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Space-based observatory and interferometry missions, such as Terrestrial Planet
Finder (TPF), Stellar Imager, and MAXIM, have sparked great interest in
multi-spacecraft formation flight in the vicinity of the Sun–Earth/Moon (SEM)
libration points. The initial phase of this research considered the formation
keeping problem from the perspective of continuous control as applied to
non-natural formations. In the present study, closer inspection of the flow
corresponding to the stable and centre manifolds near the reference orbit, reveals
some interesting natural relative motions as well as some discrete control
strategies for deployment. In addition, some implementation issues associated
with discrete formation keeping of natural versus non-natural configurations
are addressed in the present study.

1. Introduction

Some new concepts for space-based observatories and interferometry missions
now incorporate formation flight to meet their objectives [1–4]. Much of the
available research on formation flight focuses on Earth orbiting configurations
[5–20] where the influence of other gravitational perturbations can be safely ignored.
However, renewed interest in formations that evolve near the vicinity of the
Sun–Earth libration points has inspired new studies regarding formation keeping
in the three-body problem [21–36]. Some of these investigations focus on the
simplified circular restricted three-body problem (CR3BP) [28, 30, 32–34]. Previous
studies [34] consider linear optimal control, as applied to nonlinear time varying
systems, as well as nonlinear control techniques, including input and output feed-
back linearization. That analysis is initially performed in the CR3BP, but is
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later transitioned into the more complete ephemeris (EPHEM) model [35, 36]. These

control strategies are applied to a two spacecraft formation where the chief space-

craft evolves along a three-dimensional periodic halo orbit near the L2 libration

point. The deputy vehicle, through continuous thrusting, is then commanded to

follow a non-natural arc relative to the chief.

This particular effort does not constitute the only application of continuous con-

trol techniques in the CR3BP. Scheeres and Vinh [28] develop a non-traditional yet

innovative continuous controller, based on the local eigenstructure of the linear

system, to achieve bounded motion near the vicinity of a halo orbit. Other research

efforts have also focused on the effectiveness of continuous control techniques in the

general CR3BP, though ‘not’ in the vicinity of the libration points. Gurfil and

Kasdin, for instance, consider both linear quadratic regulator (LQR) techniques

[30] and adaptive neural control [33] for formation keeping in the CR3BP. The

second approach, described in Gurfil et al. [33], incorporates uncertainties intro-

duced by modelling errors, inaccurate measurements, and external disturbances.

Luquette and Sanner [32] apply adaptive nonlinear control to address the same

sources of uncertainties in the nonlinear CR3BP.

Formations modelled in the CR3BP do represent a good starting point. However,

ultimately, any definitive formation keeping studies must be performed in the n-body

EPHEM model, where the time invariance properties of the CR3BP are lost and,

consequently, precisely periodic orbits do not exist near the libration points. Folta

et al. [27] and Hamilton [31] consider linear optimal control for formation flight

relative to Lissajous trajectories, as determined in the EPHEM model. In their

studies, the evolution of the controlled formation is approximated from a linear

dynamical model relative to the integrated reference orbit. Finally, Howell and

Barden [23–25] also investigate formation flying near the vicinity of the libration

points in the perturbed Sun–Earth/Moon (SEM) system. Their results are deter-

mined in the full nonlinear EPHEM model. Initially, their focus is the determination

of the natural behaviour on the centre manifold near the libration points and the first

step of their study captures a naturally occurring six-satellite formation near L1 or L2

[24]. Further analysis considers strategies to maintain a planar formation of the

six vehicles in an orbit about the Sun–Earth L1 point [23, 25, 26], that is, controlling

the deviations of each spacecraft relative to the initial formation plane. A

discrete station keeping/control approach is devised to force the orientation of

the formation plane to remain fixed inertially. An alternate approach is also

implemented by Gómez et al. [29] in a study of the deployment and station keeping

requirements for the TPF nominal configuration. Their analysis is initially per-

formed in a simpler model but the simulation results are transitioned into the

EPHEM model.

