and constraint the maneuver sum in the initial guess generation

process. Figure 4.16 shows this initial guess, which requires 25 iterations, 364 sec-

onds of computation time, and a ∆V of 2.3 km/s. From Table 4.2 it is seen that
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this maneuver magnitude is nearly twice that of any initial guess in cases 1-4.

Figure 4.16: Case 5: Initial Guess (MCI)

Selecting patch points from Figure 4.16 and applying the TLC process with

a maneuver sum constraint yields the converged solution in Figure 4.17. While

371 seconds of computational effort is required for this TLC solution, all imposed

constraints are satisfied. This is a significant result given that the initial guess is

900 m/s above the ∆V budget constraint. Of course, while it is remarkable that the

TLC process is still able to identify a solution in the vicinity of the startup arc, the

computation time can be reduced through the use of an alternate initial guess.
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Figure 4.17: Case 5: Converged Solution (ECI)

Case Iter. Time(s) ∆V1 ∆V2 ∆V3 ∆V4 ∆V Active Constraints
1 10 244.5 608.8 43.6 247.5 0 899.9 R, φ, θ, γ, ∆V
2 4 129.9 608.2 56.8 459.7 103.6 1228.3 R, φ, θ, γ
3 3 91.4 607.6 56.9 544.8 0 1209.3 R, γ
4 13 371.2 602.6 106.1 541.3 0 1250 R, γ
5 15 371 629.1 70.6 389.2 261.1 1350 R, φ, θ, γ, Az, ∆V

Table 4.1: Summary of the TLC Example Results

Case ∆V Iter. Time(s)
1 1.16 9 134.5
2 1.16 9 134.5
3 1.21 4 32.6
4 1.28 0 14.3
5 2.3 25 364

Table 4.2: Summary of the Initial Guess Used in Each Example Case
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Case R(km) φ(deg) θ(deg) V(km/s) γ(deg) Az(deg) TOF(s)
1 6500.065 -19.2041 134.5456 10.993 -6.03 69.858 536758.77
2 6500.065 -19.2041 134.5456 10.989 -6.03 73.089 536518.99
3 6500.065 -0.54747 125.5254 10.984 -6.03 178.706 557034.59
4 6500.065 -17.4617 134.8519 10.991 -6.03 75.512 544232.45
5 6500.065 -19.2041 134.5456 10.993 -6.03 13.996 626183.16

Table 4.3: Summary of the Entry States for Example Cases
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Chapter 5

Two Level Correction with

Finite Thrust

Traditionally, the TLC process is comprised of impulsive maneuvers. Despite the

fact that no realistic engine has the ability to instantaneously change the velocity

of the spacecraft, impulsive maneuvers stand as an adequate approximation for

the “standard” TEI maneuvers and Earth-return TCM’s. However, if an engine

failure occurs onboard the CEV, the available thrust level decreases, and the burn

duration for executing maneuvers increases. In this circumstance, the impulsive

approximation is no longer adequate. Therefore, in the same spirit of the impulsive

burn formulation in Chapter 3, a TLC procedure using finite burns is considered.

In developing this procedure, the Level-One correction is first determined,

followed by the Level-Two portion. Furthermore, the constraints from Chapter 3 are

reusable within the Level-Two process, and the same general rules apply. Finally,

a few simple examples are presented at the end of the chapter to show the success

achieved in the limited application of this procedure.

70



5.1 Alterations to the Physical Model

To begin, a new state representation and dynamical model are required. For exam-

ple, a thrust arc depends on mass, mass flow, and burn direction information. In

response to this, the state is appended to include this information,

X̄ =

























R̄

V̄

m

ṁ

ū

























11×1

. (5.1)

Note, for this investigation it is assumed that the mass flow rate and thrust direction

values remain constant across a thrust arc. The equations of motion then need to

be altered as well to account for the acceleration produced by the thrusters. An

expression for thrust is given by

T = −ṁ
m
g0Isp. (5.2)

Using Equation 5.2, the equations of motion that follow are

˙̄X =

























V̄

¨̄R+ T
m

ū
|ū|

−ṁg

m̈

˙̄u

























11×1

, (5.3)
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where ¨̄R is defined by Equation 2.13. Beyond this, changes are made to the linearized

dynamics due to these alterations in the equations of motion shown in Equation 5.3.

The Jacobian for this thrusting segment takes the new form,

∂ ˙̄X

∂X̄
=














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







03×3 I3×3 03×1 03×1 03×3

∂ ¨̄R
∂R̄

03×3
∂ ¨̄R
∂m
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∂ṁg
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∂ū

01×3 01×3 0 1 01×3
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03×3 03×3 03×1 03×1 03×3
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
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









. (5.4)

The partial derivatives contained in Equation 5.4 are expressed by the following:

∂ ¨̄R

∂R̄
=

n
∑

j=1

j 6=q,s

Gmj

(

3R̄sjR̄
T
sj

R5
sj

− 1

R3
qj

I3×3

)

, (5.5)

∂ ¨̄R

∂m
=

ṁ

m2
g0Isp

ūT

u
, (5.6)

∂ ¨̄R

∂ṁ
= − 1

m
g0Isp

ūT

u
, (5.7)

∂ ¨̄R

∂ū
= −ṁ

m
g0Isp

1

u
I3×3 −

ṁ

m
g0Isp

(

ūT ū
)−3/2

ūūT . (5.8)

Of course, the new Jacobian definition leads to a new state transition matrix. This

is represented by Φ̃′ in the variational equation,

(

δX̄−
f − ˙̄X−

f δtf

)

= Φ̃
′

tf ,t0

(

δX̄+
0 − ˙̄X+

0 δt0

)

. (5.9)
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Expanded, this variational equation is
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




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(5.10)

5.2 Level-One Correction Using Finite Thrust

Using Equation 5.10, the Level-One portion of the correction process is constructed.

The controls over a thrusting segment used to match position continuity are ṁ0, ū0,

and tf . At the initial point along a thrusting segment: R̄0, V̄0,m0, and t0 are fixed.

Therefore, δR̄0 = δV̄0 = δt0 = δm0 = 0. Using this information, the first vector

expression of Equation 5.10 reduces to

δR̄f = F̃tf ,t0δṁ0 + G̃tf ,t0δū0 + V̄ −
f δtf . (5.11)

Equation 5.11 is rewritten in the form,

δR̄f =

[

F̃tf ,t0 G̃tf ,t0 V̄ −
f

]













δṁ0

δū0

δtf













. (5.12)
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Finally, the minimum norm is applied to Equation 5.12 to determine a solution.

This is represented by













δṁ0

δū0

δtf













= M̃T
(

M̃M̃T
)−1

δR̄0, (5.13)

where M̃ =

[

F̃tf ,t0 G̃tf ,t0 V̄ −
f

]

.

Equation 5.13 represents the Level-One finite thrust process. Note that while

the mass flow is allowed to vary, a constraint for its magnitude can be implemented

within the Level-Two process, if desired.

