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Abstract

Spacecraft formations that evolve near the libration points of the Sun–Earth/Moon
system are one option commonly considered for space-based interferometry applications.
Although precision tracking is often envisioned as a requirement, earlier studies have
already revealed that the dynamically sensitive nature of this region of space presents a
number of unique challenges in this respect. For instance, physical hardware limitations,
specifically related to the on-board actuators, can limit the attainable tracking accuracy. The
goal of this investigation is to devise a numerical process that allows the designer to identify
the maximum tracking accuracy achievable in the presence of actuator (e.g., thruster)
constraints. This is accomplished through the application of direct optimization methods. A
problem formulation is presented that effectively treats, within a nonlinear programming
framework, problems with state and control discontinuities and problems involving tem-
porally continuous but spatially discrete control variables. The results of this investigation
lay the algorithmic foundation for future explorations involving multiple independent
actuators each with its own set of constraints and switching dependencies.

Introduction

Although optimal control applications are common in spacecraft mission design,
complex actuator constraints, and their impact on the success of the mission, are
not often considered during the mission design process. Spacecraft actuators, such
as thrusters, that are subject to stringent physical limitations can adversely affect
the attainability of mission goals. This is particularly true for spacecraft that evolve
near the libration points of a multi-body system where dynamical sensitivities
amplify the overall effect of actuation errors. In incorporating actuator constraints
into a control problem, numerical optimization methods are most commonly
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adopted for their generality and relative simplicity in contrast to more classical,
albeit analytical, methods.

A classical nonlinear programming (NLP) framework accounts for possible
upper and lower bounds on the control input [1]. Earlier studies, in the area of
libration point mission design, frequently rely on this type of constraint. For
example, Senent, Ocampo, and Capella [2], employing concepts from both indirect
and direct optimization, study optimal low thrust transfers to libration point orbits
subject to upper and lower bounds on the engine power. However, the power is still
treated as a continuous-time variable within those bounds. Other studies that
incorporate NLP techniques for libration point mission design, and/or formation
flight in that region, include the work of Marchand, Howell, and Betts [3], Millard
and Howell [4], Infeld et al. [5], and Hughes [6]. Marchand, Howell, and Betts [3]
initially employ Floquet analysis to identify naturally bounded formations and
subsequently use NLP to identify the optimal single impulse that achieves a closed
relative path near the Sun–Earth/Moon libration points. Millard and Howell [4]
employ NLP techniques to optimize both formation imaging quality and fuel
consumption. Infeld et al. [5] employ a classical NLP formulation in addressing
formation design and control near the libration points. In this case, a Legendre
pseudospectral method is implemented through the use of DIDO, an optimization
software package that exploits SNOPT [7]. More recently, Hughes [6] presents a
generalized NLP formulation that is suitable for a wide range of formation configu-
rations and dynamical regimes. In all of these studies, the most complex actuator
constraint considered is, at most, a simple bound on the elements of the control vector.
Oftentimes, in fact, these constraints are not meant to imply a physical hardware
limitation but, rather, are employed as a means of limiting the search space explored
by the optimizer. In either case, the optimizer treats the control variable as both
temporally and spatially continuous within the control bounds.

It is important to establish the distinction between a temporally continuous and
a spatially continuous function. In the present context, a control variable is a
temporally continuous function if it is defined over a continuous domain (i.e.,
time). In contrast, a bang-off-bang control solution, although temporally continu-
ous, is spatially discontinuous because the range of the function is limited to a
finite set of values (i.e., on or off). This investigation considers the preliminaries
associated with incorporating control actions that are spatially discontinuous within
the NLP framework. The on/off times that define each thrust and coast segment are
treated as parameters in the optimization process. These switching times are
referred to here as knots. Thus, although this study is still focused on an optimal
“control” problem, the control variable is not an optimization parameter. Instead,
the control switching times are the parameters to be optimized for a given mission
scenario.

Initially, a single-impulse formulation is considered as a means of identifying
the minimum requirements of the formulation when a controlled “periodic” orbit
is sought. Although a single impulse is determined to be insufficient to achieve
controlled periodicity, the example serves to identify the most efficient cost index
formulation to minimize cost within the specified constraints. It also serves as a
simple way to introduce the basic notation of the formulation employed throughout
the document. In addition, a simple way of verifying the optimality of the
transcribed solutions is presented that extends beyond the single-impulse case. This
then leads to the mathematical preliminaries associated with formulations involv-
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ing multiple impulses and multiple fixed-thrust finite-burn sequences that do
achieve controlled periodicity. A set of sample results are presented for each of the
three formulations discussed. The results of the multiple impulse example are in
fact employed as a startup solution to the fixed-thrust finite-burn example. Al-
though the actuator constraints considered in this study are not the most complex
that can be imposed, they are sufficient to demonstrate the general concept. That
is, the use of knots as an effective means of treating problems that include
temporally continuous but spatially discrete control inputs.

Dynamical Model

Circular Restricted Three-Body Model

In this study, the central spacecraft is termed “chief” while all other vehicles in
the formation are denoted as “deputies.” In the circular restricted three-band
problem (CR3BP), the motion of the chief spacecraft is described in terms of
rotating coordinates (R) relative to the barycenter (B) of the Sun–Earth/Moon
primaries. In this frame, the rotating x-axis is directed from the Sun toward the
Earth–Moon barycenter, as illustrated in Fig. 1. The z-axis is normal to the plane
of motion of the primaries, and the y-axis completes the right-handed triad.

In Fig. 1, the position vectors rc and rd locate the chief and deputy vehicles with
respect to an inertially fixed reference point, in this case B. Subsequently, the
position of the deputy with respect to the chief spacecraft is given by the vector r �
rd � rc � [x, y, z]T. Consistent with this terminology, the relative equations of
motion can generally be summarized as

r̈(t) � �f(r(t), ṙ(t), rc(t), ṙc(t)) � �u(t) (1)

FIG. 1. Two S/C Formation in the Sun–Earth/Moon CR3BP.
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where

�f(r(t), ṙ(t), rc(t), ṙc(t)) � f(rd(t), ṙd(t)) � f(rc(t), ṙc(t)) (2)

and

�u(t) � ud(t) � uc(t) (3)

If the equations of motion are formulated in terms of inertial coordinates, the vector
function f(�) evaluates the sum of the external forces acting on a given vehicle.
However, because the working frame selected in this study is not inertial, f(�) also
includes kinematic terms specifically associated with the rotating coordinate
system selected, R. Similarly, the vectors ud and uc in equation (3) denote the
associated control accelerations applied by the deputy and chief vehicles, respec-
tively, in the appropriate coordinate system.