In the present study, two types of impulsive control are considered. The first is

a basic targeter approach that is, in concept, similar to that implemented by

Howell and Barden [23, 25, 26] in the EPHEM model. This particular controller

is applied here to an inertially fixed non-natural formation. Also, the station

keeping techniques previously implemented by Simó et al. [21] and Howell and

Keeter [22], based on a Floquet controller, are adapted here to the formation

keeping problem. In particular, the Floquet controller is applied to study naturally

existing formations near the libration points and the potential deployment into

such configurations.
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2. Dynamical model

In this investigation, the dynamical model that is employed is based on the standard
relative equations of motion for the n-body problem, as formulated in the inertial
frame ðX̂X�ŶY�ẐZÞ. The equations are, however, modified to include the effects of
solar radiation pressure (SRP). Hence, the dynamical evolution of each vehicle in the
formation, relative to the Earth, �rrP2Ps , is governed by

I €�rr�rrP2Ps ¼ �
�P2

ðrP2Ps Þ
3
þ

XN
j¼ 1, j 6¼2, s

�Pj

�rrPsPj

rPsPj
� �3 � �rrP2Pj

rP2Pj
� �3

 !
þ �ff ðPsÞ

srp : ð1Þ

For notational purposes, let P2 denote the central body of integration, in this case
the Earth. Then, Ps represents the spacecraft, and the sum over j symbolizes the
presence of other gravitational perturbations. Note that �P2

and �Pj
represent the

gravitational parameters of the central body, P2, and the jth perturbing body, Pj,
respectively. The SRP force vector, as discussed by McInnes [37], is modelled as

�ff ðPsÞ
srp ¼

kS0A

msc

D2
0

d2

 !
cos2� n̂n, ð2Þ

where k denotes the absorptivity of the spacecraft surface (k ¼ 2 for a perfectly
reflective surface), S0 is the energy flux measured at the Earth’s distance from the
Sun [W �m�2], D0 is the mean Sun–Earth distance [km], A represents the constant
spacecraft ‘effective’ cross-sectional area [km2], c is the speed of light [km � s�1], ms is
the spacecraft mass [kg], � is the angle of incidence of the incoming photons, n̂n
denotes the unit surface normal, and d [km] represents the Sun–spacecraft distance.

3. Discrete formation keeping

Based on results from previous investigations [30, 32–36], it appears that it is poss-
ible, at least computationally, to achieve precise formations in the CR3BP and in the
EPHEM model. That is, ‘if ’ continuous control is both available and feasible.
Past studies [34–36] demonstrate that, depending on the constraints imposed on
the formation configuration, a continuous control approach may nominally require
thrust levels ranging from 10�3 to 10�9N. In contrast, the present state of propulsion
technology allows for operational thrust levels on the order of 90–1000 mN via
pulsed plasma thrusters, such as those available for attitude control onboard
EO-1 (http://space-power.grc.nasa-gov/ppo/projects/eo1/eo1-ppt.html). Of course,
increased interest in micro- and nano-satellites continues to motivate theoretical
and experimental studies to further lower these thrust levels, as discussed by
Mueller [38], Gonzalez and Baker [39] and Phipps and Luke [40]. Gonzalez and
Baker [39] estimate that a lower bound of 0.3 nN is possible via laser induced
ablation of aluminium. Aside from their immediate application to micro- and
nano-satellite missions, these concepts are also potentially promising for formation
flight near the libration points.

Ultimately, the level of accuracy achievable in tracking the nominal motion, for
a given configuration, depends strongly on the ability to deliver the required thrust
levels accurately. Although continuous control approaches are mathematically
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sound, the science goals of deep space missions may impose a series of constraints
that eliminate continuous control as a feasible option. Some also suggest that main-
taining a precise formation is, perhaps, ultimately not as critical as generating precise
knowledge of the relative position of each spacecraft in the formation. In these cases,
a discrete formation keeping strategy may represent an important capability.

3.1 Investigation of various discrete control strategies

In this study, two discrete control strategies are considered for formation keeping.
Both of these rely on knowledge of the linearized dynamics associated with the
reference orbit, but incorporate the nonlinear response of the vehicle. In this case,
the reference orbit is the path of the chief spacecraft, assumed to evolve along a
2� 105 km halo orbit, as determined in the SEM ephemeris system. The deputy
dynamics, then, are modelled as a perturbation relative to the reference orbit. The
success of a particular control strategy depends, in part, on the nominal motion that
is required of the deputy.