5.3 Level-Two Correction Using Finite Thrust

To outline the Level-Two process, it is useful to consider the image given in Figure

5.1. In this configuration of patch points: thrust is active across the first segment

Figure 5.1: An Example of an Finite Thrust trajectory

to achieve the position at patch point k, an impulsive maneuver then exists at k
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to achieve patch point k+1. Using the a Level-Two process, however, the position,

time, mass flow, and thrust direction associated with these patch points can be

manipulated such that the impulsive maneuver at patch point k is driven to zero. If

this is accomplished it naturally follows that the thrust arc, rather than the impulsive

maneuver, targets the position at patch point k+1. This yields a solely finite transfer

and is thus a motivating example for this Level-Two corrections process.

Just as in the impulsive formulation, the condition for satisfying velocity

continuity is

δ∆V̄k = 0 = δV̄ +
k − δV̄ −

k . (5.14)

Once again, if Equation 5.14 is expressed in terms of the controls, velocity continuity

can be achieved. However, unlike the impulsive case, the controls for the finite burn

formulation are small perturbations (variations) in: mass flow, thrust direction,

position, and time.

In solving for δV̄ −
k in terms of the controls, the variational equation for a

thrusting arc is applied from k-1 to k,
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
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(5.15)

As an intermediate step in defining δV̄ −
k in terms of the control variables, the vector
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δV̄ +

k−1
is determined from the first vector expression of Equation 5.15,

δV̄ +
k−1

= (−B̃−1
k,k−1

Ãk,k−1)δR̄k−1 + (ā+
k−1

+ B̃−1
k,k−1

Ãk,k−1V̄
+
k−1

+ B̃−1
k,k−1

Ẽk,k−1ṁ
+
k−1

+B̃−1

k,k−1
F̃k,k−1m̈

+

k−1
+ B̃−1

k,k−1
Gk,k−1 ˙̄u+

k−1
)δtk−1 − (B̃−1

k,k−1
Ẽk,k−1)δmk−1 (5.16)

−(B̃−1
k,k−1

F̃k,k−1)δṁk−1 − (B̃−1
k,k−1

k, k − 1)δūk−1 + (B̃−1
k,k−1

)δR̄k − (B̃−1
k,k−1

V̄ −
k )δtk.

Then, Equation 5.16 is substituted into the second vector equation of Equation 5.15

to yield

δV̄ −
k =

(

C̃k,k−1 − D̃k,k−1B̃
−1

k,k−1
Ãk,k−1

)

δR̄k−1 + (−C̃k,k−1V̄
+

k−1
− H̃k,k−1ṁ

+

k−1

−Ĩk,k−1m̈
+
k−1

− J̃k,k−1 ˙̄u+
k−1

+ D̃k,k−1B̃
−1
k,k−1

Ãk,k−1V̄
+
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+ D̃k,k−1B̃
−1
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Ẽk,k−1ṁ
+
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+D̃k,k−1B̃
−1
k,k−1

F̃k,k−1m̈
+
k−1

+ D̃k,k−1B̃
−1
k,k−1

Gk,k−1 ˙̄u+
k−1

)δt+k−1
+ (5.17)

(

H̃k,k−1 − D̃k,k−1B̃
−1

k,k−1
Ẽk,k−1

)

δm+

k−1
+
(

Ĩk,k−1 − D̃k,k−1B̃
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k,k−1
F̃k,k−1

)

δṁ+

k−1
+

(

J̃k,k−1 − D̃k,k−1B̃
−1
k,k−1

G̃k,k−1

)

δū+
k−1

+
(

ā−k − D̃k,k−1B̃
−1
k,k−1

V̄ −
k

)

δt−k +
(

D̃k,k−1B̃
−1

k,k−1

)

δR̄k.

Applying the variational equation from k+1 to k, δV̄ +
k is found similarly as

δV̄ +

k =
(

C̃k,k+1 − D̃k,k+1B̃
−1

k,k+1
Ãk,k+1

)

δR̄−
k+1

+ (−C̃k,k+1V̄
−
k+1

+D̃k,k+1B̃
−1
k,k+1

Ãk,k+1V̄
−
k+1

)δt−k+1
+

(

H̃k,k+1 − D̃k,k+1B̃
−1

k,k+1
Ẽk,k+1

)

δm−
k+1

+
(

ā+

k − D̃k,k+1B̃
−1

k,k+1
V̄ +

k

)

δt+k +
(

D̃k,k+1B̃
−1

k,k+1

)

δR̄+

k . (5.18)

In this case, however, the terms associated with the thrust drop out since no thrust-

ing occurs across the coast arc. Given Equations 5.17 and 5.18, the condition stated
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in Equation 5.14 is nearly defined in terms of the control parameters. However,

aside from the control parameters, Equations 5.17 and 5.18 are also a function of

mass. Since mass is a dependent variable, velocity continuity is only achievable if

these terms are removed from the expression. This is done by expressing variations

in mass in terms of the control variables.

Given that thrust occurs from k-1 to k, the total mass at the end of the

thrust is found by

mk = mk−1 + ṁ+
k−1

(tk − tk−1) , (5.19)

where ṁ is negative for any realistic engine. Noting that Equation 5.19 is a function

of mk−1, ṁk−1, tk, and tk−1, it can be seen that changes in mk occur if any changes

are made to these values. Mathematically, this statement is represented by

δmk =

(

∂mk

∂mk−1

)

δmk−1 +

(

∂mk

∂ṁ+

k−1

)

δṁ+
k−1

+

(

∂mk

∂tk−1

)

δtk−1 +

(

∂mk

∂tk

)

δtk.

(5.20)

Evaluating the partials on the right hand side of Equation 5.20 provides the expres-

sions:

∂mk

∂mk−1

= 1,

∂mk

∂ṁ+
k−1

= (tk − tk−1) ,

∂mk

∂tk−1

= −ṁ+
k−1

,

∂mk

∂tk
= ṁ+

k−1
.. (5.21)

An expression for the variation in mk with respect to variations in the control
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parameters is found by substituting Equation 5.21 into Equation 5.20,

δmk = δmk−1 + (tk − tk−1) δṁ
+
k−1

+ (−ṁ+
k−1

)δtk−1 + (ṁ+
k−1

)δtk. (5.22)

Since δmk−1 = 0 for the example in Figure 5.1, Equation 5.22 provides an

expression for δmk in terms of the control variables.

Substituting Equation 5.22 into Equation 5.17 and noting that m̈k−1 =

˙̄uk−1 = 0 for this example,

δV̄ −
k =

(

C̃k,k−1 − D̃k,k−1B̃
−1
k,k−1

Ãk,k−1

)

δR̄k−1 + (−Ck,k−1V̄
+
k−1

− H̃k,k−1ṁ
+
k−1

+D̃k,k−1B̃
−1

k,k−1
Ãk,k−1V̄

+

k−1
+ D̃k,k−1B̃

−1

k,k−1
Ẽk,k−1ṁ

+

k−1
)δt+k−1

+ (5.23)
(

Ĩk,k−1 − D̃k,k−1B̃
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)
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+
(
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k, k − 1
)

δū+
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+
(
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k,k−1
V̄ −

k

)

δt−k +
(

D̃k,k−1B̃
−1

k,k−1

)

δR̄k.