In the present investigation, the chief spacecraft is assumed to evolve along a
naturally existing solution such that uc(t) � 0, hence �u(t) � ud(t). Earlier studies [3]
indicate that, in optimization applications, it is most efficient to reduce the order of the
dynamical model by assuming the path of the chief vehicle to be a known function of
time. That is because the absolute state of the chief spacecraft and the relative state of
the deputy vehicle differ by several orders of magnitude. These relative scale differ-
ences pose numerical difficulties during the solution process. Indeed, variable scaling
can empower or hinder the solution of a nonlinear program [1]. Because no closed-
form solutions are available in the CR3BP, scaling issues are overcome by treating the
state of the chief spacecraft as a known function of time through the use of cubic
splines. Consistent with the method employed by Marchand, Howell, and Betts [3], this
requires that the reference orbit of the chief spacecraft be numerically identified first,
independent of the optimization process. Spline coefficients are then generated and
stored based on this numerically determined reference orbit. Because the relative
equations of motion are explicitly dependent on the state of the chief spacecraft, the
spline coefficients are used to obtain the state of the chief at any point in time during
the optimization process. As detailed by Marchand, Howell, and Betts [3], this
approach reduces the order of the state vector and eliminates the scaling issues
previously described.

Aside from the relative scaling issues identified by Marchand, Howell, and Betts
[3], other scaling difficulties arise if the nondimensional form of the relative equations
of motion is employed. For example, in the CR3BP, the state vector is often scaled (i.e.,
nondimensionalized) by defining the characteristic length as the mean distance be-
tween the Earth and the Sun and the characteristic time as the inverse of the Earth’s
mean motion. Because the nominal formations presently under consideration do not
exceed distances over 20,000 km from the chief spacecraft, the resulting position,
velocity, and control acceleration variables are disproportionately scaled. Thus, the
dimensional relative equations of motion are employed but the deputy states are
represented in units of meters for position and �m/s for velocity (i.e., 10�6 m/s).

Nonlinear Optimal Control for Formation Keeping

In previous investigations, Howell and Marchand [8–12] propose a variety of
formation-keeping approaches, continuous and discrete, optimal and nonoptimal.
Some of these investigations [9] incorporate nonlinear control methods under the
assumption that the spacecraft is capable of unconstrained actuation. Others [12]
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focus on impulsive schemes, like targeters and Floquet-based methods, that assume
the spacecraft is capable of performing the necessary corrections impulsively and
in any direction. The conclusions from these earlier studies indicate that, in the
vicinity of the libration points, non-natural configurations require nearly continu-
ous actuation to maintain path tracking within the tolerances specified by the
mission. Unfortunately, as presently envisioned, propulsive-based actuation may
conflict with the science goals of some interferometry mission concepts. From a
science perspective, the data gathered by the interferometer may be corrupted by
either plume impingement, structural vibrations induced by thruster firing, or any
other source of misalignment or sensor cross-contamination introduced by the
proximity of the vehicles in the formation. The impact of these will of course
depend on the relative distance and attitude of the vehicles.

Precision tracking either in the absence of actuation or in the presence of inexact
actuation is not a generally reasonable expectation in dynamically sensitive re-
gimes. Thus, the next logical step is to establish reasonable expectations regarding
tracking accuracy in the presence of both mission and actuator constraints. The
present study is an initial step toward that goal. Specifically, the focus here is on
addressing, at a basic level, the implementation of actuator constraints that lead to
independent sequences of bang-off-bang control solutions. This is consistent with
a scenario, for example, where the spacecraft thrusters are unable to deliver
variable thrust and are limited, instead, to fixed thrust levels.

Of course, optimization methods are not self-starting. Startup arcs are required
to identify neighboring optimal configurations. Earlier studies have established that
Floquet analysis [12] is useful in identifying naturally occurring formations that
can subsequently serve as startup arcs to an optimization process [3]. However, for
the range of sample formation geometries considered here, generally focused on
small relative distances, it is not necessary to provide an exceedingly accurate
startup arc. In fact, it is sufficient to specify arcs that exhibit some of the salient
desired characteristics even if the constraints are not all initially met.

Ultimately, the goal of the optimization process is to minimize the propulsive
cost, within the bounds established by the thrusters and the mission constraints, and
the deviations from the specified nominal path. The nonlinear programming
approach [1] adopted relies on a Hermite-Simpson discretization of the dynamical
model. The solution of the resulting sequential quadratic programming problem is
identified using SNOPT [7]. Comparative examples are presented to validate the
methodology. Also, a method of validating the optimality of the numerically
determined solutions is presented.

Transcription of the Optimal Control Problem

The basic approach for solving the optimal control problem by transcription is
discussed by Betts [1]. In a transcription approach, the time interval is divided into
nn nodes such that

t0 � t1 � t2 � . . . � tnn
� tf (4)

The associated states and controls along the trajectory are then defined at the
nodes, and are included as optimization parameters in the nonlinear programming
problem. Let us introduce the notation yj � y(tj) to indicate the value of the state
vector at the jth node. Similarly, the control vector associated with this node is
given by uj � u(tj). In the direct transcription method adopted here, the state
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equations are represented by a system of defect equality constraints based on a
compressed Hermite-Simpson discretization [1]. The parameter vector that con-
tains the NLP variables is subsequently defined as

x � [y0
T, u0

T, . . ., yf
T, uf

T, pT, t0, tf]
T (5)

where p represents a generic vector of problem parameters while t0 and tf denote the
times associated with the initial and terminal nodes along the solution, respectively.

As a result of the transcription process, the differential-algebraic system defining the
optimal control problem, for each segment, is replaced by NLP constraints of the form

cl � c(x) � cu (6)

where

c(x) � [�T, �0
T, �f

T, �T]T (7)

The vectors cl and cu define the lower and upper bounds of c(x), respectively. For
example, if cj(x), the jth element of c(x), is associated with an equality constraint,
then clj

and cuj
are both set to zero. The first elements of c(x), labeled �, are

equality constraints associated with the defect equations [1]. For example, if
�T � ��T

2
. . . �T

nn�, then each �j represents a defect constraint of dimension ny

evaluated at any one of the nodes, except for that corresponding to the fixed initial
state. The vectors �0

T and �f
T, of dimension n�0

and n�f
, represent boundary

conditions imposed at the initial and terminal nodes, respectively. The remaining
constraint, �T of dimension n	, consists of vector elements [�0

T, . . ., �f
T]. Each

element of �T represents a nonlinear vector algebraic path constraints imposed at
any one of the nn nodes along the solution.

Solution of the Optimal Control Problem

Once the problem is transcribed, the goal is to identify the optimal x that
minimizes F(x), where F(x) denotes a scalar cost index subject to c(x) constraints.
A necessary condition for a solution to exist is that the number of parameters, i.e.,
the dimension of x, is greater than the number of constraints, i.e., the dimension of
c(x). Thus, throughout this document, the first step in the setup of any problem is
to determine whether this requirement is satisfied and, if not, what changes are
necessary to the problem setup to ensure it is.