In the first method, a simple linear targeter is applied to enforce a non-natural
formation. In particular, the nominal path of the deputy spacecraft is characterized
as an inertially fixed distance and orientation, relative to the chief spacecraft. Since
this type of motion does not exist naturally near the libration points, continuous
control is necessary to ‘precisely’ enforce the formation for the duration of the
mission. It is assumed that the goals of the mission require formation keeping
accuracies below 10�3m. Here, instead of applying continuous control, the path
of the deputy is divided into segments. At the beginning of each segment, an impul-
sive manoeuvre is implemented that targets the nominal state at the end of the
segment. If the nominal separation between the chief and deputy spacecraft is
small, this approach proves to be effective if the required tolerances are on the
order of 10�2m. Whether this represents an acceptable tolerance level depends on
the goals of the mission. For instance, as presently envisioned, missions like Stellar
Imager require that the nominal vehicle configuration be maintained to within
10�6m. The results from earlier studies [34–36] clearly indicate, then, the need for
continuous formation control if non-natural relative motions are of interest.

Alternatively, a controller derived from Floquet analysis, based on the reference
orbit, is designed to remove the unstable component of the relative state, as well as
two of the four centre subspace modes that are associated with the reference orbit.
The path of the deputy, then, is representative of a synthesis between the stable and
centre flows. In contrast with the first method, this type of control does ‘not’ target
a non-natural reference motion. Instead, the control scheme nominally places the
deputy spacecraft on a naturally existing path that exhibits nearly periodic behav-
iour, bounded motion, or quasi-periodic motion relative to the chief spacecraft. The
control essentially seeks to return the deputy to this natural path.

4. Discrete control of non-natural formations in the ephemeris model

Driven by control and/or implementation requirements, some new consideration is
warranted concerning the degree of accuracy to which the formation can be main-
tained via discrete impulses. A discrete LQR controller yields the optimal magnitude
for each differential control impulse at specified time intervals. This approach is
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suitable for station keeping of natural solutions, such as Lissajous trajectories or
halo orbits, which nominally require no control. However, non-natural solutions do
require a nominal control input. The value of the nominal control input that must be
added is still assumed to be continuously available. Hence, the LQR method, in this
case, does not yield a truly discrete formation keeping strategy.

4.1 Targeting a nominal relative state

Consider a formation where the chief spacecraft evolves along the Lissajous trajec-
tory plotted in figure 1, near the SEM L2 point. Note that this trajectory is deter-
mined in the EPHEM model. Furthermore, let the nominal state of the deputy be
defined by the position vector ���ðtÞ, measured from the chief to the deputy, and the
relative velocity vector _������ðtÞ. In the present example, ���ðtÞ ¼ ð100 kmÞŶY and _������ðtÞ ¼ �00.
Since this type of ‘relative’ spacecraft motion is not consistent with the natural
dynamics near the libration points, at least nearly continuous control is necessary
for precise formation keeping. However, if the mission specifications allow some
flexibility in the relative vehicle position tolerances, an impulsive control approach
may be sufficient. The impulsive scheme presented here is based on a differential
corrections approach.

Consider the general form of the solution to the linear system

��rrkþ1

�_�rr�rr �k�1

� �
¼ �ðtk�1,tkÞ

��rrk
�_�rr�rr þk

� �
¼

Ak Bk

Ck Dk

� �
��rrk

�_�rr�rr �k þ� �VVk

� �
, ð3Þ

where �(tkþ1, tk) denotes the state transition matrix, from time tk to time tkþ1,
associated with the ‘actual’ deputy spacecraft path. The symbol � denotes a pertur-
bation relative to the actual deputy path and � �VVk represents an impulsive
manoeuvre applied at the beginning of the kth segment, marked by tk. In this
case, ��rrk ¼ �rr�k � �rrk, �_�rr�rr

�
k ¼ _�rr�rr�k � _�rr�rr�k , and ��rrkþ1 ¼ �rr�kþ1 � �rrkþ1 where the superscript ‘�’

denotes evaluation along the nominal deputy path. That is, �rr�k ¼ �rrP2CðtkÞ þ ����ðtkÞ
and _�rr�rr�k ¼ _�rr�rrP2CðtkÞ þ _������ðtkÞ, where ‘P2C’ denotes the distance from P2 to the chief
spacecraft. Controlling the position of the deputy spacecraft relative to the chief
to a constant vector, as observed in the inertial frame, is equivalent to targeting
a particular constant perturbation in position, ��rrkþ1, relative to the inertial frame.
An impulsive manoeuvre of the form