For a thrust-coast sequence, mk = mk+1, and therefore δmk = δmk+1. Using this

information, substituting Equation 5.22 into Equation 5.18, and also noting that

δṁ−
k+1

= δū−k+1
= ṁ−

k+1
= m̈k+1 = ˙̄uk+1 = 0, the expression for δV̄ +

k becomes

δV̄ +
k =

(

C̃k,k+1 − D̃k,k+1B̃
−1
k,k+1

Ãk,k+1

)

δR̄−
k+1
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−
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+
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−1
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−
k+1
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+
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−1
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Ẽk,k+1

)

(tk − tk−1) δṁ
+
k−1

+
(
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k,k+1
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)

(−ṁ+
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)δtk−1 +

+
(

ā+

k − D̃k,k+1B̃
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k,k+1
V̄ +

k +
(

H̃k,k+1 − D̃k,k+1B̃
−1
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Ẽk,k+1

)

(ṁ+

k−1
)
)

δt+k +
(

D̃k,k+1B̃
−1
k,k+1

)

δR̄+
k . (5.24)

Substituting Equations 5.23 and 5.24 into Equation 5.14 yields the Level-Two por-
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tion of the finite thrust TLC procedure,

δ∆V̄k =
[

M̃Rk−1
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(5.25)

The components of the state-relationship matrix in Equation 5.25 are given by

M̃Rk−1
=

(

−C̃k,k−1 + D̃k,k−1B̃
−1
k,k−1

Ãk,k−1

)

,

M̃tk−1
= (C̃k,k−1V̄

+

k−1
+ H̃k,k−1ṁ

+

k−1
− D̃k,k−1B̃

−1

k,k−1
Ãk,k−1V̄

+

k−1

−D̃k,k−1B̃
−1
k,k−1

Ẽk,k−1ṁ
+
k−1

+
(
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(−ṁ+
k−1
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−1

k,k−1
F̃k,k−1

)

+
(

H̃k,k+1 − D̃k,k+1B̃
−1

k,k+1
Ẽk,k+1

)

(tk − tk−1),

M̃uk−1
=

(

−J̃k,k−1 + D̃k,k−1B̃
−1

k,k−1
G̃k,k−1

)

,

M̃Rk
=

(

D̃k,k+1B̃
−1
k,k+1

− D̃k,k−1B̃
−1
k,k−1

)

,

M̃tk =
(

ā+

k − D̃k,k+1B̃
−1

k,k+1
V̄ +

k − ā−k + D̃k,k−1B̃
−1

k,k−1
V̄ −

k

)

+
(

H̃k,k+1 − D̃k,k+1B̃
−1
k,k+1

Ẽk,k+1

)

(ṁ+
k−1

), (5.26)

M̃Rk+1
=

(

C̃k,k+1 − D̃k,k+1B̃
−1

k,k+1
Ãk,k+1

)

,

M̃tk+1
=

(

−C̃k,k+1V̄
−
k+1

+ D̃k,k+1B̃
−1
k,k+1

Ãk,k+1V̄
−
k+1

)

.

An example of this methodology applied to a thrust-coast transfer is con-
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tained in Figure 5.2. Here an altitude constraint is targeted along with the velocity

continuity constraint at patch point k. The finite thrust TLC procedure requires

more iterations than the impulsive TLC process, but nevertheless steady conver-

gence to the solution is achieved.

Figure 5.2: Targeting Altitude with a Thrust-Coast Arc

It is crucial to mention that at the beginning of a thrust arc in this im-

plementation, it is assumed that the initial velocity is equivalent to the terminal

velocity of the previous arc. Therefore, the only velocity discontinuities that exist

are those between a thrust-coast or coast-coast segments. Thrust-thrust and coast-

thrust scenarios do not have a maneuver at their intermediate patch point and thus a

velocity continuity constraint is not required. For this reason, only the thrust-coast

formulation is needed for the finite thrust TLC implementation.

80



5.4 Example Case

Before an example case is presented, the process for guessing these thrust parameters

is described for the finite thrust implementation. For the finite thrust implementa-

tion, a guess for the mass flow and thrust direction is required in addition to the

set of patch states. This is calculated via the rocket equation found in many texts

including one written by Weisel [21]. Specifically, using pre-specified information

about the Isp, initial mass, and impulsive ∆V̄ required to achieve the next patch

state,

ṁk =
(1 − e

−
∆Vk

Ispg0 )mk

tk+1 − tk
, (5.27)

and

ūk =
∆V̄k

∆Vk
. (5.28)

Given the simple initial guess procedure defined by Equations 5.27 and 5.28,

along with the same set of patch points contained in Figure 3.3, the simple example

case for the study is solved. Note that for this case, a 1000 km altitude constraint

is imposed along with the velocity continuity constraints, and the initial mass is set

to 1000 kg.

Figure 5.3 contains a solution that thrusts across the first arc and coasts

across the remaining four. Therefore, in order to achieve the 1000 km altitude

constraint with the exclusive use of finite thrust, the maneuvers at patch states

2,3,4, and 5 must be driven to zero by the TLC process. The maneuver at patch

state 2 requires the formulation from this chapter, where 3 through 5 are treated

with the impulsive TLC process. In determining this solution, the mass flow rate

is only updated in the Level-One portion of the procedure, and in doing so a total

of 25 iterations and 156 seconds are required to achieve this solution. With the
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maneuvers at patch points 2-5 removed, the resulting thrust arc has a burn time of

1750.8 seconds, and a mass flow rate of -0.035 kg/s.

Note that this solution, like any other obtained by the TLC process is dictated

by the initial guess. For instance, if the second patch state in this example is moved

closer to the first, the solution would have a smaller burn time and a larger mass

flow rate.

Figure 5.3: Thrust-Coast-Coast-Coast-Coast Arc

Figure 5.3 represents a simple application and an initial attempt at model-

ing finite thrust. This algorithm, however, has not yet been applied to an Orion

transfer.

82



Chapter 6

Numerical Optimization

Numerically optimal solutions for several of the impulsive TEI transfers in Chapter

4 are presented in this chapter. Calculating an optimal TEI burn sequence enables

enhanced analysis to be performed for this study. That is, since the targeting

algorithm only provides a feasible solution, the presentation of optimal transfers in

this chapter enables a comparison to be made between the TLC results and the

optimal transfers themselves.

Before the optimization results are discussed, a set of introductory materials

pertaining to numerical optimization is first presented. This introduction includes

a description of parameter optimization theory, numerical optimization methods,

and a few optimization techniques themselves. The parameter optimization theory

and numerical optimization discussions provide insight into the theory behind the

commercial nonlinear programming (NLP) software (VF13AD) utilized in Section

6.4.
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6.1 Parameter Optimization Theory

From basic calculus [12], it is known that an extremum along a function is located

where that function’s derivative evaluates to zero. For example, a function, F, has

a minimum with respect to the parameter, x, when

F =
∂F

∂x
(x) = 0. (6.1)

Equation 6.1 is the basis for parameter optimization, and it is referred to as the

first-order necessary condition for optimality [22]. Three general cases for parame-

ter optimization are outlined: unconstrained, equality constrained, and inequality

constrained. These methods are discussed in detail by Hull [3].