The size of the NLP problem can be quantified as a function of the number of
variables, n, and constraints, nc. Traditionally, a solution is often transcribed as a single
segment with nc nodes. Each of these nodes is associated with ny states and nu control
variables. In addition, the entire solution may be dependent on up to np parameters that
are constant along the solution. Thus, the parameter vector is of dimension

n � (ny � nu)nn � np � 2 (8)

where the “2” is indicative of the initial and final times contained within the
parameter vector x. Per the definition in equation (7), the dimension of the
constraint vector, c(x), is given by

nc � ny(nn � 1) � n�0 � n�f
� n	nn (9)

where ny(nn � 1) represents the number of defect constraints, n�0
and n�f

, denote
the number of initial and terminal boundary conditions, respectively, and n	nn is
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the total number of nonlinear algebraic constraints imposed across all nodes. This
large, sparse NLP can be solved efficiently using either a sequential quadratic
programming (SQP) method or an interior point (barrier) method [13]. Thus, the
classical approach to solving optimal control problems by transcription involves
three primary steps:

1. Transcribe the optimal control problem into an NLP.
2. Solve the sparse NLP using SQP methods.
3. Assess the accuracy of the solution then refine the discretization if needed and

repeat the above steps.

The transcription process described above is effective for a large class of optimi-
zation problems, though it is most accurate and effective for problems where the
control variables are both temporally and spatially continuous. However, for
problems that involve spatially discontinuous state or control variables, such as
impulsive maneuvers or fixed-thrust finite burns, the effectiveness and accuracy of
this classical formulation can be improved with the adjustments presented here.

A control solution is considered “impulsive” if it leads to an instantaneous
change in velocity at a given point in time. The resulting discontinuity in the state
implies the corresponding solution is temporally but not spatially continuous.
Similarly, control solutions that employ fixed-thrust finite burns lead to control
accelerations that are temporally though not necessarily spatially continuous. For
example, in an optimal unconstrained low-thrust problem, if the engines are
engaged over the duration of the trajectory, the control solution is both temporally
and spatially continuous. In contrast, the control acceleration associated with a
bang-off-bang or thrust-coast-thrust sequence exhibits a discontinuity each time a
thrust-coast or coast-thrust switch occurs. Thus, a bang-off-bang sequence is
temporally but not spatially continuous.

The following sections are devoted to an alternate formulation that better
accommodates spatial discontinuities in the state or control variables within an
NLP framework. A single-impulse formulation is presented first to introduce the
basic notation within the context of a classical example. This is followed by a
multiple impulse and multiple fixed-thrust finite-burn formulations. The resulting
formulations are employed in the numerical examples presented later.

Formulation for Single-Segment Single-Impulse Control

The classical transcription formulation discussed earlier easily accommodates a
single impulsive maneuver at the start of the trajectory. Here, the start of the path
is set to occur at time t0. The control parameters are given by �v(t0) of size nu �
3. For this formulation, nn still denotes the number of nodes, uniformly spaced in
time between t0 and tf, and n represents the number of parameters that result from
the discretization. The number of nodes, although generally arbitrary, is selected to
minimize the computational costs without compromising the fidelity of the result-
ing optimal arc. The size of the parameter vector for a single-impulse problem is
subsequently determined as

n � nynn � nu � 2 (10)

This represents the total number of variables that account for the number of states
(ny) per node (nn), the dimension of the control vector, �v(t0) � �nu, and the initial
and final times, t0 and tf.
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The initial conditions are completely specified for the ny states and initial
time. For the particular example considered in this study, at least in regards to
the single-impulse case, only the terminal position is fixed. Thus, a total of ny/2
terminal constraints are further imposed. An additional ny(nn � 1) defect
constraints are also specified. Thus, the total number of constraints, nc, is determined
as

nc � ny(nn � 1) � (ny � 1) � ny /2 (11)

The multiple impulse and fixed-thrust finite-burn formulations that follow
focus on a slightly different example, one with a fixed terminal state and time
to ensure controlled periodicity of the path. As discussed later, a single impulse
alone is insufficient in that case, and thus only the terminal position is fixed in
the single-impulse examples. However, the single-impulse formulation is em-
ployed to present several key concepts and motivate the need for a method that
adequately incorporates multiple impulses and multiple bang-off-bang thrust
sequences.

Formulation with Multiple Segments for Multiple Impulse and Fixed-Thrust
Finite-Burn Control

In the event a solution includes interior state or control discontinuities, incor-
porating knots in the formulation offers significant improvements over classical
formulations. A knot is a point that divides two arcs or segments at a point in time
where either a state or control discontinuity occurs. A knot may be either fixed or
free in time. Knots also offer an effective means of incorporating constraints that
vary by segment. By definition, any jump discontinuities along the solution must
occur at a knot. If the control variables are defined by impulsive maneuvers, state
discontinuities are introduced through the velocities every time a maneuver is
executed. In a fixed-thrust finite-burn scheme, in contrast, control discontinuities
are introduced every time a switch occurs, from on to off or vice versa.

Figure 2 illustrates the conceptual relation between knots, nodes, and segments.
Consider a formulation with ns segments. Each segment consists of nn nodes, and
each node is associated with ny states. Knots define the start and end times of each
segment along a trajectory. The knot time that defines the end of the last segment
is defined as tf. The time that defines the start of the first segment, t0 is always set
to zero because the dynamical model selected is time-invariant. All subsequent
knots are defined relative to t0. Thus, the initial time is not considered a true knot
in the present formulation. This implies that the number of knots, nk, is equal to the
number of segments, ns, and that a total of ns � 1 knots exist between t0 and tf.

If all knot times are unconstrained, the parameter vector x is augmented to
include the nk knots. The node spacing in time, although assumed uniform between
segments, may vary not only by segment but also from one iteration of the
optimizer to the next. Ultimately, the spacing of nodes along a segment is strictly
defined by the knots that define the start and end of that segment and the number
of nodes per segment initially selected.

In the CR3BP, allowing an impulse at the initial time and each of the ns � 1
interior knots leads to a parameter optimization problem of dimension

n � ns(nynn � nu) � nk (12)
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That is, a total of n parameters can be adjusted to achieve the optimization goals.
These parameters include the ny states associated with each of the nn nodes over ns

segments, the control parameters, nu, associated with each of the ns segments, and
the knot times, nk, that define the duration of each segment. The existence of
optimal solutions, then, hinges on the requirement that the number of constraints,
nc, imposed on the problem be strictly less than n. Although time continuity is
assumed between segments, it is not treated here as an explicit constraint. Instead,
temporal continuity between segments is inherent to the formulation adopted in this
study. That is, the nn

th node of one segment (i.e., the last node) coincides in time
with the first node of the next segment.

Among the set of explicit constraints considered in this study, up to ny state
continuity constraints may be imposed at any of the interior knots. Thus, a
maximum of ny(ns � 1) state continuity constraints are possible on any given
problem. For example, consider the illustration in Fig. 2. Here, a discontinuity
appears at Knot 2. If this discontinuity is associated with a velocity state, and an
impulsive maneuver is allowed, the velocity continuity constraint may be formu-
lated as

vj,1,2 � vj,nn,1 � �vj,2 � 0 (13)

Following the notation in Fig. 2, vj,1,2 represents the jth element of the velocity
vector, v, associated with the first node along the second segment. Similarly, vj,nn,1

is the jth element of v associated with the nn
th node of the first segment. Finally,

�vj,2 denotes the jth element of an impulsive maneuver, �v, applied at the second
knot. If an impulsive maneuver is not allowed at this point, then �vj,2 is strictly
equal to zero.