� �VVk ¼ B�1
k ð��rrkþ1 � Ak��rrkÞ � �_�rr�rr�k , ð4Þ

will accomplish the goal in the linear system. In the nonlinear EPHEM model
employed here, a precise implementation of this scheme is accomplished through
a differential corrections process performed over each segment, as discussed by
Howell and Barden [23, 25, 26]. A sample implementation of this approach, in the
EPHEM model, is presented in figure 2. The manoeuvre strategies associated with
each curve in figure 2 are illustrated in figure 3. Note, from figure 2, that during
the wait period between manoeuvres the trajectory diverges quickly from the pre-
specified nominal path. Naturally, the maximum error incurred along each segment
decreases as the scheduled time between manoeuvres decreases. In spite of this trend,
these results indicate that, if the nominal radial separation is large, continuous
control is still required if a good level of accuracy is desired.

Smaller formations, on the other hand, may benefit from a discrete approach.
For instance, consider a formation characterized by ��� ¼ ð10mÞŶY and _������ ¼ �00. As
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depicted in figure 4, the maximum distance deviation between manoeuvres is
significantly smaller, dropping below 10�2m for manoeuvres scheduled at least
every 2 days. However, the magnitude of the individual manoeuvres, illustrated
in figure 5, has decreased by several orders of magnitude, compared to the manoeu-
vres in figure 3. In practice, the error introduced in any attempt to physically
implement such small manoeuvres may offset the benefits. In addition, the toler-
ances achievable with any impulsive approach, for a fixed manoeuvre schedule,
depends on the nominal separation between the vehicles. As observed from
figure 6, formation separations of up to 50m can be achieved to within 10�2m
at all times, if a manoeuvre is performed once a day. If that interval is doubled
to once every 2 days, then the maximum relative separation recommended drops
to 15m.

Clearly, achieving the desired nominal configuration to extreme accuracy requires
manoeuvres that are fairly close to each other. As previously mentioned, as the
manoeuvres become more closely spaced they also decrease in size. Note that the
magnitude of the manoeuvres illustrated in figure 5 is already extremely small
(10�6m s�1). So, regardless of whether continuous or discrete control is available,
accurately maintaining a ‘non-natural’ nominal configuration, with small relative
separations, still requires very low thrust capabilities [38–41]. Delivering such small
control inputs, accurately, may or may not be achievable with the technology presently
available. Whether or not that is true depends on the required nominal path, any
dynamical or mission specific constraints imposed on the formation, and the sensitivity
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Figure 2. Position error relative to the nominal path for various manoeuvre
intervals over two Earth cycles.
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of this analysis to modelling and measurement uncertainties as well as thrust implemen-
tation errors. Since the natural flow in this region of space is constantly acting against
these non-natural configurations, the relative error can increase rapidly if these small
manoeuvres are not accurately implemented. Conversely, formations that take advan-
tage of the natural flow near the reference orbit require minimal station keeping beyond
the initial injection manoeuvre.

5. Formations that exploit the centre1 stable manifolds

The centre manifold that exists near the libration points allows for a variety of
natural motions that could prove beneficial for formation flight. Lissajous trajec-
tories and halo orbits are examples of motions that exist within the centre manifold
near L1 and L2. A Lissajous trajectory, for instance, allows for a phased natural
formation whose geometry is analogous to a ‘string of pearls’. To illustrate the
concept, consider the Lissajous trajectory represented in figure 7. The blue surface
in figure 7 is traced by a quasi-periodic Lissajous trajectory near the SEM L2 point,
as determined in the SRP perturbed n-body EPHEM model. By properly phasing
each vehicle, it is possible for the formation to naturally evolve along this surface
such that the relative positions of each spacecraft in the formation are unaltered
and the relative distances are closely bounded. That is, if the formation originates
as a string of pearls, the orientation of the string is relatively unaffected in time,
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Figure 3. Station keeping manoeuvre strategy for a 100 km two spacecraft forma-
tion aligned with inertial y-axis.
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the lead vehicle always remains in the lead and the order of each subsequent vehicle
along the ‘string of pearls’ remains unchanged.

Since each spacecraft in this formation evolves along a naturally existing Lissajous
trajectory, maintaining this type of formation can be achieved with a standard
station keeping approach. Other relative motions can be numerically identified
through a linear stability analysis of a reference solution near the libration points,
such as a halo orbit in the CR3BP. The process of identifying these relative motions
requires an understanding of the eigenstructure associated with the reference orbit.
To that end, the analysis of the centre manifold as presented here employs the
CR3BP, where the reference orbit is defined as a three-dimensional, periodic halo
orbit. The natural formation dynamics in the vicinity of the reference orbit are
studied in detail. Once a suitable set of nominal configurations is identified, the
results are easily transitioned into the EPHEM model previously described via a
differential corrections process.