6.1.1 Unconstrained Parameter Optimization

Consider the scalar performance index,

J = ϕ(x̄). (6.2)

For a minimum, x̄∗, it holds for all values of x̄ such that ∆J ≥ 0 for the function

∆J = ϕ(x̄) − ϕ(x̄∗). (6.3)

Expanding Equation 6.3 using a Taylor Series Expansion,

∆J = dJ +
1

2!
d2J +HOT ′s,

∆J = ϕx(x̄)dx− 1

2!
ϕx(x̄)dx+HOT ′s. (6.4)
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Note that ‘dJ’ is a differential, and the differential of an independent variable is a

constant. An expression for this differential is

dJ = ϕx(x̄)dx. (6.5)

Given Equation 6.5, the first-order necessary conditions for a minimum are

ϕx = 0. (6.6)

6.1.2 Parameter Optimization with Equality Constraints

Consider, once again, the scalar performance index given by Equation 6.2. Intro-

ducing a set of equality constraints,

ψ̄(x) = 0. (6.7)

The performance index can include these constraints through the use of a Lagrange

multiplier [3], ν,

J ′ = G = ϕ(x̄) + ν̄T ψ̄(x̄). (6.8)

This augmented term seen in Equation 6.8 evaluates to zero when the constraints

are met and therefore does not alter the cost.

To find a minimum of this function, the point at which slope of the function

evaluates to zero is located. Given this, the differential is required to evaluate zero.

Determining the differential of the cost function in Equation 6.8 involves the partial

derivative with respect to both the independent variables x̄ and ν̄,

dJ = Gxdx+ ψdν. (6.9)
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Therefore, the first-order necessary conditions for a minimum are,

Gx = 0,

ψ = 0. (6.10)

6.1.3 Parameter Optimization with Inequality Constraints

A set of inequality constraints to the problem such as

θ̄(x) = x− xdes ≥ 0, (6.11)

can be converted to equality constraints with the use of slack variables [3], α2,

x− xdes − α2 = 0. (6.12)

The performance index may include these terms using the Lagrange multiplier, ν,

under the same general reasoning as that in Equation 6.8,

J ′ = G = ϕ(x̄) + ν̄T (θ − α2). (6.13)

To find a minimum of Equation 6.13, the point at which slope of the function

evaluates zero is located. Taking the differential of the cost function involves taking

the partial derivatives with respect to the three independent variables x̄, ν̄, and α,

dJ = ϕxdx+ ν̄dx− 2ν̄αdα + (θ − α2)dν. (6.14)
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Therefore, the first-order necessary conditions for a minimum are

ϕx + ν̄ = 0,

−2ν̄α = 0, (6.15)

θ − α2 = 0.

Two solutions exist for the conditions introduced by Equation 6.15. One of

these solutions is on the constraint boundary (α = 0), and the other is off of the

constraint boundary (ν̄ = 0). Therefore, in determining the solution x̄ is chosen as

the dependent variable and α the independent variable.

6.2 Unconstrained Minimization

For many problems, the minimum is achievable via the analytical approaches shown

in Equations 6.2 through 6.15. However, for complex problems possessing complex

cost functions and many constraints, it is much easier or even a necessary to solve

the problem using numerical optimization methods. Lunar Trans-Earth Injection is

an example of such a problem, and therefore the focus from this point forward is on

the numerical approach to solving these types of problems.

Many numerical methods exist that are capable of minimization. The first

criteria for categorizing these approaches is constrained versus unconstrained mini-

mization. Unconstrained minimization is the simpler of these two classes and is the

basis of this section’ s discussion. A much more extensive discussion on these classes

of numerical optimization methods is performed by Bertsekas [23]. In this section,

one-dimensional searches (ODS) are first presented. These are also sometimes re-

ferred to as zeroth-order methods. Beyond this, first and second-order methods are
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also discussed.

6.2.1 One-Dimensional Line Search

The simplest form of unconstrained minimization is the one-dimensional search

(ODS). This is a zeroth-order approximation problem, because it does not require

any derivative information. In this method, the minimum of the function is sought

out along a single search direction. The general form for a one-dimensional search

method is

G(x+ σdx), (6.16)

where σ is the step size.

The solution process involves two portions: bracketing the minimum, and lo-

cating the minimum. Bracketing the minimum requires several function evaluations

along the search direction. Essentially, if a decrease in the function is followed by an

increase of the same function at an increased step size, the minimum is bracketed

between these function evaluations. This is referred to as up-down-up [24]. Still,

even after the minimum is bracketed, a large interval of uncertainty can remain such

as the example shown in Figure 6.1. A general method for bracketing the minimum

is described by:

1. Given the value of G(x), find G(x + σdx) where the search direction, dx, is

already provided. Initially choose σ = 1.

2. Perform another function evaluation, only this time at G(x + (σ + dσ)dx).

Note that initially, dσ = 2∆σ, where ∆σ = 1 is a reasonable choice as well.

3. Perform step 2 repeatedly until the desired up-down-up orientation is found.

Increase dσ by 4∆σ, 8∆σ, etc. at each iteration.
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Figure 6.1: Representation of an Interval of Uncertainty

Many methods exist for a one-dimensional search. Some of the more notable

are: the bisection method, Fibonacci search, golden ratio method, and curve fitting

approach. While an exhaustive search of the function space is one avenue for finding

the minimum of a function, line searches act to minimize the number of function

evaluations needed to locate the minimum.

Bisection, Fibonacci, and Golden-Ratio

The golden ratio, Fibonacci, and bisection methods are all very similar in their

methodology. In fact, the following algorithm description is applicable to all three:

1. Begin with 4 points along the function at step sizes of σl, σ1, σ2, σu, where σl

and σu shown in Figure 6.2 correspond to the lower and upper bounds of the

interval of uncertainty provided by the minimum bracketing shown in Figure
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6.1.

Figure 6.2: Representation of an Interval of Uncertainty in terms of σ

2. Reduce the interval of uncertainty:

(a) If G1 ≤ G2 then set GL = G1, G2 = G2, GU = GU , and recalculate a

new σ1, G1.

(b) If G2 ≤ G1 then set GU = G2, G1 = G1, GL = GL, and recalculate a

new σ2, G2.

3. Repeat step 2 until the minimum is found within some tolerance.

Given this general formulation for locating a minimum in a one-dimensional search,

the lone difference that distinguishes bisection, from golden ratio, from Fibonacci is

the manner in which the step sizes are updated. Figure 6.3 shows an evolution of

the reduction of the interval of uncertainty. For the golden-ratio search,

Li+1 = (0.6218)Li . (6.17)

Therefore, the interval of uncertainty is reduced by 0.6218 on each successive it-

eration. This is superior to the bisection method, which reduces the interval of
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Figure 6.3: Reduction of the Interval of Uncertainty
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uncertainty by 0.5 on each iteration. A slight improvement to these methods is

made by using a ratio of Fibonacci numbers rather than the golden-ratio. That is,

replacing 0.6218 with a ratio of Fibonacci numbers,
Fn−i

Fn−i+1
.

While the Fibonacci search is slightly more efficient than the golden-ratio

method, this discrepancy in efficiency vanishes as n goes to infinity. Furthermore,

Fibonacci faces a unique disadvantage in that the number of iterations must be spec-

ified beforehand in order to properly retrieve the required set of Fibonacci numbers

for the search.