Position discontinuities are not allowed along a solution. Thus, the elements of
the state vector that correspond to position are always subject to strict continuity

FIG. 2. An Example of Segments and Knots.
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constraints across segments. The behavior illustrated at Knot 3 in Fig. 2, for
instance, is representative of a position continuity constraint at a knot given by

rj,1,3 � rj,nn,2 � 0 (14)

Consistent with the notation previously introduced, rj,1,3 represents the jth element
of the position vector, r, associated with the first node of the third segment,
whereas rj,nn,2

denotes the jth element of position associated with the nn
th node of

the second segment.
To preserve the tractability of the intermediate solution arcs, constraints are also

imposed on the length of a segment defined by the knots at the start and end of that
arc. For example, if left unconstrained, the optimizer may identify intermediate
solutions with negative segment lengths by allowing the temporal ordering of knots
to switch. To discourage this behavior, inequality constraints are imposed to ensure
that the (i � 1)th knot does not lag behind the ith knot. This leads to nk � ns

inequality constraints on the knot times, because t0 is not considered a knot in the
time-invariant problem.

Another set of required constraints correspond to the Hermite-Simpson
discretization of the dynamical model and leads to a total of nsny(nn � 1) defect
equations. Finally, up to ny � 1 initial state constraints and ny � 1 terminal
state constraints may be imposed. Thus, the total number of constraints can add
up to a maximum of

nc � ny(ns � 1) � ns � nsny(nn � 1) � 2(ny � 1) (15)

For nc constraints and one scalar cost index, a total of nF function evaluations are
performed during each iterative step in the search for an optimal solution. The
difference between the number of parameters and the number of function evalu-
ations

n � nF � nsnu � ny � 2 (16)

is employed in determining whether the NLP problem is “well posed.” Because
n � nF must be positive for the problem to remain underconstrained, the user can
rely on equation (16) as a guide to determine the minimum number of control
variables, nu, segments, ns, and by implication the number of knots, nk � ns,
necessary for a solution to exist.

Aside from the initial single-impulse case, the examples that follow focus on
minimizing the cost of establishing controlled relative periodic orbits. Depending
on the cost index selected, up to ny terminal state constraints are imposed, ny/2 in
position and ny/2 in velocity, of the form

rj,nn,ns
� rj,1,1 � 0 (17)

vj,nn,ns
� vj,1,1 � �v � 0 (18)

For a single-impulse example, only ny/2 constraints are imposed because the
terminal velocity cannot be constrained. Instead, the single-impulse cost index is
formulated to impose a penalty on the terminal velocity discontinuity. In contrast,
the multiple impulse formulation constrains all ny terminal states. The multiple
impulse and fixed-thrust finite-burn examples that follow are specifically con-
cerned with establishing a controlled relative periodic path. Naturally, because a
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relative periodic path is not known, a priori precision tracking is not a goal in these
examples. Rather, these examples are designed as a simple means of illustrating the
use of knots to accommodate spatial discontinuities in states or control variables.
Note that, for the multiple impulse example, if all �v’s are zero, the optimal
solution is considered naturally periodic. Otherwise, a controlled periodic path is
the best available solution. Furthermore, it is worth noting that, if a suitable initial
guess is provided, the optimal solution should exhibit some of the characteristics
of the startup arc. However, no guarantees are implied because precision tracking
is not built into the selected cost indeces.

When multiple impulsive maneuvers are employed, nu represents the dimension
of any one of the �v’s applied. An impulsive maneuver here is always applied
either at the start of the first segment or any of the interior knots. Thus, in the
multiple impulse case, for ni impulses, the optimization problem is of dimension

n � nsnnny � ninu � nk (19)

In contrast, in a bang-off-bang thrust sequence, nu represents the dimension of the
thrust vector. In this case, each of the nn nodes along a segment is assigned the
same constant-thrust value, be it zero or nonzero. Thus, for finite burns of constant
magnitude, the problem is of dimension

n � nsnn(ny � nu) � nk (20)

and the thrust magnitude at each node is prespecified such that

0 � uTu � as
2 (21)

In equation (21), as is a constant-thrust acceleration magnitude specified for a
given segment. Note that as is a nonzero constant only over a burn arc. A coast arc,
in contrast, is associated with as � 0. Because as is independently prespecified over
each segment, the thrust magnitude is not itself a control parameter. Rather, the
nsnnnu terms in equation (20) are associated with the nu components of the control
acceleration vector at each of the nnnk nodes. That is, the nu dimensional thrust
direction contributes nunnnk parameters to x. A unit magnitude constraint is
imposed on the thrust direction at each node, regardless of whether or not as � 0.
Finally, it is important to note that, in the examples presented here, the nu control
parameters are strictly associated with translational vehicle control. That is, the
present examples assume that sufficient and independent means of attitude control
are available to reorient the deputy spacecraft as needed during the execution of
either an impulsive or fixed-thrust finite burn.

Optimal control solutions that exhibit a “bang-bang” structure often arise in
minimum time problems [14, 15]. Similarly, “bang-off-bang” solutions are not
uncommon in minimum effort problems [14, 15]. In spacecraft applications,
the term “bang” implies the engines fire at a constant-thrust level until the burn
ends at the “off” command. Because the duration of the optimal burn is not
known a priori, an optimal fixed-thrust finite-burn problem involving multiple
“bang” and “off” sequences may be formulated by dividing the solution into
segments connected by knots. Thus, a segment is designated as either a “bang”
segment or an “off” segment. Because the thrust magnitude is fixed over any
given segment, the NLP solver seeks to identify the optimal duration of each of the
“bang” and “off” segments over the entire trajectory as well as the optimal thrust
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direction at each node. In the present example, the constraints are formulated such
that odd-numbered segments correspond to an engine “on” state while the even-
numbered segments are considered coast or engine “off” segments. Therefore, for
the jth node along the kth segment, the thrust magnitude is specified according to

0 � ujk
Tujk � as

2(1⁄2�1⁄2(�1)k) (22)

The magnitude, �ujk�, alternates between as and zero for each k, presenting a
bang-off-bang scheme for any formulation with three or more segments. In this
case, the knot times and the thrust direction at each node are free parameters in the
optimization process. Thus the algorithm determines the optimal times to burn or
coast and the optimal direction of the thrust vector. Without prior knowledge of the
number of burn arcs required, the user can initially specify an arbitrary number of
segments, and any unnecessary burn arcs are removed by the optimization process
when two switching points coincide in time. This may occur if the user specified
more odd (burn) segments than the optimal solution requires. Thus, a control
profile with an instantaneous off-on-off sequence can be interpreted as an unnec-
essary burn segment.