5.1 Floquet analysis

Let �xx�ðtÞ denote the state vector, at time t, along a reference halo orbit near L1 or L2

in the CR3BP and let � �xxðtÞ denote a perturbation relative to �xx�ðtÞ. Since the following
analysis is performed in the CR3BP, these vectors are both expressed in terms of
rotating coordinates consistent with the standard definition of the synodic rotating
frame. In this frame, x̂x is directed from the Sun to the Earth/Moon barycentre,
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ẑz is normal to the plane of motion of the primaries, and ŷy completes the right-handed
triad. The velocity elements of the vectors �xx�ðtÞ and � �xxðtÞ are both associated with
an observer fixed in the rotating frame.

In terms of the linearized dynamics, the evolution of the perturbation vector � �xxðtÞ
is governed by the state transition matrix, �(t, 0), such that

� �xxðtÞ ¼ �ðt, 0Þ� �xxð0Þ: ð5Þ

Since the reference orbit is T-periodic, the state transition matrix admits a Floquet
decomposition [42] of the form

�ðt, 0Þ ¼ PðtÞS
� �

eJt Pð0ÞS
� ��1

, ð6Þ

where P(t) ¼ P(tþT ) is a periodic matrix, P(0) is the identity matrix, and J is a
block diagonal matrix formed by the real and imaginary parts of the Floquet expo-
nents (gj) of �(T, 0). The reference halo orbits of interest in this study are inherently
unstable and characterized by a first-order instability. That is, g1>0, g2<0, g3 and g4
are purely imaginary, and g5 ¼ g6 ¼ 0. The columns of S represent the real
and imaginary parts of the Floquet modes ð�ssjÞ. The Floquet Modal matrix is sub-
sequently defined as

EðtÞ ¼ PðtÞS ¼ �ðt, 0ÞEð0Þe�Jt: ð7Þ
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Note that, since P(t) is periodic, and S is a constant matrix, E(t) ¼ E(tþT ) and
E(0) ¼ S. The Floquet modes at each point along the reference orbit can be com-
puted from equation (7). Now, at a point in time, the perturbation � �xxðtÞ can be
expressed in terms of any six-dimensional basis. The Floquet modes ð �eejÞ, defined by
the columns of E(t), form a non-orthogonal six-dimensional basis. Hence, � �xxðtÞ can
be expressed as

� �xxðtÞ ¼
X6
j¼1

� �xxjðtÞ ¼
X6
j¼1

cjðtÞ �eejðtÞ, ð8Þ

where � �xxjðtÞ denotes the component of � �xxðtÞ along the jth mode, �eejðtÞ, and the
coefficients cj(t) are easily determined as the elements of the vector �ccðtÞ defined by

�ccðtÞ ¼ EðtÞ�1� �xxðtÞ: ð9Þ

The Floquet analysis presented above is implemented by Howell and Keeter [22],
based on work originally performed by Simó et al. [21], as the basis of a station
keeping strategy for a single spacecraft evolving along a halo orbit. In their study,
Howell and Keeter (following [21]) determine the impulsive manoeuvre scheme that
is required to periodically remove the unstable component, � �xx1, of the perturbation,
� �xxðtÞ. In the present analysis, a similar approach is employed to remove the
component of � �xx that is associated with the unstable mode as well as two of the
four centre modes. Thus, the control will eliminate three components. To illustrate
this, let

� �xxðtÞ� ¼
X

j¼2, 3, 4 or
j¼2, 5, 6

ð1þ �jðtÞÞ� �xxj, ð10Þ

denote the ‘desired’ perturbation relative to the reference orbit, where the �j(t)
denote some yet to be determined coefficients. The control problem, then, reduces
to finding the impulsive manoeuvre, � �VVðtÞ, such that

X
j¼2, 3, 4 or
j¼2, 5, 6

ð1þ �jðtÞÞ� �xxjðtÞ ¼
X6
j¼1

� �xxj þ
03

� �VV

� �
: ð11Þ

Let � �xxjr denote the first three elements of the vector � �xxj, � �xxjv the last three elements of
� �xxj, and ��� represent a 5� 1 vector formed by the �j coefficients in equation (11).
Then, the � �VV required to remove modes �ee1, �ee3, and �ee4 is computed as