Curve-Fitting

A different one-dimensional search to those mentioned is the curve-fitting routine. In

this method, a parabola is fit to the current function evaluations across the interval

of uncertainty. Consider first the general equation for a parabola,

P = Rσ2 + Sσ + T. (6.18)

Three function evaluations are required to solve for R,S, and T using

P1 = Rσ2
1 + Sσ1 + T,

P2 = Rσ2
2 + Sσ2 + T, (6.19)

P3 = Rσ2
3 + Sσ3 + T.

92



Once R,S, and T are solved for, a parabola is fit to the data, and the minimum is

found by

∂P

∂σ
= 0 = 2Rσ + S,

σ4 = − S

2R
. (6.20)

Convergence occurs when G(σ) = P (σ) to within some tolerance. That is,

when the parabolic approximation for the minimum is equivalent to the function

evaluation at σ, the minimum of the function is achieved. However, if the current

iteration does not yet satisfy these conditions, Up-Down-Up is chosen from the set

of 4 σ’s and the process is repeated.

6.2.2 First-Order Methods

Thus far, several methods have been shown for finding the minimum along a par-

ticular search direction. First-Order methods act to determine a search direction

in the n-dimensional space. One such numerical method is known as the gradient

method [23], where the search direction is defined as

dx = −GT
x (x). (6.21)

This method is also referred to as the method of steepest descent, because it can be

shown that this search direction produces the greatest decrease in the cost function.

The following process defines this method:

1. Provide an initial guess, x.

2. Calculate G(x) and Gx(x).
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3. One of the ODS methods mentioned in the previous section are employed to

find the σ that minimizes the function along this search direction, Gx.

4. If the minimum is not yet achieved, steps 2 and 3 are repeated using the new

value for x.

An example of the gradient method is shown in Figure 6.4. The function being

minimized in this example is,

G(x1, x2) = x2
1 +

1

2
x2

2, (6.22)

and the initial guess used for the minimization is x = [−1.25, 1.0]. After 7 iterations,

Figure 6.4: Gradient Method Applied to a Quadratic Function: 7 Iterations

the minimum is located at x = [0.0, 0.0].
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The function given by Equation 6.22, and the starting point of x = [−1.25, 1.0],

are also employed by the remaining examples in this chapter. This allows for ade-

quate comparisons to be made between each of the methods.

6.2.3 Second-Order Methods

While the gradient method provides an adequate means for determining the search

direction, other options exist. Second-order methods utilize first and second order

information in determining the search direction for the minimum. For example,

consider the Taylor series expansion,

∆G(x) = G(x+ dx) −G(x) = Gx(x)dx +
1

2!
Gxxd

2x+HOT ′s. (6.23)

Eliminating all terms beyond the second-order and solving for dx when ∂∆G
∂dx = 0,

dx = −GT
x (x)Gxx(x)−1. (6.24)

Equation 6.24 represents a Newton-Raphson Method [23]. In this method, how-

ever, a disadvantage exists in that Gxx(x) must remain positive definite for the

computation of this inverse to exist. A way to avoid this dilemma imposed by the

Newton-Raphson method is to employ what is known as a Variable Metric Method

[24]. This method addresses the positive definite issue by using an approximation

for the inverse of Gxx (the Hessian). The approximation, H, is ensured to remain

positive definite by definition. The process for using the Variable Metric method is:

1. Provide an initial guess, x.

2. Calculate G(x), Gx(x), and set H to an identity matrix.
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3. Calculate dx = −HkGx.

4. One of the zeroth-order ODS methods mentioned in the previous section is

employed to find the σ that minimizes the function along this search direction,

dx.

5. If the minimum is not yet achieved(Gx = 0 to within some tolerance), set

k=k+1, update H, calculate Gx at the new value of x, and return to step 3.

Several updates for H are available, and the method highlighted here is known as

the BFGS update [23],

Hk+1 =

[

I − ∆x∆GT
x

∆xT∆Gx

]

Hk

[

I − ∆Gx∆xT

∆GT
x ∆x

]

+
∆x∆xT

∆xT ∆Gx
. (6.25)

Within Equation 6.25,

∆x = xk+1 − xk,

∆Gx = Gxk+1 −Gxk
. (6.26)

An example of this method is shown in Figure 6.5. The function and initial guess

are the same as those used in Figure 6.4. Compared to the gradient method, the

number of iterations is decreased by nearly fifty percent for this particular example.

6.3 Constrained minimization

Often times in parameter optimization it is necessary to impose constraints. At

the very least, the final boundary conditions are typically imposed as constraints.
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Figure 6.5: Variable Metric Method With a BFGS Update Applied to a Quadratic
Function: 4 Iterations

Multiple methods exist finding a minimum subject to constraints. The first such

method mentioned here involves the use of penalty functions.

6.3.1 Penalty Functions and Unconstrained Minimization

Constraints may be addressed using unconstrained minimization techniques, by em-

ploying the use of penalty functions [24]. Penalty functions are implemented by

augmenting G with the constraint such that there is a penalty paid on the cost

function whenever this constraint is violated. The general form of this expression is

given by

G = G+

m
∑

j=1

max (0, gj(x̄))
2 +

m
∑

l=1

(h(x̄))2 . (6.27)
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Applying this technique to Equation 6.22, subject to the constraint

x2 = x2
1 + 0.1, (6.28)

gives

G(x1, x2) = x2
1 +

1

2
x2

2 + Γ
(

max(0, x2
1 − x2 + 0.1)

)

, (6.29)

where Γ is the penalty parameter.

Applying the gradient technique and variable metric techniques to Equation

6.29 results in the plots shown in Figures 6.6 and 6.7. As expected, the variable

metric method is more efficient than the gradient method, but both converge to the

minimum.

Figure 6.6: Gradient Method Applied to a Quadratic Function: 17 Iterations
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Figure 6.7: Variable Metric Method With a BFGS Update Applied to a Quadratic
Function: 6 Iterations

6.3.2 Constrained Minimization Techniques

While the penalty function approach may work in many cases, it is still ambiguous

in its application due to the arbitrary penalty weight. Many approaches exist that

deal directly with the presence of constraints, using them to their advantage. Such

algorithms include: the Method of Feasible Directions, Reduced Gradient Method,

Robust Method of Feasible Directions, Augmented Lagrangian, and others [24].

While these methods represent viable options for creating a minimization code,

many commercial codes exist for this same purpose. These commercial codes are

exceedingly fast and robust. They are built by professional programmers, and are an

excellent means for performing numerical optimization. Some of these commercial

codes include: SNOPT, FMINCON(Matlab), KNITRO, VF13AD, and others.
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VF13AD

Chosen for its availability and simplicity of implementation, VF13AD is imple-

mented as the nonlinear program (NLP) of choice for this study. The algorithm

itself is obtained for free from the Harwell function library, and runs on the FOR-

TRAN platform. It utilizes Sequential Quadratic Programming (SQP) as a means

for performing the minimization, finding a step away from the current point by min-

imizing a quadratic approximation to the problem. The variable metric technique

described in Section 6.2.3 is utilized by VF13AD in the direction finding process.