The fixed-thrust finite-burn example presented next accounts for up to ny � 1
initial time and state constraints, ny � 1 terminal state and time constraints,
nsny(nn � 1) defect constraints, up to ny(ns � 1) interior knot state continuity
conditions, nnns unit magnitude constraints on the thrust direction, and ns time
inequality constraints to preserve the time ordering of the knots. Thus, the total
number of constraints and function evaluations (including the cost index) are given
by

nc � 2(ny � 1) � nyns(nn � 1) � ny(ns � 1) � nnns � ns (23)

nF � nc � 1 (24)

Subtracting equation (24) from equation (20) leads to

n � nF � (nu � 1)nnns � ny � 2 (25)

Once again, the quantity n � nF represents the criteria used to determine the minimum
number of nodes and knots, for nk � ns, necessary for the existence of an optimal
solution. For example, if nu � 3 and ny � 6, then n � nF � 2nnns � 8, which indicates
that the problem is underdetermined as long as nnns, the total number of nodes, exceeds
four. Of course, an increased number of nodes and segments offers a more diverse
solution space in the search for optimality.

Solution of the Nonlinear Program

An SQP approach is selected to solve the NLP problem that results from
transcription of the optimal control problem. The basic elements of the NLP
formulation are consistent with those presented by Betts [1, 16, 17, 18, 19].
However, the sparse quadratic program is solved using SNOPT [7]. As previously
mentioned, a reduced order dynamical model [3] and scaled relative equations of
motion are employed to enhance the numerical efficiency and accuracy of the
process. The following sections present a brief discussion on the startup arcs
employed and the results of three examples consistent with the single impulse,
multiple impulse, and fixed-thrust finite-burn formulations previously discussed.
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Startup Arcs

Two different startup trajectories are employed here. The first startup arc,
illustrated in Fig. 3, originates from Floquet analysis [12]. Marchand, Howell, and
Betts [3] present the results of an optimal single-impulse problem using this exact
same arc and demonstrate that a local minimum exists very close to this startup
solution. To better explore the neighboring solutions, a more arbitrary initial guess
is also considered. The arbitrary guess, in Fig. 4, is not considered “feasible”
because, initially, the corresponding states do not satisfy the dynamical constraints.
Although such an arc is not generally considered the best available, it is reasonably
accurate for the optimizer in this case. That is because, in this example, the deputy
path is always within 100 meters of the chief, and the long orbital period leads to
small relative velocities. Thus, the optimizer is able to compensate for the
inadequacies of the startup solution as long as the number of nodes employed is
sufficient to adequately represent the geometry of the path. The optimal solutions
obtained from these two startup arcs are contrasted to establish the robustness of
the optimal solution. If the resulting optimal paths reside near the same local
minimum, then the optimality of the solution is considered robust.

The arbitrary guess, in Fig. 4, places the initial state along a circular relative
path. The orbital period of the deputy is selected to match that of the chief
spacecraft precisely. Because this startup arc does not satisfy the dynamical
constraints of the problem, the optimizer has an opportunity to explore a larger area
of phase space before converging on an optimal solution. In contrast, the Floquet
solution originally identified by Howell and Marchand [12] is already nearly
periodic. Thus, the optimizer does not search much farther than the immediate
vicinity of the startup arc for an optimal solution. A comparison between the
locally optimal solutions obtained from various yet somewhat similar startup arcs,
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FIG. 3. Floquet Initial Guess [12].
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such as that presented in the following section, allows for an assessment of
optimizer “inertia.” This is an important aspect of the analysis when the neigh-
borhood of interest is rich in locally optimal solutions and one wishes to determine
the robustness of the optimal solutions identified.

Single-Impulse Solution

For the four cases considered, the optimal deputy paths are illustrated in Fig. 5.
Note that, for most cases, the resulting closed relative path is very similar to the
startup arc in Fig. 3. In each case, the initial velocity of the startup arc is arbitrarily
set to zero, v0

� � 0. Subsequently, an initial velocity “update” is necessary to place
the vehicle on the desired relative closed path. The updated velocity is given by
v0

� � v0
� � �v. In essence, the �v vector represents the initial velocity required

for the spacecraft to return to the initial position after one revolution.
Because naturally periodic relative orbits of this type are not available, [12] the

terminal velocity, vf
�, is different from the initial updated velocity, v0

�. In the
CR3BP, if the period of the controlled relative path is fixed to match the orbital
period of the reference halo orbit, then v0

� � vf
� represents the maintenance

maneuver required to continue along the same path over every successive revolu-
tion. If, however, tf is free, then v0

� � vf
� is simply a measure of the smoothness

of the closed path after one revolution. In this case, when tf does not match the
period of the reference halo orbit, v0

� � vf
� will not lead to the exact same path

over subsequent revolutions. Even with added control, some orbital drifting is
expected relative to the initial startup arc. That is, it is not possible, without
continuous control, to maintain a periodic relative orbit of this type. This is
supported by the results presented by Howell and Marchand [12], who identified
only one type of strictly periodic relative orbits near the chief vehicle. Other
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neighboring solutions are, at best, nearly periodic but generally drifting. The arc
employed here is the first revolution along one of these drifting orbits.

For either initial guess, consider a single-impulse single-segment example with
free terminal time. In this case, a total of nc � ny � ny(nn � 1) � ny/2 constraints
are implemented, ny initial state constraints, ny(nn � 1) Simpson continuity
constraints, and ny/2 terminal position constraints. Note that, although the gener-
alized formulation previously presented assumes the initial time may be a free
parameter, it is not treated as such in the following examples. That is because the
CR3BP is time invariant. Thus, for simplicity, the initial time is always defined as
t0 � 0 and all node times are defined relative to this reference.

The total number of function evaluations is given by nF � nc � 1, nc constraints
and one scalar cost index. For the single-impulse examples presented next, the cost
index may be formulated to include a penalty on the magnitude of v0

� � vf
�. The

total number of NLP variables, then, is n � nnny � nu � 1, nnny node states, nu

control variables (i.e., �v at t0), and the terminal time, tf. Thus, n � nF � nu �
ny/2 
 0 is required for a solution to exist. Of course, because nu � 3 and ny/2 � 3,
a solution exists only when the terminal time is free. That is, a single impulse alone
cannot establish a periodic relative path that matches the orbital period of the reference
halo orbit. A multiple impulse example, in contrast, can easily accomplish the goal.

For subsequent examples involving multiple impulses, the terminal position and
velocity are both constrained to match the updated initial state. Thus, if nk impulses
are applied, one at t0 and one at each of the nk � 1 interior knots, then nc � ny �
nkny(nn � 1) � nk � ny � 1, nF � nc � 1, and n � nknnny � nknu � nk. This
implies that n � nF � nk(ny � nu) � 2(ny � 1) 
 0. Thus, as long as nk � 2, a
solution exists. This further suggests that at least two maneuvers are required to
identify a controlled periodic relative orbit of the type sought, one at the initial
point t0 and one at an interior knot.