���
� �VV

� �
¼

� �xx2�rr � �xx5�rr � �xx6�rr 03
� �xx2 �vv � �xx5 �vv � �xx6 �vv �I3

� ��1

ð� �xx1 þ � �xx3 þ � �xx4Þ: ð12Þ

Similarly, the � �VV required to remove modes �ee1, �ee5, and �ee6 is exactly determined from

���
� �VV

� �
¼

� �xx2�rr � �xx3�rr � �xx4�rr 03
� �xx2 �vv � �xx3 �vv � �xx4 �vv �I3z

� ��1

ð� �xx1 þ � �xx5 þ � �xx6Þ: ð13Þ

Either one of these controllers leads to motion that exhibits not only the overall
features of the associated centre subspaces, but also some of the features more
commonly associated with motion along a stable manifold. As a direct result, the
controllers described by equations (12) and (13) not only define other potential
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nominal configurations, but also deployment into these configurations, as is demon-
strated below.

In general, centre modes are indicative of the existence of additional bounded
solutions in the vicinity of the reference orbit. For instance, modes �ee3ðtÞ and �ee4ðtÞ
span a two-dimensional subspace associated with solutions that evolve along a
hollow two-dimensional (2D) torus, known to envelop the halo orbit, as illustrated
in figure 8. This type of torus exists both in the CR3BP and in the EPHEM model
and represents a natural (unforced) solution to the nonlinear equations of motion.
In fact, the solution illustrated in figure 8 is associated with the EPHEM model.
Hence, if the initial perturbation, � �xxð0Þ, is entirely contained within the subspace
spanned by �ee3 and �ee4, then the perturbed path, relative to the halo orbit, is bounded
and evolves along a torus, such as that illustrated in figure 8.

Now, suppose that � �xxðtÞ represents the relative dynamics of a deputy spacecraft.
This implies that the chief spacecraft is assumed to evolve along the halo orbit.
The relative path that defines the motion of the deputy is best visualized from
figure 9. Relative to the chief spacecraft, figure 9 depicts, as a surface, the trajectory
along which the deputy evolves. In this depiction, the chief spacecraft is always
located at the origin. Note that the solution in figure 9 is self-intersecting, but that
is merely a product of the projection of the six-dimensional states onto three-
dimensional configuration space. Furthermore, although the solution illustrated
in figure 9 is generated in the linear system, it is known to represent a natural
solution to the nonlinear equations both in the CR3BP and in the EPHEM
model, as illustrated in figure 8.

5.2 Application: Floquet controller to deploy into quasi-periodic torus formation

Consider a two spacecraft formation where the chief spacecraft is assumed to evolve
along a 2� 105 km halo orbit near the SEM L1 point. Both spacecraft are deployed
and arrive simultaneously at different points along the xz-plane. Let the ‘arrival’
point for both spacecraft be defined as the point where they cross the xz-plane near
the reference orbit. The position of the deputy spacecraft upon arrival is similar to

y

z

x

Figure 8. Six spacecraft formation evolving along two-dimensional torus near L1

in the SEM EPHEM model.
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the chief but 50m off along the þx̂x-direction. The relative velocity of the deputy is

not important, only the relative orientation of the two spacecraft is relevant.

Once at the arrival point, the deputy spacecraft performs its first formation keep-

ing manoeuvre, as determined from equation (13). This manoeuvre is the largest and

is meant to place the spacecraft state into the desired subspaces. The magnitude of

the manoeuvre is approximately equal to the magnitude of the relative velocity of the

deputy with respect to the chief. For this particular example, the initial relative

velocity of the deputy is selected as _�rr�rrð0Þ ¼ ðx̂x� ŷyþ ẑzÞms�1. Thus, the first mano-

euvre of the deputy vehicle is j� �VV1j ¼ 1:73m s�1. Thereafter, the trajectory of both

the chief and deputy spacecraft requires a small deterministic � �VV every 180 days

(one orbital period along the halo orbit). For the chief spacecraft, these are necessary

to enforce the periodicity condition over 100 orbital periods (and may simply be a

numerical artefact). All of these corrections—both for the chief and deputy—are on

the order of 10�8m s�1. The resulting path is illustrated in figure 10. The first leg

Figure 9. Relative deputy motion along centre manifold.
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of the path is characteristic of motion associated with mode two, that is, the stable
mode, while the converged path is consistent with the motion associated with modes
five and six, previously illustrated in figure 9.