When constraints are present in the main calculation, the linear approximations to

the constraints are included in the calculation of the search direction as well. Inter-

estingly enough, however, VF13AD also uses a penalty function approach similar

to Section 6.3.1 in dealing with constraints throughout the one dimensional search

as part of what is known the watchdog technique [25]. Finally, while a thorough

description of the ODS is proprietary information, Section 6.2.1 provides for good

insight into the general thought process that is involved in a ODS process.

6.3.3 Finite Differencing

In each of the numerical methods presented here, aside from the one-dimensional

search, derivatives are required. These derivatives dictate the search direction calcu-

lation, and they can be determined numerically. Numerical derivatives are computed

using a technique called finite differencing [23]. While these derivatives are more

computationally burdensome and less accurate than analytical derivatives, they are

very convenient. That is, any time the optimization problem changes, the deriva-

tives must be recomputed. By using finite differencing, the user is free to alter

the problem without recomputing the derivatives. Because of this flexibility, finite
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differencing is used to determine the derivatives within this numerical optimization

investigation.

In determining the formula for finite differencing, it is useful to begin with a

Taylor series expansion of the cost function,

∆G(x) = G(x+ dx) −G(x) = Gx(x)dx +
1

2!
Gxxd

2x+HOT ′s. (6.30)

Using the first order information only, a numerical approximation is found for the

derivative by what is termed forward differencing,

Gx(x) =
G(x+ dx) −G(x)

dx
. (6.31)

Using a slightly different Taylor series expansion,

∆G(x) = G(x− dx) −G(x) = −Gx(x)dx+
1

2!
Gxxd

2x+HOT ′s, (6.32)

an expression for backward differencing is similarly achieved,

Gx(x) =
G(x− dx) +G(x)

dx
. (6.33)

Using second order information, a more accurate form of finite differencing, known

as central differencing is achieved. This involves the subtraction of Equations 6.30

and 6.32. The expression for central differencing is

Gx =
G(x+ dx) −G(x− dx)

2dx
. (6.34)

It should be noted that the selection of dx heavily influences the accuracy
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of finite differencing. If dx is chosen to be a large value, much of the behavior

close to x is lost. Conversely, a value that is too small fails to capture what is

happening sufficiently close to x. An adequate choice for dx is one that depends on

the magnitude of x. Therefore, a convenient statement is

dx = ǫ|x| (6.35)

It can be shown that ǫ = 10−4 gives roughly a precision accurate to 1e-8 when using

central differences. [23]

6.3.4 Optimization Techniques

The realm of optimization techniques is divided into two subcategories, direct and

indirect optimization. Direct optimization involves the parameterization, also known

as transcription, of the problem. Specifically, this means representing the physical

description of the optimization problem in terms of parameters and constraints.

With a properly parameterized problem, a nonlinear programming code, such as

VF13AD may be used to find the optimal solution subject to the constraints.

Indirect optimization, however, uses Optimal Control Theory (OCT) [3] to

solve the Two-Point-Boundary-Value (TPBVP), where the term TPBVP implies any

function that has constraints at the initial and final points. Using OCT, the first-

order necessary conditions for a minimum are derived for the particular TPBVP.

Once these are obtained, a root finding function rather than a nonlinear program,

is used to obtain a solution to the first-order necessary conditions. A downside to

the indirect approach, however, is that for any change to the optimization problem,

the TPBVP changes and the first-order necessary conditions must be re-derived.
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Direct Multiple Shooting

Direct optimization techniques include: single shooting, multiple shooting, collo-

cation, and several others. The focus in this study remains on multiple shooting.

The difference between single and multiple shooting is gathered directly from their

names. In single shooting, a single shot (numerical integration from the initial

boundary to the final boundary) is used to target the end constraints of the TP-

BVP. In multiple shooting, the number of “shots” is free to be chosen, but after each

of them a set of continuity constraints is enforced to ensure that the integration is

continuous in position and velocity. An artist’s rendition of these two methods is

shown in Figure 6.8. The initial and final points in this figure represent the TP-

BVP, and the break shown in the multiple shooting arc represents the location of

the continuity constraints.

6.4 Applied Numerical Optimization

The remaining sections in this chapter focus on the application of numerical op-

timization to the lunar TEI problem. Direct multiple shooting is utilized as the

optimization technique of choice, and VF13AD is the NLP used for locating the

optimal solution. Beginning with the parameterization of the problem, the solu-

tion process is discussed in detail. The chapter concludes with application of the

optimization algorithm to several cases from Chapter 4.

6.4.1 Three-Burn TEI Optimization Process

To use VF13AD, the three-burn TEI problem is represented in terms of: parameters,

constraints, and a cost function. Defining these parameters composes the process

that has previously been referred to as parameterization. In setting up this problem,
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Figure 6.8: Single and Multiple Shooting Optimization Methods
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only two “shots” are incorporated for the multiple shooting scheme, and one of them

requires backward integration. That is, after the maneuver is applied at the lunar

departure point, integration proceeds forward some specified time, TOF1, and then

the specified Earth entry state is propagated backwards for some specified time

TOF2. Figure 6.9 illustrates this process, where the circle at the beginning of the

transfer represents the initial lunar orbit, and the end point represents the Earth

entry point. Notice that the arrows switch direction across the second segment, this

only implies that integration proceeds backward and not that the motion of the

spacecraft itself is changing. Finally, the discontinuity in the states at the break

point must be driven to zero for a feasible solution to be achieved.

Figure 6.9: Multiple shooting applied to the lunar TEI problem

Using this approach, it is important to mention that the initial and final

boundary constraints of the TPBVP are already enforced and do not need to be im-

posed as constraints within the NLP. That is, since the initial and terminal states are

pre-specified and used to “shoot” to some intermediate discontinuity, the TPBVP

is solved when the discontinuity constraints are satisfied, by definition.

With the parameterization of this problem described at a high level, the

specific cost function, parameters, and constraints associated with this transfer are
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defined. Since this optimization problem is intending to minimize the propulsive

sum of the three maneuvers of the TEI sequence, the cost function is

J = ∆V1 + ∆V2 + ∆V3. (6.36)

The independent variables that are subject to change within the NLP when

searching to minimize the specific cost are referred to as parameters. For this prob-

lem these are: the time of departure along the initial orbit (could be replaced by

the mean anomaly), the first maneuver, the flight time between the first and sec-

ond maneuvers, the second maneuver, the flight time between the second and third

maneuvers, the third maneuver, the flight time from the third maneuver to the dis-

continuity point, the flight time from the Earth to the discontinuity point, and the

Earth entry state. This is captured by the parameter vector,

x̄p =


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20×1

. (6.37)

Finally, the constraints are contained in Equation 6.38 through 6.50, where

the first eleven constraints are equality constraints, and the final six constraints are
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inequality (satisfied when greater than or equal to zero).

c1−3 : 0 = r̄TOF3 − r̄TOF4 (6.38)

c4−6 : 0 = V̄TOF3 − V̄TOF4 (6.39)

c7 : 0 = rentry − rspecified (6.40)

c8 : 0 = τ0 + TOF1 + TOF2 + TOF3 + TOF4 − ttarget (6.41)

c9 : 0 ≥ sin(γentry) − sin(γspecified) (6.42)

c10 : 0 ≥ sin(φspecified) − sin(φentry) (6.43)

c11 : 0 ≥ cos(θspecified) − cos(θentry) (6.44)

c12 : 0 ≥ rperiapsis − rminimum (6.45)

c13 : 0 ≥ rmaximum − rapoapsis (6.46)

c14 : 0 ≥ TOF1 (6.47)

c15 : 0 ≥ TOF2 (6.48)

c16 : 0 ≥ TOF3 (6.49)

c17 : 0 ≥ TOF4 (6.50)

Starting with Equation 6.38, the list of requirements imposed by this constraint

vector includes: continuity constraints, an altitude constraint, a time of flight con-

straint, a flight path angle constraint, a latitude constraint, a longitude constraint,

a periapsis constraint, an apoapsis constraint, and a set of feasible time constraints.