Although it is evident that multiple impulses are required to achieve a controlled
periodic relative path, it is still advantageous to study the single-impulse example,
with free terminal time, to assess the impact of the problem setup and cost function
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formulation on the smoothness of the path and the initial �v. Tables 1 and 2
summarize the key parameters that result from four different numerical implemen-
tations pertaining to the single-impulse case. Table 1 lists the sample cost functions
implemented for the analysis. Table 2 presents a summary of the converged
optimal solution parameters. The key elements used for comparison are the startup arc
and the cost function imposed. The results are assessed in terms of the magnitude of
the initial impulse, ��v� and the smoothness of the closed path, v0

� � vf
�.

The same Floquet initial guess employed by Marchand, Howell, and Betts
[3] is adopted here in deriving the results associated with Solution 1. The
arbitrary circular startup arc leads to Solution 2. Note that the magnitude of the
impulse in Solution 2 is significantly larger than that of Solution 1. This is not
surprising considering the startup arcs were significantly different. Thus, the
optimizer simply converged on a different locally optimal solution, one with a
higher cost. Of course, it is also not surprising that the path from the arbitrary
guess is not as smooth as that from the Floquet solution because the cost index
employed placed no penalty on smoothness and no constraints were incorpo-
rated to that effect.

Solutions 3 and 4 are based on a multiobjective cost index that places a penalty
on the terminal smoothness of the closed path. The weight factor, w, is a
user-selected parameter. Naturally, an increased weight on the terminal velocity
discontinuity leads to a smoother optimal trajectory.

Solutions 3 and 4 use the same weight factor in the cost function, but the
optimization process is based on different startup arcs. It is interesting to note that,
although Solutions 1 and 2 arrive at different local minima because of the different
starting points, Solutions 3 and 4 arrive at nearly the same optimal point due to the
new “smoothing” cost function. Thus having arrived in the same vicinity from
different starting points helps to validate the solution. Although additional weight
factors were considered, an exhaustive survey was not conducted. However,
increasing the weight factor by one order of magnitude improves both the size of
the initial impulse and smoothness of the terminal state.

Verification of Optimality. Consider the single-impulse example associated with
Solution 3 in Table 2. Recall that the impulsive maneuver, �v, is treated as a
constant parameter that is adjusted as needed during the optimization process. In

TABLE 1. Two Cost Functions

A J � �vT�v

B J � �vT�v � w(v0
� � vf

�)T(v0
� � vf

�)

TABLE 2. Single Impulse Solutions

Solution
Transcription

Method Guess
Cost

Function w
��v�

[�m/s]
�v0

� � vf
��

[�m/s]
tf

[days]

1 Manual Floquet A N/A 17.974 7.808 170.807

2 Manual Arbitrary A N/A 25.602 40.628 214.896

3 Manual Floquet B 10 19.352 1.418 176.641

4 Manual Arbitrary B 10 19.304 1.484 176.560
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verifying optimality, the objective is to determine how well the optimality condi-
tions are satisfied by the transcribed solution. In the example selected here, the cost
index is given by J � �vT�v � w(v0

� � vf
�)T(v0

� � vf
�), where w � 10. The

startup arc [3] is characterized by v0
� � 0 and v0

� � v0
� � �v � �v. Consider an

augmented cost index that further incorporates the initial and terminal constraints

G � �vT�v � w(�v � vf
�)T(�v � vf

� ) � v0
T�0 � vf

T�f (26)

where

�0 � �r0�r0,spec � 0
v0

��v0,spec � 0� (27)

represents a constraint on the initial state and

�f � rf � r0,spec � 0 (28)

is a vector of terminal position constraints. The vectors r0,spec and v0,spec are
constant vectors specified by the user and remain unchanged throughout the
optimization process. Note that the control parameter vector, �v, appears explicitly
in the first and second terms of G. Optimality can be thus presented in one of two
forms. In the classical sense, the Euler-Lagrange equations [15] require that

G�v � 2�vT � 2w(�v � vf
� )T � 0 (29)

In a parameter optimization sense, [1, 13] where the goal is to minimize a scalar
cost index F(x) subject to vector constraints c(x), optimality ensues when the
derivative of F(x) with respect to x is zero. The Euler-Lagrange conditions,
including that in equation (29), are ultimately embedded within the transcribed
optimal control problem. For example, in the present formulation, the parameter
vector x is of dimension n � nsnn � nu � 1. The first nsnn elements correspond to
the ns state elements associated with each of the nn nodes. The last four elements
of x are the nu � 3 elements of the �v vector followed by the terminal time, tf. The
SNOPT [7] output includes the gradient of F(x) with respect to x along the optimal
solution. Thus, the vector G�v may also be deduced by reading the appropriate
elements of the gradient of F(x) in the transcribed problem. Subsequently, the
gradient in equation (29) is deduced either directly from the optimizer output or by
direct substitution of the optimal �v and vf

� into equation (29). If the control
history is truly optimal, then equation (29) should be satisfied within some
specified tolerance level. With either approach, the gradient is identified as

G�v��0.000219833 �0.000029742 0.000043753� m/s (30)

Because G�v is reasonably close to zero, the optimality of the solution is verified,
at least in the immediate neighborhood of the initial guess. The optimal states and
costates are illustrated in Fig. 6. For each state and costate, two curves are
illustrated on each plot. The dots correspond to the transcribed solution evaluated
strictly at each node. The solid lines are obtained by numerically propagating the
node states and costates from one node to the next using a standard Runge-Kutta
integrator. It is evident, at least within the specified tolerances, that a subset of the
costates extracted from the transcribed solution is directly related to the classical
costates from the Euler-Lagrange equations. There are some minor discrepancies
that are most apparent in the position costate curves. These differences are
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ultimately attributed to the specified optimality and feasibility tolerances for the
transcribed model. Increased fidelity in both should minimize these discrepancies
at the expense of an increase in computational overhead. In general, however, the
steps presented here offer a simple way of verifying the optimality of the
transcribed solutions.

Multiple Impulse Solution

As established in the previous section, a fixed terminal time problem that seeks
to establish a controlled periodic path requires at least two knots. The present
example, then considers a three-impulse formulation. The first impulse, at t0,
essentially updates the initial velocity from zero to v0

� while the remaining two
impulses, �v2 and �v3, are applied at the interior knots. In total, the implemen-
tation includes three knots, one knot per maneuver performed. The terminal time
along the trajectory, tf, is constrained to match the orbital period of the reference
halo orbit along which the chief vehicle in the formation evolves, roughly 180
days. In the end, if any one of the three maneuvers is unnecessary, the optimization
process should nullify it.