5.3 Application: Floquet controller to deploy into nearly periodic formations

For the same reference halo orbit employed in the previous example, consider three
deputies deployed along with the chief spacecraft. Each deputy spacecraft arrives
simultaneously at a different location relative to the chief. In particular, the relative
position vectors are 50, 100, and 140m along the þ x-direction. Application of the
Floquet controller described by equation (2) leads to a nearly periodic formation.

Once again, the first leg along the path of each deputy resembles motion along the
stable manifold associated with the reference halo orbit. However, the converged
path is nearly periodic, as observed from figure 11. The resulting path is propagated
in the figure for 10 revolutions of the reference halo orbit (1800 days). Beyond
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Figure 10. Deployment into toroidal formation (initial state excites only modes
five and six).
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the initial injection manoeuvre, numerical corrections are implemented once every
180 days, although the magnitude is small (10�8m s�1).

The converged segment of the path in figure 11 reveals a variety of nearly periodic
solutions in the vicinity of the chief spacecraft. Since the controller forces these
solutions to remain within a subspace spanned by �ee2, �ee5, and �ee6, the resulting path
is not evolving solely along the halo family but rather along another type of nearly
periodic motion in the vicinity of the reference halo orbit. This is most apparent
as the amplitude of the relative orbits is increased above 103 km. To better
visualize the potential configurations, figure 12 illustrates eight deputies evolving
along these nearly periodic orbits. Depending on the desired orbit amplitude, the
actual path of each vehicle expands away from the chief spacecraft, but at a very
slow rate. So, the individual orbits can be propagated for 100 revolutions of the
reference halo, in the CR3BP, and will still appear periodic if the relative separations
are small.

Let �rrðtÞ denote the vector formed by the position elements of � �xxðtÞ. The orbits
depicted in figure 12 are obtained by applying the controller to a relative position
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Figure 11. Deployment into nearly periodic formation (initial state excites only
modes three and four).
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vector of the form �rrð0Þ ¼ r0 ŷy, where r0 denotes some initial separation between the
chief and deputy spacecraft. The rate of expansion of these orbits is more noticeable
if the initial position vector originates anywhere else in the yz-plane. In fact, the rate
of expansion reaches a maximum if the initial relative position vector is of the form
�rrð0Þ ¼ r0ẑz. In this case, the resulting orbits appear nearly vertical and are illustrated
in figure 13 using a four spacecraft formation as an example. In the yz-projection, it
is apparent that the expansion proceeds clockwise since, in this case, the reference
orbit is a northern L1 halo orbit. This is consistent with the direction of motion both
along the halo family and the stable manifold in this region of space.

Figure 14 further illustrates how the rate of expansion changes as the initial state is
shifted throughout the yz-plane. The relative deputy paths illustrated in figure 14(a)
are determined in the CR3BP, based on the Floquet analysis previously discussed.
These trajectories serve as an initial guess to a two-level differential corrections
process, developed by Howell and Pernicka [43], used to numerically identify the
equivalent solutions in the EPHEM model. The solutions associated with the SRP
perturbed EPHEM model are illustrated in figure 14(b). The sphere at the origin (the
location of the chief ) is included only to aid in visualizing the path of the deputy.

Figure 12. Natural eight spacecraft formation about a single chief spacecraft.
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Note that with no initial z-component, the orbit of the vehicle is periodic in the
CR3BP and nearly periodic in the EPHEM model. As an out-of-plane component is
introduced into the initial state, the resulting trajectory blends the characteristics
of the orbits in both figures 12 and 13. Further propagating a nearly vertical orbit,
characterized by �rrð0Þ ¼ r0 ẑz, over a period of 100 revolutions (49.2 years) yields the
surface illustrated in figure 15.

These naturally existing motions can be used as initial guesses to compute non-
natural formations. For instance, consider the sample relative deputy trajectories
plotted in figure 16(a)–(c). These trajectories are determined in the EPHEM model
both with and without SRP. For each of these examples, the deputy path is clearly
not periodic but, the initial guess is sufficiently close to periodic if the effects of SRP
are small. In this case, a differential corrector can be applied to enforce periodicity if
impulsive manouvres are allowed. The process is similar to a method commonly used
to transition halo orbits into the EPHEM model. Consider the first two revolutions
of the path (without SRP) in figure 16(b). A two-level differential corrections

Figure 13. Nearly vertical relative orbits (four spacecraft formation).
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Figure 14. Variation in relative orbit expansion rate along the yz-plane.