It is important to note that the number of active constraints cannot and does not ex-

ceed the number of parameters. A problem with more constraints than parameters

cannot be numerically solved.

Given the cost, set of parameters, and constraints defined for this Earth-
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return problem, the NLP is ready to be incorporated. The solution process for

using the NLP to solve this problem is described, at a high level, by the following

calculation steps:

1. Retrieve the position and velocity vectors on the initial orbit corresponding to

the time, τ0, in the parameter vector.

2. Add ∆V̄1 to the velocity vector of this state.

3. Integrate forward for the amount of time specified by the parameter TOF1.

4. Add ∆V̄2 to the velocity vector of this state.

5. Integrate forward for the amount of time specified by the parameter TOF2.

6. Add ∆V̄3 to the velocity vector of this state.

7. Integrate forward for the amount of time specified by the parameter TOF3.

8. Given the final conditions contained within the parameter vector, integrate

backward for the amount of time specified by parameter TOF4.

9. Calculate the gradients of the cost function and the constraints with respect

to the parameters in x̄p.

10. Provide the NLP with the values of the cost function, constraints, and the

gradient information (tuned finite differencing in this case).

11. The NLP updates x̄p based on the search direction (gradients) and steps 1-10

are iterated upon until the cost is minimized.

Note that during the solution process, it is advantageous to scale all the parameters

such that they are on the order of unity. Beyond this, it is also necessary to con-

strain the maximum step size of each parameter within VF13AD. This problem is
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sensitive and large changes in the parameters create “chattering” in the search for

the minimum, introducing convergence difficulty.

Initial Guess

With the problem properly parameterized, all that remains is to create a good initial

guess for the parameter vector in Equation 6.37. A good initial guess is crucial to the

success rate of convergence. The initial guess chosen here corresponds to the same

as that outlined in Chapter 4. However, Level-Two correction is not incorporated

across the terminal leg of the Earth-return, only the Level-One. Therefore, while the

initial guess satisfies the desired position constraints, it does not satisfy the velocity.

Finally, note that since the initial guess provided here is continuous in position, the

position portion of the continuity constraints in Equation 6.38is also be satisfied

initially.

6.4.2 Three-Burn TEI Optimization Examples

Four cases are shown to provide a set of optimal transfers that provide insight into

the optimality of the targeting solutions in Chapter 4. For these examples, two types

of figures are presented. The first of these figures represents the optimal transfer in

the ECI frame. The second of these figures captures the transfer in the MCI frame.

It is also useful to take notice of the red crosses that appear on the MCI plots. These

represent the maneuver locations along the initial guess arc.
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Optimization Example 1

Using the same initial conditions used for the five cases in Chapter 4, with the

exception of a change to the inclination, the following entry parameters are targeted:

altitude = 100 km,

θ = 134.5456o, (6.51)

φ = −19.2041o,

gamma = −6.03o,

Constraining the flight time to match example case 1 of Chapter 4, the propulsive

cost for this optimal transfer is 993.8 m/s, and the computation time was 15 minutes

and 12 seconds. Note that the inequality constraints for the periapsis altitude and

the apoapsis altitude in Equations 6.45 and 6.46are pushed to their boundaries.

This results in a periapsis altitude of 100 km and an apoapsis that corresponds to
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a 48 hour orbit period. The parameter vector that yields these results is,

x̄p =
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. (6.52)

The initial guess and optimal solution are captured visually by the plots in Fig-

ures 6.10 and 6.11. Figure 6.11 shows that the optimal solution is similar to the

well-formed initial guess. The primary difference between the initial guess and the

optimal solution is the location of the departure point on the initial orbit.

An interesting characteristic of this optimal transfer that cannot be easily

observed in these figures is the active altitude constraint at the moon. In search-

ing for the optimal transfer, the outgoing departure from the moon is driven to the

boundary of the lunar surface. If left unconstrained, the optimal solution would pass

directly through the moon. This, of course, is not a viable solution and therefore

the constraint is imposed. This is an interesting result, and it suggests that a retro-

grade lunar orbit might provide for more favorable geometry during the departure

sequence.
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Figure 6.10: Optimization Example 1: (left) Transfer in ECI, (right) Transfer in
MCI

Figure 6.11: Optimization Example 1: Close View of Lunar Departure (MCI)
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Optimization Example 2

In this example, the initial lunar orbit inclination is altered from the first example

to match the five cases in Chapter 4. Given this minor change, the total maneuver

sum of the optimal transfer is reduced to a mere 864.4 m/s, with a computation

time of 14 minutes and 48 seconds. With the total ∆V reduced by nearly 130 m/s,

it is concluded that the retrograde orbit allows for a more favorable transfer for this

particular opportunity. In addition, with the flight time constrained to the same

value used as the first optimization example, this solution represents the optimal

version of the targeting solution in case 1 of Chapter 4. The parameter vector

providing this result is

x̄p =
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The initial guess and optimal solution for this example are illustrated in Figures

6.12 and 6.13. While the periapsis and apoapsis constraints are once again pushed

to their boundaries by the intermediate transfer orbit, the outgoing departure does

not violate the lunar surface proximity constraint.
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Figure 6.12: Optimization Example 2: (left) Transfer in ECI, (right) Transfer in
MCI

Figure 6.13: Optimization Example 2: Close View of Lunar Departure (MCI)
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The loop seen in the left hand plot in Figure 6.12 is an artifact of the retro-

grade nature of the transfer. Since the velocity at the periapsis of the 48-hour lunar

orbit is greater than that of the Moon itself (with respect to the Earth) the motion

appears to circle in the ECI frame. It is also interesting to note, that TEI-3 occurs

at the center of this loop, since it is performed at the periapsis.

Optimization Example 3

The goal of this example is to target an additional entry constraint. Namely, an

attempt is made to impose the flight path azimuth constraint contained in Equation

4.6 such that the entry conditions are

altitude = 100 km

10.5 ≤ V ≤ 12 km/s

θ = 134.54560

φ = −19.2041o

gamma = −6.03o

Az = 13.996o

The time of flight constraint is imposed to match case five of Chapter 4. By doing

this, a direct comparison of the targeting solution in case five can be made to the

optimal transfer achieved in this example.