With the addition of two new interior impulses, the cost function is augmented
as follows

J � ��v1� � w(��v2� � ��v3�) � (w � 1)�v0
� � vf

� � (31)

The constant w is not itself a weighting factor. Rather, it represents the number of
revolutions over which the spacecraft must maintain the periodic path. The last
term in the cost index, involving v0

� � vf
�, seeks to minimize the velocity

discontinuity (i.e., impulsive maneuver) that defines the start of each of the
subsequent w � 1 revolutions. Thus, after the first revolution is completed, the
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three maneuvers that maintain the controlled periodic path are �v2, �v3, and v0
� �

vf
� � v0

� � �v0 � vf
�. In essence, the cost function represents the sum of all

maneuvers performed in completing all w revolutions. For the example in question,
when w � 10, the optimal solution is shown in Fig. 7. The initial guess employed
corresponds to the Floquet startup arc [3] employed in the single-impulse example
previously presented. The magnitudes of the three impulses are summarized in
Table 3.

The final time, or controlled period, of the closed path is 177.7177 days. Aside
from constraining the terminal time, i.e., the orbital period, terminal position and
velocity continuity constraints are also imposed; r0 � rf, and v0

� � vf
� � 0. Note

that this last velocity continuity constraint is computed as the difference between
the initial velocity BEFORE �v0 is applied, and the terminal velocity at the end of
the revolution. In addition, for the stated cost index, a successful optimizer run
identifies a solution that minimizes v0

� � vf
� � v0

� ��v0 � vf
�. In the present

example, the optimizer is able to identify a solution where v0
� � vf

� � 0. This
implies that v0

� � vf
� � �v0. Subsequently, the total cost required to maintain a

controlled periodic relative path over one of the w revolutions is the sum of �v0,
�v1, and �v2. In the present example, where w � 10, the sum of these individual
impulses is roughly 20.14 �m/s.

Note, though one may be tempted to contrast this total cost with the results of
the single-impulse examples previously presented, this is not an equitable or
adequate comparison. After all, it is not possible to identify a closed relative path

TABLE 3. Three Impulse Solution

Impulse ��v� [�m/s] Time [days]

1 19.2136 0.0000

2 0.3982 58.9803

3 0.5320 116.6191
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with a fixed orbital period via a single impulse. At least two maneuvers are
required to fix the period to match that of the chief spacecraft path. Thus, although
the paths may appear closed and, at times, even nearly periodic, controlled
periodicity is NOT achievable via a single impulse. The multiple impulse example
presented here, with fixed terminal time and terminal state continuity constraints,
guarantees a precisely periodic controlled relative path.

The multiple impulse solution presented here is employed in the next section as
an initial guess to a multiple fixed-thrust finite-burn optimization problem. Aside
from providing a suitable startup arc for the fixed-thrust finite-burn case, however,
this solution also demonstrates the use of knots as a means of incorporating interior
�v’s at variable times. Because the knot times are free, and the number of nodes
per segment is held fixed, a heterogeneous node distribution is expected. In fact,
the node distribution naturally varies from one iteration to the next during the
optimization process. Although this does not lead to any convergence difficulties,
it is generally advisable to choose nn sufficiently large such that the longest
segment is always adequately represented.

Multiple Fixed-Thrust Finite Burns of Variable Length

In some cases, depending on the duration of the burn and the engine capabilities,
it is not appropriate to model maneuvers as impulsive. Furthermore, although
low-thrust engine capabilities continue to improve, unconstrained continuous
control solutions are often times infeasible for practical applications. The present
example considers the same optimization goal of the last two sections, establishing
a controlled periodic arc while minimizing the cost. In this case, however, three
fixed-thrust magnitude finite burns are implemented through the use of knots. As
before, the duration of a finite-burn arc is determined by the difference between the
initial and terminal knot times that define the burn segment. This particular
formulation seeks to address the possibility that a mission cannot practically
accommodate continuous thrusting at all times.

As previously mentioned, the magnitude of the thrust vector is prespecified
along each segment. That is, consistent with equation (22), segments are
predesignated as either burn segments or coast segments before the optimiza-
tion process is initiated. The thrust direction at each node and the knot times,
which define the duration of each segment, are the control parameters. It is
important to note that modeling engine limitations through constraints, such as
that in equation (22), must be addressed on a case-by-case basis. The particular
formulation selected in equation (22) is simple by design because it is only
intended to demonstrate the use of knots in optimal fixed-thrust finite-burn
solutions. Specifically, the use of knots allows for an effective way to treat the
spatial discontinuities in acceleration that result from the on/off switching of
the thrusters. Furthermore, because the direction of the thrust vector is variable
over a given segment, it is assumed that the spacecraft has adequate attitude
control to reorient itself as needed during each burn. It is also implied, when
applicable, that all thrusters are engaged synchronously. That is, all thrusters
coast or burn during the same period of time. Although follow-on studies
consider fixed independent thrusters with asynchronous on/off thrusting se-
quences, that is not the subject of the present investigation. However, all
subsequent studies build on the knot-based formulation presented here.
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In the present example, the thrust magnitude is constrained to 1 �N for a 500-kg
satellite. That is, the specified thrust acceleration becomes

as �
1 �N

500 kg
� 2 nm/s2 (32)

The control effort is minimized through a cost index of the form

J � �
t0

tf

�u� dt

Following the constraint formulation in equation (22), the thrust acceleration
magnitude is set to as along thrusting arcs (odd-numbered segments) and zero
along coasting arcs (even-numbered segments). Subsequently, the cost function
reduces to

J � �
k�1

nk

�tk � tk–1��1

2
�

1

2
(�1)k�as (33)

where tnk
� tf . Notice a quadratic cost function, with integrand uTu, would have

an equivalent cost function, scaled by as
2 instead of as.

The optimal impulsive solution presented in Fig. 8 is employed here as a startup
arc in the search for the optimal fixed-thrust finite-burn solution. This is accom-
plished by first extracting the thrust magnitude and direction from each of the
individual �v’s listed in Table 3. The magnitude component is used to estimate the
duration of an equivalent finite burn. The direction of the impulse is used as an
initial guess for the finite burn direction over the segment. The initial guess, then,
consists of the number of segments, the duration of each segment, and the direction
of thrust during thruster-on segments. Because the impulsive solution has three
impulses each followed by a coasting phase, it is logical to set up the fixed-thrust
finite-burn problem with ns � 6, with alternating thruster-on and thruster-off
segments. To estimate the duration of a burn, it is necessary to establish a relation

FIG. 8. Process for Finding Fixed-Thrust Finite-Burn Solutions from Impulsive Solutions.
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between the magnitude of the �v with respect to the thrust acceleration magnitude,
as. The relation between these two variables is an integral of the form

�vi 	 �
�ti

�u� dt � �
�ti

as dt � as�ti

Thus, for the startup arc employed here, the initial duration of any thrusting
segment is estimated as the ratio of the impulse (i.e., �vi) over the thrust
acceleration (i.e., as). Although this provides an approximation for the initial
duration of the burn segments, it is still necessary to identify suitable start times for
each fixed-thrust finite-burn segment. Because the optimizer refines the duration of
all thrust and coast segments, a suitable initial guess is one that places the start of
each burn near the original impulsive counterparts. The initial values for the start
and duration of each burn leads to an initial guess for the knot times. Finally, the
guesses for the controls at the jth node of the ith thrusting arc are simply

uj � as

�vi

�vi
(34)

That is, the thrust direction along the entire segment (of duration �ti) is aligned
with �vi.