Figure 15. Evolution of nearly vertical orbit over 100 revolutions (49.2 years).
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process, in this case with initial- and end-point constraints, determines the manoeu-
vre necessary to close the orbit over this time period. The patch points associated
with the converged solution are then shifted forward in time to add N additional
revolutions. The complete solution is then differentially corrected while allowing
manoeuvres at the intersections between revolutions. A sample solution, over six
revolutions, is illustrated in figure 17 and is obtained by applying two impulsive
manoeuvres ranging in size from 2.5 to 5m s�1 at the specified locations.
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Figure 16. Natural formations in the EPHEM model (with SRP).
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Figure 17. Controlled periodic orbit in the EPHEM model (without SRP).
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A similar approach can be applied to the nearly vertical trajectory in figure 16(c)
to obtain vertical periodic relative orbits, as illustrated in figure 18. This particu-
lar approach works very well if periodicity is enforced in the rotating frame, as
opposed to the inertial frame. Relative to an observer fixed in the rotating frame,
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Figure 18. Controlled vertical orbit in the EPHEM model (without SRP).
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Figure 19. Natural formations in the EPHEM model (with SRP) (inertial frame
perspective of figures 11(a–c)).
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these solutions appear to be sufficiently close to periodic and are, subsequently,
a suitable initial guess for the differential corrector. However, the associated
inertial perspectives, illustrated in figure 19, are quite different. These solutions
do not represent a sufficiently accurate initial guess if periodicity is the constraint
to be enforced. That is because of the natural geometry of the solution and the fact
that the Earth is at a different location every time a revolution is completed, as
opposed to a perspective originating in the rotating frame. At the present time,
however, no conclusive statements can be made since this is still a subject of ongoing
study.

6. Conclusions

Earlier stages of this study demonstrate the efficiency of continuous control methods
as applied to non-natural formations in the n-body problem. Although the results
here include only the gravitational effects of the Sun, the Earth, and the Moon, it is
important to note that the influence of the remaining planets is easily incorporated
into this model. The addition of these perturbations, however, has an insignificant
impact on the formation keeping problem near the libration points, L1 and L2, of the
SEM system.

Based on the available literature on continuous control, it is clear that linear and
nonlinear techniques, such as LQR and feedback linearization, can mathematically
enforce a non-natural configuration in the n-body problem. However, continuous
thruster operation does not always represent a desirable option. A difficulty inherent
to the sensitive nature of this dynamical regime is that the acceleration levels
required to maintain a non-natural configuration can be prohibitively small.
Of course, whether or not this is true depends on the constraints imposed on the
nominal formation dynamics.

Even with improved technology, the implementation error may be on the same
order of magnitude as the thrust level, a potentially significant problem given the
sensitivity of the dynamical response to small perturbations. Precise formations,
in fact, may not even be required, given a possible shift to improved navigation
and relative position information. Hence, it is useful to explore the effectiveness of
discrete control.

For non-natural formations, a targeter approach is implemented here to maintain
the desired configuration within a reasonable degree of accuracy. Not surprisingly,
tightly spaced manoeuvres are required to closely maintain a desired non-natural
configuration. The frequency of the manoeuvre interval depends on the desired
nominal separation between each spacecraft and any additional dynamical con-
straints imposed on the formation. Furthermore, achieving the desired accuracy,
and the physical requirements to do so, present yet another dilemma. As previously
stated, if maintaining a tight non-natural formation is desired, frequent manoeuvres
are necessary. However, smaller manoeuvre intervals require smaller manoeuvres.
The magnitude of these manoeuvres, individually, is still extremely small which, once
again, raises an implementation issue.

The difficulties encountered with non-natural configurations may be overcome by
developing a better understanding of the naturally existing formations. Of course, a
nominal configuration that is ‘completely’ consistent with the natural flow near
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the reference orbit may not satisfy all the dynamical requirements imposed by a
particular mission. However, understanding these naturally existing behaviours
can lead to the development of techniques to aid the construction of nominal for-
mations that do meet the proposed mission objectives, while exploiting the natural
structure. To that end, a modified Floquet-based controller is successfully applied
here that reveals some interesting natural formations as well as deployment into
these configurations.
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