The total ∆V cost associated with the converged optimal transfer is 1644.4

m/s and the computation time is 24 minutes and 37 seconds. This is nearly twice the

∆V of the second example. With the addition of the flight path azimuth constraint,

along with the extended flight time, this example represents a very specific transfer.
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That is, by fixing the initial orbit, the transfer time, and the Earth entry geometry,

the optimization routine does not have much freedom in changing the transfer. In

fact, in order to achieve the specific entry geometry, the third maneuver is pushed

well beyond periapsis. The parameter vector associated with this solution is

x̄p =

2
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The initial guess and optimal solution for this example are shown in Figures

6.14 and 6.15. In contrast to the first two optimization examples presented in this

section, the converged solution is considerably different than the initial guess. Figure

6.15 provides a close view of the third maneuver displacement from periapsis.

Optimization Example 4

The final investigation here is motivated by the result in example 3 as well as the

targeting result in case five of Chapter 4. Since the targeting solution provides a

better transfer, in terms of propulsion, an optimal 4-burn transfer solution becomes

intriguing. This investigation, however, reveals that example 3 is merely a local
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Figure 6.14: Optimization Example 3: (left) Transfer in ECI, (right) Transfer in
MCI

Figure 6.15: Optimization Example 3: Close View of Lunar Departure (MCI)
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minimum and that an improved 3-burn transfer exists elsewhere in the solution

space. In particular, while searching for the optimal 4-burn solution, the optimizer

found a 3-burn transfer that possesses a total cost of 979.9 m/s. The associated

computation time with this solution is 22 minutes and 11 seconds. The parameter

vector yielding this solution is

x̄p =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

τ0

∆V̄1

TOF1

∆V̄2

TOF2

∆V̄3

TOF3

TOF4

r̄entry

V̄entry

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

=

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3488.185047 s

−0.1241954614D − 02 km/s

0.4016601027D + 00 km/s

−0.8625754356D − 01 km/s

195371.93284000 s

0.2229732349D − 01 km/s

0.4016673021D + 00 km/s

−0.8916254821D − 01 km/s

237985.6479 s

0.1445962955D − 01 km/s

0.6168768813D − 01 km/s

0.1437265194D + 00 km/s

0.9795531082D − 30 s

189337.4217 s

3856.566714 km

−4779.528190D km

−2138.667586 km

4.9515023 km/s

1.212851516 km/s

9.725978118 km/s

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

. (6.55)

The second maneuver placed at apoapsis for the plane change is zero in this solution,

thus affording a 3-burn transfer from the 4-burn search. Therefore, the burn scenario

for this unique solution: 1) raises apoapsis and creates an intermediate transfer orbit,

2) departs from periapsis, and 3)performs a midcourse maneuver to complete the

necessary plane change for targeting the Earth entry state.

The initial guess and optimal solution for this example are included in Fig-

ures 6.16 and 6.17. In this solution, the intermediate transfer is smaller than the

other examples. Also, rather than immediately departing from the periapsis, the

spacecraft remains in the intermediate orbit for several revolutions. This is an arti-
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fact of the large flight time constraint imposed, and is evident in the left-hand plot

of Figure 6.16. The right-hand plot of Figure 6.17 then does well in providing a

view of the plane change involved in the third maneuver.

Figure 6.16: Optimization Example 4: (left) Transfer in ECI, (right) Transfer in
MCI

119



Figure 6.17: Optimization Example 4: Close View of Lunar Departure (MCI)
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Chapter 7

TLC vs. Optimal

With the optimization results presented in Chapter 6, the optimality of the targeting

solutions in Chapter 4 is evaluated. A great measure of success for the Earth-return

TLC guidance algorithm is the propulsive optimality of its solutions.

Example 2 in Chapter 6 presents the optimal three-burn TEI transfer subject

to the altitude, latitude, longitude, and flight path angle entry constraints. This

transfer requires approximately 860 m/s of impulsive ∆V . The guidance algorithm

provides a solution satisfying these same constraints with only 0.9 km/s. This shows

that through creating a good initial guess, a near optimal solution is achievable with

the TLC process. To illustrate the extent to which the targeter’s solution approaches

the optimal, Figures 7.1 and 7.2 show a superimposition of their solutions in the

ECI and MCI frames. With the two transfers being nearly identical, the only real

disparity that remains is a function of the departure point on the initial orbit.

It is also of interest to compare the computation times for these two solu-

tions. One of the primary goals mentioned at the beginning of this investigation

is the minimization of computational effort required by the onboard guidance algo-
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rithm. In the case shown in Figures 7.1 and 7.2, the optimal solution required eight

minutes and 19 seconds more than the targeter. Furthermore, it is important to

note that the optimization is performed on a FORTRAN platform, while the TLC

in MATLAB. As mentioned previously, experience shows that a compilable language

such as FORTRAN is typically more than an order of magnitude faster than MAT-

LAB. Given this information, the contrast in computation time is actually much

larger than the observed values.

Figure 7.1: Comparison 1: Targeting vs. Optimal (ECI)

Example 4 in Chapter 6 summarizes the optimal transfer for the most chal-

lenging case addressed by this study. The targeter also addresses this problem in

case 5 of Chapter 4. Figures 7.3 and 7.4 show their solutions superimposed in the

ECI and MCI frames. Of course, since the optimal solution’s maneuver sum is over

350 m/s less than the targeter’s solution, some disparity between these solutions is

expected. However, considering the difference in the burn scenarios taken by each
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Figure 7.2: Comparison 1: Targeting vs. Optimal (MCI)

approach, their solutions are surprisingly similar. The non-uniform motion seen at

the beginning of the optimal transfer illustrates that the spacecraft is still in orbit

for a significant portion of the transfer time. This is an artifact of the increase in

the magnitude of the flight time constraint imposed to match the targeter’s result.

For this example, the computation time of the optimal solution requires nine min-

utes and 56 seconds more than the TLC algorithm to reach a solution. As observed

in this example, creating an initial guess in the vicinity of the optimum is not a

straight-forward task. Moreover, the failure to create a good initial guess results in

a ∆V such as the 350 m/s in this case.
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Figure 7.3: Comparison 2: Targeting vs. Optimal (ECI)

Figure 7.4: Comparison 2: Targeting vs. Optimal (MCI)
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Chapter 8

Conclusions and Suggested

Future Investigations

The TLC algorithm in this study demonstrates the required capabilities for an Orion

onboard guidance routine. First, the entry constraints outlined in Chapter 3 provide

a method for targeting a specific entry state at the Earth. Also, a maneuver sum

constraint, fixed patch state constraint, and initial maneuver constraint, and simple

initial guess generator offer a means for maintaining propulsive costs below the 1.4

km/s ∆V budget. Finally, the application of the TLC process itself demonstrates

the ability to both robustly and quickly converge.

Beyond the impulsive demonstration of the TLC algorithm constructed for

this study, a prototype for a finite thrust TLC is presented. This extension of the

theory beyond an impulsive stature is a potential avenue for constructing an onboard

guidance algorithm that employs more realistic thruster models. In the event of the

loss of an engine, a finite thrust model is invaluable.

The completion of this study provides several avenues for future investigation.
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First, the initial efforts presented on the guess generation, finite thrust, and TEI

optimization leave room for extended applications and enhancements. In addition to

these tasks, additional constraint formulation are required to enhance the flexibility

of Earth entry targeting (geodetic latitude, downrange, crossrange, etc.). Finally,

with the onboard application of the guidance algorithm requiring autonomy, the

entire process needs to run without a user in the loop. Accomplishing this task

involves automating the initial guess and patch point generation.
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