This process generates an adequate guess for the second trajectory in Fig. 8, and
solutions have been successfully derived through this approach. However, some
consideration remains with regard to the scaling of the time variables. Recall, for
example, that the magnitude of the first impulse in Table 3 is �vi � 19.2136 �m/s.
The equivalent finite burn duration, for a 2-nm/s2 control acceleration, is approx-
imately 160 min, or 0.063% of the relative orbital period. Herein lies the problem,
the optimization goals require a solution be evaluated over one full orbital period,
but the corresponding time scale is significantly disproportionate to the duration of
the required thrust arcs. Because the knot times are themselves optimization
parameters, and all segments are separated by knots, a burn this short essentially
corresponds to two knots that are almost coincident from a numerical perspective.
A detailed analysis performed during the course of this study reveals that, without
proper variable scaling, the optimizer will generally converge on a local optimal
solution with unnecessarily long burn arcs. This naturally leads to more costly
solutions due to the extended burn durations.

A method of resolving this inconvenience is to change the scope of the problem,
as illustrated in the third trajectory of Fig. 8. Here, a new problem is set up focusing
only on one of the burn arcs at a time. From the impulsive solution, the states along
the trajectory are known at an arbitrary point, y1. Let this point become the new
final point, y*f, with a final time significantly shorter than before. As illustrated, this
problem now becomes a two-segment problem only, with a thrusting arc followed
by a coasting arc. Note that any more than two segments will result in multiple
thrust arcs, and the �v would be approximated with a series of fixed-thrust finite
burns. Although this added flexibility would most likely produce a less costly
solution, the objective here is to ensure only one finite burn to account for the �v.

To demonstrate the optimal fixed-thrust finite-burn approach, the present ex-
ample focuses on a small section along the first segment of the multi-impulse
maneuver solution summarized previously in Fig. 7 and Table 3. Arbitrary states
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and time are selected and identified as the terminal values. For this example, the
states and time selected are associated with the optimal values from the multi-
impulse solution, approximately three days after the initial maneuver of magnitude
19.2136 �m/s. The goal of this example is to identify an equivalent fixed-thrust
finite burn that converges on this terminal state. Initially, the terminal time is
assumed fixed, though this is later determined to be detrimental to the solution
process. The control and velocity histories of the converged solution are illustrated
in Fig. 9. The position history is not included due to the short time interval
considered (three days produces little change in the position).

Some interesting observations are deduced from this result. The control history
reveals that the thruster is engaged for 6.409 h. This leads to a total �v of 46.146
�m/s over that interval. Clearly, this is significantly higher than the cost of the
impulsive maneuver in Table 3. A closer look at the individual components of the
control acceleration reveals that the thrust vector switches direction near the end of
the arc. The spacecraft would have to reorient instantaneously to thrust in the
opposite direction, based on the current assumptions. The switch in the thrust
direction is manifested in the velocity states by a sharp turn. The source of this
behavior originates from the final time constraint. The solution shown is the
optimal way of achieving the given final states within a specified time limit.

If the final time is free, a burn arc that extends for 2.657 h, with a total �v of
19.127 �m/s, leads to a solution that is close to the 19.2136 �m/s from the
impulsive solution previously presented. The control and velocity histories for this
solution are shown in Fig. 10. The lower propulsive cost is naturally attributed to
the shorter burn time. Note that the fixed terminal time does not correspond to the
engine burn time. The trajectory arc under consideration consists of both an initial
burn segment followed by a coast segment. Although the terminal time of the coast
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FIG. 9. Fixed-Thrust Finite-Burn Solution with Fixed Terminal State and Time: �v � 46.146 �m/s.
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segment is fixed, the interior knot that defines the duration of the burn is still free.
Targeting a fixed state and time at the end of the coast segment leads to a higher
cost because the spacecraft has to reverse thrusters to “slow down” to meet the
terminal time constraint.

The fixed versus free terminal time issue becomes important when the problem
is rescoped to consider only one maneuver at a time. Achieving a controlled
periodic relative path of the desired geometry entails more than just meeting a
terminal state constraint. This is true even in the time-invariant regime of the
CR3BP. The computation of the relative path in this example assumes that, at time
t0, the chief starts at a specific point along its orbit. Specifically, the initial state of
the chief spacecraft corresponds to a point along the halo where the out-of-plane
excursion is at its maximum possible value. The initial state of the deputy is
measured relative to this location. After one orbital period, both the chief and the
deputy vehicles must return to these fixed initial states for the path to be considered
periodic. This is only possible if the period of the relative path of the deputy is
equal to that of the halo orbit. This requirement gives rise to the fixed terminal-time
constraint. Thus, the proper way to formulate the problem requires, at a minimum,
that the multiple fixed-thrust finite-burn scheme be optimized over one fixed
orbital period. However, as previously mentioned, some numerical difficulties are
encountered with this approach when the duration of the finite burns is on the order
of hours while the orbital period is nearly 180 days.

These difficulties are in many ways specific to the sample problem selected to
demonstrate the implementation of knots. The initial guess provided corresponds to
a natural arc that is nearly periodic but generally drifts with each revolution [12].
Depending on the relative separation of the vehicles, the sensitivity of the dynam-
ical regime leads to maneuvers that are small enough to appear negligible.
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However, without the maneuvers, the relative drift can increase quickly over time
due to those same sensitivities. In general, and outside any issues specific to the
example problems selected here, the formulation presented in this study offers an
effective means of incorporating multiple maneuvers, impulsive or constrained
finite burns, within a NLP framework.

Conclusions

A formulation is presented that lays the initial algorithmic foundation, within a
nonlinear programming framework, for solving optimal control problems involv-
ing temporally continuous but spatially discrete control variables. The resulting
formulation effectively treats the generalized optimal multiple impulse or multiple
bang-off-bang problem for an unspecified number of coast and burn segments.
This method is applied to the optimal formation-keeping problem near the libration
points of the Sun–Earth/Moon system. Rather than minimizing cost, then, the
problems presented are specifically focused on minimizing cost subject to actuator
constraints. This is of particular importance for vehicles that evolve near the
libration points. Formation flight mission concepts that focus on the region near the
libration points typically envision stringent precision tracking requirements due to
specified science objectives. Actuation constraints are not typically considered
during the conceptual design phase. However, an accurate assessment of the
achievable tracking accuracy requires that such constraints be considered during
the early design stages. The dynamically sensitive nature of this region of space,
combined with physical or mission-imposed limitations on actuation can have a
negative impact on the achievable tracking accuracy. The optimal control formu-
lation presented here seeks to address this deficiency by offering analysts a means
of easily incorporating reasonably accurate actuator models during the preliminary
design phase. Subsequently, analysts can establish—based on the results—reason-
able expectations regarding tracking accuracy in the presence of the specified
constraints.
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